
Federated Learning in Side-Channel Analysis
Huanyu Wang, Elena Dubrova

School of EECS, KTH Royal Institute of Technology, Stockholm, Sweden
Email: {huanyu, dubrova}@kth.se

Abstract—Recently introduced federated learning is an attrac-
tive framework for the distributed training of deep learning
models with thousands of participants. However, it can potentially
be used with malicious intent. For example, adversaries can use
their smartphones to jointly train a classifier for extracting secret
keys from the smartphones’ SIM cards without sharing their side-
channel measurements with each other. With federated learning,
each participant might be able to create a strong model in the
absence of sufficient training data. Furthermore, they preserve
their anonymity. In this paper, we investigate this new attack
vector in the context of side-channel attacks. We compare the
federated learning, which aggregates model updates submitted
by N participants, with two other aggregating approaches: (1)
training on combined side-channel data from N devices, and
(2) using an ensemble of N individually trained models. Our
first experiments on 8-bit Atmel ATxmega128D4 microcontroller
implementation of AES show that federated learning is capable
of outperforming the other approaches.

Index Terms—Federated learning, side-channel attack, AES

I. INTRODUCTION

Federated learning (FL) is a new paradigm in machine learn-
ing that can help meet regulatory requirements (GDPR [1],
HIPAA [2]) and mitigate privacy concerns while taking ad-
vantage of massive distributed data [3]–[5]. FL allows its par-
ticipants to collaboratively train a global model without shar-
ing participant’s local training data. At every communication
round, each participant trains a local model based on his/her
training data and submits the model updates to the server.
The server employs a secure aggregation [6] to build a global
model by averaging the local models’ weights. Motivating
applications for FL include image classifiers for self-driving
cars, keyboard next-word predictors, and personalized product
recommendation services [7].

However, as any great scientific discovery, FL can po-
tentially be used with malicious intent. Since FL preserves
not only training data confidentiality, but also participant’s
anonymity, its setting is very appealing to adversaries. Fur-
thermore, an adversary who does not have enough training
data might still be able to create a strong deep-learning model
by training in a FL framework. For example, adversaries can
use their smartphones to jointly train a classifier for extracting
secret keys from the smartphones’ SIM cards without sharing
their local side-channel measurements with each other. At each
round, every participant independently trains a local model
update based on traces captured from his/her profiling device
and uploads it to the aggregator, where the submitted updates
are combined to construct a global model. The aggregator can
be either a participant, or a third party.

In this paper, we investigate this new attack vector in
the context of Deep-Learning Side-Channel Attacks (DL-
SCAs). DL-SCA is one of the most powerful attacks against
implementations of cryptographic algorithms at present [8].
During the execution of a cryptographic algorithm, physical
implementations tend to leak side-channel information which
is related to the secret key. An adversary first trains a deep-
learning model on power traces captured from profiling de-
vices which he/she controls, and then applies the trained model
to recover the key of a victim device. Using more than one
device for profiling (called multi-source training), is known
to reduce the negative effect of inter-chip variation, which
is prominent in advanced technologies, and help generaliza-
tion [9]–[11].

Another known technique for reducing generalization error
in machine learning is bootstrap aggregating, or bagging [12].
In bagging, several different, separately trained models are
used in an ensemble to vote on the output results. Since
different models usually do not make the same errors on the
test set, on average, an ensemble of N models is expected
to perform better than its members [13]. Bagging has been
successfully applied to power analysis of hardware implemen-
tations of Advanced Encryption Standard (AES) [14]. The
attack presented in [14] uses an ensemble of three CNN
models trained on different attack points.

While it is obvious that a DL-SCA in FL framework
will outperform a DL-SCA based a single classifier trained
on a single profiling device, the outcome of a competition
between FL (model-level aggregation), bagging (output-level
aggregation), and multi-source training (data-level aggrega-
tion) methods is not evident. We present such an evaluation in
this paper. We apply FL, bagging, and multi-source training
aggregation methods to power analysis of a microcontroller
implementation of AES. Our first experiments show that FL
is capable of outperforming the other two approaches.

The rest of the paper is organized as follows. Section II gives
a background on deep-learning side-channel attacks, AES,
and federated learning. Section VI shows how local models
are trained. Section III describes model-level, output-data and
data-level aggregation methods in the side-channel analysis
context. Section IV provides the assumptions for a realistic
profiling side-channel attack scenario. Section V presents the
experimental setup. Section VII summarizes the evaluation
results. Section VIII concludes this paper and discusses open
problems.

(a) Model-level aggregation (FL) (b) Output-level aggregation (c) Data-level aggregation

Fig. 1. Model-, output- and data-level aggregation in the deep-learning side-channel analysis context.

II. BACKGROUND

This section reviews the background, including deep learn-
ing side-channel attacks, AES-128, and federated learning.

A. Deep Learning Side-Channel Attacks

Side-channel attacks were pioneered by Paul Kocher in his
seminal paper on timing analysis [15] where he has shown that
non-constant running time of a cipher can leak information
about its key. Kocher has also introduced power analysis [16]
which exploits the fact that circuits typically consume differing
amounts of power based on their input data. The power
consumption remains one of the most successfully exploited
side-channels today. We focus on power analysis in this paper.

The target of a side-channel attack is to recover an n-bit
key k ∈ K, where K is the set of all possible keys. To recover
the key, the attacker uses of a set of known input data (e.g.
the plaintext) and a set of the physical measurements (e.g.
power consumption). Usually a divide-and-conquer strategy is
used in which the key k is divided into m-bit parts ki, called
subkeys, and the subkeys ki are recovered independently, for
i ∈ {1, 2, . . . , n

m}. Typically m = 8.
Deep learning can be used in side-channel analysis in two

settings: profiling and non-profiling. Profiling attacks [17]
first learn a leakage profile of the cryptographic algorithm
under attack, and then attack. Non-profiling attacks [18] attack
directly, as the traditional Differential Power Analysis [16] or
Correlation Power Analysis (CPA) [19]. In this paper, we focus
on profiling attacks.

A profiling deep-learning side-channel attack is done in two
stages.

1) At the profiling stage, the selected type of deep-learning
model is trained to learn a leakage profile of the crypto-
graphic algorithm under attack for all possible values of
the sensitive variable. The sensitive variable is typically
a subkey. The training is done using a large set of side-
channel data captured from profiling device(s) which are
labeled according to the selected leakage model.

2) At the attack stage, the trained model is used to classify
the side-channel data from a victim device.

A leakage model describes the leakage of a device at some
selected intermediate point during the execution of the algo-
rithm, called the attack point. Common leakage models for
power analysis are the identity, the Hamming weight, and the
Hamming distance. In this paper, we use the identity model
which assumes that the power consumption is proportional to
the value of the data processed at the attack point.

B. AES-128

The AES [20] is a symmetric encryption algorithm standard-
ized by NIST in FIPS 197 and included in ISO/IEC 18033-3.
AES-128 takes a 128-bit block of plaintext and an 128-bit
key k as input and computes a 128-bit block of ciphertext as
output. In this section, we describe AES-128 algorithm whose
implementation is used in our experiments. Its pseudo-code is
shown in Algorithm 1. AES performs encryption iteratively,
in 10 rounds for the 128-bit key. Each round except the last
repeats the four steps: non-linear substitution, transposition of
rows, mixing of columns, and round key addition. The last
round does not mix columns

The non-linear substitution is implemented by the function
SubBytes() which applies the AES 8-input 8-output substi-
tution box S-Box to state byte-by-byte.

A different round key RKi is derived from the key k for
each round i ∈ {1, 2, . . . , 10}.

As any block cipher, AES can be used in several modes
of operation. In our experiments we use Electronic Codebook
(ECB) mode, in which the message is divided into blocks and
each block is encrypted separately.

C. Federated learning

Federated learning [5] trains a global model across mul-
tiple decentralized edge devices or servers holding local data
samples. Existing federated learning methods can be classified
into several subsets [21]. Horizontal federated learning [5],

Algorithm 1 Pseudo-code of the AES-128 algorithm.
// AES-128 Cipher
// in: 128 bits (plaintext)
// out: 128 bits (ciphertext)
// Nr: number of rounds, Nr = 10 for AES-128
// Nb: number of columns in a state, Nb = 4
// ke: expanded key K, Nb∗ (Nr+1) = 44 words, (1 word
= Nb bytes)
state = in;
AddRoundKey(state, ke[0, Nb− 1]);
for round = 1 step 1 to Nr − 1 do

SubBytes(state); // Point of attack in round 1
ShiftRows(state);
MixColumns(state);
AddRoundKey(state, ke[round∗Nb, (round+1)∗Nb−1]);

end for
SubBytes(state);
ShiftRows(state);
AddRoundKey(state, ke[Nr ∗Nb, (Nr + 1) ∗Nb− 1]);
out = state;

[22] focuses on datasets which share the same feature space
but different in samples. Vertical federated learning scheme
[23], [24] is designed for datasets which share the same
label space but different in feature space. Another category
is called federated transfer learning, which is applied to the
datasets differ in both label and feature space. [25] introduces a
block-chained federated learning which utilizes the leveraging
blockchain to exchange and verify model updates. Horizontal
federated learning seems to be suitable in the context of side-
channel attack, since traces captured from different devices
with the same key and plaintext share similar features.

III. AGGREGATION METHODS

This section describes model-, output- and data-level aggre-
gation methods in the side-channel analysis context.

A. Model-level aggregation

Figure 1(a) illustrates the model-level aggregation for SCA
which utilizes the horizontal federated learning framework.
There are N participants (clients) jointly constructing a fed-
erated deep-learning model. Each client i has ni private data
samples from his/her profiling device, for i ∈ {1, . . . , N}. The
total number of training data samples of N clients is denoted
by n, with n =

∑N
i=1 ni.

At the beginning of the training process, a typical model
structure is initialized by an aggregator (server) and sent to
each client. At each communication round t, a random fraction
ηt ∈ [0, 1] of N clients is selected by the aggregator to
independently update local models based on their private data
and upload the updates to the aggregator. In our experiment,
we set ηt = 1, which means that all clients contribute to the
global model in each communication round.

Fig. 2. Equipment for power analysis.

For each client i, local updates are typically done using
Stochastic Gradient Descent (SGD) taken on the private data
the client i based on the weights ωt

0 of the shared global model:

ωt+1
i = ωt

0 − α∇φ(ωt
i)

where α is the learning rate,∇φ is gradient of the classification
loss φ, and ωt

i are weights of current local model of the client
i.

A typical aggregation approach of federated learning is
averaging. The aggregator computes the weights ωt+1

0 of the
global model by averaging the weights of submitted local
models:

ωt+1
0 =

N∑
i=1

ni
n
ωt+1
i

At the end of communication round t, the aggregator sends
the global model with the weights ωt+1

0 back to each client.
All clients can use the global model to classify the data

samples from a victim device.

B. Output-level aggregation

Figure 1(a) shows the output-level aggregation approach
inspired by bagging [12] meta-algorithm which is a type of
ensemble learning. N different classifiers are trained and their
score vectors are combined. In this way, a stronger classifier
can potentially be created from several weaker ones. Bagging
may help avoid overfitting and reduce variance [26]. In output-
level aggregation, N participants train their local models
independently from each other. Each participant i uses ni
private data samples from his/her profiling device to train the
model Mi, for i ∈ {1, . . . , N}. After training, all participants
use their trained models to classify traces captured from the
victim device and submit the outputs to the aggregator. The
aggregator creates the ensemble model MO by aggregating the

Fig. 3. Segment of a power trace from an 8-bit ATxmega128D4 microcon-
troller representing 16 executions of S-box.

outputs of M1, ...,MN to obtain the final classification result
of MO.

C. Data-level aggregation

Figure 1(c) illustrates the data-level aggregation. There are
N participants. Each participant i uploads ni private data
samples from from his/her profiling device to the aggregator,
for i ∈ {1, . . . , N}. The aggregator combines the local data
into the global data set with n =

∑N
i=1 ni samples and trains

the model MD. After training, the aggregator sends the model
MD to each participant.

All clients can use MD to classify the data samples from a
victim device.

IV. ASSUMPTIONS

Profiling side-channel attacks assume that:
1) The attacker has at least one device, called the profiling

device, which is similar to the device under attack and
runs the same implementation of the same cryptographic
algorithm.

2) The attacker has a full control over the profiling device
(can apply chosen plaintext, program chosen keys, and
do physical measurements).

3) The attacker has a physical access to the victim device to
measure some side-channel signals during the execution
of the cryptographic algorithm.

In addition, in this paper we assume that only a single
power trace from a victim device is available to the attacker.
Single-trace attacks are particularly threatening because they
can recover the key even if the key if changed for every
session.

V. EXPERIMENTAL SETUP

The section describes our experimental setup, including the
equipment we used and how we capture the power trace during
the execution of AES.

A. Equipment for Power Analysis

The equipment we use for power analysis is shown in Fig-
ure 2. It consists of the ChipWhisperer-Lite board, the CW308
UFO mother board and nine CW308T-XMEGA target boards.
In the sequel, we refer to these boards as D1, D2, . . . , D9.

Layer Type Output Shape Parameter #
Input (Dense) (None, 200) 19400
Dense 1 (None, 200) 40200
Dense 2 (None, 200) 40200
Dense 3 (None, 200) 40200
Dense 4 (None, 200) 40200
Output (Dense) (None, 256) 51456
Total Parameters: 231,656

TABLE I
LOCAL MODEL’S ARCHITECTURE SUMMARY.

The ChipWhisperer is a hardware security evaluation toolkit
based on a low-cost open hardware platform and an open
source software [27]. The ChipWhisperer-Lite can be used to
measure power consumption with the maximum sampling rate
of 105 MS/sec.

The CW308 UFO board is a generic platform for evalu-
ating multiple targets [28]. The target board is plugged in a
dedicated U connector.

The CW308T-XMEGA target board contains an 8-bit
ATxmega128D4 microcontroller. We programmed the micro-
controllers to the same implementation of AES-128 encryption
algorithm in Electronic codebook (ECB) mode of operation.

B. Power Trace Acquisition

We used D1, D2, D3 as profiling devices and D4 −D9 as
victim devices. To collect training data, 300K power traces
were captured from each profiling device during the execution
of AES for randomly selected plaintexts and keys. To collect
testing data, 1K power traces were captured from each target
device during the execution of AES for randomly selected
plaintexts and fixed keys. Figure 3 shows the segment of a
power trace from an 8-bit ATxmega128D4 microcontroller
representing 16 executions of S-box.

VI. TRAINING OF LOCAL MODELS

In this section we describe how local models are trained.

A. Choice of Neural Network Type

Previous work investigated which type of deep neural net-
works is suitable for various side-channel analysis scenarios.
For example, Convolutional Neural Networks (CNNs) can
overcome trace misalignment and jitter-based countermea-
sure [8], [29], [30]. If traces are synchronized and there is no
need to handle noise, Multiple Layer Perception (MLP) seems
to be a more suitable choice. MLPs are shown successful
in extracting keys from software [9], [10], [31]–[33] and
hardware [34] implementations of AES.

In our experiments, we use an unprotected software im-
plementation of AES-128 on an 8-bit microcontroller. In a
software implementation instructions are executed sequen-
tially, thus signal-to-noise ratio is much higher compared to
a hardware implementation. Furthermore, we capture traces
using ChipWhisperer which assures perfect trace alignment.
For this reason, we use MLPs as a neural network type.

VII. EVALUATION RESULTS

A. Training Process

Given a set of power traces {T1, . . . , Tn}, Ti ∈ Rm,
where m is the number of data points in a trace, and a set
of classification classes C, the objective is classify traces
according their labels l(Ti) ∈ C.

Fig. 3 shows the segment of a power trace from an 8-bit
ATxmega128D4 microcontroller representing 16 executions of
S-box in the 1st encryption round. The S-box is a 8 × 8
invertible mapping. AES-128 executes S-box 16 times in each
round. One can see the distinct shape of each S-box execution.

For all models, we use 8-bit values of the S-box output
in the 1st round as labels (identity leakage model), i.e. C =
{0, 1, . . . , 255}.

A neural network can be viewed as a function M : Rm →
I|C|, where I := {x ∈ R | 0 ≤ x ≤ 1}, which maps a trace Ti
into a score vector Si = M(Ti) ∈ I|C| whose elements si,j
represent the probability of the label with value j ∈ C.

We use categorical cross-entropy loss to quantify the classi-
fication error of the network. To minimize the loss, the gradient
of the loss with respect the score Si is computed and back-
propagated through the network to tune its internal parameters
according to the RMSprop optimizer, which is one of the
advanced adaptations SGD algorithm [35]. This is repeated
for a chosen number of iterations called epochs.

Once the network is trained, to classify a trace Ti whose
label l(Ti) is unknown, we determine the most likely label l̃
among all |C| candidate labels as

l̃ = argmax
i∈|C|

Si

If l̃ = l(Ti), the classification is successful.

B. Choice of Neural Network Architecture

The architecture of MLP networks used in our experiments
is shown in Table I. The network contains an input layer, four
hidden layers and an output layer. The input size 96 corre-
sponds to the number data samples in one S-box execution.
The output size is |C| = 256.

C. Estimation Metrics

In our experiments, the adversary has a strictly limited
access to the victim device, which mean there is only one trace
can be captured by the adversary and classified by the trained
deep-learning model. We term this test as single-trace test. In
this case, another evaluation criterion is called single-trace key
recovery rate [9]. It represents the probability of recovering a
key byte from only 1 trace captured from the victim board.

In this section, we apply model-, output- and data-level ag-
gregation methods to power analysis of AES-128 and compare
their results. In all experiments, we simulate a scenario with
N = 3 participants having the same number of training traces.

Fig. 4. Probability of recovering a subkey from a single trace from devices
D4 −D9 using the global model MM (average for 1,000 tests).

D. Results of model-level aggregation

In this experiment, three participants jointly create a global
MLP model, MM , each using ni = 300K traces from Di for
training his/her local model, for i ∈ {1, 2, 3}. The weights
ωt+1
0 of the global model at round t can be described as:

ωt+1
0 =

1

3
(ωt+1

1 + ωt+1
2 + ωt+1

3)

For all local models, we used RMSprop with a learning rate
α = 0.0001 and trained for 40 epochs with local minimum
batch size 128. The training is carried out for 20 communica-
tion rounds. At the end of each round, the aggregator sends the
global model back to each participant and the global model is
further trained on local training sets.

After each round, we test the resulting global model on
a randomly selected single trace Ti from each victim device
Dj , for j ∈ {4, 5, . . . , 9}. If the correct subkey value has
the highest probability in the score vector Si = MM (Ti),
the attack is successful. Otherwise, the attack fails. Figure 4
shows the average probability of recovering a subkey from a
single trace from devices D4−D9 for 1,000 tests for different
numbers of rounds.

From Figure 4, we can see that the federated model built in
the 17th communication round has the highest average success
probability over all rounds. The 2nd column in Table III shows
the probability of recovering a subkey from a single trace using
this model. We can see that the average is 77.7%.

E. Results of output-level aggregation

In this experiment, three participants train their local MLP
models independently from each other. Each participant i
trains the model Mi on ni = 300K traces from Di with 60K
traces set aside for validation, for i ∈ {1, 2, 3}. For all models,
we used RMSprop with a learning rate α = 0.0002 and trained
for 200 epochs with batch size 128.

(a) MD (b) M1 (c) M2 (d) M3

Fig. 5. Training/validation accuracy over training epochs of model MD , M1, M2, M3.

TABLE II
PROBABILITY OF RECOVERING A SUBKEY FROM A SINGLE TRACE USING

LOCAL MODELS (AVERAGE FOR 1,000 TESTS).

Device M1 M2 M3

D4 29.1% 42.6% 40.8%
D5 48.4% 63.8% 21.8%
D6 38.3% 33.6% 39.7%
D7 6.8% 10.4% 57.9%
D8 27.3% 36.1% 50.0%
D9 33.9% 51.8% 35.4%

average 34.9% 41.3% 40.9%

The score vector Si of the ensemble model MO for trace Ti
is computed as the Hadamard (element-wise) product of score
vectors of models Mi for all j ∈ {1, 2, 3}:

Si =M1(Ti)×M2(Ti)×M3(Ti)

Such an approach is known to work well for power analysis
of hardware implementations of AES [14]. Note, however, that
we used the same attack point (S-box output in the 1st round)
to create labels for models M1,M2 and M3, Figure 5(b),
5(c) and 5(d) show the training/validation accuracy of model
M1, M2 and M3. In [14], different attack points are used
for training different local models. This might have negatively
affected the ensemble’s results.

The 3rd column of Table III shows the probability of
recovering a subkey from a single trace using MO. For a
comparison, Table II also shows the results for local models
M1,M2 and M3. One see that that success probabilities of the
models M1, M2 and M3 vary a lot for different devices. This
is because different pairs of devices have different amounts
of variability. Some devices are less different, some are more
different. For example, on one hand, models M1 and M2 can
recover a subkey from a single power trace from D5 in 48.4%
and 63.8% of cases, respectively. Contrary, for model M3, the
subkey recovery rate from D5 is only 21.8%. Probably D1 and
D2 are less different from D5 than D3. On the other hand, M3

significantly outperforms M1 and M2 on D7 (57.9% vs 6.8%
and 10.4%, respectively). Probably D3 is similar to D7, while
D1 and D2 are very different from D7. High dissimilarly of
D1 and D2 from D7 might be the reason why the global model
MM in performs so poorly on D7 in the federated learning
case. From Table II we can also conclude that D3 is very

TABLE III
PROBABILITY OF RECOVERING A SUBKEY FROM A SINGLE TRACE USING

AGGREGATED MODELS (AVERAGE FOR 1,000 TESTS).

Aggregation method
Device Model-level Output-level Data-level

MM MO MD

D4 89.8% 64.5% 74.6%
D5 91.2% 76.0% 83.0%
D6 91.4% 66.0% 73.6%
D7 35.5% 18.4% 37.5%
D8 88.5% 68.3% 62.3%
D9 69.6% 58.8% 81.5%

average 77.7% 58.7% 68.8%

different from D9, which explains the worse result of MM

for D9 as compared to the results for D4−D6 and D8.
Using an ensemble improves generalization ability of in-

dividual models [36], as we can see from the 3rd column of
Table III. The average probability of recovering a subkey from
a single trace using MO is 58.6%.

F. Results of data-level aggregation

In this experiment, the participants 1, 2 and 3 upload their
sets of 300K traces from D1, D2 and D3, respectively, to
the aggregator. The aggregator combines theses sets into a
training set of size 900K and sets aside 270K traces for
validation. Then, the aggregator trains the MLP model MD.
We used RMSprop with a learning rate α = 0.0002 and trained
for 200 epochs with batch size 128. Figure 5(a) shows the
training/validation accuracy over time of model MD.

The 4th column of Table III shows the probability of
recovering a subkey from a single trace using MD. The
average is 68.8%.

VIII. CONCLUSION

We compared the federated learning approach to two other
aggregating approaches - on data and on output levels. Our first
results show that federated learning is capable of outperform-
ing the other approaches. This is quite surprising. Intuitively, it
should be more difficult to train a global model in a federated
learning framework due to challenges related to training on
distributed data while keeping these data private. Moves due
to averaging of weights of local models are more random
compared to the moves due to the SGD. This randomness

seems beneficial for the optimization of the objective function
in the case of power analysis, when generalization is particu-
larly important.

We plan to further investigate this phenomena by training
new models using other combinations of profiling devices.

ACKNOWLEDGMENT

This work was supported in part by the research grant 2018-
04482 from the Swedish Research Council.

REFERENCES

[1] P. Voigt and A. Von dem Bussche, “The EU general data protection
regulation (GDPR),” A Practical Guide, 1st Ed., Cham: Springer Inter-
national Publishing, 2017.

[2] B. K. Atchinson and D. M. Fox, “From the field: The politics of
the health insurance portability and accountability act,” Health affairs,
vol. 16, no. 3, pp. 146–150, 1997.

[3] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[4] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527, 2016.

[5] H. B. McMahan, E. Moore, D. Ramage, S. Hampson et al.,
“Communication-efficient learning of deep networks from decentralized
data,” arXiv preprint arXiv:1602.05629, 2016.

[6] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 1175–1191.

[7] Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, and B. He, “A survey on
federated learning systems: Vision, hype and reality for data privacy
and protection,” 2019.

[8] G. Perin, B. Ege, and J. van Woudenberg, “Lowering the bar: Deep
learning for side-channel analysis (white-paper),” in Proc. BlackHat,
2018, pp. 1–15.

[9] H. Wang, M. Brisfors, S. Forsmark, and E. Dubrova, “How diversity
affects deep-learning side-channel attacks,” in 2019 IEEE Nordic Cir-
cuits and Systems Conference (NORCAS): NORCHIP and International
Symposium of System-on-Chip (SoC). IEEE, 2019, pp. 1–7.

[10] D. Das, A. Golder, J. Danial, S. Ghosh, A. Raychowdhury, and S. Sen,
“X-deepsca: Cross-device deep learning side channel attack,” in Pro-
ceedings of the 56th Annual Design Automation Conference 2019, 2019,
pp. 1–6.

[11] H. Wang, S. Forsmark, M. Brisfors, and E. Dubrova, “Multi-source
training deep learning side-channel attacks,” IEEE 50th International
Symposium on Multiple-Valued Logic, 2020.

[12] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp.
123–140, 1996.

[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[14] H. Wang and E. Dubrova, “Tandem deep learning side-channel attack
against FPGA implementation of AES,” arXiv preprint arXiv, 2020.

[15] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,” in Proc. of the 16th Annual Int.
Cryptology Conf. on Advances in Cryptology, 1996, pp. 104–113.

[20] J. Daemen and V. Rijmen, The Design of Rijndael. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2002.

[16] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Annual
International Cryptology Conference. Springer, 1999, pp. 388–397.

[17] Z. Martinasek, L. Malina, and K. Trasy, “Profiling power analysis attack
based on multi-layer perceptron network,” in Computational Problems
in Science and Engineering. Springer, 2015, pp. 317–339.

[18] B. Timon, “Non-profiled deep learning-based side-channel attacks,”
IACR Cryptology ePrint Archive, 2018:196, 2018.

[19] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a
leakage model,” in Cryptographic Hardware and Embedded Systems -
CHES 2004, M. Joye and J.-J. Quisquater, Eds., 2004, pp. 16–29.

[21] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[22] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” in Advances in Neural Information Processing
Systems, 2017, pp. 4424–4434.

[23] R. Nock, S. Hardy, W. Henecka, H. Ivey-Law, G. Patrini, G. Smith,
and B. Thorne, “Entity resolution and federated learning get a federated
resolution,” arXiv preprint arXiv:1803.04035, 2018.

[24] S. Hardy, W. Henecka, H. Ivey-Law, R. Nock, G. Patrini, G. Smith,
and B. Thorne, “Private federated learning on vertically partitioned data
via entity resolution and additively homomorphic encryption,” arXiv
preprint arXiv:1711.10677, 2017.

[25] H. Kim, J. Park, M. Bennis, and S.-L. Kim, “On-device feder-
ated learning via blockchain and its latency analysis,” arXiv preprint
arXiv:1808.03949, 2018.

[26] R. Polikar, “Ensemble learning,” in Ensemble machine learning.
Springer, 2012, pp. 1–34.

[27] NewAE Technology Inc., “Chipwhisperer,” https://newae.com/tools/
chipwhisperer.

[28] CW308 UFO Target, https://wiki.newae.com/CW308 UFO Target.
[29] E. Cagli, C. Dumas, and E. Prouff, “Convolutional neural networks

with data augmentation against jitter-based countermeasures,” in Interna-
tional Conference on Cryptographic Hardware and Embedded Systems.
Springer, 2017, pp. 45–68.

[30] R. Gilmore, N. Hanley, and M. O’Neill, “Neural network based attack
on a masked implementation of AES,” in 2015 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST). IEEE,
2015, pp. 106–111.

[31] R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas,
“Study of deep learning techniques for side-channel analysis and
introduction to ascad database,” ANSSI, France & CEA, LETI,
MINATEC Campus, France, vol. 22, p. 2018, 2018. [Online]. Available:
https://eprint.iacr.org/2018/053.pdf

[32] Z. Martinasek, P. Dzurenda, and L. Malina, “Profiling power analysis
attack based on MLP in DPA contest v4. 2,” in 2016 39th International
Conference on Telecommunications and Signal Processing (TSP). IEEE,
2016, pp. 223–226.

[33] H. Maghrebi, “Deep learning based side channel attacks in practice,”
IACR Cryptology ePrint Archive 2019, 578, Tech. Rep., 2019.

[34] T. Kubota, K. Yoshida, M. Shiozaki, and T. Fujino, “Deep learning side-
channel attack against hardware implementations of AES,” in 2019 22nd
Euromicro Conference on Digital System Design (DSD). IEEE, 2019,
pp. 261–268.

[35] H. Robbins and S. Monro, “A stochastic approximation method,” Ann.
Math. Statist., vol. 22, pp. 400–407, 1951.

[36] A. J. Sharkey, Combining artificial neural nets: ensemble and modular
multi-net systems. Springer Science & Business Media, 2012.

