
Cryptanalysis of a Code-Based Signature
Scheme Based on the Lyubashevsky Framework

Marco Baldi1, Karan Khathuria2, Edoardo Persichetti3, and Paolo Santini1

1 Department of Information Engineering, Marche Polytechnic University, Italy
2 Institute of Mathematics, University of Zurich, Switzerland

3 Department of Mathematical Sciences, Florida Atlantic University, USA

Abstract. In this paper we cryptanalyze a recently proposed signature
scheme consisting in a translation of the Lyubashevsky framework to
the coding theory, whose security is based on the hardness of decoding
low weight errors in the Hamming metric. We show that each produced
signature leaks information about the secret key and that, after the ob-
servation of a bunch of signatures, the secret key can be fully recovered
with simple linear algebra. We conservatively assess the complexity of
our proposed attack and show that it grows polynomially in the scheme
parameters; numerical simulations are used to confirm our analysis. Our
results show that the weakness of the scheme is intrinsic by design, and
that security cannot be restored by a mere change in the parameters.

1 Introduction

The story of code-based signature schemes is a long and tortuous one. On one
hand, the “hash-and-sign” paradigm that works very well for some traditional
primitives (e.g. RSA), appears to be rather inadequate for code-based schemes.
In fact, when relying on the hardness of decoding in the Hamming metric [3,5],
the difficulty of efficiently sampling decodable syndromes leads to protocols that
are either inefficient or insecure (or both of them). Among the unbroken schemes,
we can cite CFS [8], which historically dates as the first one in this category,
and that is characterized by slow signing times and large key sizes. The latest
scheme built on this paradigm, Wave [9], still shows analogous features (i.e.,
very large public keys), despite introducing a new approach based on decoding
vectors of very high weight. On the other hand, converting an identification
scheme via Fiat-Shamir typically results in very long signatures, due to the
necessity of repeating the underlying Sigma protocol many times. This line of
research was initiated by Stern [18] in ’93, and successively improved with several
works [1, 4, 6, 7, 19]. Yet, the signature sizes that one can obtain with these
approaches are still far from being competitive.

A very promising solution, for lattice-based schemes, was given by Lyuba-
shevsky in [11], leading to one of the top contenders for NIST’s Post-Quantum
standardization effort [12], Dilithium. The paradigm consists of a “one-shot” ap-
plication of an identification scheme, à la Schnorr, without soundness error. This

allows to obtain very compact signature sizes, as well as a simple and efficient
signing procedure. As a consequence, there is a long history of works trying to
adapt Lyubashevsky’s protocol to the case of code-based cryptography. A first
attempt was given by Persichetti [13], concluding that a simple conversion us-
ing both the traditional Hamming metric, and the Rank metric, was unlikely
to succeed. A subsequent work [14], using quasi-cyclic codes and restricting to
one-time usage, was susceptible to a similar attack [10,15]. Finally, the authors
in [2] present a solution which, however, is based on the rank metric and includes
a slight modification of the Lyubashevsky protocol (with an additional masking
error component), that appears to be secure and offers reasonable performance.
However, there are still some doubts about information leakage in the scheme,
and the security reduction leads to a rather convoluted, ad-hoc problem (named
PSSI+). Thus, the problem of adapting the Lyubashevsky protocol through a
decoding problem in the Hamming metric (which has been studied for decades
and is now well-understood) is still open.

Our Contribution In this work, we present an attack on a scheme that was re-
cently published by Song et al. [17], which promises to realize “A code-based
signature scheme from the Lyubashevsky framework”, as per the title. To do
so, the authors instantiate a protocol in the Hamming metric, using multiple
sparse vectors as the private key, and the syndromes of such vectors as the pub-
lic key; signatures are obtained as the sum between a few of such vectors and
a random low-weight error vectors. Unfortunately, as we discuss in this paper,
this approach is not secure and still suffers from a similar vulnerability as its
predecessors. We show that, through a statistical analysis on a small number of
collected signatures, one can fully recover the secret key. Our attack is based on
the fact that legitimate signatures are strongly correlated, and that this correla-
tion reveals significant information about the secret key. We are able to derive a
conservative estimate for the complexity of our attack, and show that it grows
polynomially in the scheme parameters; this implies that the scheme is insecure
by construction, and not because of some unfortunate parameters choice. As a
result, the scheme in [17] can only be considered for a one-time usage, for which
however appears to be not well-suited because of the large public keys.

2 Notation

As usual, we will denote with F2 the binary finite field. We will use bold upper
case (resp. lower case) letters to denote matrices (resp. vectors). For a matrix
A, we denote its i-th row (resp. column) as Ai,: (resp. A:,i); for a vector a, ai
denotes its i-th entry. The support of a, i.e., the set of indexes pointing at set
entries, is denoted with Supp(a); the cardinality of the support corresponds to
the Hamming weight, and we will denote it with wt(a). The null matrix of size
n×m will be denoted as 0n×m; finally, the set of length-n vectors with weight
w will be indicated with Rn,w.

For a matrix A and a set J , we will denote with AJ the matrix formed
by the columns of A that are indexed by J ; analogous notation will be used

2

for vectors. For a set A, the expression a
$←− A will denote the fact that a is

uniformly picked at random among the elements of A. For a distribution D, we
will write x ∼ D if x is a random variable distributed according to D.

3 Scheme Description

In this section we briefly recall the scheme in [17] and describe its main features.
Public parameters are n, n′, k′, `, wc, wy, w̄ ∈ N, whose meaning will be clarified
in the following; additionally, the scheme uses an hash function Hashwc that
returns digests of length k′ and weight wc. In a nutshell, the scheme operates as
follows.

- Key generation: choose ` matrices Ei in the form

Ei =
[
Ik′ |Vi

]
∈ Fk

′×n′
2 ,

where Ik′ is the identity of size k′ and Vi
$←− Fk

′×(n′−k′)
2 . Choose two per-

mutation matrices P1, P2 of respective sizes k′×k′ and n×n, and compute

E = P1 ·
[
E0 | E1 | · · · | E`−1

]
·P2.

Choose a random H ∈ F(n−k)×n
2 of rank n− k. The key-pair is

sk = E, pk =
{
H, S = HE>

}
.

- Signature generation: to sign a message m, pick y
$←− Rn,wy ; compute

s = Hy>, c = Hashwc
(
m ‖ s

)
and z = cE + y. Output the signature

σ = {c, z} .
- Signature verification: to verify a signature σ = {c, z} on a message m,

compute ŝ = Hz> + Sc>, then accept if

Hashwc
(
m ‖ ŝ

)
= c and wt(z) ≤ w̄,

or reject otherwise.

The authors of [17] recommend to choose

w̄ = `(wc + n′ − k′) + wy,

and propose instances targeting the security levels of λ = 80 and λ = 128 bits.
For the sake of completeness, in Table 1 we have summed up these parameters
sets, together with the corresponding keys and signature sizes; note that our
estimates slightly improve upon the ones originally provided by the authors
in [17]. First, we can exploit the fact that H is completely random and is obtained
as the output of a PRNG; thus, instead of the full matrix, one can simply publish
the corresponding seed which has been given as input to the PRNG. With this
tweak, the public key size reduces to k′(n − k) + lSeed bits, where lSeed, where
lseed is the seed length, for which an appropriate choice is 2λ. Furthermore, we
have additionally considered that publishing only the support of c, instead of the
full vector, allows reducing the signature size; with this choice, one can obtain
signatures of n+ wc dlog2(n)e bits.

3

Table 1. Proposed parameters and performances for the scheme in [17].

λ n k ` n′ k′ wc wy pk size (MB) signature size (bits)

80 4, 096 539 4 1, 024 890 31 539 0.39 4,406
128 8, 192 1, 065 8 1, 024 890 53 807 0.79 8,722

3.1 Underlying Security and Further Considerations

In this section we briefly recall the rationale that is at the base of the parameter
choice. The vector z is the sum of cE and the weight-wy vector y. Because of the
particular structure of the secret key, regardless of the particular c, we have that
cE has maximum weight `(wc+n′−k′). Then, z cannot have weight larger than
w̄ = `(wc+n

′−k′)+wy. The parameters of the public code (i.e., the one having H
as parity-check matrix) are chosen such that its GV distance, which is assumed
as the minimum distance of the code, is larger than w̄. This guarantees that z
is the only low-weight vector that satisfies the signature verification process.

To forge a signature, an adversary must find a low-weight vector z̃ such that

s + Sc> = Hz̃>.

This corresponds to a syndrome decoding instance, with z̃ as the target. The
best strategy to solve this problem is to use Information Set Decoding (ISD)
algorithms, whose complexity mainly depends on the weight of the searched
vector (as well as on the code parameters). The authors of [17] have chosen
the scheme parameters such that the weight of z is always sufficiently high to
make ISD forgery attacks unfeasible. In an analogous way, the public key is
represented by multiple instances of the same problem where, in this case, the
searched vectors correspond to the rows of E. Thus, the weight of these vectors
must also be chosen to guarantee that ISD techniques have an unfeasible running
time.

As we show in the next section, the authors have not considered the fact
that the signatures produced by the scheme leak information about the secret
key. After a small number of signatures is observed, one can mount a statistical
attack that fully returns the secret key.

4 An Attack via Statistical Analysis

In this section we describe a statistical attack on the scheme of [17]. At a high
level, the attack begins by recognizing columns of weight 1 in the secret key. The
knowledge about the location of these columns is combined with the structure
of the secret key, to identify positions that, for each row of E, point at null
entries. With this information, each row of the secret key can easily be recovered
with simple linear algebra. In the next sections we formalize this procedure and
provide a detailed analysis of its computational complexity.

4

4.1 Gathering Information about the Secret Key

We first note that, with overwhelming probability, columns of weight 1 in the
secret key are due solely to the permutation of the columns of the ` identity
matrices. In fact, the probability that, for a random secret key, there is no other
column of weight 1 corresponds to(

1− k′2−k
′
)`(n′−k′)

≈ 1− `k′(n′ − k′)2−k
′
,

and is essentially identical to 1 for all proposed parameters sets. Thus, from now
on, we assume that the secret key E contains exactly `k′ columns of weight 1.

We introduce some additional notation:

- We denote with T ⊆ {0, · · · , n− 1} the set of positions indexing at columns
in E with weight 1, that is

T = {i ∈ {0, · · · , n− 1} | wt(E:,i) = 1} .

For each secret key, this set has size `k′.

- We denote with T (i) ⊆ {0, · · · , n− 1} the intersection between the support
of the i-th row of E and T , that is

T (i) = T ∩ Supp
(
Ei,:

)
.

For each secret key and each i, this set has size `.

- W denote with T̃ (i) ⊆ {0, · · · , n − 1} the set of positions in T pointing at
null entries in the i-th row of E, that is

T̃ (i) = T ∩
(
{0, · · · , n− 1} \ Supp(Ei,:)

)
.

For each secret key and each i, this set has size `k′ − `. Note that T (i) and

T̃ (i) are always disjoint.

- Finally, we denote J = {0, · · · , n − 1} \ T ; for each secret key, this set has
size ` · (n′ − k′).

For the sake of clarity, in Figure 1 we provide a graphical representation of these
sets for a given secret key; for simplicity, we have assumed that the permutations
P1 and P2 are equal to the identity matrices.

For each i, the sets we have previously introduced can be recovered, since the
bits in the signature follow distinct probability distributions, which depend on
whether the bit position belongs to a set or another. In fact, consider the follow-
ing probabilities, which can be easily obtained with combinatorial arguments

5

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 1 0 1
1 1 1 1
0 1 1 1
0 1 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 1 0 1
1 1 1 1
0 1 1 1
0 1 0 1

T (0) T̃ (0) J

Fig. 1. Partition of {0, · · · , n−1} into sets T (0), T̃ (0) and J , for a toy secret key with
n′ = 8, k′ = 4, ` = 2. The grey columns in the figure form the set T .

ρ = Pr [zj = 1 | ci = 1, j ∈ T (i)] = 1− wy
n
, (1)

ρ̃ = Pr
[
zj = 1 | ci = 1, j ∈ T̃ (i)

]
=
wc − 1

k′

(
1− wy

n

)
+
wy
n

(
1− wc − 1

k′

)
, (2)

Pr [zj = 1 | ci = 1, j ∈ J] ≈ 1

2
. (3)

Note that the last relation is approximated because the distribution of set bits on
the positions indexed by J depends on the particular secret key; yet, given that
the matrices Vi in the secret key are random, one expects the actual probability
to be particularly close to 1

2 . To have a confirmation of the above formulae, in
Figure 2 we report the empirical estimates of such probabilities, estimated for
the 80-bits security set.

Exploiting this distribution for set bits in the signature, a simple statistical
analysis on a set of collected signatures can be used to determine the sets T (i)

and T̃ (i), for each i ∈ {0, · · · , k′ − 1}. As we show in the next section, this
information is enough to fully recover the secret key.

4.2 Recovering the Secret Key

Once the sets T (i) and T̃ (i) have been determined, for each i ∈ {0, · · · , k′ − 1},
the secret key can easily be recovered with simple linear algebra. For simplicity,
we only describe how a single row of E can be recovered; for all the other rows,
the procedure is identical.

Let s = S:,i and e = Ei,:, which are related as s = He>. In particular, we
can write

s = HT (i)e
>
T (i) + HT̃ (i)e

>
T̃ (i)

+ HJ e>J .

6

Fig. 2. Empirical probability of having zj = 1, conditioned to c0 = 1, for the 80-bits
parameters set. For the experiment, 10,000 signatures have been generated.

Knowing the sets T (i) and T̃ (i) means having information about the support of
e, since

- for j ∈ T (i), we have ej = 1;

- for j ∈ T̃ (i), we have ej = 0.

Let e′ be the vector obtained by flipping the bits of e that are indexed by T (i).
Since eT̃ (i) is null, we have that

s′ = He′> = s +
∑
j∈T (i)

H:,j = HJ e>J .

Note that we still have to determine the set positions in e′, which are indexed
by the entries of J ; once eJ is found, the secret e is fully recovered. We can
then proceed as follows: first, we pick a set U ⊂ {0, · · · , n − 1} of cardinality
n − k, such that J ⊂ U and HU is non singular. Since J ⊂ U , we have that
e′{0,··· ,n−1}\U is null; we can then find eU as(

HU
)−1 · s′ = e′U .

Repeating this procedure for all the rows will return the secret key.
Note that we are assuming here that the columns of HJ are linearly indepen-

dent. We can assume this because the probability of choosing `(n′ − k′) linearly

independent columns in F(n−k)
2 is

∏n−k
i=n−k−`(n′−k′)+1

(
1− 2−i

)
, which is nearly

1 for all the proposed parameters sets.

7

4.3 Complexity

The attack we have described can be divided in two phases; in the first phase, a
statistical analysis on a bunch of collected signatures is performed, then linear
algebra is used to recover the rows of the secret key. In particular, the latter
phase consists of the following steps.

1. Compute s′ from s. This requires ` sums between s and the columns of H,
thus it will cost O

(
`(n− k)

)
operations.

2. Find U such that HU is non singular. To do this, one can simply make a
guess for U and check whether the corresponding submatrix is invertible.
Since H is random, the probability that a random submatrix of size n− k is
invertible can be obtained as

n−k∏
i=1

1− 2−i ≈ 0.2887.

Then, the inverse of this probability can be used to estimate, on average,
the number of required Gaussian eliminations for each row of E, each one
having a cost of O

(
(n− k)3

)
operations.

3. Once HU has been found, multiply it by s′. Using the simple schoolbook
multiplication, we get a cost of O

(
(n− k)2

)
operations.

Considering that the procedure has to be repeated for all k′ rows of E, for the
second step of the attack we get a total complexity of

O

(
k′(n− k)

(
`+

(n− k)2

0.2887
+ n− k

))
.

It is worth noting that some steps of this reconstruction procedure can be op-
timized. For instance, multiple rows of E can be recovered with the same set
U , using techniques such as [16]: this will reduce the number of needed Gaus-
sian eliminations. In analogous way, one may use ad-hoc techniques to perform
multiplications, or can drive the choice for sets U , to simplify the inverse compu-
tations. We will not take into account these improvements in the attack, whose
computational complexity already grows polynomially in the scheme parameters.

To finish the attack’s complexity estimate, we need to compute the number
of signatures which we must collect in the first phase, to obtain an accurate
estimate on the sets T (i) and T̃ (i). In particular, this number may depend on
the criterion that we use to classify the bits. We first note that

T̃ (i) =
⋃
j 6=i

T (j).

8

Once all sets T (i) have been correctly determined, we have all the necessary items
to mount the attack. Then, for each i ∈ {0, · · · , k′−1} and each j ∈ {0, · · · , n−
1}, the adversary must distinguish between j ∈ T (i) and j 6∈ T (i) = T̃ (i) ∪ J .

Let µ(i, j) be the ratio between the number of signatures with zj = 1, con-
ditioned to ci = 1, and that of signatures with ci = 1; clearly, µ(i, j) is the
empirical estimate of the actual probability Pr [zj = 1 | ci = 1]. To classify the
bits, we perform the following statistical test on the observed data of µ(i, j).
The null hypothesis H0 is that j ∈ T (i), and the alternative hypothesis H1 is
j /∈ T (i). The test statistics is the observed value µ(i, j), and we accept the null
hypothesis H0 if µ(i, j) ≥ δ and reject H0 otherwise, where δ is an appropriate
value 1/2 ≤ δ ≤ ρ. The test fails when we obtain either µ(i, j) < δ (if the null
hypothesis was true), or µ(i, j) ≥ δ (if the null hypothesis was false). The test
needs to be repeated for each pair (i, j), and must be successful all the times.
We assume that, if guessing fails for a single pair (i, j), then the overall test
will completely fail, i.e., the key reconstruction phase will not be successful. It
is easily seen that this assumption is quite conservative, since a few errors in
this guessing phase can be tolerated. In fact, because of the relations between
the sets we are trying to determine, it may be possible to detect (and correct)
some mistakes. Yet, we neglect this probability, to keep our analysis as simple
and conservative as possible.

We denote with α the level of significance for our test; that means, we want
the probability of failure of the test to be less than α. First, for N collected
signatures, we assume that the number of signatures such that ci = 1 is constant
for all i and equal to ζ = wc

k′ N . If H0 was true, i.e., j ∈ T (i), then we assume
µ(i, j) ≈ X/ζ, where X is the sum of ζ Bernoulli variables with parameter ρ as
in (1). Then, the condition to verify H0 becomes

ζ−1∑
u=0

xu ≥ δζ, xu ∼ B(ρ),

where B(ρ) denotes the Bernoulli distribution with parameter ρ. Therefore, the
probability of wrongly guessing j assuming the null hypothesis was true, i.e.,
guessing j 6∈ T (i), corresponds to

ε0 = Pr [µ(i, j) < δ | j ∈ T (i)] = Pr

[
ζ−1∑
u=0

xu < δζ | xu ∼ B(ρ)

]
. (4)

To get a bound on the above probability, we can consider the Chernoff bound
which, for convenience, we recall in the following.

Theorem 1. Chernoff bound
Let X =

∑M−1
u=0 xu, where the xu are all independent and xu ∼ B(ρ̂); then

i) Pr [X ≥ (1 + ξ)ρ̂M] ≤ e−
ξ2

2+ξ ρ̂M , for all ξ > 0;

ii) Pr [X ≤ (1− ξ)ρ̂M] ≤ e−
ξ2

2 ρ̂M , for all 0 < ξ < 1.

9

Using the above theorem, we can bound (4) as follows

ε0 = Pr

[
ζ−1∑
u=0

xu < δζ | xu ∼ B(ρ)

]
≤ e−

(ρ−δ)2
2ρ ζ := ε̄0. (5)

Similarly, if H0 was false, i.e., j 6∈ T (i), then either j ∈ T̃ (i) or j ∈ J . In the first
case, we can model µ(i, j) as the ratio between the sum of ζ Bernoulli variables
with parameter ρ̃ as in (2) and ζ; thus, using again the Chernoff bound, we get

ε1 = Pr
[
µ(i, j) ≥ δ | j ∈ T̃ (i)

]
= Pr

[
ζ−1∑
u=0

xu ≥ δζ | xu ∼ B(ρ̃)

]

≤ exp

(
− (δ − ρ̃)2

δ + ρ̃
ζ

)
=: ε̄1. (6)

In an analogous way, if j ∈ J , for the probability of making a wrong guess we
have

ε2 = Pr [µ(i, j) ≥ δ | j ∈ J] = Pr

[
ζ−1∑
u=0

xu ≥ δζ | xu ∼ B(1/2)

]

≤ exp

(
− (δ − 1/2)2

δ + 1/2
ζ

)
=: ε̄2. (7)

Remember that, for each i, we have: ` positions j such that j ∈ T (i), `k′ − `
positions j such that j ∈ T̃ (i) and `(n′ − k′) positions j such that j ∈ J .
Assuming that the values µ(i, j) are not correlated, we then have ` guesses with
failure rate bounded by ε̄0, `(k′− 1) guesses with failure rate bounded by ε̄1 and
`(N ′ − k′) with failure rate bounded by ε̄2. So, for a generic i, the probability
that the test does not fail is lower bounded by

(1− ε̄0)` · (1− ε̄1)`(k
′−1) · (1− ε̄2)`(n

′−k′).

Considering all k′ values of i, we get an upper bound on the total failure prob-
ability as

α ≤ α∗ = 1− (1− ε̄0)k
′` · (1− ε̄1)k

′`(k′−1) · (1− ε̄2)k
′`(n′−k′). (8)

It is intuitively seen that, for each value of α ∈ (0; 1), the minimum number
of required signatures to reach a significance level equal to α is a polynomial
function of the scheme parameters. Indeed, the probabilities ε̄0, ε̄1 and ε̄2 decay
exponentially with ζ, which is proportional to N : then, regardless of the partic-
ular choice for δ, moderate increases in N will lead to significant reductions in
the value of α∗. With simple computations (which we report in the Appendix),
one can find that, to reach a significance level of α∗, the minimum number of
required signatures is N∗, where

N∗ =

2ρk′

wc(ρ−δ)2 · ln
(

2`k′

1−α∗

)
if `k′ε̄0 ≥ k′`(n′ − k′)ε̄2,

(1/2+δ)k′

wc(δ−1/2)2 · ln
(

2`k′(n′−k′)
1−α∗

)
otherwise.

(9)

10

We are now able to compute the complexity of the first phase of our described
attack. We consider that the values of µ(i, j) can be computed on the run, that
is: before the attack starts, the adversary defines A = 0k′×n and b = 01×k′ .
Then, for each collected signature, the adversary increases bi by one unit only if
ci = 1 and, for each set bit j in z, also increases ai,j ; this way, µ(i, j) = ai,j/bi.
For each collected signature, the number of updates in A and b on average is

wc + E [wt(z)] = wc + `ρ+ `(k′ − 1)ρ̃+
1

2
`(n′ − k′).

Assuming that the statistical test has a cost of k′n elementary operations (since
k′n guesses are made), we estimate the complexity of the first phase of the attack
as

O

(
k′n+N

(
wc + `ρ+ `(k′ − 1)ρ̃+

1

2
`(n′ − k′)

))
.

This concludes the estimate of the overall complexity of our described attack.
For ease of readability, we sum up the analysis of this section in the following
proposition.

Proposition 1. For parameters n, k, n′, k′, `, wc, wy, the attack we have
described in this section runs in time (C1 +C2) · (1−α)−1, where C1 is the cost
of the statistical phase, C2 is the cost of reconstructing the secret key and α is
the probability that the statistical test of the first phase fails. For C2, we have

C2 = O

(
k′(n− k)

(
`+

(n− k)2

0.2887
+ n− k

))
,

while, assuming that N signatures are used, we estimate C1 as

C1 = O

(
k′n+N

(
wc + `ρ+ `(k′ − 1)ρ̃+

1

2
`(n′ − k′)

))
.

For each fixed value of 0 < α < 1 and each 1/2 < δ < ρ, the minimum number
of signatures N grows polynomially with the scheme parameters, and can be
overestimated using (9), by setting α∗ = α.

4.4 Results

In this section we discuss the practical impact of our attack on the scheme
proposed in [17]. We first observe that, to reach a significance level equal to α,
the number of needed signatures is quite lower than that estimated with (9). For
instance, considering the 80-bits security set, for N = 20, 000 signatures and a
threshold δ = 0.66, through (8) we estimate a failure rate of α∗ = 9.6 · 10−2;
running numerical simulations for 1, 000 randomly generated key pairs, we have
observed no failure for all the experiments performed with at least N ≥ 8, 000
signatures. To provide an evidence of this fact, in Figure 3 we report the accuracy

11

Fig. 3. Success rate of the guessing phase as a function of the number of collected
signatures N , using δ = 0.66 for the 80-bits set and δ = 0.68 for the 128-bits set. For
each value of N , 1, 000 key-pairs have been considered.

of simulations for both the 80-bits and 128-bit parameters sets, for different
values of N .

Given these results, we can always choose N such that α ≈ 0. Since the
required values for N are extremely low, the complexity of the first phase of the
attack is significantly lower than that of the second part (i.e., C1 � C2). We
then get the following estimates for the running time of our attack:

- for the 80-bits parameter set, we estimate α ≈ 0 for N = 8, 000 and δ = 0.66;
with these choices, the attack costs 246.98 operations;

- for the 128-bits parameter set, we estimate α ≈ 0 for N = 5, 000 and δ =
0.68; with these choices, the attack costs 249.98 operations.

5 Conclusions

In this paper we have cryptanalyzed the code-based signature algorithm pro-
posed in [17], which has been proposed as an adaptation of the Lyubashevsky
framework. We have shown that a simple statistical analysis on a collection of
observed signatures, together with basic linear algebra, is enough to fully recover
the secret key. Our results show that it would be challenging to provide secure
instances by merely choosing new parameters. It follows that the scheme can, at

12

best, be considered for a one-time usage. It must be said that the security of a
scheme similar to that in [17] has already been briefly discussed in [10], where
the authors argued about the existence of security flaws due to the information
leaked by each signatures. Our results seem to confirm this hypothesis, and con-
stitute another evidence of the inherent difficulty of adapting the Lyubashevsky
framework to the coding theory setting, at least when considering the problem
of decoding low-weight errors in the Hamming metric.

References

1. C. Aguilar, P. Gaborit, and J. Schrek. A new zero-knowledge code based identi-
fication scheme with reduced communication. In 2011 IEEE Information Theory
Workshop, pages 648–652, Oct 2011.

2. N. Aragon, O. Blazy, P. Gaborit, A. Hauteville, and G. Zémor. Durandal: A rank
metric based signature scheme. In Y. Ishai and V. Rijmen, editors, Advances in
Cryptology – EUROCRYPT 2019, pages 728–758, Cham, 2019. Springer Interna-
tional Publishing.

3. S. Barg. Some new NP-complete coding problems. Problemy Peredachi Informatsii,
30(3):23–28, 1994.

4. E. Bellini, F. Caullery, P. Gaborit, M. Manzano, and V. Mateu. Improved Veron
identification and signature schemes in the rank metric. In 2019 IEEE International
Symposium on Information Theory (ISIT), pages 1872–1876, 2019.

5. E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractability of
certain coding problems. IEEE Trans. on Inf. Theory, 24(3):384–386, 1978.

6. J.-F. Biasse, G. Micheli, E. Persichetti, and P. Santini. LESS is more: Code-based
signatures without syndromes. In A. Nitaj and A. Youssef, editors, Progress in
Cryptology - AFRICACRYPT 2020, pages 45–65, Cham, 2020. Springer Interna-
tional Publishing.

7. P.-L. Cayrel, P. Véron, and S. M. El Yousfi Alaoui. A zero-knowledge identifica-
tion scheme based on the q-ary syndrome decoding problem. In Selected Areas in
Cryptography, pages 171–186. Springer Berlin Heidelberg, 2011.

8. N. Courtois, M. Finiasz, and N. Sendrier. How to achieve a McEliece-based digital
signature scheme. In ASIACRYPT, pages 157–174, 2001.

9. T. Debris-Alazard, N. Sendrier, and J.-P. Tillich. Wave: A new family of trapdoor
one-way preimage sampleable functions based on codes. Cryptology ePrint Archive,
Report 2018/996, 2018. https://eprint.iacr.org/2018/996.

10. J.-C. Deneuville and P. Gaborit. Cryptanalysis of a code-based one-time signature.
03 2019.

11. V. Lyubashevsky. Lattice signatures without trapdoors. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages
738–755. Springer, 2012.

12. https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-
cryptography-standardization.

13. E. Persichetti. Improving the Efficiency of Code-Based Cryptography. PhD thesis,
01 2013.

14. E. Persichetti. Efficient one-time signatures from quasi-cyclic codes: A full treat-
ment. Cryptography, 2:30, 10 2018.

13

15. P. Santini, M. Baldi, and F. Chiaraluce. Cryptanalysis of a one-time code-based
digital signature scheme. In 2019 IEEE International Symposium on Information
Theory (ISIT), pages 2594–2598, 2019.

16. N. Sendrier. Decoding one out of many. In B.-Y. Yang, editor, Post-Quantum
Cryptography, pages 51–67. Springer Berlin Heidelberg, 2011.

17. Y. Song, X. Huang, Y. Mu, W. Wu, and H. Wang. A code-based signature scheme
from the Lyubashevsky framework. Theoretical Computer Science, 2020.

18. J. Stern. A new identification scheme based on syndrome decoding. In D. R.
Stinson, editor, Advances in Cryptology — CRYPTO’ 93, pages 13–21. Springer
Berlin Heidelberg, 1994.

19. P. Véron. Improved identification schemes based on error-correcting codes. Appli-
cable Algebra in Engineering, Communication and Computing, 8(1):57–69, 1997.

A Computing the Number of Signatures for a Desired
Significance Level

In this appendix we prove (9). We first note that, regardless of the particular
choice for δ, the probabilities ε̄0, ε̄1 and ε̄2 decay exponentially with ζ, that
is linear in N ; thus, we can always choose N sufficiently high to make these
probabilities extremely low. Using a well known approximation, we have

(1− ε̄0)`k
′
≈ 1− `k′ε̄0,

(1− ε̄1)`k
′(k′−1) ≈ 1− `k′(k′ − 1)ε̄1,

(1− ε̄2)`k
′(n′−k′) ≈ 1− `k′(n′ − k′)ε̄2.

Since for 1/2 < δ < ρ and ρ̃� 1/2, we have ε̄1 � ε̄2, such that

α∗ ≈ 1− (1− `k′ε̄0) · (1− `k′(k′ − 1)ε̄1) .

With some simple computations, and since ε̄1ε̄2 � ε̄1, ε̄2, we finally get

α∗ ≈ 1− `k′ε̄0 − k′`(n′ − k′)ε̄2
≤ 1− 2 max {`k′ε̄0 , k′`(n′ − k′)ε̄2} .

It is immediately seen that, from the above formula, we can explicitly derive the
minimum number of signatures N∗ to reach a significance level lower than α∗.
Indeed, recalling the expressions for ε̄0 and ε̄2, we obtain

N∗ =

2ρk′

wc(ρ−δ)2 · ln
(

2`k′

1−α∗

)
if `k′ε̄0 ≥ k′`(n′ − k′)ε̄2,

(1/2+δ)k′

wc(δ−1/2)2 · ln
(

2`k′(n′−k′)
1−α∗

)
otherwise.

14

