When is a test not a proof?

Eleanor McMurtry!, Olivier Pereira?, and Vanessa Teague®

! University of Melbourne, emcmurtry@student .unimelb.edu.au
2 Université catholique de Louvain, ICTEAM, olivier.pereira@uclouvain.be
3 Thinking Cybersecurity Pty. Ltd. and the Australian National University,
vanessa@thinkingcybersecurity.com

Abstract. A common primitive in election and auction protocols is a
plaintext equivalence test (PET) in which two ciphertexts are tested for
equality of their plaintexts, and a verifiable proof of the test’s outcome
is provided. The most commonly-cited PETSs require at least one honest
party, but many applications claim universal verifiability, at odds with
this requirement. If a test that relies on at least one honest participant is
mistakenly used in a place where a universally verifiable proof is needed,
then a collusion by all participants can insert a forged proof of equality
into the tallying transcript. We show this breaks universal verifiability
for the JCJ/Civitas scheme among others, because the only PETs they
reference are not universally verifiable. We then demonstrate how to fix
the problem.

1 Introduction

We consider the distinction between universal verifiability and distributed trust,
in particular for Plaintext Equivalence Tests (PETs). Commonly-cited PETs
such as [I7] and [19] require at least one honest participant. Although this is
clear enough in the original papers, numerous uses of PETSs assume universal
verifiability, which requires that a convincing proof of an untrue fact cannot be
fabricated even if all the authorities collude. Many e-voting and verifiable auction
protocols use a Plaintext Equivalence Test (PET, with distributed trust) as if
it were a Plaintext Equivalence Proof (PEP), when it is not. They require their
PET to have universal verifiability, but reference only PETSs that do not have this
property. Specifically, in Jakobsson and Juels [I7] a collusion of all authorities
can forge a “proof” that two encrypted values are equal when they are not. If
in a real implementation this PET was used instead of a PEP, the consequence
would completely undermine universal verifiability for:

— the JCJ e-voting scheme [18] and its implementation, Civitas [8];
— a linear-time modification to JCJ [23];

— the Pretty Good Democracy scheme [21];

— the Caveat Coercitor scheme [12];

— the Selections scheme [7];

— the Cobra scheme [11]; and

— several verifiable auction schemes [2], [6], [20]

In each case, the forged PEP enables a collusion among all tallying authorities
to exclude valid votes or include invalid votes while passing verification, thus
breaking universal verifiability. We stress that this is not a fault in the PET
of [I7], but in the misalignment between the properties it provides and the
properties it is assumed to have when used in the above schemes.

We show further that this problem combines with an existing issue in the
Civitas implementation of the Fiat-Shamir transform to disastrous effect, allow-
ing colluding authorities to also forge a proof that two encrypted values are not
equal when in fact they are.

1.1 Addressing the Problem

PETs with distributed trust, including [I7], are generally easy to transform
into a universally-verifiable Plaintext Equality Proof (PEP). We demonstrate
how a faked positive test can be detected in [I7] with an additional check in
the verification procedure, and that there is a negligible soundness error, i.e.
probability of a false positive.

1.2 Owur Contribution

We examine each protocol in turn, explaining the implications of using a PET
that can be forged when all tallying authorities collude. We then explain how to
patch the verification algorithm in the Jakobsson-Juels PET so that its transcript
does allow universal verifiability. We also explore the implications of weak Fiat-
Shamir transforms in one protocol, and explain how this can be fixed.

Mathematical details are provided in the following section. An examination
of each affected scheme is in Section @l The correction of the PET verification
algorithm and a proof of universal verifiability are in Section

2 The Jakobsson-Juels PET

We demonstrate that if all the trustees of a secret key collude, they can produce
a valid plaintext equivalence proof for two ciphertexts that are not encryptions
of the same value. We begin by reviewing the details of a PET from the widely-
referenced Jakobsson-Juels paper [17], and explain why it does not form a PEP.

2.1 Plaintext Equivalence Test

Let (G, g,p,q,y) be the parameters for ElGamal encryption, with g a generator
for the group G, and ¢ = {g), i.e. a? = 1 mod p for all a # 0 where p and ¢ are
large prime numbers. The public key is y = ¢” for secret key x. Consider two
ElGamal ciphertexts (a1,b1) = (¢™,m1y™) and (ag,b2) = (¢"2, may"™) where
mi # mo.

For ease of exposition, suppose there are two trustees 77 and Ts who collude
(but it works just as well for more trustees). Each trustee has its own share

x; (1 = 1,2) of the secret key, corresponding to its own public key y; = g%,
arranged so that 1 + o = £ mod ¢ and hence y;y> = y mod p.
They will produce a false proof that m; = mg mod q. We (publicly) set

C = (a1/az,b1/bs) = (g 7", (m1/ma)y™ ")

The main idea of the PET is that the two trustees will each raise (each
element of) C to a random power, prove in zero knowledge that they indeed
used the same power on all the elements of C', multiply all their exponentiated
values together, then decrypt the result, using another Zero Knowledge Proof to
prove they decrypted correctly. Call the trustees’ random exponents p; (for 77)
and py (for Ty). If p; and po are chosen randomly, and if the decrypted value
(m1/mso)PrtP2 = 1, then with high probabilityﬂ mi/ms = 1. So as long as at
least one trustee is honest, the proof is both sound and privacy-preserving. A
detailed example is shown in Figure

Exponential ElGamal A common variant of ElGamal, called exponential El-
Gamal, encrypts a message m by first computing ¢™ and then encrypting this
value as usual in order to create additively-homomorphic ciphertexts. We will
work with this variant when discussing protocols that use it.

2.2 Why the PET Is Not a Proof

The PET described above does not form a plaintext equivalence proof. If the
trustees collude and set p; = —p2 mod ¢ (easy to do in a setting like ElGamal
where ¢ is public), then they turn C' into an encryption of 1 because (mj/m2)? =
1 even when my # my. In fact, they turn C into the trivial ciphertext (1,1),
which looks unusual to a human eye but is a perfectly valid ElGamal encryption
of 1. Hence the colluding trustees, even if they decrypt honestly, can produce a
false proof that m; = mso.

Adding a simple check for the trivial ciphertext (1, 1) solves the problem and
produces a universally verifiable Proof of Plaintext Equality (PEP). We prove
this in Section

However, the PEP is strongly dependent on the soundness of its ZKPs. If
these are not properly implemented, the PEP is not sound.

3 Flaws in a Practical Implementation of the PEP

One particularly influential implementation of the PEP and zero knowledge
proofs discussed aboveﬂ is Civitas [§]. In the following section we discuss how
weaknesses in Civitas’ implementations further undermine its PEPs, even if we
ensure the PEP does not produce the trivial ciphertext.

4 The test may fail if by pure bad luck, p1 = —p2 mod ¢. This happens only with the
negligible probability 1/g, where ¢ is large.
5 Indeed, one of the only implementations we were able to find.

3.1 Use of Zero Knowledge Proofs (ZKPs)

A practical implementation of the Jakobsson-Juels PET outlined above depends
on two zero knowledge proofs. First, when trustee T; takes C = (a1/az,b1/b2)
and produces a randomised output ((a1/az)?, (b1/b2)”?), an observer has no way
to guarantee that T; did indeed raise both elements to the same power. To this
end, a zero knowledge proof must be used to prove the equality of two discrete
logarithms. Set d = a1/az2,d; = d”* and e = by /by, e; = e”i; then we must prove

dlog,d; = dlog.e;
Second, the trustees (collectively) need to prove that they faithfully decrypted
the resulting ciphertext (a,b) = (][, di, [, €i). They do this by publishing a; =

a” and a proof that
dlog,y; = dlog,a;

guaranteeing that a really was raised to the power of the secret key to form a;.
We will use EqDlogs(a, b, z,y) to mean a proof that dlog,xz = dlog,y.

3.2 Making Equivalent Ciphertexts Look Different

The plaintext equivalence test (used as a proof) from the Civitas technical re-
port [§] is reproduced as Figure [1| below.

B.3 Main protocols

PROTOCOL: Plaintext Equivalence Test (PET)

Due to: Jakobsson and Juels [51]
Principals: Tabulation tellers TT;
Public input: ¢j = Enc(mj; Ktr) = (aj,b;) for j € {1,2}

Private input (TT;): Private key share z;
Let R = (d,e) = (a1/az, by /b2)
Output: If m; = mo then 1 else O

L TTi: 2 — Zy; (d;, e;) = (d*,e*)

2. TT;: Publish Commit(d;,e;)

3. TT;: Barrier: wait until all commitments are available

4. TT;: Publish (d;, e;) and proof EqDlogs(d, e, d;, ;)

5. TT;: Verify all commitments and proofs

6. Let = ([], di, [], &)

7. AILTT: Compute m’ = DistDec(c’) using private key shares

8. If m’ = 1 then output 1 else output 0

Fig. 1. PET protocol specification from the Civitas technical report

We demonstrate that trustees can produce a valid proof that two plaintexts
encrypt different values, even though they are encryptions of the same value.

Here, we proceed in a single trustee setting, but this can be trivially extended
to the multiple trustee setting.

We take advantage of a weaknesses in the way the Fiat-Shamir transform is
implemented as part of the decryption proof in the Civitas documentation (Step
7 of Figure . The proof is specified as follows, for an ElGamal public key (g,)
where y = g%, a ciphertext (a,b), and a decryption factor d that is supposed to
be equal to a®:

— Select a random r € Z, and compute the commitment (ro,71) = (9", a")
— Compute the challenge e = H(y,d, ro,71)
— Compute the response f =1+ ex

The proof is considered to be valid if the following two equations are satisfied:
g’ =roh* ol =rud
and if e can be recomputed correctly. This is supposed to form a proof

EqDlogs(g, a,y, d)

Note that the ciphertext’s elements a and b have not been included in the
hash, so a malicious prover can choose them after computing the challenge. Here
is a strategy that a malicious trustee could use to produce a ciphertext that is
an encryption of 1 and prove that it is an encryption of something else.

— Select random r, s,t € Z, and set (r9,71) = (¢",¢°) and d = g*
Compute the challenge e = H(y,d, ro,71)

— Compute the response f =1 + ex

— Compute a = gtstet)/f

This is enough to make a proof that passes verification, and will prove that d is
a valid decryption factor for a with respect to the public key (g, y), even though
it is not the case (with overwhelming probability): d is just picked as a random
group element. At this stage, we still have the freedom to choose any b we like
in order to complete our ciphertext. In particular, we can set b = y(+et)/f
which guarantees that (a,b) is an encryption of 1. Thus we can produce a valid
proof that (a,b) decrypts to b/d for arbitrary d, even though it is actually an
encryption of 1.

In order to use this to devise a fake PEP, the cheating prover needs to know
the randomness used to generate the ciphertexts. Take two ciphertexts (a,b1)
and (ag, by) that we know are encryptions of the same plaintext and for which
we know the randomness; say, a; = ¢"* and ag = ¢"* for some r1,7r5. We will
take their quotient and raise it to a “random” power p = p; + p2 as per the

PET))
a1 b1
b) = — —
wn=(()-())
However, we will cheat to ensure that

s+et 1

fori—r

We are left with a = g¢*t¢// as per our cheated proof. Because we may freely
choose d, we can now produce a valid proof that this decrypts to some value other
than 1, and thus a valid proof that the ciphertexts encrypt different plaintexts.

This will not only look perfectly fine, but it will also be infeasible to distin-
guish these ciphertexts and proofs from those expected in the system, unless we
know z of course. This prevents the easy resolution discussed in Section [1.1

In summary, a cheating prover, given two arbitrary equivalent ciphertexts,
can forge a proof that they are different. This requires knowing the randomness
used to generate the ciphertexts.

3.3 Making Encryptions of Different Messages Look Equivalent

The same issue can be exploited to produce proofs that two ciphertexts en-
crypting different messages actually encrypt the same message in a way that
is undetectable to a public observer. This time, we will exploit the use of the
weak Fiat-Shamir transform in the EqDlogs proof in the plaintext equivalence
test (Step 4 of Figure . Again, for simplicity, we focus on the setting where we
have a single trustee, which is malicious. This trustee can proceed as follows:

— Select a random encryption of 1 as ¢ = (dy,e1) = (g%, y%)
— Produce an EqDlogs proof as follows:
1. Select random r, s € Z, and set (rg,r1) = (9", y*)
2. Compute the challenge e, = H(d1,e1,70,71)
3. Pick a random response f € Z,
4. Set R = (d,e) = (g\rtten)/f y(stten)/F)
and observe that (e, f) makes an EqDlogs(d, e, d1, e1) proof that passes ver-
ification despite the fact that log,(dy) # log,(e1) with overwhelming proba-
bility.
— Complete the fake PEP by picking any pair of ciphertexts c;, co whose
quotient is R, and producing a decryption proof for ¢’ in a perfectly honest
way.

Since ¢’ is indeed an encryption of 1, the test will conclude that ¢; and ¢y are
encryptions of the same plaintext, despite the fact that they encrypt different
plaintexts with overwhelming probability. Below are two practical ways to exploit
this.

If we are given one ciphertext with unknown randomness ¢; (say on
a web bulletin board), we can construct a second ciphertext co = Rec; so that
c1/ca = R, where we may freely choose R as above. Colluding tellers could
exploit this by adding an extra ballot to the mix, and producing a PEP that
falsely claims the targeted vote was cast with a duplicate credential. Note that
this would require knowledge of some valid credential. This can be done by a
colluding majority of authorities, where a PEP is meant to reveal the cheat, but
of course we have broken the PEP [23].

If we know the randomness for both ¢; and ¢, (say z; and 23) encrypting
g™ and g2 (Civitas uses exponential ElGamal here) so that ¢; = (¢g**, g"* g***)
and ¢y = (g*2,g™2g%*2), we

r+tep
flz1—22)

2. choose f and set w = %% (so that f = wa™2)
2 miy
3. choose r and set s =7+ w

1. choose t and set p = p1 + p2 =

Now when we produce the re-randomised quotient R = (¢1/¢2)?, we need to
satisfy

R= <gﬂ(21*22),gml/ngwﬂ(21*22)>

We must satisfy p(z1 —22) = (r+tep)/f and mi/mo+axp(21 —22) = x(s+tep)/ f
as per Step [4] of the cheated proof above. The former is satisfied by definition of
p. For the latter:

mq mq r+tep
— +axp(z1 — 22) = — Egn|1
e p(z1 — 22) e ' (Eq

:7711(1+T+tep>
meo w

my T+ w+tep

mo w
mi T mo
= —(s+te,)—— Eqns [2}| 3))
T s+ teg) G (Eq
= x(s +tep)/f

Colluding tellers could exploit this in the same way as the previous attack, but
without needing to add an extra ballot to the mix.

3.4 Summary and Implications of these Vulnerabilities
If every party performing the PET colludes, they can

— produce a false proof that any two ciphertexts are equivalent, without need-
ing to know the randomness used to generate them.

This problem can be prevented by adding a check for the trivial ciphertext to
the verification algorithm.
Using the Fiat-Shamir weakness, they can additionally

— produce a false proof that two equivalent ciphertexts are different, if they
know the randomness used to generate them (Section
— produce a false proof that two ciphertexts are equivalent (Section , if
e they know the randomness used to generate them, or
e they can generate one of them (in which case there is no need to know
the randomness of the other).

These further attacks will produce plausible non-trivial ciphertexts.

4 Why this Undermines Universal Verifiability in
JCJ/Civitas and Other Protocols

Universal verifiability (UV) means that any observer can confirm an election’s
tally matches its cast votes; in particular, any voter could perform this verifica-
tion [9]. See [BILI22] for early work on this concept.

If the verification specification does not consider the case where all trustees of
the PEP collude to produce a false outcome, then only the trustees can verify the
plaintext equivalence proof — since they know whether they colluded. Therefore,
missing this step results in a scheme whose tallying phase is not universally
verifiable.

4.1 JCJ/Civitas

We investigate whether Civitas [8], an implementation of a well-known voting
protocol we refer to as JCJ [I§], correctly performs the check for a trivial cipher-
text in its PEPs. The key idea behind the JCJ protocol is to assign each voter
an encrypted credential. To provide coercion resistance, a voter can provide the
coercer with an invalid credential, and the coercer cannot tell that the creden-
tial is not valid. Voters submit their encrypted votes and encrypted credentials,
together with proofs of plaintext knowledge, to a bulletin board. To tally votes,
the tabulation tellers:

1. check the proofs of plaintext knowledge for submitted votes,

2. identify (using a PEP) and exclude any votes with duplicate credentials,

3. perform a cryptographic mix on the encrypted votes,

4. identify (using a PEP) and exclude any votes cast with a credential that
does not match any on the list of valid credentials, and

5. decrypt the resulting list of valid votes (but not the corresponding creden-
tials).

We can immediately see that a flawed PEP could be abused by the tabulation
tellers to cheat in the election.

In its technical report [], Civitas explicitly claims universal verifiability re-
gardless of whether the tellers collude on page 10: “Trust Assumption 6. There
exists at least one honest tabulation teller. If all the tellers were corrupted, then
the adversary could trivially violate coercion resistance by decrypting creden-
tials and votes. This assumption is not needed for verifiability, even if all the
tellers collude or are corrupted—the proofs posted by tellers during tabulation
will reveal any attempt to cheat.” Its verification specification, page 43 of the
technical report reproduced as Figure [1| here, does not mention checking for a
(1,1) ciphertext which is necessary for this property.

How did this happen? The JCJ paper has a proof of universal verifiability of
the overall voting protocol that is not exactly wrong, but leaves a trap for the
unwary implementer. It says of their PETs that “we model the ideal properties

of the primitive as an oracle [...] with the property of public veriﬁability”ﬂ
citing the Jakobsson-Juels paper [I7]. However, the protocol in that paper does
not have the UV property, and does not claim it, proving instead that it is sound
under the assumption that at least one participant is honest. (It also does not
explicitly mention that even with this assumption, the protocol has a negligible
but non-zero soundness error.)

JCJ also cites [19], which in its Section 4.4 describes another PET, also with
the explicit assumption that fewer than a threshold of trustees are compromised;
however, this paper correctly points out that the protocol has a negligible but
non-zero soundness error. So if JCJ were implemented using a PEP with uni-
versal verifiability, then (we believe) the overall protocol would also be UV, but
since its only cited example is a PET that is not UV, a natural implementation
risks failing UV — as indeed the Civitas implementation does.

The incorrect PEP together with the Civitas scheme’s weak Fiat-Shamir
transform allows various attacks that undermine universal verifiability for JCJ,
such as:

— falsely proving that two different credentials are duplicates, hence excluding
them at Step

— falsely proving that a valid credential is different from everything on the list
of valid credentials, hence excluding it at Step [4]

— falsely proving that an invalid credential is equivalent to something on the
list of valid credentials, hence including it at Step

4.2 A Linear-Time Enhancement to JCJ

In [23], an enhancement to the JCJ protocol is proposed whereby tallying can
be done in linear time instead of a worst-case quadratic time. They “assume the
application of publicly verifiable group threshold mechanisms whenever register-
ing or tallying authorities perform joint computations”, which could be taken to
mean that our attack is outside their threat model; however this seems at odds
with the notion of universal verifiability, and the majority of their discussion of
security properties relies on that of JCJ. So the protocol is not broken as such,
but does lay a similar trap for the unsuspecting reader: they are referred to JCJ,
which claims UV but refers the reader to Mix & Match.

4.3 Introduction to Cryptography Textbook

The textbook Introduction to Cryptography: Principles and Applications (3rd
edition) [I0] discusses distributed plaintext equivalence tests in Section 4.7, bas-
ing their discussion on JCJ (and referencing Mix & Match). They unfortunately
make the same oversight, commenting that “the test may give a wrong result only
if z=3"", 2z =[0]” and that “this happens only with the negligible probability
1/¢”, not accounting for the case where every party colludes. When discussing

S Public verifiability is a synonym for UV.

privacy of the distributed PEP, they explain “the privacy of Pk-encrypted ci-
phertexts and the threshold decryption are guaranteed if at least ¢ of the n
parties are honest and no coalition of ¢ parties behaves dishonestly”, but do not
discuss the implications of dishonest parties on the integrity of the proof.

4.4 Pretty Good Democracy

Pretty Good Democracy [21IT5] also uses Plaintext Equivalence Tests in a critical
part of the tallying process, claiming that Counted-as-Cast and Tallied Correctly
“can be verified from the Bulletin Board using standard techniques, which do not
require trusting any of the authorities.” But it refers only to the PETs of [17],
which do require trusting at least one authority to be honest. A collusion of all
tallying authorities could fake a match with a correct vote code, thus tricking
a voter into thinking that the vote had been properly received when in fact an
invalid vote had been substituted.

4.5 Selections

The Selections protocol [7] falls victim to a similar trap. It focuses on over-the-
shoulder coercion-resistance, meaning that an adversary who is present during
vote casting cannot coerce the voter. To achieve this, the paper mentions that
the voter must trust at least one “registrar”. However, it

1. explicitly claims end-to-end verifiability;

2. mentions the protocol can work with distributed registrars; and

3. clarifies its trust assumption by saying the trusted registrar must not collude
with a coercer, but may still misbehave in any other regard.

In particular, the trustees that perform the tallying are not required to be honest,
and the security assumptions for them are left unclear — they may or may not
be the same entities as the registrars.

The tallying protocol (Algorithm 3 in the paper) uses a plaintext equality
test among tallying trustees, and explicitly refers the reader to Mix & Match
despite the lack of universal verifiability.

4.6 Cobra

The Cobra protocol [11] has the same problem as Selections because it is based
on it, claiming to have universally verifiable proofs yet referring the reader to
Juels and Jakobsson for a plaintext equality test.

4.7 Caveat Coercitor

Caveat Coercitor [12] aims to provide a new property called coercion evidence by
giving voters an opportunity to signal that they have been coerced. A voter can
cancel their vote (assuming it has been cast in a way that did not represent their

10

true wishes) by simply re-voting with the same credential but a different vote.
This nullifies the vote and is interpreted as evidence of coercion. The talliers
produce a tally showing which votes were cast with repeated credentials, for
which they use PEPs. Those that are duplicates are not included in the final
count. The exact protocol is similar to JCJ, except that when a credential is
used twice to cast the same vote it is included (once). The talliers:

1. check the proofs of plaintext knowledge for submitted votes;
2. identify (using a PET) any votes with duplicate credentials:
(a) identify (using a PET) whether all the corresponding votes are equal, in
which case one is included;
(b) or, if there are at least two different votes cast with the same credential,
exclude them all.
. perform a cryptographic mix on the encrypted votes;
4. identify (using a PET) and exclude any votes cast with a credential that
does not match any from the list of valid credentials; and
5. decrypt the resulting list of valid votes (but not the corresponding creden-
tials).

w

The idea is that coerced voters give up their vote, but that “unforgeable
evidence about the degree of coercion that took place is included in the election
output.” If the talliers can fake apparently-equal PEPs for credentials or votes
that are actually different, there are a number of ways they can cheat.

— In Step [2] they can take two unique credentials and fake a proof that they
are equal, thus nullifying one of them (if the votes are equal) or both (if the
votes are different).

— In Step [24 they can take two different votes cast with the same credential
and fake a proof that the votes are equal, thus getting one of them included
when both should be excluded. This is particularly important because this
is exactly the case that Caveat Coercitor is designed to flag as coercion and
exclude — instead, a faked PEP allows it to be treated as a repeat-casting
of the same vote, so a vote is accepted and no coercion is flagged.

— Like JCJ/Civitas, in Step |4 Caveat Coercitor uses PEPs to test whether a
vote’s credential is equal to one of those on the list of valid credentials, so just
as in JCJ/Civitas, a faked PEP for equality again allows corrupt authorities
to stuff the ballot by pretending that an invalid credential is valid.

It is not entirely clear whether the possibility for all talliers to collude and
fake PEPs is included in the trust model of Caveat Coercitor. The paper refers
to the PETSs as proofs, (petproof), and does not give an explicit construction,
but cites the distributed-trust-based test of [17].

On p.371 (Sec B) it says “We assume that one mix server in M, one tallier
in T and the voting machines are honest.” The talliers correspond to the au-
thorities for the PET, so if they are assuming that at least one tallier is honest
then our attack is not within the security model. However, the paper in several
places claims universal/public verifiability, such as “The talliers will execute an

11

algorithm whose output can be used by any external observer to determine the
amount of coercion,” (p.371) and “Observers can perform universal and eligibil-
ity verification, because the computations of algorithm 3 are publicly verifiable,”
(p-375). The crucial Lemma is Lemma 4, which considers whether the set of ac-
cepted votes corresponds correctly to the set of those that were cast with a
unique credential or a repeated credential for the same vote. The proof (in the
Appendix) simply treats the PETs as perfect and does not mention the honest
tallier. The paper concludes by saying that “A major feature of the system is
that the degree of coercion that actually took place is publicly verifiable.” The
assumptions and claims are thus somewhat ambiguous and inconsistent.

In summary, the degree of coercion is not universally verifiable because with-
out at least one trustworthy tallier, evidence of coercion can be hidden.

4.8 Universally Verifiable Auctions

Several cryptographic auction protocols also use the PET from [I7] while claim-
ing universal verifiability, and therefore are are vulnerable to the same attack.
In a verifiable auction there are n players who place a secret bid, and engage in
an interaction to determine which was the highest bid (and who placed it) with
convincing evidence that this was done correctly. There are two distinct settings:
one where this evidence is enough for each player to be sure of the result, and
one where it is enough for any public observer to verify the result.

For example, the scheme of Abe et al. [2] is claimed to be UV but uses the
Mix & Match PET, so it cannot have this property. The protocol of Bradford
et al. [6] also claims UV, citing Mix & Match for its PET as well as [I6], an
almost-identical PET (which is also not UV). Most notably, Quaglia et al. [20]
present a method for converting a verifiable election protocol into a verifiable
auction protocol; they use Helios as a case study, in which a plaintext equivalence
proof is used to construct a universally verifiable auction from mixnet tallying.
However, they once again cite Mix & Match as their PET, so fail to achieve UV.

5 Correcting the Problems to Achieve UV

5.1 The Fiat-Shamir Transform

When using the Fiat-Shamir transform to convert an interactive zero knowledge
proof to a non-interactive equivalent, it is crucial that one includes the full
statement to be proved in the hash [4]. Focusing on Civitas, for the decryption
proof it uses H(y,d, g",a") when it should also include a, b, b". For the equality
of discrete logs it uses H(v,w,a,b) (where a = f* and b = h* for a random
factor z) when it should also include f, h. Note that these inclusions break the
attacks outlined above.

5.2 The Correct Plaintext Equivalence Proof

It is easy to fix the weakness in the distributed PET by simply checking that the
ciphertext is not (1, 1). However, this check is not present in either the original

12

Mix & Match paper by Jakobsson & Juels (which does not claim UV), nor JCJ
(which assumes UV and points to Mix & Match), nor the Civitas verification
code (for which the TR claims UV). We outline the setting of the Civitas PET
(a direct implementation of the Mix & Match PET) below.

Let x; <= Z; be the private key shares and y; = g** mod p be the public key
shares such that

Y:H% modp:ngi mod p = g2 % ™44 mod p
K3 K3

is the public key. We assume EqDlogs(d, e, x,y) is an existentially soun(ﬂ nonin-
teractive zero knowledge proof that dlog,;x = dlog,y. We stress that EqDlogs as
presented in [§] is not existentially sound due to the issue in its implementation
of the Fiat-Shamir transform. However, [45] give an argument that a correctly
implemented transform including all inputs to the protocol in the hash function
results in an existentially sound version.

We are given as public input ciphertexts

G = (ajabj) = (grj mod p, gijTj mod p) for j € {132}

The goal is to prove in a universally-verifiable manner whether m; = ms mod gq.

Let (d,e) = (a1/az,b1/b2). Each teller TT; is supposed to randomly choose
z; € Zy, calculate their share (d;,e;) = (d*',e*), and publish a commitment
Commit(d;, e;). |§| A distributed decryption is then performed on ¢/, where each
TT; publishes their share a; = a’* mod p and a proof EqDlogs(g, @', y;, a;), guar-
anteeing they faithfully calculated a) from a private key share ;.

Under the assumption that the Fiat-Shamir weakness is addressed (see [4]
for details on this), we present a proof that the PET in Civitas is universally
verifiable when a check for trivial ciphertexts are added, following the approach
of [5] (sections 19-20). The corrected protocol is shown in Protocol |1}, in which
P is the prover (playing the role of all tellers simultaneously since we allow
the possibility of collusion) and V is the public verifier. We will construct the
protocol to allow both proofs of both equality and inequality; this will make the
argument a little more complex, but much more general.

Protocol 1 PlaintextEquivalenceProof
Setup: public ElGamal parameters (G, p,q, g); public key shares y; for i € [n]
(where n is the number of tellers). Corresponding private key shares x; for i €

1. P sends ciphertexts c; = (a;,b;) for j € {1,2} to V.
2. P,V calculate d = a1 /as, e = by /ba.

3. P sends (d;,e;), EqDlogs(d, e, d;, e;) to V.

4. P,V caleulate ¢ = (a’,b") = ([1, di, I, €i)-

" Also called adaptively sound in other literature.

8 The commitment is elided from Protocol as it is not relevant in the case that
every teller colludes.

13

5. P sends a},EqDlogs(g,d’, yi, a}) toV with a bit IsEq corresponding to whether
the proof is of equality (IsEq = 1) or inequality (IsEq = 0).
6. V calculates y
M = —— mod p

i @

7.V wverifies the EqDlogs ZKPs (as will be made precise below with Checkgyp)
accept if M =1, the ZKPs pass verification, and ¢’ # (1,1)
reject otherwise

accept if M # 1 and the ZKPs pass verification

reject otherwise

8. Iflskq =1,V outputs

If IsEq =0, V outputs {

We show that the combination of ZKP facts and equations checked directly
by V implies that the two plaintexts are equal (mod q).

Lemma 1. In the setting of Protocol[l, my = mo mod q if and only if M =1,
c # (1,1), dlog,d; = dlog.e;, and dlog,y; = dlog,.a; for all i € [n].

Proof. With the setup done, an observer may compute (explicitly labelling mod-
ulo operations):

d = (a’,b’) _ <HdZi,HeZi> = (& mod 7 g2 mod 9) where z = Zzz
i i -

B ﬂ z mod ¢q bil z mod ¢q
o as ’ bQ

as well as
1

zx; mod
A’:Ha;:H(g> ' (mod p)

r2
S \g

r\ 22, T; mod g r1 \ 2 mod g
_ g 1 i _ Y
() =GR e

and thereby recover

g™y z mod q
d
B b/ B (gm2 yrz) _ gml Z mod g d
- E - yr1\z mod g - gm2 (HlO p)
(v=)

mi

=1 if and only if g

g = 1mod p or z=0mod ¢

In particular, note that if z = 0 mod ¢, ¢’ = (1,1) which trivially decrypts to 1
regardless of whether my = ma.

14

5.3 Security Proof for the Corrected PEP

We follow [5] for formalising the security requirements on the ZKPs, as well as
the plaintext equivalence proof system itself. The general idea is to decide what
a “proof” should mean mathematically: a statement whose truth can be checked
by a public observer. We will argue that any efficient adversary should have only
a negligible probability of forging a proof for a false statement.

Definition 1. Non-interactive proof system

Let R C X x)Y be an effective relation, where if (x,y) € R, y is a statement and
x is a witness for the statement. A non-interactive proof system for R is a
pair of algorithms (Gen, Check) where

1. Gen is an efficient probabilistic algorithm that is invoked as m <7 Gen(z,y),
where (x,y) € R, and w belongs to some proof space PS;

2. Check is an efficient deterministic algorithm that is invoked as Check(y,),
where y € Y and m € PS; the output of Check is either accept or reject. If
Check(y,) = accept, we say m is a valid proof for y.

We will assume that EqDlogs is corrected to satisfy this requirement. Given
public input f, h,v,w we would like to prove that we know z such that v =
f* and w = h®. After choosing a random z, the statement (for prime p,q) is
(p,q, f,h,v,w,a = f?mod p,b = h* mod p) with witness . We will publish
c=H(f, h,v,w,a,b) and r = z + cx mod ¢q. We then have algorithms

— Genggp which maps (z,p,q, f, h,v,w,a,b) tom = (c,r)
— Checkgqe(p, g, f,h,v,w,a,b,m) which outputs accept if and only if f7 =
av® mod p and A" = bw® mod p (otherwise, it outputs reject)

From here we will use EqDlogs(f, h, v, w) less formally to mean “the proof output
by Gengyp(z,p,q, f,h,v,w,a,b)” where context makes x,p, ¢ clear.
PlaintextEquivalenceProof also satisfies this definition: given ciphertexts ¢; =
(a1,b1),ca = (az,be), ElGamal parameters (G, p, ¢, ¢g), and public key shares y;,
the statement is
(G7p7 q,9,C1,C2, {yz}ze[n]7 ISEq)

with witnesses {;};c[n). The algorithms are:
— Genpgp which maps ({i}icin], G, P, 4, g; €1, €2, {Yi }icin)» ISEQ) to
™= {(du €4, a;ﬁ EqDlOgS(d7 €, dia ei)v EqDlOgS(g, a/v Yi, a;))}ze[n]

— Checkprp(G,p,q,9,c1, 2, {¥i}icn, IsEq, 7) which is as per Steps @, EI,
of Protocol [1} with additional checks on the ElGamal parameters:
1. Check that (], d; mod p, [[, e; mod p) # (1,1).
2. Check that d = a1/as and e = by /bs in EqDlogs(d, e,d;, e;), and that it
is a valid proof.
3. Check that g has order ¢ in G, that o’ =[], d; in EqDlogs(g,d’, yi, a;),
and that it is a valid proof.

15

accept if the above checks succeed and [[, % =1 mod p
4. IfIsEq = 1, output i . a
reject otherwise

accept if the above checks succeed and [[, & # 1 mod p
If IsEq = 0, output)) @i
reject otherwise

The requirement we will use for universal verifiability is that of existential
soundnessﬂ the adversary who produces our proof should not be able to falsify
a proof even if they freely choose all of the parameters, given a verifier who
holds only public knowledge [5l, Def. 20.2]. If we can achieve this, then we satisfy
universal verifiability.

Definition 2. Ezistential soundness

Let & = (Gen, Check) be a non-interactive proof system for R C X x Y with
proof space PS. To attack @, an adversary A outputs a statement y € Y and a
proof m € PS. We say that the adversary wins the game if Check(y,) = accept
but there is no witness x such that (x,y) € R. We define A’s advantage with
respect to @, denoted niESadv[A, §|, as the probability that A wins the game.
@ is existentially sound if for all efficient adversaries A, niESadv[A, ®| is
negligible.

Theorem 1. Assume EqDlogs is an existentially sound mon-interactive proof
system. For all efficient adversaries A with security parameter k, suppose that
for some negligible £(k), we have: niESadv[A, EqDlogs] < e(k).

Then PlaintextEquivalenceProof is existentially sound.

Proof. Consider an efficient adversary A with security parameter k£ for whom
niESadv|A, PlaintextEquivalenceProof] = P(k)

Suppose A outputs a proof 7 for the false statement (G, p, q, g, c1, ca, IsEq).

Case 1: IsEq = 1. Then if Checkpgp(G,p, g, g, c1, co, IsEq, 7) outputs accept,
by definition mj # ms mod ¢ and Z:; = 1 mod p.

Case 2: IsEq = 0. Then if Checkpgp(G,p, ¢, g, c1, co, IsEq, 7) outputs accept,
by definition m; = ms mod ¢ and g% # 1 mod p.

In either case ¢ # (1,1), and EqDlogs(d,e,d;,e;), EqDlogs(g,a’, y;,a;) are
valid proofs. We checked that (g) = ¢, so Lemma [I] implies (at least) one of the
following two statements is false for some i € [n]:

(i) dlog,d; = dlog.e;

(ii) dlog,y; = dlog, a;

So A must have cheated in at least one instance of EqDlogs. We can now
construct an adversary B (with security parameter k) to defeat EqDlogs. B runs
A to obtain two proofs EqDlogs(d, e, d;,e;), EqDlogs(g,a’, y;, a}). At least one
is valid; we do not know which one, so B tosses a coin. On heads, B chooses
EqDlogs(d, e, d;, e;), and on tails it chooses EqDlogs(g,a’, y;, a}). B then outputs

9 Also called adaptive soundness.

16

the chosen statement and proof. In this way, B wins with probability at least
P(k)/2.

Therefore given that an efficient adversary attacking EqDlogs has advantage
at most ¢, an efficient adversary attacking PlaintextEquivalenceProof has advan-
tage at most 2e. a

6 Discussion and Conclusion

We have found a subtle misalignment of assumptions in a very influential paper
(624 citations): they require a PET to have universal verifiability, but reference
only PETSs that do not have this property. As with many cryptographic proto-
cols, this small unmet assumption completely undermines one of the protocol’s
primary security goals, in this case universal verifiability. This oversight affects
a large number of follow-on protocols in exactly the same way, hence undermin-
ing their universal verifiability too. Furthermore, the issue is not unique to the
electronic voting domain, but also appears in verifiable auction schemes. To our
knowledge, other work has not noticed this important subtlety.

Although our most detailed analysis describes errors in the Civitas implemen-
tation, this is primarily because Civitas is the only one of the affected papers
to provide a detailed technical report and code, rather than because the other
projects understood the subtle assumption better. Comments in other papers
suggest that, if the authors had implemented their designs, they would likely
have made the same confusion between PETs with PEPs. This is further demon-
strated by their reference to the PET of [I7], which lacks the crucial property.
Fortunately, the mistake is easily rectifiable — but if the Fiat-Shamir transform
is used improperly by a protocol, a related attack opens up to catastrophically
undermine any plaintext equivalence proofs used.

The discovery has significant parallels with Bernhard et al.’s discovery
of errors in the implementation of the Fiat-Shamir heuristic that undermined
soundness in the context of Helios [4], and again in the SwissPost-Scytl sVote
scheme [T4J13]. This suggests that errors of this nature are not unique to the
schemes discussed in this paper, but may be indicative of a more systemic prob-
lem in the misalignment of assumptions between separate work.

Acknowledgements The research carried out by O. Pereira was partially sup-
ported by the F.N.R.S. PDR SeVoTe.

References

1. Abe, M.: Universally verifiable mix-net with verification work independent of the
number of mix-servers. In: International Conference on the Theory and Applica-
tions of Cryptographic Techniques. pp. 437-447. Springer (1998)

2. Abe, M., Suzuki, K.: M+ 1-st price auction using homomorphic encryption. In:
International Workshop on Public Key Cryptography. pp. 115-124. Springer (2002)

3. Benaloh, J.: Verifiable secret-ballot elections (1988)

17

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: Pitfalls of the
fiat-shamir heuristic and applications to helios. In: International Conference on
the Theory and Application of Cryptology and Information Security. pp. 626—643.
Springer (2012)

Boneh, D., Shoup, V.: A graduate course in applied cryptography. Draft 0.5 (2020)
Bradford, P.G., Park, S., Rothkopf, M.H., Park, H.: Protocol completion incentive
problems in cryptographic vickrey auctions. Electronic Commerce Research 8(1-2),
57-77 (2008)

Clark, J., Hengartner, U.: Selections: Internet voting with over-the-shoulder
coercion-resistance. In: International Conference on Financial Cryptography and
Data Security. pp. 47—61. Springer (2011)

Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a secure voting system.
In: 2008 IEEE Symposium on Security and Privacy (sp 2008). pp. 354-368. IEEE
(2008)

Cortier, V., Galindo, D., Kisters, R., Mueller, J., Truderung, T.: Sok: Verifiability
notions for e-voting protocols. In: 2016 IEEE Symposium on Security and Privacy
(SP). pp. 779-798. IEEE (2016)

Delfs, H., Knebl, H.: Introduction to cryptography, vol. 3. Springer (2015)

Essex, A., Clark, J., Hengartner, U.: Cobra: Toward concurrent ballot authorization
for internet voting. EVT/WOTE 12 (2012)

Grewal, G.S., Ryan, M.D., Bursuc, S., Ryan, P.Y.: Caveat coercitor: Coercion-
evidence in electronic voting. In: 2013 IEEE Symposium on Security and Privacy.
pp. 367-381. IEEE (2013)

Haenni, R.: Swiss Post Public Intrusion Test: Undetectable attack against vote in-
tegrity and secrecy. https://e-voting.bfh.ch/app/download/7833162361/PIT2.
pdf?7t=1552395691 (Mar 2019)

Haines, T., Lewis, S.J., Pereira, O., Teague, V.: How not to prove your election
outcome. In: 2020 IEEE Symposium on Security and Privacy (SP). pp. 784-800
(2019)

Heather, J., Ryan, P.Y., Teague, V.: Pretty good democracy for more expressive
voting schemes. In: European Symposium on Research in Computer Security. pp.
405-423. Springer (2010)

Hevia, A., Kiwi, M.: Electronic jury voting protocols. Theoretical Computer Sci-
ence 321(1), 73-94 (2004)

Jakobsson, M., Juels, A.: Mix and match: Secure function evaluation via cipher-
texts. In: International Conference on the Theory and Application of Cryptology
and Information Security. pp. 162-177. Springer (2000)

Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Towards Trustworthy Elections, pp. 37-63. Springer (2010)

MacKenzie, P., Shrimpton, T., Jakobsson, M.: Threshold password-authenticated
key exchange. In: Annual International Cryptology Conference. pp. 385-400.
Springer (2002)

Quaglia, E.A., Smyth, B.: Secret, verifiable auctions from elections. Theoretical
Computer Science 730, 44-92 (2018)

Ryan, P.Y., Teague, V.: Pretty good democracy. In: International Workshop on
Security Protocols. pp. 111-130. Springer (2009)

Sako, K., Kilian, J.: Receipt-free mix-type voting scheme. In: International Confer-
ence on the Theory and Applications of Cryptographic Techniques. pp. 393—403.
Springer (1995)

18

https://e-voting.bfh.ch/app/download/7833162361/PIT2.pdf?t=1552395691
https://e-voting.bfh.ch/app/download/7833162361/PIT2.pdf?t=1552395691

23. Spycher, O., Koenig, R., Haenni, R., Schlidpfer, M.: A new approach towards
coercion-resistant remote e-voting in linear time. In: International Conference on
Financial Cryptography and Data Security. pp. 182-189. Springer (2011)

19

	When is a test not a proof?

