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Abstract. In this paper we study multivariate public key signature
schemes with “ultra”-short signatures. In order to do so, we consider that
signing and verifying a signature could require about 1 minute of com-
putation on a modern personal computer. Despite the fact that this time
is way bigger than the time required by general purpose multivariate-
based signature schemes, such as Quartz or GeMMS, it enables us to
reach ultra-short signature length, for instance, around 70 bits long sig-
natures for a security of 80 bits. Two main issues arise when one wants
to build a signature scheme with ultra-short signatures: avoiding the
birthday paradox attack and having the ability to sign arbitraly long
messages, this paper gives ways to overcome both.
In a first part, we describe the attacks against multivariate public key
signature and use them to compute the minimal parameters that an
ultra-short signature scheme would have. In a second part, we give an
explicit example of such an ultra-short signature scheme using HFE-like
algorithms. In the end, we give parameters for several level of security:
80, 90, 100 bits and the classic 128, 192, and 256 bits; for each of them,
we propose different choices of finite fields.

Keywords: HFE, Multivariate Cryptography, Public Key Cryptogra-
phy, Ultra-Short Signature.

1 Introduction

General context. At present, the RSA cryptosystem is the most used public
key signature algorithm. According to the current best factorization algorithm
(General Number Field Sieve [10]) whose complexity is sub-exponential, to reach
a security of 80 bits (which means that an attacker would need at least 280

operations to recover the secret), one requires a public key of more than 1024



bits, and therefore the length of the signature is at least 1024 bits. Similarly, for
a security of 128 bits, the length of a RSA signature is greater than 3000 bits.

Nowadays, cryptographers focus more on post-quantum cryptography, that is to
say on cryptosystems that could resist attacks performed by quantum comput-
ers. There are mainly four kinds of post-quantum cryptography : multivariate,
isogeny, code and hash-based cryptography. Since we deal with multivariate-
based cryptography, our scheme might resist quantum attacks, however this is
not the topic of this paper which focuses only on attacks with non-quantum
computers.

Multivariate-based cryptography started in 1988 with the C* algorithm of Mat-
sumoto and Imai [22]. It was later broken by Patarin in [24]. Then Patarin
suggested a way to fix it with the Hidden Field Equations (HFE) scheme in
1999 ([28]). Following it, a lot of variations of this scheme were proposed, for
instance HFEv− (also in [28]), Quartz [26], and GeMSS [11] which is currently
at the second round of NIST Post-Quantum Standardization Process. More de-
tails about the HFE cryptosystems, its attacks and its variations will be given
in the second section of this paper. With multivariate-based cryptography, it
seems possible to have short signatures, for example GeMSS provides 256 bits
long signatures for an expected security level of 128 bits.

Our contribution. In the first part, we describe generic attacks against mul-
tivariate signature schemes and we use them to draw inferences about minimal
values of parameters one would have to set to build secure ultra-short multivari-
ate signature schemes. The purpose of such small signatures is that they could
be transmitted orally by phone, stored in a tiny QR code, or combined in wa-
termarking applications. Indeed, for a 80 bit security level, our signatures are 70
bit long, which is less than 20 hexadecimal digits.

In order to build signature schemes with ultra-short signatures, we expoit original
ideas such as time constraints: one should not be able to sign or check a signature
in less than a minute, that is to say on a modern personal computer with a
3GHz frequency processor, a computation power around 3.109 × 60 ≈ 237 word
operations. In addition to this, our parameters are chosen not to require too
much memory, typically less than 350MB.

In the second part, we describe explicit examples of an ultra-short multivariate
signature scheme based on HFE variants. Then, we will provide many parameters
for this scheme according to different security levels (from 80 to 256 bits) and
different finite fields (from F2 to F17).
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Part I: Generic Attacks

2 Types of attacks and minimal parameters

2.1 Different types of attacks

For the security of the schemes that we will design, we will have to take care of
4 types of attacks:

• Type 1: Attacks valid for any public key signature with L bits, when we
want a given security in 2z.

• Type 2: Attacks valid because it exists a value S (we will call it the “complete
signature”) such that from S we can obtain the signature (for us the signature
S′ will be a part of S) and to check that S is a valid complete signature of
M we will proceed like this:
1. We compute a value H(M)
2. We check if F (S) = H(M), where F is a function that can be computed

fast. (For us F will be a set of quadratic equations and thus fast to
compute). (These type 2 attacks use the fact that we have here F (S) =
H(M), unlike, for example, F (S,M) = 1 if the signature is valid , 0
otherwise.

• Type 3: Attacks valid because we will use for F a set of m multivariate
quadratic equations over a finite field Fq.
• Type 4: Attacks valid because we will use a HFE with some perturbations

in order to introduce a secret trapdoor in F .

In this Part I we will only look for attacks of Types 1, 2 and 3, and how we can
avoid them. We will call these attacks “generic attacks”. Then, in Part II we
will look for concrete design based on HFE variants, and the specific attacks on
these designs.

2.2 Type 1 attacks

Let G(S,M) = 1 if S is a valid signature of message M , and G(S,M) = 0
otherwise. It is possible to compute this functionG from the public key. Therefore
a generic possible attack to find a valid signature S of a message M is to try
various values for S and to check if we have G(S,M) = 1. In order to avoid this,
if we want a security in 2z, if the signatures S have L bits, and if G is computed
in 2g operations, we must always have: L ≥ z − g.
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For example, if we want a security in 280 in order to have signatures of less than
80 bits we will need to have a “Slow” evaluation for G. This is what we will
often do in this paper: we will design “Slow” modes of operations.

However, we consider in this paper that the time to compute G must be about 1
minute on a standard PC of 2020, i.e. a PC that can perform about 231 operations
per second, or about 237 operations per minute. Therefore we see that if we want
a security in 280 we will need to have L ≥ 80 − 37 = 43 bits. The aim of this
paper is to study what kind of value L (larger than this bound, but as small as
possible) we have with explicit schemes.

Remark 1. If the signature has only, say, 60 bits for example, then from the
birthday paradox we know that when about 230 messages will be signed, then
with a high probability two messages will have the same signature. This may
not be a real problem, because these two messages have been really signed by
the legitimate user, and therefore we do not see a very dangerous possible attack
based on the fact that they have the same signature. Moreover, it is also possible
to ask the legitimate user to not sign more than one billion messages with the
same public key if we want to avoid this, but this seems to us unnecessary.

2.3 Type 2 attacks

In most of the schemes that we will study in this paper we will check that S is
a valid signature of a message M by an equality like this:

G(S) = H(M)

where G and H are public. (H is usually a Hash function, and G is given by the
public key).

This offers other possibilities of generic attacks we detail here.

Collisions on H. First, it is possible to find collisions on H, i.e. to find 2
messages M1 and M2 with the same Hash, to ask for the signature of M1 and
like this to obtain the signature of M2.

Let 2z be the wanted security parameter. Let E be number of bits of the output
of H (i.e. we can write the equality G(S) = H(M) as an equality on E bits
vectors). Let write that H is computed in 2h operations.

This birthday attack proceeds like this:
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We compute 2z−h values H(M) and we store M at the address H(M). Then we
will obtain (with high probability) that two values share the same address (i.e.
we have find a collision H(M1) = H(M2)) when z − h > E/2.

Therefore, in order to avoid this collision attack on H, we must always have:

E ≥ 2z − 2h.

This comes from the birthday paradox, with an attack of complexity 2z in time.
(The memory needed is in 2z−h . It also exists time and memory tradeoff: with
more time we can use less memory ; however we concentrate here in the time
complexity).

In this paper we consider that the time to compute H must be (as for G)
also about 1 minute on a standard PC of 2020, i.e. a PC that can perform
about 231 operations per second, or about 237 operations per minute. Therefore
h ≤ 37, and we see that if we want a security in 280 we will need to have
E ≥ 2× 80− 2× 37 = 86 bits.

In this paper E ≥ 86 will generally not be a problem. (In case of problem, we
can use G(S,M) = 1 instead of G(S) = H(M) to check a signature, but this
limits the number of possible designs).

Collisions of the type: G(S) = H(M). As above: Let 2z be the wanted
security parameter. Let E be number of bits of the output of H (i.e. we can
write the equality G(S) = H(M) as an equality on E bit vectors). This means
that if in G(S) = H(M) we have m equations on Fq, then E = m log2(q).

Let write that H is computed in 2h operations, and that G is computed in 2g

operations.

This birthday attack proceeds like this:

1. We compute 2z−h values H(M) and we store M at the address H(M).
2. We compute 2z−g values G(S) and we see if there is a value M at this address
G(S).

Then we will obtain (with high probability) that a value M is already at this
address (i.e. we have find a collision G(S) = H(M)) when 2z − h− g > E.

The complexity of this birthday attack is 2z in time.
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(The complexity is 2z−h in memory. If this is too much memory, it is possible to
use less memory with more time computations, i.e. there are many time-memory
tradeoffs. We concentrate on the time complexity here).

In order to avoid this attack we must always have:

E ≥ 2z − h− g. (1)

We will denote ∆ = E − 2z + h+ g. So (1) can be written: ∆ ≥ 0.

Below (in section 4) we will present various mode of operations. Some will be
able to work when ∆ < 0 but when ∆ ≥ 0 more modes will work. For example,
when h = 37:

• if we want a security in 280 we have ∆ = E − 123 + g.
• if we want a security in 290 we have ∆ = E − 143 + g.
• if we want a security in 2100 we have ∆ = E − 163 + g.
• if we want a security in 2128 we have ∆ = E − 219 + g. , etc.

Remark 2. Our slow hash function can be chosen to be the iteration of a standard
hash function. A standard Hash function such as SHA-3 or SHA-256 has a speed
of about 13 cycles per byte. Then for data of 72 bytes (36 words of 16 bits) we
will need about 210 cycles. Therefore 237 operations (as mentioned above) means
here to perform about 227 Hash like SHA-3. Alternatively, we can also see things
like this: we know that we need about 1 s to perform SHA-3 on 1 million (i.e.
220) messages of 72 bytes on a modern computer. Then for 227 Hash like SHA-3
we will need about 1 or 2 minutes.

2g is the time to compute the public equations G. Usually in this paper these
equations will be a set of m (dense) quadratic (or cubic) equations in about m
variables. Then we have:

For quadratic equations: 2g ≈ m3/2, i.e. g ≈ log2(m3/2).
For cubic equations: g ≈ log2(m4/6).

3 Gröbner bases on random Polynomial Systems
(Minimum number of equations with a perfect
trapdoor)

3.1 Polynomial system solving using Gröbner basis

In this Section we briefly introduce the Gröbner basis technique that is a funda-
mental tool for solving systems of multivariate polynomial equations. We refer
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to [30,3,4] for further details.
Gröbner basis method is a non-linear generalization of Euclid’s algorithm for
the gcd, as well as a generalization of Gaussian elimination for linear systems.
Roughly speaking, a Gröbner basis is a set of multivariate polynomials having
special properties that allow easy solutions derivation for complex polynomial
systems.
As a matter of fact, it is possible to transform any multivariate polynomial sys-
tem, even complicated ones, into Gröbner basis form using specific algorithms
(like F4 [19] and F5 [20] algorithms).
The computational complexity of such method relies strongly on an important
notion, namely the degree of regularity dreg.
Intuitively, dreg is the minimal degree for which a set of polynomials of degree d
can form a Gröbner basis, and thus can be solved (see [5,20] for more details).
The complexity of a Gröbner basis computation detailed in [5,20] is in:

O

((
n+ dreg
dreg

)ω)
,

where 2 ≤ ω ≤ 3 is the linear algebra constant. Note also that for random
systems, the degree of regularity can be evaluated by the computation of the
first non negative coefficient of a Hilbert serie, see [5].

Polynomial system solving using the Hybrid approach. There are two
general techniques for solving polynomial systems over finite fields:

• Exhaustive search technique (brute-force search) is a very general solving
technique that consists of enumerating explicitly all the possible solutions in
order to find the right one. The computational cost of such method is quite
large.

• Gröbner basis computation, defined previously.

In order to speed up the system solving techniques, the authors of [8] combine the
exhaustive search and the Gröbner basis methodologies into a hybrid approach
for solving multivariate polynomials.
The basic idea of the hybrid approach is to fix some variables and then compute a
Gröbner basis of a system with less variables and that is smaller than the original
one. Then, a complete solution of the original system is recovered by performing
an exhaustive search on the fixed variables combined with the solutions of the
subsystem.
The complexity of the Hybrid approach is given in [8]:

min
0≤k≤n

(
qk

(
CF5(n− k, dmax

reg (k)) + O

(
(n− k)Dmax(k)ω

)))
,
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where k is the number of fixed variables, 2 ≤ w ≤ 3 is the linear algebra constant,
Dmax(k) is the maximum number of solutions of the system in F̄q counted with
multiplicity, and CF5 is the Gröbner basis computation complexity using the F5
algorithm [20].
When the tradeoff k is well chosen, then the hybrid approach constitutes one of
the most efficient algorithms for solving polynomial systems.

In Tables 1, 2, we present some values. These values evaluate the minimum
number m such that to solve a system of m random equations in m variables
would require 2t computations from an attacker, for various values of the security
parameter t (80, 90, etc.), and about one minute to solve when m− f variables
are known.

Degree 2
ω = 2.37

280 290 2100 2128 2192 2256

q = 2
m = 86
f = 29
L = 57+

m = 100
f = 30
L = 70+

m = 112
f = 31
L = 81+

m = 145
f = 33
L = 112+

m = 218
f = 37
L = 181+

m = 290
f = 42
L = 248+

q = 4
m = 43
f = 21
L = 44+

m = 50
f = 22
L = 56+

m = 56
f = 23
L = 66+

m = 73
f = 26
L = 94+

m = 113
f = 30
L = 166+

m = 154
f = 32
L = 244+

q = 5
m = 40
f = 20
L = 47+

m = 45
f = 20
L = 59+

m = 50
f = 21
L = 68+

m = 66
f = 24
L = 98+

m = 102
f = 27
L = 175+

m = 139
f = 30
L = 254+

q = 7
m = 35
f = 19
L = 45+

m = 40
f = 20
L = 57+

m = 45
f = 20
L = 71+

m = 59
f = 22
L = 104+

m = 91
f = 26
L = 183+

m = 124
f = 29
L = 267+

q = 8
m = 34
f = 19
L = 45+

m = 39
f = 19
L = 60+

m = 43
f = 20
L = 69+

m = 57
f = 23
L = 102+

m = 88
f = 27
L = 183+

m = 119
f = 29
L = 270+

q = 11
m = 32
f = 18
L = 49+

m = 36
f = 19
L = 59+

m = 40
f = 20
L = 70

m = 52
f = 21
L = 108+

m = 81
f = 26
L = 191+

m = 111
f = 28
L = 288+

q = 13
m = 31
f = 18
L = 49+

m = 35
f = 19
L = 60+

m = 39
f = 20
L = 71+

m = 51
f = 21
L = 112+

m = 79
f = 25
L = 200+

m = 107
f = 28
L = 293+

q = 16
m = 30
f = 18
L = 48+

m = 34
f = 18
L = 64+

m = 38
f = 19
L = 76+

m = 50
f = 21
L = 116+

m = 77
f = 26
L = 204+

m = 104
f = 28
L = 304+

q = 17
m = 29
f = 17
L = 50+

m = 33
f = 18
L = 62+

m = 37
f = 19
L = 74+

m = 49
f = 21
L = 115+

m = 76
f = 25
L = 209+

m = 103
f = 28
L = 307+

Table 1. Number f of variables that we can find with Magma in about 1 minute when
we have m equations of degree 2 (ω = 2.37), and size L in bits if we can find a perfect
trapdoor.
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Degree 3
ω = 2.37

280 290 2100 2128 2192 2256

q = 2
m = 82
f = 22
L = 60+

m = 92
f = 22
L = 70+

m = 103
f = 23
L = 80+

m = 131
f = 23
L = 108+

m = 196
f = 23
L = 173+

m = 262
f = 23
L = 239+

q = 4
m = 40
f = 13
L = 54+

m = 45
f = 14
L = 62+

m = 50
f = 14
L = 72+

m = 64
f = 14
L = 100+

m = 96
f = 16
L = 160+

m = 128
f = 17
L = 222+

q = 5
m = 35
f = 12
L = 54+

m = 39
f = 12
L = 63+

m = 44
f = 12
L = 75+

m = 56
f = 13
L = 100+

m = 83
f = 14
L = 161+

m = 112
f = 15
L = 226+

q = 7
m = 29
f = 11
L = 51+

m = 33
f = 12
L = 59+

m = 36
f = 12
L = 68+

m = 47
f = 13
L = 96+

m = 71
f = 14
L = 161+

m = 96
f = 15
L = 228+

q = 8
m = 27
f = 11
L = 48+

m = 31
f = 12
L = 57+

m = 34
f = 12
L = 66+

m = 45
f = 13
L = 96+

m = 68
f = 14
L = 162+

m = 92
f = 15
L = 231+

q = 11
m = 25
f = 11
L = 49+

m = 28
f = 11
L = 63+

m = 31
f = 11
L = 70

m = 40
f = 12
L = 104+

m = 62
f = 13
L = 170+

m = 83
f = 14
L = 239+

q = 13
m = 24
f = 11
L = 49+

m = 27
f = 11
L = 60+

m = 30
f = 11
L = 71+

m = 39
f = 12
L = 100+

m = 59
f = 13
L = 171+

m = 80
f = 14
L = 245+

q = 16
m = 23
f = 11
L = 48+

m = 26
f = 11
L = 60+

m = 28
f = 11
L = 68+

m = 37
f = 12
L = 100+

m = 56
f = 13
L = 172+

m = 76
f = 14
L = 248+

q = 17
m = 22
f = 10
L = 50+

m = 25
f = 11
L = 58+

m = 28
f = 11
L = 70+

m = 37
f = 12
L = 103+

m = 56
f = 13
L = 176+

m = 75
f = 13
L = 254+

Table 2. Number f of variables that we can find with Magma in about 1 minute when
we have m equations of degree 3 (ω = 2.37), and size L in bits if we can find a perfect
trapdoor.

3.2 Choice of the constant of linear algebra ω

From a practical point of view we should choose ω = 2.81.

However in order to take care of the fact that the systems are usually not dense,
it could be useful, as a rough evaluation to choose ω = 2.37 or ω = 2. Moreover,
in order to avoid the attacks of Type 1 and 2 we will have to increases the
number m of equations that we will use. So the choice of ω will often not be so
important.

When q = 2, we use the best-known asymptotic complexity for the direct attack:
20.792m (cf [3]). Maybe a more realistic estimation could be: 20.88m .
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When q ≥ 5 we use the complexity results of [8]. The best-known algorithm is
a “Hybrid” algorithm, i.e. we will perform exhaustive search on some variables,
and then we will perform a Gröbner base algorithm (like F4 or F5 of Jean-
Charles Faugère). The formula that they give is valid when q ≥ 5, therefore we
do not present values for q = 3 since a specific analysis would be needed.

3.3 Size of the signature with a perfect trapdoor

In table 3 below the symbol “+” in the value L means that since we will design
a specific trapdoor function, and since we will have to take care of the generic
attacks (Type 1 and Type 2 attacks above) we will have to increase this value
for the size of the signature.

This value L is computed by the formula : L = the first integer larger or equal
to (m− f) ∗ log2(q).

Remark 3. With Magma we had a limitation of 366 M Bytes of RAM. This
explain why sometime there is a limitation in memory before the time limitation
of about 1 minute. Therefore, all the values in the tables below can be explicitly
computed in less than 2 minutes and with less than 350 M bytes of RAM.

One surprise with these tables is the fact that q = 2 does not appear so far to be
the best choice for very short signatures. Another surprise is the fact that the
length L here are very similar for various values of q (q = 5, 7, 11, . . .). However,
the game is far to be over: we will have to consider many more attacks and the
final best value for q is not at all clear at that point.

4 Modes of operation against the birthday paradox

Various modes of operations have been developed to avoid the birthday paradox
attack, i.e. to be able to use a multivariate trapdoor function to sign any message
even when the size of the input trapdoor is small. We will present here 8 modes of
operation, including our new modes “Mixing Public keys”, “Slow”, “Memory”,
and “Slow + Memory.
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4.1 Feistel-Patarin mode of operation

This is the mode of operation used in Quartz and GeMMS for example.

This mode of operation was first shown and analysed by Jacques Patarin in [28],
and studied by Nicolas Courtois in [12]. This mode of operation is used in the
Quartz and GeMMS algorithms.

The general idea is to use the secret function more than one time (typically 4
times) to sign a message and to Xor the partial with more parts of the message.
However generally this mode of operation will give us larger signatures than our
new “Slow hash” mode that we will see below. The main reason for this is that
we will not be able to recover many missing bits of the signature because the
degree of the public equations that we have to solve increases: initially they are
of degree 2, then 4 after 1 one iteration, then 4, etc. Moreover, at each iteration
we need to add a few bits in the signature. This mode of operation is still very
interesting when the Slow hash mode becomes too slow, or in order to design
general purpose signature schemes (not ultra-short signatures schemes).

4.2 Gui mode of operation

In this mode of operation, a message is signed k times (typically k = 2 times)
by the same public key. Thanks to this, we avoid the collision limitation, and
we keep the length of the public key relatively small. However, this increases
the length of the signature by a factor k. Since in this paper we want to have
ultra-short signature, we will not use this mode of operation.

4.3 UOV mode of operation

In the UOV scheme, the secret key computation works exactly the same if we
add in the public equations any equations in the xiyj monomials. Therefore we
have no problem of collision limitation with UOV: we check the signature as
G(M, S) = 1 instead of G(S) = H(M) (see section 3). However, the length of
UOV signatures is bigger than the length of HFEv- signatures (because we use
much more vinegar variables). So, we will not use UOV in this paper.
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4.4 Dragon mode of operation

Usually the public key of a multivariate scheme is a set of equations of the form:

y1 = P1(x1, . . . , xn)

y2 = P2(x1, . . . , xn)

. . .

ym = Pm(x1, . . . , xn)

where P1, P2, . . . , Pm are polynomials of small degree (typically 2).

It is also sometimes possible to use a public key that is a set of equations of this
form:

P1(x1, . . . , xn, y1, . . . , ym) = 0

P2(x1, . . . , xn, y1, . . . , ym) = 0

. . .

Pm(x1, . . . , xn, y1, . . . , ym) = 0

where P1, P2, . . . , Pm are polynomials of total small degree (typically 2 or 3).
Such systems are called “Dragons schemes” in [25]. With these systems we could
hope to have shorter signatures since we avoid type 2 attacks (cf section 3: we
use the fact that we check a signature by equations of the form F (S,M) = OK
unlike F (S) = H(M) ).

However, it is extremely risky to design a “Dragon scheme” from HFE variants
because some attacks (such as generalizations of the Kipnis-Shamir attack) are
much more efficient on Dragon schemes. And with other known design than
HFE variants the length of the signature is much larger. (For example, Dragon
mode works very well with UOV signatures, but the signature length is larger
than with HFE). Therefore, in this paper we will not use this Dragon mode of
operation.

4.5 Mixing public keys mode of operation

This is an interesting solution. However, it may be a bit risky to publish more
than one public key with the same S and T .

Therefore, for security reasons we prefer at present our solutions with a slow
Hash function, as we did in this paper.

12



4.6 “Multiple independent public keys” mode of operation

In this mode of operation, we use a set of k independent public keys (the new
public key is a set of k previous public keys). Therefore, the length of the new
public key is k times what was previously the length of the public key, but the
security of the scheme remains the same. Like this, as we will see below, it is
possible to avoid attacks based on the birthday paradox, but this is only realistic
when k is not too large. In this paper we will first use a Slow Hash mode (cf
below) and sometimes combine this Slow Hash mode with this idea of Multiple
independent public keys.

Signature generation. When we want to sign a message M in this mode, we
will proceed like this:

1. We first compute H(M) a slow hash of M . This will take 2h computations
(typically h = 37 in this paper).

2. From this value H(M) we compute a value R(H(M)) between 1 and k. This
value gives the number of the public key that we will use (i.e. the m public
quadratic equations that must be satisfied to sign M).

3. From the secret key associated with this public key, the signature is com-
puted.

Attack. It is possible to attack this mode of operation with a complexity in 2z

and with a birthday paradox type of attack like this:

1. The attacker computes 2z−h values R(H(M)).
2. The attacker select the public key that was obtained the most. In general he

will obtain about 2z−h/k values for this public key (see Remark below).
3. The attacker then computes 2z−g values G(S) and looks for a collision with

a value obtained in 2. (Here 2g denotes as above the time to compute a value
G(S)).

This attack is expected to succeed with a good probability when 22z−h−g ≥ k2E

where E denotes as above the number of bits of equalities to be satisfied when
we check if a signature is valid from the public key.

Since by definition ∆ = E− 2z+h+ g, we see that in order to avoid this attack
we will have to choose: k ≥ 2−∆. This will give an acceptable public key length
only if −∆ is not too large.
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Remark 4. When 2z−h is much larger than k, the number of values obtained in
2. for a given public key is a variable of mean value 2z−h/k, and with a standard
deviation about the square root of this. Therefore for the public key with the
more solutions will still have about 2z−h/k solutions as claimed. For example
we did a simple simulation by generating 10 millions random values between 1
and 100. The number that was obtained most was obtained 100 732 times in our
simulation, and this number is very near 100 000 as expected.

4.7 Slow mode (and Slow + Multiple public keys tradeoff mode) of
operation

Here the idea is to use a slow hash function. This is the idea that we have
presented in section 2. As long as the time of the slow hash function obtained
for security is acceptable this solution is nice. If this time is too large, then we
can combine this idea with the memory mode of operation (see 4.6), or choose
another mode.
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Degree 2
ω = 2
∆→ ∆ ≈ 0

280 290 2100 2128 2192 2256

q = 2
r ≤ 16
1

∆ = −10.4
94→ 104
30→ 31
64→ 73+

∆ = −15.8
108→ 124
31→ 32
77→ 92+

∆ = −23.3
120→ 144
32→ 33
88→ 111+

∆ = −40.1
158→ 198
34→ 37
124→ 162+

∆ = −82.2
242→ 325
39→ 44
203→ 281+

∆ = −128.0
323→ 451
44→ 51
279→ 400+

q = 4
r ≤ 9
2

∆ = −13.4
47→ 54
21→ 23
52→ 62+

∆ = −18.8
54→ 64
23→ 24
62→ 80+

∆ = −26.3
60→ 73
24→ 26
72→ 94+

∆ = −43.1
79→ 100
27→ 29
104→ 142+

∆ = −83.2
122→ 164
31→ 32
182→ 264+

∆ = −121.8
166→ 227
32→ 37
268→ 380+

q = 5
r ≤ 7
2.32

∆ = −8
43→ 47
20→ 21
54→ 61+

∆ = −13.6
49→ 55
21→ 22
65→ 77+

∆ = −19.1
55→ 63
22→ 23
77→ 93+

∆ = −36.8
71→ 87
25→ 26
107→ 142+

∆ = −72.4
110→ 142
28→ 30
191→ 260+

∆ = −106.3
150→ 196
31→ 34
276→ 376+

q = 7
r ≤ 6
2.80

∆ = +1
m = 39
f = 19
L = 56+

∆ = −4.4
44→ 46
20→ 21
68→ 70+

∆ = −7.1
50→ 53
21→ 22
82→ 87+

∆ = −20.1
65→ 72
23→ 25
118→ 132+

∆ = −48.1
100→ 117
27→ 29
206→ 247+

∆ = −76.7
135→ 163
30→ 32
295→ 367+

q = 8
r ≤ 5
3

∆ = +5.7
m = 38
f = 19
L = 57+

∆ = +1.3
m = 43
f = 20
L = 69+

∆ = −3.2
48→ 50
21→ 21
81→ 87+

∆ = −13.1
63→ 68
23→ 24
120→ 132+

∆ = −40.2
96→ 1104
27→ 29
207→ 243+

∆ = −61.9
131→ 152
30→ 30
303→ 366+

q = 11
r ≤ 5
3.45

∆ = +12.1
m = 35
f = 19
L = 56+

∆ = +13.5
m = 41
f = 20
L = 73+

∆ = +7.7
m = 45
f = 21
L = 84+

∆ = +1.1
m = 59
f = 23
L = 125+

∆ = −14.5
91→ 96
27→ 27
222→ 239+

∆ = −30.8
123→ 132
30→ 30
322→ 353+

q = 13
r ≤ 4
3.70

∆ = +20.9
m = 35
f = 19
L = 60+

∆ = +16.1
m = 39
f = 20
L = 71+

∆ = +15.2
m = 44
f = 20
L = 89+

∆ = +8.4
m = 57
f = 22
L = 130+

∆ = +0.7
m = 89
f = 26
L = 233+

∆ = −11.2
120→ 123
29→
337→ 348+

q = 16
r ≤ 4
4

∆ = +23.1
m = 33
f = 18
L = 60+

∆ = +23.7
m = 38
f = 19
L = 76+

∆ = +24.3
m = 43
f = 20
L = 92+

∆ = +21.4
m = 56
f = 21
L = 140+

∆ = +15.3
m = 86
f = 26
L = 240+

∆ = +8.5
m = 116
f = 28
L = 352+

q = 17
r ≤ 4
4.08

∆ = +25.7
m = 33
f = 18
L = 62+

∆ = +26.7
m = 38
f = 19
L = 78+

∆ = +27.7
m = 43
f = 20
L = 94+

∆ = +21.7
m = 55
f = 21
L = 139+

∆ = +18
m = 85
f = 26
L = 241+

∆ = +13.7
m = 115
f = 28
L = 355+

Table 3. Number f of variables that we can find with Magma in about 1 minute and
values of m to avoid generic attacks.
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Table 3. Let see what the values of this table 3 mean in the first square, for
example. With ω = 2, in order to have a security in 280, we need to have a
number m of equations ≥ 94 (unlike m ≥ 86 with ω = 2.37 as seen in Table 1).
(This comes from the known results of the complexity of hybrid Gröbner bases
on random quadratic systems as explained above). Then with m = 94 we would
have a signature of at least 64 bits. However with m = 94 we have ∆ = −10.4
so this would give a very big public key if we use the independent key mode of
section 4.4. since about 2−∆ = 1351 public keys would be needed. In this paper
we want very short signature but we are also interested in what we obtain with a
reasonable length of the public key. Therefore it is interesting to see what length
of signature we would have when ∆ ≈ 0. Here this means that we increase m
by an amount of −∆/ log2(q), since we have E = m log2(q). Therefore we use
m = 104 (instead of m = 94). This also explain why the value of ω is generally
not so important: when we increases m in order to have ∆ ≈ 0 then very often
we will obtain the same value m whatever was the starting point obtained with
ω. (Moreover the complexity of the best attacks on HFE variants schemes that
we will use in Part II will often not depend on ω). Now with m = 104 we see
that the length of the signature will be at least 73 bits. However on a specific
scheme (such as variants of HFE) this could be more: therefore we write here
“73+” and we will see more precisely in Part II what we will obtain.

Part II: Examples of parameters on HFE variants

5 Nude HFE, and HFE Variants

5.1 Description of (nude) HFE

Hidden field Equations (HFE2) algorithm was proposed by J. Patarin at Eu-
rocrypt [27] to repair the algorithm C* of Matsumoto and Imai [22]. The basic
idea of HFE is to hide the special structure of a univariate polynomial F over
some finite field (usually F2n) which allows F to have a quadratic polynomials
representation in the small field.

HFE(q, n,D) shape. Let F = Fq be a finite field of q = pm elements for
some prime number p, E = Fqn its n-th degree extension, and φ : E −→ Fn the
canonical isomorphism between E and the corresponding vector space Fn. Given
(θ1, . . . , θn) a basis of E as an F-vector space, we have:

φ : E = Fqn −→ Fn

V =

n∑
i=1

viθi 7−→ (v1, . . . , vn).
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Let F∗ be the following map:

F∗ : Fqn −→ Fqn
V 7−→ F (V ),

with F ∈ E[X] is a univariate polynomial of the special form:

F =

qi+qj≤D∑
0≤i≤j≤n

αi,jX
qi+qj +

qi≤D∑
0≤i≤n

βiX
qi + γ, (2)

where αi,j , βi, γ ∈ Fqn , and F is of degree at most D ∈ N. Then, F has the
HFE(D) shape that allows to have multivariate quadratic polynomials represen-
tation over F using the map F = φ ◦ F∗ ◦ φ−1:

F : Fnq −→ Fnq
(v1, . . . , vn) 7−→ (f1(v1, . . . , vn), . . . , fn(v1, . . . , vn)),

with the quadratic polynomials (f1, . . . , fn) ∈ (Fq[x1, . . . , xn])n such that:

F
(
φ−1(x1, . . . , xn)

)
= φ−1(f1, . . . , fn)

F
( n∑

i=1

θixi

)
=

n∑
i=1

θifi

.

HFE problem. Basically, F∗ is chosen to be an easily invertible and evaluated
map. Using the canonical isomorphism φ, the map F∗ can be transformed into a
quadratic map F = φ ◦F∗ ◦ φ−1. Thus, F can be written as a set of n quadratic
polynomials (f1, . . . , fn) in n variables (x1, . . . , xn) over F.
In order to build a cryptosystem based on the inversion of an HFE shaped
polynomial, the original structure of F must be hidden since it is possible to
find solutions of F (x) = a, a ∈ Fqn in polynomial time. To do so, on uses two
invertible affine maps

S,T : Fn −→ Fn.
Therefore, the public key consists of

P = S ◦ F ◦ T = S ◦ φ ◦ F∗ ◦ φ−1 ◦ T,

and the secret key that yields the inversion of the public key is given by S, T
and F∗.
Thus, it’s difficult to compute the inverse of P when its decomposition remains
secret.

HFE is one of the most studied algorithm in cryptography. It can be used for
authentication, encryption and also signature purposes.

17



5.2 HFE with some “perturbations”: − (minus), v (external
vinegar), w (internal vinegar)

In the previous sections, we presented the basic HFE. In this section, we recall
several variations that can increase the security of HFE or its efficiency [27], The
families HFEv and HFEv− were introduced by Jacques Patarin in [28], and in
2001 a specific choice of parameters called “Quartz” [26] was published in order
to have 128 bits signatures with an expected security in 280 (see Appendix A).

The minus modifier −. This variant consist of omitting some multivariate
polynomials from the public key of an HFE-based scheme P = (p1, . . . , pn). It’s
named HFE- due to the act of hiding public equations which leads to an under
determined system. Hence, this modifications is more often used for signatures
schemes.
More precisely, HFE- involves using the following projection:

π : Fn −→ Fn−s,

where s ∈ N∗ denotes the number of removed polynomials. Thus, the construc-
tion of the public key comes as P = π ◦ S ◦ F ◦ T for the original HFE-based
scheme. Hence, the public key is seen as n−s quadratic multivariate polynomials
in n variables.

The vinegar modifiers v and w. While the first modification discussed earlier
affects the public key, in this section we will present a variation which affects
the structure of the private HFE shaped polynomial. It consists of adding some
extra variables, namely vinegar variables (z1, . . . , zv) ∈ Fv, where v ∈ N denotes
the number of vinegar variables. The secret HFE shaped polynomial is now
a function of these vinegar variables. Its multivariate representation over the
ground field should remain quadratic in the nude HFE case.
Note that, there are two classifications of vinegar variants:

• External vinegar modifier v, where the extra variables (z1, . . . , zv) ∈ Fv are
randomly chosen.

• Internal vinegar modifier w, where each extra variable zi ∈ F, for i ∈
{1, . . . , v} is a linear combination of the original variables (x1, . . . , xn) ∈ Fn.

Recall the special form of the the HFE shaped polynomial

F (X) =

qi+qj≤D∑
0≤i≤j≤n

αi,jX
qi+qj +

qi≤D∑
0≤i≤n

βiX
qi + γ,
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where αi,j , βi, γ ∈ Fqn .
HFEv (respectively HFEw) consists of replacing F with a complicated map from
Fqn × Fv to Fqn :

F (X, z1, . . . , zv) =

qi+qj≤D∑
0≤i≤j≤n

αi,jX
qi+qj +

qi≤D∑
0≤i≤n

βi(z1, . . . , zv)X
qi + γ(z1, . . . , zv),

where αi,j ∈ Fqn , and βi, γ : Fv −→ Fqn are respectively a linear and a quadratic
random maps.

5.3 Probability to have 0 solutions in signature

For a random function f from E to E, where E is a finite set, the probability
that for a value y of E there is at least one value x such that f(x) = y is about
63.2% (i.e. 1 - 1/e).

For a random non homogeneous polynomial of degree 2 in n variables, or for
a random homogeneous polynomial of degree 2 in F2n it is also about 63%.
(Therefore, we will need to test in average about 1.5 values in order to find a
signature).

However, on F2n when q is odd, and for a homogeneous random polynomial of
degree 2 the probability is only 31.6% (i.e. 2 times less). (Therefore, in this case
we will need to test in average about 3 values in order to find a signature). This
is because in this case for all value X we have f(X) = f(−X) and X 6= −X
(except if X = 0).

So, when q is odd we will generally choose a non-homogeneous polynomial. Then
the secret linear transformations S and T defined in HFE will be chosen to be
affine (linear with constants).

We expect that this non-homogeneous choice (when q is odd) does not create a
security problem, because since S and T are very general linear bijections we ex-
pect that no attack should exist by exploiting only the degree 1 part of the public
equations. (However, if in the future it appears that non-homogeneous equations
are not a good choice, then we will come back to homogeneous solutions, with a
probability to be invertible divided by 2).

6 The best known attacks on HFEv−

HFEv− was first described by Jacques Patarin in [28]. Then a specific set of
parameters was given in [26] (see also Appendix A for more details on Quartz).
Since then a lot of work has been done on HFEv− schemes. We will have to
choose the parameters in a precise way in order to avoid all the known attacks.

There are essentially 3 kinds of attacks on HFEv− schemes:
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1. Differential attacks
2. Direct attacks
3. Key recovery attacks

We will present here a summary on these attacks.

6.1 Differential attacks

These attacks are very efficient when only one monomial is used, even when
some perturbations are used. (For example, SFLASH was broken with them).
Therefore, in order to avoid these attacks, we will always use at least 2 monomials
of weight 2 in the secret HFE polynomial, i.e. we will always have at least the
monomials X2 and Xq+1 if q is not a power of 2, and at least the monomials
Xq+1 and X2q+1 if q is a power of 2. Differential attacks are also important
when we use the “w” perturbation (cf next section). Therefore, we will give
more information on them in the next sections on the w perturbation.

6.2 Direct attacks

In these attacks we try to solve the public equations for a give value Y (i.e. for
a given message we try to find a valid signature from the public equations) by
using Gröbner algorithms like F4 or F5. We will denote by D the degree of the
HFE polynomial, by a the number of equations removed, and by v the number of
(external) vinegar variables. We will denote r = blogq(D − 1)c+ 1, that reflects
the rank of the quadratic form associated with the HFE polynomial.

The complexity of this attacks is in the order of
(
d+n
d

)ω
Where d is the “degree” of regularity of the system, and ω is the linear algebra
constant ( 2 ≤ ω ≤ 3, usually we consider ω = 2 or ω = 2.37). Therefore, the
main difficulty in order to evaluate this complexity is to evaluate this value d.

In [15], an upper bound on this value d has been found:

d ≤ 2 + (q − 1).(r + a+ v)/2. (3)

This upper bound is interesting, is proved, and is valid for all q. It shows that
often a HFEv− scheme will have a smaller degree of regularity than a random
system. Moreover, generally d is significantly smaller (cf below).
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Remark 5. When we want to solve random systems, the best algorithms are
usually hybrid algorithms, i.e. we will fix some variables and find the other with
Gröbner bases algorithms. When we attack HFEv− schemes however, it seems to
be a bad idea to use Hybrid algorithms, therefore here we use only pure Gröbner
bases algorithms.

When q = 2, many experiments have been done. As long as d is not larger than
the dreg value of random systems (that we can compute from Hilbert series),
these experiments show that d can be estimated to be:

When q = 2 we have: d = b(a+ v + r + 7)/3c

However, when q is different from 2, very little is known at present on d. This
is why we have made our own experiments with Magma (cf Appendix D). It is
difficult to see if q will be in factor as in the formula (3) above. However d starts
with the value q (when D = 2) and when q = 5 it increases apparently of 1
almost each time that a, v or r increases by 1, unlike what we have on F2 where
a, v, and r generally have to be increased by 3.

So, we will assume that when q ≥ 5, we have: d ≥ q − 2 + r + a+ v, (as long as
this value is ≤ the degree of regularity that we have with random equations).

Remark 6. When q ≥ n we have noticed that d = n+ 1. However, in our param-
eters we will always have q < n.

6.3 Key recovery attacks

Let m be the number of public equations, let a be the number of equations
removed, let v be the number of external vinegar variables, let r = dlogq(D)e+
(a+ v), and let n = m+ a.
Attacking a HFEv− instance with parameters (m,D, r, a, v) reduces to solving a
MinRank instance of the following form: one wants to find a linear combination
with coefficients in Fqn of K := m square matrices of size n (with entries in Fq)
with a small rank r or less. This reduction correspond to the key recovery attack
described in [31].
With the recent progresses made for solving the MinRank problem in [2], this
key recovery attack is currently the most threatening attack against HFEv−;
previously it was the attack in [16]. [2] uses a clever algebraic modeling of the
MinRank problem in order to solve it by direct linearization instead of using
generic Gröbner basis algorithms such as F4 or XL.
For the MinRank parameters mentioned above, this attack requires

O

(
K(r + 1)

((
n

r

)(
K + b− 1

b

))2
)

(4)
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operations in Fqn as long as there exists an integer b in {1, . . . , r + 2} which
fulfills the following condition (5) and such that b < q.(

n

r

)(
K + b− 1

b

)
− 1 ≤

b∑
i=1

(−1)i+1

(
n

r + i

)(
l + i− 1

i

)(
K + b− i− 1

b− i

)
. (5)

In the previous complexity formula, l := n is the number of rows of the matrices;
in order to get the smallest complexity, one can delete a few columns to get a
new instance with n′ columns as mentioned in [2]. Thus, one replaces n by n′ in
(4) and (5), but l := n has to remain the same. One should be careful that this
optimization works if and only if the new MinRank instance still has a single
solution. Thus, the complexity of the attack is the minimum value obtained from
(4) for a valid choice of b and n′.

7 HFEv− parameters in degree 2

In this section we will select parameters when our trapdoor function is a HFEv−
scheme. (As everywhere in this paper, we want the shortest signatures com-
putable and verifiable in at most about 1 minute on a PC).

7.1 Choice of the degree D of the HFE polynomial

We must have at least 2 monomials, due to many powerful cryptanalytic results
on one monomial (even with perturbations): see [9]. So we will always have at
least the two monomials: X2 and X1+q .

Let denote r = dlogq(D)e.

From our Magma computations (cf Appendix C), we will assume that our max-
imum value for r (in order to spend less than about 1 minute) will be about:

• if q = 2 then r = 16,
• if q = 4 then r = 9,
• if q = 5 then r =7,
• if q = 7 then r = 6,
• if q = 8 then r = 5,
• if q = 11 then r = 5,
• if q = 13 then r = 4,
• if q = 16 then r = 4,
• ifq = 17 then r = 4.

With HFEv− schemes we use only the two perturbations − (minus) and v (vine-
gar) and they cost almost nothing in signature. Therefore, with HFEv− we will
be able to choose to the maximum value for D compatible with a time of at most
about 1 minute. (However, for other most costly perturbations (such as the w
perturbation below) we will have to choose a smaller value for D).
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7.2 Choice of the v and − parameters

When D is chosen as above, we add the required (and minimum) number of v
and − parameters in order to have the direct attack and key recovery attack
from [2] with the expected security wanted.

7.3 Examples: our candidate solution

We will present only examples where the verification is limited to 1 minute. The
complexities are evaluated according to the best known cryptanalysis, i.e. this
is usually from the recent key recovery attack mentioned in section 6.

80 bit Security

q r m a v Complexity f
Signature Size
(bits)

Public Key Size
(kBits)

2 16 104 0 0 84.4 31 73 69.3

4 9 54 3 4 81.6 23 76 24.9

5 7 47 5 4 81.0 21 82 21.2

7 6 39 5 5 80.2 19 85 16.3

8 5 38 6 5 80.1 19 90 17.0

11 5 35 6 6 83.7 19 97 16.6

13 4 35 7 6 83.7 19 108 18.6

16 4 33 7 6 83.5 18 112 17.4

17 4 33 7 6 83.5 18 115 17.8

In Appendix A, we present a “Slow-Quartz” solution based on a previous Quartz
function mixed with our new slow hash mode, and with 16 independent public
keys. Its parameters are given in table 4:

Slow-Quartz 80 bit Security

q r m a v Complexity f
Signature Size
(bits)

Public Key Size
(kBits)

2 8 100 3 4 80.3 30 77 1128
Table 4. “Slow-Quartz” parameters

We see that the results given above with q = 2 are slightly better than what we
obtain with slow-Quartz. However the Quartz parameters have been studied for
many years, so it may be nice to use these conservative values. Moreover with
these parameters it is also possible to encrypt, not only to sign (with a time to
decrypt of about 0.5 s at present, cf Appendix A).
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90 bit Security

q r m a v Complexity f
Signature Size
(bits)

Public Key Size
(kBits)

2 16 124 1 1 93.2 32 94 121.1

4 9 64 5 4 90.3 24 98 42.2

5 7 55 6 6 93.7 22 105 35.5

7 6 46 7 6 92.9 21 107 27.9

8 5 43 7 7 92.6 20 111 26.0

11 5 41 7 7 92.4 20 122 26.6

13 4 39 8 7 92.2 20 126 26.1

16 4 38 8 7 92.1 19 136 26.5

17 4 38 8 7 92.1 19 139 27.1

100 bit Security

q r m a v Complexity f
Signature Size
(bits)

Public Key Size
(kBits)

2 16 144 2 2 101.8 33 115 193.8

4 9 73 6 6 102.9 26 118 65.2

5 7 63 7 7 102.3 23 126 53.6

7 6 53 8 7 101.5 22 130 42.6

8 5 50 8 8 101.3 21 135 40.4

11 5 45 8 8 100.8 21 139 35.9

13 4 44 9 8 100.7 20 152 37.5

16 4 43 9 8 100.6 20 160 38.4

17 4 43 9 8 100.6 20 164 39.2

Variants. Many variants of these schemes are possible.

For example, instead of having maximum r for 1 minute computation and using
v and a, we can choose r = 2 (i.e. minimum r, since r = 1 is broken) and
use maximum w for 1 minute computation (where w is the internal vinegar
variable) and then the same v and a as before. It is expected that the result and
the security will be similar.

Another variant consists in using k independent public keys, as explained above
with the “independent public keys” mode. Then the public key will be bigger,
but the signature will be a few bits smaller. This is what we do in the table 5
below.

Remark 7. Here in table 5, we have a = v = 0, i.e. we use a “nude” HFE
scheme (HFE with no perturbation). This may look surprising since since super-
polynomials attacks are known on nude HFE, and therefore it is generally not
recommended to use nude HFE. However here we have a very specific applica-
tion: we want a scheme with very short signature with 237 computations for the
legitimate users and 280 computations for the non-legitimate users. Therefore for
this application, a super polynomial attack (or even a polynomial attack with a
degree ≥ 2.16) might not be a problem.

24



128 bit Security

q r m a v Complexity f
Signature Size
(bits)

Public Key Size
(kBits)

2 16 198 6 5 131.2 37 173 530

4 9 100 9 9 128.3 29 178 171.4

5 7 87 11 10 131.7 26 191 145.1

7 6 72 11 11 130.8 25 194 110.1

8 5 68 12 11 130.6 24 201 104.2

11 5 59 12 11 130.0 23 205 84.7

13 4 57 12 12 129.8 22 219 85.5

16 4 56 12 12 129.8 21 236 88.6

17 4 55 12 12 129.7 21 238 86.7

192 bit Security

q r m a v Complexity f
Signature Size
(bits)

Public Key Size
(kBits)

2 16 325 13 13 193.4 44 307 2450

4 9 164 17 17 194.4 32 332 788.8

5 7 142 18 18 193.6 30 344 641.2

7 6 117 19 18 192.4 29 351 478.5

8 5 110 19 19 192.0 29 357 444.1

11 5 96 19 19 192.1 27 371 366.6

13 4 89 20 20 195.8 26 382 337.1

16 4 86 20 20 195.6 26 400 335.9

17 4 85 20 20 195.6 26 405 334.0

Remark 8. The complexity of C2 is larger than 280 if 32.32ω > 80, i.e. if ω >
2.47. This is generally considered as a very reasonable assumption. However if we
want to assume a smaller value of ω (for example in order to take into account
the fact the systems are not dense) then we can choose a = 1 and v = 0 (or
a = 0 and v = 1) instead of a = 0 and v = 0. This will add only one bit in
the signature, and the degree of regularity of C2 should became 8, instead of 7
(because it is expected that this degree is the integer part of ((r+a+v+7)/3)).
Then the complexity of C2 becomes at least 35.6ω, and this is larger than 80 as
long as ω > 2.24.

We see that in a standard PC we can have signatures of about 64 bits. Signatures
of 64 bits can clearly be transmitted orally by phone: they are 16 hexadecimal
values such as: 45A5F352CDE20240. This is smaller than Internet Box Codes
to put in a smartphone for example. Moreover, if we use Alphanumeric value
(Numbers 0 . . . 10 + Letters a . . . z and A . . . Z, i.e. 62 characters) then 64 bits
represents only 11 Alphanumeric characters such as: 4fDjK457GfD.

Parallelization. For many solutions, some parallel computations are possible.
First, it is always possible to choose a slow hash function where parallel compu-
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256 bit Security

q r m a v Complexity f
Signature Size
(bits)

Public Key Size
(kBytes)

2 16 451 21 21 257.9 51 444 6704

4 9 227 25 25 257.0 37 488 2134

5 7 196 26 26 256.8 34 509 1715

7 6 163 27 26 256.7 32 517 1309

8 5 152 27 27 256.2 30 528 1186

11 5 132 28 27 259.2 30 544 980

13 4 123 28 27 256.7 29 552 885

16 4 116 28 27 256.1 28 572 833

17 4 115 28 27 256.0 28 581 834

m r g ∆ k f C1 C2
Signature Size
(bits)

Public Key Size

86 16 18.2 -18.8 456000 29 83.6 32.32ω 57 17 GBytes

88 16 18.3 -16.7 106000 29 83.7 32.56ω 59 4.2 GBytes

92 16 18.5 -12.5 5800 30 83.9 33.02ω 62 271 MBytes

94 16 18.6 -10.4 1352 30 84.0 33.27ω 64 67.6 MBytes

96 16 18.7 -8.3 316 30 84.1 33.47ω 66 16.8 MBytes

100 16 18.9 -4.1 18 31 84.3 33.89ω 69 1.08 MBytes

104 16 18.2 0.1 1 31 84.4 34.30ω 73 69.3 kBytes

Table 5. Ultra Short signatures with expected security about 280, with q = 2, D =
32769, (i.e. r = 16) a = v = 0 (i.e. “Nude” HFE) and large public keys (i.e. multiple
public keys mode). The time to sign and verify a signature is about 1 minute (237

computations).

tations are possible. For example the slow hash function can be the XOR of k
functions SHA-3(i||x), where k is well chosen. It is not so easy to use paralleliza-
tion on the Berlekamp algorithm. However some perturbations have a natural
parallelization, such as the w (i.e. internal vinegar) parallelization.

Fast Verification. It is also possible to have a slow hash computation when
we sign a message, and a fast verification of this hash to check the signature.
For example, by including 10 bits on the signature, we can check the hash 1024
times faster. However in this paper we look for the shortest signature, so these
variants are not our main concern.

8 HFE variants with public keys of degree 3

Above we have given some Tables of values for “perfect” multivariate schemes of
degree 2 and degree 3, in order to have very short signatures. We have seen that
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the length of signature is similar in degree 2 and in degree 3. Then, in degree
2 we have designed some specific schemes based on variants of HFE. Thus, it is
natural to similarly design some specific schemes in degree 3 based on variants
on HFE. The number n of variables can be relatively small when q is not too
small, and then the length of the public key may be still reasonable. Moreover,
direct attacks on HFE variants of degree 3 are more difficult than direct attacks
on HFE variants of degree 2 (see Appendix E).

However, we will not present here some candidate parameters for HFE variants
in degree 3. This is because to attack a HFE in degree 3 we can always look
at the differentials (they are of degree 2) and then find the secret keys with
Kipnis-Shamir style attacks, i.e. MinRank attacks. (For a generalization of the
Kipnis-Shamir attack, to find the secret key in degree 3, some results are given
in [1]).

Maybe in the future some new multivariate schemes (different from HFEv−) will
have very short signature in degree 3, and will have more interesting properties
in degree 3 than in degree 2. But in this paper, we will present only candidates
with public keys of degree 2.

9 Evolution with time

In the near future, let us say in 10 or 30 years, it is expected that computers
will be more powerful than now (we consider only classic, i.e. non quantum,
computers, since quantum computers are out of the scope of this paper). It is
also expected that the capacity of the human’s brain will be very similar as now.
If a signature has to be sent, for example over the phone, to a human, will we
have to increase the length of the signature to keep the same level of security?

As seen above, when the security parameter increases, the length of the signature
must also increase. However, this was not the same problem because in 1 minute
much more computations could be done in the future.

Alternatively, we can see things like this: in this paper the legitimate user makes
about 237 computations and we have looked for expected security in 280 (i.e.
243 times more than the legitimate user), then 290 (i.e. 253 times more than the
legitimate user), then 2100 (i.e. 263 times more than the legitimate user), etc.
However in this section we imagine that the legitimate user makes more (future)
or less (past) than 237 computations, but that the expected security is a fixed
time this value, typically 243 times. What will then be the evolution of the length
of the signature ?

For example, let us assume that the legitimate user makes about 227 computa-
tions (instead of 237) and that we look for a security in 270 (instead of 280).
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Then typical parameters are : q = 2, r = 6 (i.e. a degree D = 129 of HFE for
computations in about 60 ms), n = 95 (in order to have ∆ ≈ 0), f = 20 (in
order to check the signature in about 60 ms). Then the signature will be about
95 − 20 = 75 bits, i.e. about the same as in this paper with 1024 times more
computations for the legitimate user and the attacks.

(Our Magma simulation shows that to solve a system of 95 quadratic equations
in 20 variables over F2 we need about 85 ms, and the expected security of the
parameters given here is about 270).

A more precise analysis would be required here, but as a first evaluation we can
consider that the length of our signatures seems to evoluate very slowly when
the computing power of the legitimate user evoluates proportionally with the
power of the attacks.

10 Conclusions

At present the shortest public key signatures are obtained with multivariate sig-
nature schemes such as Quartz, or GeMMS, with signature size typically between
128 and 256 bits, and time to sign and verify the signature in milliseconds.

In this paper we have studied how to design even shorter signatures when we
accept a time to sign and verify the signature of about 1 minute (i.e. about 237

computations).

For example, in expected security 280 we have designed a signature schemes with
about 64 bits. Interestingly, there are many designs, variants, and parameters to
achieve this.

In order to avoid problems from the birthday paradox, we have also designed
some specific new modes of operations.

These signature lengths are much shorter than with other public key signatures
schemes. This was also obtained thanks mainly to the following ideas and trade-
offs:

• We find some missing bits of the signature much faster than by exhausting
search by using Hybrid Gröbner bases algorithms.
• We use very slow hash functions.
• Sometimes we use many independent public keys.

In the future, with future progress in cryptanalysis, it is likely that more efficient
attacks will be found, and therefore that we will have to add some bits in the
signature in order to keep the same security parameter. As long as the best
known attacks are still exponential in the − and v perturbations, only a few
more bits should be enough. Some of the schemes that we have presented here
have a security that rely on problems studied for more than 20 years (for example
our “Slow Quartz” signatures).
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Appendices

A “Slow-Quartz” signatures (77 bits signatures)

Quartz is a HFEv− signature scheme introduced in [26] in 2001. It generates
signatures of 128 bits. The base field is F2, with n = 103, D = 129, a = 3
equations removed, and v = 4 external vinegar variables.

Quartz was designed in 2001 in order to have an expected security in 280. It
seems that at present the best known cryptanalysis still have a complexity of
about 280 (see [16]).

More precisely, if we evaluate the direct Gröbner attack with our formula above
we find r = 8 (since D = 129) and dreg = 7. Therefore the complexity of this

attack is about
(
110
7

)ω
. This gives 282.7 with ω = 2.37 (and 269.8 with ω = 2,

however ω = 2.37 is probably more realistic). The complexity to find the secret
key is much higher because the MinRank step can be evaluated to be about 263.ω

.

At present (2020), with Magma, the time to compute the roots of a polynomial
of degree 129 on F2103 is 0, 095 s. With the improved software of the GeMMS
team this time is 23 times smaller: 4.1 ms (cf Appendix C).

Quartz for encryption

Quartz was designed as a signature scheme. However, this time of 4.1 ms is so
small that we can imagine to use the scheme as an encryption scheme. Then, the
time to decrypt will be 27 × 0, 095 s = 12.1 s with Magma and about 0.5 s with
the improved software. Nevertheless, in this paper we are mainly interested in
short signature, so let go back on signature usage.

Quartz for signatures

Quartz use a mode of operation called “Feistel-Patarin” (cf [12]) in order to
be able to sign messages of any length. For this, will have to perform the root
finding at least 4 times, and more precisely in average about 6 times because the
probability to have at least one root is about 63% (i.e. 1- 1/e).
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Remark 9. Sometimes the value Y = SlowHash(M) that we want to sign has
no solution, and we must try again. The probability of this to occur is about
1/e, i.e. about 36, 79%. Then we can compute Y = SlowHash(U ||M) where U
takes the value 0, then 1, 2 etc. until we find a solution. We can include U in
the signature in order to accelerate the verification of the signature (this is what
is done in Quartz and GeMMS) but since we want the ultra-short signatures in
this paper, we will prefer to keep U , so the various values of U will be tested
when we check the signature.

In this section we will modify the scheme by using our “Slow hash” mode instead
of the Feistel-Patarin mode. will keep all the parameters of Quartz except that
we will use another mode of operation that we will call “Slow mode”. The time
to sign will then be much bigger, but the length of the signature will be shorter.
(We will also have to perform the root finding 4 times less, but this point is not
essential).

As seen above, the “Slow mode” of operations use two ideas:

1. We will use a slow Hash function in order to avoid the birthday paradox(i.e.
the complexity to find collisions) on the hash values.

2. We will not give all the bits that are usually the HFEv− signature. The miss-
ing bits will be found by using the public keys and Gröbner bases algorithms
(or a hybrid mix of Gröbner bases algorithms and exhaustive search).

We have performed some computer tests by using the free access Magma calcu-
lator (Magma V2.25-4). This free Magma is limited to 2 minutes of computation
and 300 M Bytes of RAM but this is not a problem for us since it models the
computer that will generate the signature and the computer that will check the
signature. With Magma it is easy to compute polynomials on finite fields, and
the F4 Gröbner algorithm of Jean-Charles Faugère is included.

Here are the time given by Magma to solve a system of n = 100 quadratic
equations over F2 with f variables:

f = 15 variables: 8,13 ms
f = 16 variables: 10,6 ms
f = 17 variables: 16,5 ms
f = 18 variables: 26,8 ms
f = 19 variables: 45 ms
f = 20 variables: 75,0 ms
f = 21 variables: 0,125 s
f = 22 variables: 0,198 s
f = 23 variables: 0,32 s
f = 24 variables: 0,89 s (or 0,64 s from f = 23)
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f = 25 variables: 1,7 s (or 1,28 s from f = 23)
f = 26 variables: 3,36 s (or 2,56 s from f = 23)
f = 27 variables: 6,53 s (or 5,12 s from f = 23)
f = 28 variables: 12,6 s (or 10,2 s from f = 23)
f = 29 variables: 23,9 s (or 20,4 s from f = 23)
f = 30 variables: 40,9 s

(To compute these 30 variables the best way is maybe here to do exhaustive
search on 7 variables and to use the fact that we need only 0,32 s to find the
remaining 23 variables. We will use like this less memory for about the same
time).

We see that if we accept a time of 41 s to check the signature, then we can have
a signature of about 103 (value of n) + 4 (external vinegar) – 30 = 77 bits.
(Instead of 128 bits for the initial Quartz signature).

However in order to be able to sign messages of any length we must now see if
the results of the “Slow Hash mode” are acceptable.

Here we have:

g = log2(100.100.101/2) = 18.94, ∆ = m log2(q) + g − 123 = −4.06

So with our “Slow mode” we will need to use a hash of 24.06 minutes i.e. about
16 minutes. Or, we use a hash of 1 minute and 16 independent public keys. Or
we use a hash of 4 minutes and 4 independent public keys.

We can summarize our results for “Slow-Quartz” and compare it with Quartz
by this table of values (we present here the solution with 16 independent public
keys):

Quartz (f = 0, Feistel-Patarin mode)
Length of the public key: 70.5 kBytes
Time to sign: 6× 4.1 ms = 24.6 ms in average.
Time to check the signature: less than 1 ms
Signature length: 128 bits
Expected security: 280 (with ω = 2.37)

Slow-Quartz (f = 30, Slow Hash and Memory tradeoff mode)
Length of the public key: 16× 70.5 kBytes = 1.1 MBytes
Time to sign: 1.5× 4.1 ms + 1 minute of slow hash.
Time to check the signature: 41 s + 1 minute of slow hash.
Signature length: 77 bits
Expected security: 280 (with ω = 2.37)

Signatures of 77 bits is not too far from the best signatures schemes of this
paper. However, in this paper we design schemes with even smaller signatures.
Moreover we designed smaller signature with expected security 280 even if we
assume ω = 2, and sometimes with smaller public keys.
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B “Slow-GeMMS-128” signatures

GeMMS-128 (cf [11]) is a signature scheme candidate to the Post-Quantum
NIST competition, with an expected security in 2128 on classical (non-quantum)
computers based on HFEv−. Its parameters are: q = 2, n = 174, m = 162,
a = 12, v = 12, D = 513 (so r = 10). It uses 4 rounds of the Feistel-Patarin
mode of operation. The length of the signature is 258 bits. The length of the
public key is 352 KBytes.

Let us see here what we obtain if we use our new “Slow Hash and Multiple public
keys” mode of operation instead of the Feistel-Patarin mode, with exactly the
same HFEv− parameters.

Here ∆ = m− 219 + log2(m3/2) = 162− 219 + 21 = −36. This value of ∆ is so
negative that it gives unrealistic size for the public key: about 22 528 Terabyte,
with computations of about 1 minute, and signature size of 152 bits (with f = 34
variables to find from the 162 quadratic equations). Some tradeoffs exist in order
to reduce this huge public key, for example by spending more time, or by using
more than one computer in a given time (parallelisation), but here it seem to
be more reasonable to increases the number m of equations in order to have a
smaller ∆: the parameters of GeMMS-128 are well adapted to the Feistel-Patarin
mode but not well adapted to our new mode of operation.

For example, as we have seen in this paper, with q = 2, m = 198, a+ v = 11, we
have a signature of 173 bits with an expected security in 2131. Here the length
of the signature, 173 bits, is larger than what we would have with Slow-GeMMS
(152 bits with a huge public key) but significatively smaller than what we have
with the classical GeMMS (258 bits).

C Berlekamp algorithm, and roots finding with Magma

Berlekamp algorithm. The Berlekamp algorithm is generally what we use
to find the roots of a polynomial of degree D in Fqn for typical cryptographic
values. There are two parts in this algorithm: the computation of the Frobenius
application, and the computation of a GCD. For the Frobenius the complexity
(when D is larger than n) is in O(nD log2(D)). For the GCD the complexity
is in O(nD2). (Asymptotically the complexity is about in O(nD) but from a
practical point of view the asymptotic algorithms are not expected to be useful
for our parameters).

Here are in the tables below, the times taken by Magma to find the roots of a
polynomial of degree D on Fqn .

Remark 10. In Table 6, D = 129 (Quartz parameter) gives 95 ms. If we use the
improved software of the GeMMS team the time here becomes 4.1 ms (i.e. 23
times faster than Magma) or 11,2 MegaCycles.
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q=2, n=103

D 5 9 17 33 65 129 257 513

Time (ms) 1.13 2.06 5.05 13.3 40.8 95 260 430

D 1025 2049 4097 8193 16385 32769

Time (s) 1.1 4.4 9.8 21.0 45.5 98.3
Table 6. Time to compute roots of a polynomial of degree D, q = 2, n = 103.

q=4, n=47

D 17 65 257 1025

Time (ms) 4.29 31.2 140 650

D 4097 16385 65537

Time (s) 2.17 13.4 80.6
Table 7. Time to compute roots of a polynomial of degree D, q = 4, n = 47.

q=5, n=43

D 6 26 126

Time (ms) 20.2 76 840

D 626 3126 15626

Time (s) 4.5 17.4 117
Table 8. Time to compute roots of a polynomial of degree D, q = 5, n = 43.

q=7, n=40

D 8 50 344

Time (ms) 9.35 105 1630

D 2402 16808

Time (s) 10.2 110
Table 9. Time to compute roots of a polynomial of degree D, q = 7, n = 40.

q=11, n=35

D 12 122 1332 14642

Time 15 ms 360 ms 11.7 s 86.9 s
Table 10. Time to compute roots of a polynomial of degree D, q = 11, n = 35.

q=13, n=35

D 14 170 2198

Time 23 ms 540 ms 11.4 s
Table 11. Time to compute roots of a polynomial of degree D, q = 13, n = 35.

q=17, n=33

D 18 290 4914

Time 55 ms 1680 ms 29.2 s
Table 12. Time to compute roots of a polynomial of degree D, q = 17, n = 33.
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D Our Magma simulation on the direct attack on
HFEv− with public equations of degree 2

We work on Fq. m is the number of quadratic equations. v is the number of
vinegar variables (so we have m+ a+ v variables). a is the number of removed
equations (initially we had m+ a equations and now m).

For a random system of quadratic equations (random, not HFE), the degree of
regularity, that we denote dregmax is like this:

• If n < q then dregmax = n + 1
• If n ≥ q then we estimate that dregmax = q+ 1 + (n− q− 1).α with α ≈ 0.19

for q = 3, α ≈ 0.2 for q = 5, α ≈ 0.33 for q = 7, α ≈ 0.40 for q = 13,
α ≈ 0.41 for q = 17.

For HFEv− systems we have obtain these results with Magma:

q = 3, m = 17, D = 4 (so here r = 2, and we have 2 monomials X2 and X4).
Here the degree of regularity is dregmax = 7.

v = 0 and a = 0 : dreg = 4
v = 0 and a = 1 : dreg = 4
v = 0 and a = 2 : dreg = 5
v = 0 and a = 3 : dreg = 6
v = 1 and a = 0 : dreg = 4
v = 2 and a = 0 : dreg = 5
v = 3 and a = 0 : dreg = 6

q = 3, m = 16, a = v = 0 (nude HFE)

r = 3 : dreg = 4
r = 4 : dreg = 5
r = 5 : dreg = 6 (Max)

q = 4, m = 14, a = v = 0 (nude HFE)

r = 3 : dreg = 6
r = 4 : dreg = 6
r = 5 : dreg = 7 (Max)

q = 5, m = 13, D = 6 (we have here 2 monomials X2 and X6). Here the degree
of regularity is dregmax = 8.

v = 0 and a = 0 : dreg = 6
v = 0 and a = 1 : dreg = 7
v = 0 and a = 2 : dreg = 8 (Max)
v = 1 and a = 0 : dreg = 7
v = 2 and a = 0 : dreg = 8 (Max)
v = 1 and a = 1 : dreg = 8 (Max)
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E Some Magma simulation on the direct attack on
HFEv− with public equations of degree 3

q = 3, m = 11, a = v = 0 (nude HFE with public equations of degree 3)

r = 2 : dreg = 4
r = 3 : dreg = 5
r = 4 : dreg = 6
r = 5 : dreg = 7 (Max)

q = 4, m = 10, a = v = 0 (nude HFE with public equations of degree 3)

r = 2 : dreg = 5
r = 3 : dreg = 6
r = 4 : dreg = 8
r = 5 : dreg = 8
r = 6 : dreg = 9 (Max)
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