
Local XOR Unification: Definitions, Algorithms and

Application to Cryptography

Hai Lin1 and Christopher Lynch2

1 Clarkson University, Potsdam, NY, U.S.A.
hlin@clarkson.edu

2 Clarkson University, Potsdam, NY, U.S.A.
clynch@clarkson.edu

Abstract

Unification techniques have been proven to be useful for formal analysis of crypto-
graphic systems. In this paper, we introduce a new unification problem called local XOR
unification, motivated by formal analysis of security of modes of operation. The goal in
local XOR unification is to find a substitution making two terms equivalent modulo the
theory of exclusive-or, but each variable is only allowed to be mapped to a term from a
given set of terms. We present two versions of the local XOR unification problem, and give
algorithms to solve them, proving soundness, completeness and termination.

1 Introduction

In logic, unification is an algorithmic process of solving equations between symbolic expressions.
The basic form of unification is syntactic unification, where both sides of each equation must
be made exactly the same under some substitution. In equational unification, both sides of
each equation can be the same under some substitution, modulo some background equational
theory.

Equational unification has a number of successful applications in cryptography protocol
verification [1, 2, 3]. This work is motivated by symbolic reasoning of cryptographic modes of
operation, and it is closely related to [7]. The idea in [7] is that a block of message can be
modelled symbolically as a term. In order to break a mode of operation, an adversary needs
to solve some unification problem. The unification problem is unification modulo the theory
of exclusive-xor, together with some free function symbols. Another feature of the unification
problem is that each variable is only allowed to be mapped to a term from a given set of terms.
Intuitively, the set of terms associated with a variable (modelling some plain-text block) include
everything that an adversary is able to compute when generating that plain-text block. We
call this kind of unification problem local XOR unification. We present two concrete versions
of the local XOR unification problem. They are called f -rooted local unification, and ⊕-rooted
local unification. They can be used to analyze different cryptographic modes of operation. For
f -rooted local unification, this paper gives a unification algorithm, which can find a subset of all
unifiers, called minimum unifiers. For ⊕-rooted local unification, this paper gives a unification
algorithm, which can find all unifiers. We prove the soundness completeness and termination
of both of those algorithms.

The rest of this paper is organized as follows. In Section 2, we discuss some background
that will be used in this paper. In Section 3, we introduce two concrete versions of the local
XOR unification problem and discuss how they are related to security of modes of operation.
In Section 4 and Section 5, we describe how we solve these unification problems. We conclude
in Section 6.



2 Preliminaries

A term can be built up from constants (0, r1, r2, . . .), variables, Boolean values ⊕, ×, two unary
function symbols f and h. We distinguish between two types of variables: term variables and
Boolean variables. A term variable (x, x1, x2, . . .) can be instantiated by a term. A Boolean
variable (b, b1, b2, . . .) can only be instantiated by a Boolean value (0, 1). If a term t does not
contain any variable, t is a ground term. If t does not contain any Boolean variables or Boolean
values, we call it a pure term. Otherwise, we call it a mixed term. To be more precise, we can
build up terms in the following way.

term := constant | variable | f(term) | h(term) | term⊕ term | bool × term
variable := term variable | Boolean variable
bool := Boolean variable | 0 | 1
We assume that all terms are simplified by applying the following rules in R modulo

AC(Associativity and Commutativity).

R = {t⊕ t→ 0, t⊕ 0→ t, 1× t→ t, 0× t→ 0}

We use a mixed term to represent a set of terms. For example, suppose that mt = b1 × r⊕
b2 × f(r), then mt represents a set of terms T = {0, r, f(r), r ⊕ f(r)}. The idea is that under
all possible Boolean values for b1 and b2, mt is one of the terms in T after simplification. We
will use this idea in Section 5.

A term t is an f -rooted term if t is of the form f(t′). Similarly, a ×-rooted term is of the
form co × t, where co is either a Boolean variable or a Boolean value, and t is a term. We
call co the coefficient of co × t. An ⊕-rooted term t is of the form t1 ⊕ t2 ⊕ . . . ⊕ tn, where
t1, . . . , tn are called summands of t. Let T = {t1, t2, . . . , tn} be a set of terms, we use ⊕T to
denote t1 ⊕ t2 ⊕ . . .⊕ tn.

A substitution is a set of bindings for variables. If a substitution σ is of the form {x1 7→
t1, x2 7→ t2, . . . , xn 7→ tn}. We can write it as σ = {x1 7→ t1}∪Γ, where Γ = {x2 7→ t2, . . . , xn 7→
tn}. A term substitution maps term variables to terms. A Boolean substitution maps Boolean
variables to Boolean values. We use domain(σ) to denote the domain of a substitution σ.
In this paper, we do not consider any substitutions σ, where domain(σ) contains both term
variables and Boolean variables. For simplicity, from now on, variables mean term variables,
and substitutions mean term substitutions.

We can apply a substitution σ to a term t in the straightforward way. If x ∈ domain(σ), then
replace each occurrence of x in t by xσ. Similarly, if we apply a Boolean substitution τ to a term
t, we replace each occurrence of a Boolean variable b in t by bτ . Let T = {t1, t2, . . . , tn} be a set
of terms, σ be a substitution, then Tσ = {t1σ, t2σ, . . . , tnσ}. Similarly, Tτ = {t1τ, t2τ, . . . , tnτ},
where τ is a Boolean substitution.

We use σ1σ2 to denote the composition of two substitutions σ1 and σ2. We call σ1σ2 an
instance of σ1. For any term t, t(σ1σ2) = (tσ1)σ2. We use σ ◦ τ to denote the composition of a
substitution σ = {x1 7→ t1, x2 7→ t2, . . . , xn 7→ tn} and a Boolean substitution τ . σ ◦ τ = {x1 7→
t1τ, x2 7→ t2τ, . . . , xn 7→ tnτ}. So for any term t, t(σ ◦ τ) = (tσ)τ . We use τ1 ∪· τ2 to denote the
consistent union of two Boolean substitutions τ1 and τ2. This operation is undefined if there
exists a Boolean variable b s.t. b ∈ domain(τ1) ∩ domain(τ2) and bτ1 6= bτ2. Otherwise,

b(τ1 ∪· τ2) =

{
bτ1 x ∈ domain(τ1)

bτ2 otherwise

2



Note that if domain(τ1) ∩ domain(τ2) = ∅, then τ1 ∪· τ2 is exactly τ1 ∪ τ2.
We use t1 =⊕ t2 to denote that t1 and t2 are the same after simplification using the rules

in R. Let eq be an equation of the form t1
?
= t2, where t1 and t2 are pure terms. σ is a unifier

of eq if t1σ =⊕ t2σ. Let eqs be a set of equations on pure terms, σ is a unifier of eqs if σ is a
unifier of all the equations in eqs. The following definition defines a complete set of unifiers of
a set of equations. [6] shows how complete set of unifiers can be computed.

Definition 2.1. We use CSU⊕(eqs) to denote the complete set of unifiers of eqs. CSU⊕(eqs)
is a set of substitutions s.t.

• If σ ∈ CSU⊕(eqs), then σ is a unifier of eqs.

• If τ is a unifier of eqs if there exist σ ∈ CSU⊕(eqs) s.t. τ = σσ′ for some σ′.

A position p is a sequence of positive integers. len(p) denotes the number of positive integers
in p, λ denotes the empty sequence. Let p1 and p2 be two positions, p1 is a prefix of p2 if p2
is of the form p1.i1.i2...in, where ij is a positive integer (1 ≤ j ≤ n). p1 is an immediate
prefix of p2 if p2 is of the form p1.i, where i is a positive integer. Let t be a term, and p be
a position, we use t|p to denote the subterm of t at position p. For any term t, t|λ = t. If g
is a function symbol of arity n, then g(t1, t2, . . . , tn)|i,i1,i2,...,im = ti|i1,i2,...,im . We use t[s]|p to
denote the term obtained by replacing in t the subterm at position p by term s. For example,
r1 ⊕ f(r2)|2.1 = r2, r1 ⊕ f(r2)[x1]|2.1 = r1 ⊕ f(x1).

If t is a term, p is a position, σ is a substitution, then (t|p)σ = (tσ)|p.

3 Local XOR Unification

The goal in local XOR unification is to find a substitution making two terms equivalent modulo
the theory of exclusive-or, but each variable is only allowed to be mapped to a term from a
given set of terms. In Section 3.1 and 3.2, we introduce two concrete versions of local XOR
unification. In Section 3.3, we discuss how they are related to cryptography.

3.1 f-rooted Local Unification

Definition 3.1 defines f -mappings, which map variables to sets of terms. Definition 3.2 defines
a relation ≺Mf

. Definition 3.3 defines a concrete version of the local XOR unification called
f -rooted local unification, since the goal is to unify two f -rooted terms.

Definition 3.1. Let M be a mapping from variables to sets of pure terms. M is an f -mapping
if

• For each variable x ∈ domain(M), 0 ∈M(x).

• For each variable x, if t ∈M(x), then t is either a constant or an f -rooted term.

Definition 3.2. Let M be an f -mapping.

• If t ∈M(x), then t ≺Mf
x.

• If t ≺Mf
x, then h(t) ≺Mf

x.

• If t1 ≺Mf
x, t2 ≺Mf

x, . . ., tn ≺Mf
x , then t1 ⊕ t2 ⊕ . . .⊕ tn ≺Mf

x.

3



t ⊀Mf
x if t ≺Mf

x does not hold.
σ is an admissible Mf -substitution if, for each variable x ∈ domain(σ), xσ =⊕ tσ, for some

t ≺Mf
x.

Definition 3.3. Let M be an f -mapping. t1 and t2 are two f -rooted pure terms. t1 and t2
are Mf -unifiable if and only if there exists some substitution σ such that

• σ is an admissible Mf -substitution.

• t1σ =⊕ t2σ.

σ is called a Mf -unifier of t1 and t2. The problem of checking if t1 and t2 are Mf -unifiable is
called f -rooted local unification.

Appendix A provides a function Mf -admissible for checking if some substitution is an
admissible Mf -substitution.

3.2 ⊕-rooted Local Unification

Definition 3.4 defines ⊕-mappings, which map variables to sets of terms. Definition 3.5 defines
a relation ≺M⊕ . Definition 3.6 defines a concrete version of the local XOR unification called
⊕-rooted local unification, since the goal is to unify some ⊕-rooted term with 0.

Definition 3.4. Let M be a mapping from variables to sets of pure terms. M is an ⊕-mapping
if

• For each variable xi, 0 ∈M(xi).

• For each variable xi, if t ∈M(xi), then h does not occur in t, and t does not contain any
variable xj , where j ≥ i.

• If i < j, then M(xi) ⊆M(xj).

Definition 3.5. Let M be an ⊕-mapping.

• If t ∈M(x), then t ≺M⊕ x.

• If t1 ≺M⊕ x, t2 ≺M⊕ x, . . ., tn ≺M⊕ x , then t1 ⊕ t2 ⊕ . . .⊕ tn ≺M⊕ x.

t ⊀M⊕ x if t ≺M⊕ x does not hold.
σ is an admissible M⊕-substitution if, for each variable x in the domain of σ, xσ =⊕ tσ, for

some t ≺M⊕ x.

Definition 3.6. Let M be an ⊕-mapping. T = {t1, t2, . . . , tn}, where h does not occur in T .
A subset T ′ of T is M⊕-unifiable with 0 if and only if there exists some substitution σ such
that

• σ is an admissible M⊕-substitution.

• T ′σ = 0.

σ is called an M⊕-unifier of T ′. The problem of checking if some subset T ′ of T is M⊕-unifiable
with 0 is called ⊕-rooted local unification.

4



3.3 Application to Cryptography

Both unification problems are related to security of modes of operation. The idea in [7] is that
a block of message can be modelled symbolically as a term. Variables model plain-text blocks.
Non-zero constants model a block of random bits. “0” models a block of message consisting of
all 0’s. f models a block cipher, h models a publicly computable cryptographic hash function.

We consider a setting where an adversary interacts with an encryption oracle. The adver-
sary sends plain-text blocks to the encryption oracle, and the encryption oracle responds by
encrypting plain-text blocks using a mode of operation. A mode of operation is IND$-CPA
secure if an adversary has negligible advantage to distinguish between a sequence of blocks
returned by the mode of operation and a sequence of randomly generated blocks. We consider
multiple schedules for modes of operation. In a block-wise schedule (as discussed in [4]), an en-
crypted block is sent to the adversary immediate after it is generated by the encryption oracle.
In a message-wise schedule, all the encrypted blocks are sent to the adversary after the entire
message is encrypted.

In [7], a symbolic history refers to the messages exchanged during a process in which an
adversary interacts with the encryption oracle to encrypt a message. In order to model the
symbolic history of a mode of operation, we use a sequence of MOO-tuples (Mode-of-Operation
tuples) of the form (SP , t, SC), where SP is a set of plain-text blocks needed to encrypt the
current plain-text block, t is a term that represents the encryption of the current block, SC is a
set of cipher-text blocks that are sent to the adversary after encrypting the current plain-text
block. Here are two examples:

Example 3.1. Block-wise Cipher Block Chaining for 3 cipher-text blocks:
(∅, r, {r}),
({x1}, f(r ⊕ x1), {f(r ⊕ x1)}),
({x2}, f(f(r ⊕ x1)⊕ x2), {f(f(r ⊕ x1)⊕ x2)})

Let M(x) be the set of terms containing 0 and all cipher-text blocks that are sent to an
adversary before the adversary generates x. Intuitively t ∈M(x) means that t is immediately
available to the adversary. t ≺Mf

x means that the adversary can compute t when generating
x, using terms in M(x) and some functions that the adversary can compute (e.g. ⊕ and h).
So in Example 3.1, M(x1) = {0, r}, M(x2) = {0, r, f(r ⊕ x1)}. Then f(f(r ⊕ x1) ⊕ x2) and
f(r⊕x1) are Mf -unifiable under the substitution {x1 7→ r, x2 7→ f(0)}. Thus, block-wise Cipher
Block Chaining is not IND$-CPA secure. The idea is that if the adversary can generate some
cipher-text blocks s.t. two of them are the same, then the adversary can distinguish between
a sequence of cipher-text blocks returned by the encryption oracle and a sequence of randomly
generated blocks.

In general, let M be a mode of operation, in which the encryption oracle only returns
constants and f -rooted terms (e.g. Cipher Block Chaining, Propagating Cipher Block Chaining,
Accumulated Block Cipher [5]). In [7], the author shows that M is IND$-CPA secure if and
only if no symbolic history of M contains two terms returned by the encryption oracle that are
Mf -unifiable.

Example 3.2. Message-wise Output Feedback Mode for 3 cipher-text blocks:
(∅, r, ∅),
({x1}, f(r)⊕ x1, ∅),
({x2}, f(f(r))⊕ x2, {r, f(r)⊕ x1, f(f(r))⊕ x2})

Again, let M(x) be the set of terms containing 0 and all cipher-text blocks that are sent to
an adversary before the adversary generates x. So in Example 3.2, M(x1) = {0},M(x2) = {0}.

5



No subset of {r, f(r)⊕ x1, f(f(r))⊕ x2} is M⊕-unifiable with 0.
In general, let M be a mode of operation, where no cryptographic hash function is used

(e.g. Cipher Feedback Mode, Output Feedback Mode). In [7], the author shows that M is
IND$-CPA secure if and only if no symbolic history of M contains any terms returned by the
encryption oracle that are M⊕-unifiable with 0.

4 Solving f-rooted Local Unification

In this section, we present an algorithm for solving f -rooted local unification. Given an f -
mapping M and two pure f -rooted terms t1 and t2, the goal is to check if t1 and t2 are
Mf -unifiable. By Definition 3.3 and 2.1, any Mf -unifier of t1 and t2 must be an instance

of some τ ∈ CSU⊕(t1
?
= t2). Therefore, we nondeterministically start from a substitution

τ ∈ CSU⊕(t1
?
= t2). We keep composing τ with some substitution σ until we get a Mf -unifier

of t1 and t2. In this section, we only consider pure terms.
First we introduce the following notion of an open position.

Definition 4.1. An open position is of the form (t, p) where t is a term, p is a position, and
for all prefix p′ of p, t|p′ is not an f -rooted term. (t, p) is an innermost open position if (t, p) is
an open position, and t|p is a constant, a variable or an f -rooted term.

An innermost open position (t, p) is extended from an open position (t, p′) if p′ is a prefix
of p.

Example 4.1. Let t = f(r1)⊕ h(r2).
(1) (t, 1.1) is not an open position, since t|1 is an f -rooted term.
(2) (t, 2) is an open position.
(3) (t, 2.1) is an innermost open position.
(4) (t, 2.1) is extended from (t, 2).

Definition 4.2. Let M be an f -mapping, τ be a substitution. (xτ, p) is a bad open position in
τ if for all t′ ≺Mf

x, xτ |p 6=⊕ t′τ .
(xτ, p) is a bad innermost open position in τ if (xτ, p) is both an innermost open position

and a bad open position in τ .

The following Algorithm 1 can be used to check if (xτ, p) is a bad open position in τ . The
function computable is from Algorithm 7 in Appendix A.

Algorithm 1 Check if (xτ, p) is a bad open position in τ

1: function bad-open-position(x, τ, p,M)
2: return not computable-by-adversary(xτ |p, τ,M, x)
3: end function

The following lemma states that if θ is a Mf -unifier, then there is no bad open position in
θ.

Lemma 4.1. Let M be an f -mapping, and let t1 and t2 be two f -rooted terms. If θ is a
Mf -unifier of t1 and t2, then for any open position (xθ, p), xθ |p =⊕ tθ, for some t ≺Mf

x.

Proof. Induction on the length of p. If p = λ, xθ|p =⊕ xθ, this is trivial by Definition 3.2.
Suppose that p′ = i1.i2...in−1, and xθ |p′ =⊕ tθ, for some t ≺Mf

x. We consider two cases:

6



(1) Suppose that t = h(t′), where t′ ≺Mf
x. Let p be i1.i2...in−1, 1. Then xθ |p =⊕ t

′θ.
(2) Suppose that t = t1 ⊕ t2 ⊕ . . . tm, where where ti ≺Mf

x (1 ≤ i ≤ m). Let p be
i1.i2...in−1, i (1 ≤ i ≤ m), xθ |p = tiθ.

We use Example 4.2 as a running example to explain the ideas behind the inference rules.

Example 4.2. Suppose that we have the following mapping M. We want to check if f(x2)
and f(h(x3)⊕ f(0)⊕ f(x4)⊕ f(f(r1 ⊕ r2))) are Mf -unifiable.

M(x1) = {0, r1}
M(x2) = {0, r1, f(x1 ⊕ r1)}
M(x3) = {0, r1, f(x1 ⊕ r1), f(x2)}
M(x4) = {0, r1, f(x1 ⊕ r1), f(x2), f(r1 ⊕ r2))}

CSU⊕({f(x2)
?
= f(h(x3) ⊕ f(0) ⊕ f(x4) ⊕ f(f(r1 ⊕ r2)))}) = {τ}, where τ = {x2 7→

h(x3)⊕ f(0)⊕ f(x4)⊕ f(f(r1 ⊕ r2))}.
We have the following bad open positions in τ .
(x2τ, λ): x2τ |λ = h(x3)⊕ f(0)⊕ f(x4)⊕ f(f(r1 ⊕ r2))
(x2τ, 1): x2τ |1 = h(x3)
(x2τ, 1.1): x2τ |1.1 = x3
(x2τ, 2): x2τ |2 = f(0)
(x2τ, 3): x2τ |3 = f(x4)
(x2τ, 4): x2τ |4 = f(f(r1 ⊕ r2))

By Lemma 4.1, if τ is a Mf -unifier. Then there must not be any bad open position in τ .
The inference rules in Rfix allow us to somehow deal with the bad open positions.

Rfix

{x 7→ t} ∪ τ
({x 7→ t} ∪ τ)σ

Prev

, where (1) x ∈ domain(M). (2) σ ∈ CSU⊕(t|p
?
= t′τ), where t′ ∈M(x), and (t, p) is a

bad innermost open position in {x 7→ t} ∪ τ .
We use Prev(τ, σ) to indicate the result of applying the Prev rule, where σ is used to
instantiate τ . So Prev(τ, σ) = τσ.

{x 7→ t} ∪ τ
({x 7→ t} ∪ τ)σ

Cancel

, where (1) x ∈ domain(M). (2) σ ∈ CSU⊕(t|p1 ⊕ t|p2 ⊕ . . . ⊕ t|pn
?
= 0), where ∀i ∈

{1, 2, . . . , n}, (t, pi) are open positions that share a common immediate prefix p, and
t|p is an ⊕-rooted term. (3) ∃i ∈ {1, 2, . . . , n} s.t. (t, pi) is a bad open position in
{x 7→ t} ∪ τ .

Note that we need condition (1) in both inference rules in Rfix, since procedures for solving
unification modulo exclusive-xor may generate new variables. We do not apply the Prev rule or

7



Cancel rule for new variables, generated by procedures for solving unification modulo exclusive-
xor. We use Cancel(τ, σ) to indicate the result of applying the Cancel rule, where σ is used to
instantiate τ . So Cancel(τ, σ) = τσ.

The function f-rooted-unify(M, t1, t2) in Algorithm 2 checks if two terms t1 and t2 are
Mf -unifiable. We prove properties (soundness, completeness, termination) in Appendix B.
Example 4.3 shows the details of how we use f-rooted-unify to solve the unification problem
in Example 4.2. We use τi to denote τ at the i-th iteration of the loop in function FIX(τ).

Example 4.3. Continuing Example 4.2, τ = {x2 7→ h(x3) ⊕ f(0) ⊕ f(x4) ⊕ f(f(r1 ⊕ r2))}.
FIX(τ) is called.

τ1 = {x2 7→ h(x3)⊕ f(0)⊕ f(x4)⊕ f(f(r1 ⊕ r2))

τ2 = Prev(τ1, σ1) = {x2 7→ h(x3) ⊕ f(0) ⊕ f(x4) ⊕ f(f(r1 ⊕ r2)), x1 7→ r1} , where σ1 =

{x1 7→ r1} is a unifier of {f(0)
?
= f(x1 ⊕ r1)}. That is, σ1 is a unifier of x2τ1|2 and f(x1 ⊕ r1),

where f(x1 ⊕ r1) ∈M(x2).

τ3 = Cancel(τ2, σ2) = {x2 7→ h(x3) ⊕ f(0), x1 7→ r1, x4 7→ f(r1 ⊕ r2)}, where σ2 = {x4 7→
f(r1 ⊕ r2)} is a unifier of {f(x4)

?
= f(f(r1 ⊕ r2))} That is, σ2 is a unifier of x2τ2|3 and x2τ2|4.

τ4 = Prev(τ3, σ3) = {x2 7→ h(r1) ⊕ f(0), x1 7→ r1, x4 7→ f(r1 ⊕ r2), x3 7→ r1}, where

σ3 = {x3 7→ r1} is a unifier of {x3
?
= r1} That is, σ3 is a unifier of x2τ3|1.1 and r1, where

r1 ∈M(x2).

τ4 is a Mf -substitution. f-rooted-unify returns τ4.

Algorithm 2 Checking if t1 and t2 are Mf -unifiable

1: function f-rooted-unify(M, t1, t2)
// (1) M is an f -mapping. (2) t1 and t2 are two f -rooted terms.

2:

3: Nondeterministically choose a unifier τ from CSU⊕(t1
?
= t2).

4: result← FIX(τ)
5: if result = None then
6: return false //t1 and t2 are not Mf -unifiable”.
7: else
8: return result //result is a Mf -unifier of t1 and t2.
9: end if

10: end function
11:

12: function fix(τ)
13: while some rule is applicable to τ do
14: τ ← Prev(τ, σ) or Cancel(τ, σ). //Nodeterministically apply a rule.
15: end while
16: if Mf -admissible(M, τ) = true then
17: return τ .
18: else
19: return None.
20: end if
21: end function

8



5 Solving ⊕-rooted Local Unification

In this section, we present an algorithm for solving the ⊕-rooted local unification problem,
which we introduced in Section 3.2. Given some ⊕-mapping M and a set of pure terms C =
{t1, t2, . . . , tn}. The goal is to check if some subset C′ of C is M⊕-unifiable with 0. We will
use the following Example 5.1 as a running example:

Example 5.1. M(x1) = {r}.

M(x2) = {r, f(r ⊕ x1)⊕ x1}.

C = {r, f(r ⊕ x1)⊕ x1, f(f(r ⊕ x1)⊕ x2)}.

C is M⊕-unifiable with 0, under {x1 7→ r, x2 7→ f(0)}. We will show how we solve this unifi-
cation problem. In Section 5.1, we present a helper function remove-term-variables(M,C),
which computes a special term substitution γM. We use γM to instantiate terms in C, thereby
remove term variables in C. So Cmix = CγM. In Section 5.2, we present another helper func-
tion annotate-and-saturate, which tries to figure out if the XOR of some subset of Cmix
is 0 under some Boolean substitution τ . In Section 5.3, we put things together and present a
function xor-rooted-unify, which solves the ⊕-rooted local unification problem.

In this section, variables mean term variables, substitutions mean term substitutions. We use
t, t1, t2, . . . to denote pure terms, and use mt,mt1,mt2, . . . to denote mixed terms. σ, σ1, σ2, . . .
denote term substitutions, τ, τ1, τ2, . . . denote Boolean substitutions.

5.1 Handling Variables

In order to illustrate the idea, let us consider Example 5.1. According to Definition 3.5, x1 can
only be instantiated by 0 or r. We denote this as x1 7→ b1 × r, where b1 is a Boolean variable.
Similarly, x2 7→ b2 × r ⊕ b3 × (f(r ⊕ x1) ⊕ x1), or equivalently x2 7→ b2 × r ⊕ b4 × f(r ⊕ x1).
(Under all possible values for b2, b3, b4, x2 maps to the same set of terms.) We then instantiate
x1 and x2 in C and get a set of mixed terms Cmix = {r, f(r⊕ (b1× r))⊕ (b1× r), f(f(r⊕ (b1×
r))⊕ b2 × r ⊕ b4 × f(r ⊕ (b1 × r)))}. Notice that there are no variables in Cmix.

To formalize the above idea. We have the following definitions. Suppose that t = t1 ⊕ t2 ⊕
. . .⊕ tm⊕ x1⊕ x2⊕ . . . xn, where ti(1 ≤ i ≤ m) is not a variable. We define NonV ar(t) = t1⊕
t2⊕ . . .⊕tm, and V ar(t) = x1⊕x2⊕ . . .⊕xn. Let T = {t1, t2, . . . tn} be a set of mixed terms, we

define NonV ar(T ) = {NonV ar(t1), NonV ar(t2), . . . , NonV ar(tn)}. Let ~B = 〈b1, b2, . . . , bn〉
be a vector of Boolean variables, T ~B is defined to be b1 × t1 ⊕ b2 × t2 ⊕ . . . bn × tn. T ~B is
called a linear combination of t1, t2, . . . , tn.

Given an ⊕-mapping M and a set of terms C, our initial goal is to find a subset of terms in C

s.t. their XOR is 0 under some admissible M⊕-substitution. remove-term-variables(M,C)
in Algorithm 3 returns (γM,Cmix), where Cmix = CγM. Our new goal is to find a subset of
terms in Cmix s.t. their XOR is 0 under some Boolean substitution. In Appendix C, we show
that for any Boolean substitution τ , γM ◦ τ is always an admissible M⊕-substitution.

9



Algorithm 3 remove term variables

1: function remove-term-variables(M,C)
2: // Assume (1) domain(M) = {x1, x2, . . . , xm}. (2) C = {t1, t2, . . . , tn}.
3:

4: γM ← {x1 7→ t′1, x2 7→ t′2, . . . , xm 7→ t′m}, where t′i = NonV ar(M(xi)) ~Bi, and ~Bi is a
vector of fresh Boolean variables.

5:

6: Cmix ← CγM.
7:

8: return (γM,Cmix)
9: end function

10:

5.2 Applying Inference Rules

Consider Example 5.1. remove-term-variables(M,C) returns (γM,Cmix), where

γM = {x1 7→ b1 × r, x2 7→ b2 × r ⊕ b4 × f(r ⊕ x1)}.
Cmix = {r, f(r ⊕ (b1 × r))⊕ (b1 × r), f(f(r ⊕ (b1 × r))⊕ b2 × r ⊕ b4 × f(r ⊕ (b1 × r)))}.
It turns out that the XOR of all three terms in Cmix is 0 under {b1 7→ 1, b2 7→ 0, b4 7→ 1}.

We use two procedures to figure that out.

In Section 5.2.1, we present a procedure for checking if two mixed terms are unifiable under
some Boolean substitution. For example, we can unify r with b1 × r under {b1 7→ 1}. f(r ⊕
(b1 × r)) and f(f(r ⊕ (b1 × r))⊕ b2 × r ⊕ b4 × f(r ⊕ (b1 × r))) are also unifiable under {b1 7→
1, b2 7→ 0, b4 7→ 1}.

In Section 5.2.2, we present another procedure that can take the XOR of two mixed terms in
Cmix, calls the first procedure to unify two summands occurring in those mixed terms, thereby
cancel the two summands. For example, the procedure can take t1 = f(r ⊕ (b1 × r))⊕ (b1 × r)
and t2 = f(f(r ⊕ (b1 × r))⊕ b2 × r ⊕ b4 × f(r ⊕ (b1 × r))), unify f(r ⊕ (b1 × r)) and t2 under
τ = {b1 7→ 1, b2 7→ 0, b4 7→ 1}. Therefore, (t1 ⊕ t2)τ = r.

5.2.1 Unifying Two Mixed Terms

Definition 5.1. Let eq be an equation t1
?
= t2 on mixed terms without term variables. eq is

Boolean unifiable under some substitution τ if t1τ =⊕ t2τ . We call τ a Boolean unifier of eq.
Let eqs be a set of equations on mixed terms without term variables. eqs is Boolean unifiable
under τ if each equation in eqs is Boolean unifiable under τ . We call τ a Boolean unifier of eqs.

The function boolean-unify(t1, t2) from Algorithm 4 checks if t1 and t2 are Boolean
unifiable by nondeterministically applying the inference rules in Rbool−unif to states. A state
st is of the form eqs|τ , where eqs is a set of equations on mixed terms and τ is a Boolean
substitution. To check if two linear mixed terms t1 and t2 are Boolean unifiable, we start

from the initial state: {t1 ⊕ t2
?
= 0}|ε, and we keep applying the inference rules in Rbool−unif

nondeterministically. Eventually we reach either a final state or a stuck state. A final state is
a state of the form ∅|τ . A stuck state is a state of the form eqs|τ , where eqs 6= ∅, and no rule

applies. We call st1, st2, . . . a trace of t1 and t2 if st1 is {t1 ⊕ t2
?
= 0}|ε, and ∀i > 1, sti is the

result of applying one of the inference rules to sti−1. In Appendix D, we prove properties about
boolean-unify (Soundness, Completeness and Termination).

10



In order to cut down the search space, we define the notion of depf (t), where t is a mixed
term without any term variables. If t is a ground term, depf (t) is the maximum number of
nested f symbols in t. Or equivalently, depf (t) is the maximum number of f symbols among
all root-to-leaf paths of the syntax tree of t. If t contains Boolean variables, we define depf (t)
as {depf (tτ) | τ is a Boolean substitution, tτ is gound}. We write depf (t) = [l, h] to denote
that depf (t) can be at least l and at most h. Note that two terms cannot possibly be Boolean
unifiable unless their depf intervals overlap. Given a term t without any term variables, depf (t)
can be computed in the following way.

• depf (r) = [0, 0], where r is a constant.

• depf (b× t) = [0, h], where depf (t) = [l, h].

• depf (f(t)) = [l + 1, h+ 1], where depf (t) = [l, h].

• depf (t1⊕ t2) = [0,max(h1, h2)], where depf (t1) = [l1, h1], depf (t2) = [l2, h2] and depf (t1)
and depf (t2) overlap.

• depf (t1 ⊕ t2) = [max(l1, l2),max(h1, h2)] , where depf (t1) = [l1, h1], depf (t2) = [l2, h2]
and depf (t1) and depf (t2) do not overlap.

Example 5.2. depf (b1 × r ⊕ f(r)) = [1, 1] depf (r ⊕ b1 × f(r)) = [0, 1].

Rbool−unif

{0 ?
= 0} ∪ Γ | τ

Γ | τ Remove

{b× t1 ⊕ t2
?
= 0} ∪ Γ | τ

({t2
?
= 0} ∪ Γ)({b 7→ 0}) | τ ∪ {b 7→ 0}

Disappear

{b1 × r1 ⊕ b2 × r2 ⊕ t
?
= 0} ∪ Γ | τ

({t ?
= 0} ∪ Γ)τ ′ | τ ∪ τ ′

Duplicater

where τ ′ = {b1 7→ 1, b2 7→ 1}, depf (r1) and depf (r2) overlap.

{b1 × f(t1)⊕ b2 × f(t2)⊕ t3
?
= 0} ∪ Γ | τ

({t3
?
= 0, t1 ⊕ t2

?
= 0}Γ)τ ′ | τ ∪ τ ′

Duplicatef

where τ ′ = {b1 7→ 1, b2 7→ 1}, dep(t1)f and depf (t2) overlap.

Note that when we apply the Duplicater rule or the Duplicatef rule, if a term t is not a
×-rooted term, we consider it to be a ×-rooted term with coefficient 1. For example, we can
make the following inference.

{r ⊕ b× r ?
= 0} | ε

{0 ?
= 0} | {b 7→ 1}

Duplicater

11



Algorithm 4 Check if two terms are Boolean unifiable

1: function boolean-unify(t1, t2)
2: /*Assume that t1 and t2 are mixed terms containing no term variables.*/

3: st← {t1
?
= t2}|ε

4: while st is not a final state or stuck state do
5: Nondeterministically apply a rule in Rbool−unif to st
6: end while
7: if st is a final state of the form ∅|τ then
8: return τ
9: else

10: return false
11: end if
12: end function

Example 5.3. Check if t1 = f(r⊕(b1×r)) and t2 = f(f(r⊕(b1×r))⊕b2×r⊕b4×f(r⊕(b1×r)))
are Boolean unifiable.

{f(r ⊕ (b1 × r))⊕ f(f(r ⊕ (b1 × r))⊕ b2 × r ⊕ b4 × f(r ⊕ (b1 × r)))
?
= 0}|ε

Duplicatef
=======⇒ {r ⊕ (b1 × r)⊕ f(r ⊕ (b1 × r))⊕ b2 × r ⊕ b4 × f(r ⊕ (b1 × r))

?
= 0}|ε

Duplicater
=======⇒ {f(0)⊕ b2 × r ⊕ b4 × f(0)

?
= 0}|{b1 7→ 1}

Disappear
======⇒ {f(0)⊕ b4 × f(0)

?
= 0}|{b1 7→ 1, b2 7→ 0}

Duplicatef
=======⇒ {0 ?

= 0, 0
?
= 0}|{b1 7→ 1, b2 7→ 0, b4 7→ 1}

Remove
=====⇒ {0 ?

= 0}|{b1 7→ 1, b2 7→ 0, b4 7→ 1}
Remove
=====⇒ ∅|{b1 7→ 1, b2 7→ 0, b4 7→ 1}
So t1 and t2 are Boolean unifiable under {b1 7→ 1, b2 7→ 0, b4 7→ 1}.

5.2.2 Applying High-Level Inference Rules

Let Cmix = {mt1,mt2, . . . ,mtn} be a set of mixed terms. Our goal is to take the XOR of a
subset of terms in Cmix, apply some Boolean substitution and get 0. Roughly speaking, we
saturate Cmix using two rules: the Combine rule and the Cancel rule, which we will introduce
later. The Combine rule allows us to take the XOR of two mixed terms mti, mtj , and apply
some Boolean substitution τ , provided that one summand of mti and another summand of mtj
are Boolean unifiable under τ . The Cancel rule allows us to take one mixed term mti and
apply some Boolean substitution τ , provided that two summands of mti are Boolean unifiable
under τ .

We keep track of some additional information along the way. We annotate each mixed term
with a set of indices and a Boolean substitution. More formally, an annotated mixed term amt
is of the form mt[I; τ ], where mt is a mixed term, I is a set of indices and τ is a Boolean
substitution. We need I and τ for the following reasons.

First, we maintain a crucial invariant during the saturation process, which is, if mt[I; τ ] is
generated, then ⊕{mti|i ∈ I}τ = mt. So I and τ tells us how we can get mt.

Second, If we have mt1[I1; τ1] and mt2[I2; τ2], where I1 ∩ I2 6= ∅, we do not take the XOR
of mt1 and mt2.

Third, If we have mt1[I1; τ1] and mt2[I2; τ2], where τ1 ∪· τ2 is undefined, we do not take the
XOR of mt1 and mt2.

12



Let MT = {mt1,mt2, . . . ,mtn} be a set of mixed terms. We define annotate(MT ) to be
{mt1[{1}; ε],mt2[{2}; ε], . . . ,mtn[{n}; ε]}. In Algorithm 5, annotate-and-saturate(Cmix)
first obtains C1

mix by annotating Cmix. It then saturates C1
mix using the inference rules in

Rsaturate, and obtains a sequence C1
mix,C

2
mix,C

3
mix, · · · . ∀i ≥ 1, Ci+1

mix is obtained from Ci
mix

by nondeterministically making an inference and adding the result to Ci
mix, if it is not already

in Ci
mix. Cn

mix is a saturation of C1
mix if nothing new can be added to Cn

mix. In Appendix E,
we prove properties of annotate-and-saturate.

We define an ordering on terms. Let mt1 and mt2 be two mixed terms. mt1 ≺ mt2 if
depf (mt1) = [l1, h1], depf (mt2) = [l2, h2] and h1 < l2. Let mt be a mixed term of the form
b1 × t1 ⊕ b2 × t2 ⊕ . . . ⊕ bn × tn. bi × ti is a maximal term in mt if there does not exist any
bj × tj s.t. bi × ti ≺ bj × tj . To improve efficiency of the saturation process, we require that
both the Combine rule and the Cancel rule must be applied on maximal terms. We show that
this requirement does not affect completeness.

Rsaturate

b1 × t1 ⊕ Γ1[I1; τ1] b2 × t2 ⊕ Γ2[I2; τ2]

(Γ1 ⊕ Γ2)τ123[I1 ∪ I2; τ123]
Combine

where
(1) b1 × t1 is a maximal term in b1 × t1 ⊕ Γ1, b2 × t2 is a maximal term in b2 × t2 ⊕ Γ2.
(2) depf (b1 × t1) and depf (b2 × t2) overlap.
(3) I1 ∩ I2 = ∅.
(4) τ3 is a Boolean unifier of t1 and t2, and τ123 = τ1 ∪· τ2 ∪· τ3 ∪· {b1 7→ 1, b2 7→ 1}.

b1 × t1 ⊕ b2 × t2 ⊕ Γ[I; τ1]

Γτ12[I; τ12]
Cancel

where
(1) b1 × t1 and b2 × t2 are maximal terms in t1 ⊕ t2 ⊕ Γ2

(2) τ2 is a Boolean unifier of t1 and t2. τ12 = τ1 ∪· τ2 ∪· {b1 7→ 1, b2 7→ 1}.

Note that when we apply the Combine rule or the Cancel rule, if a term t is not a ×-rooted
term, we consider it to be a ×-rooted term with coefficient 1. For example, we can make the
following inference.

b1 × r1 ⊕ r1[{1}; ε]
0[{1}; {b1 7→ 1}]

Example 5.4. Consider Example 5.1, where. M(x1) = {r}.
M(x2) = {r, f(r ⊕ x1)⊕ x1}.
C = {r, f(r ⊕ x1)⊕ x1, f(f(r ⊕ x1)⊕ x2)}.

remove-term-variables(M,C) returns:
γM = {x1 7→ b1 × r, x2 7→ b2 × r ⊕ b4 × f(r ⊕ x1)}.
Cmix = {r, f(r ⊕ (b1 × r))⊕ (b1 × r), f(f(r ⊕ (b1 × r))⊕ b2 × r ⊕ b4 × f(r ⊕ (b1 × r)))}.

Here is what annotate-and-saturate(Cmix) does.
C1
mix = annotate(Cmix) = {r[{1}; ε], f(r ⊕ (b1 × r)) ⊕ (b1 × r)[{2}; ε], f(f(r ⊕ (b1 × r)) ⊕

b2 × r ⊕ b4 × f(r ⊕ (b1 × r)))[{3}; ε]}.

13



As we showed in Example 5.3, f(r⊕(b1×r)) and f(f(r⊕(b1×r))⊕b2×r⊕b4×f(r⊕(b1×r)))
are unifiable under {b1 7→ 1, b2 7→ 0, b4 7→ 1}. We can apply the Combine rule, and get:

C2
mix = {r[{1}; ε], f(r ⊕ (b1 × r)) ⊕ (b1 × r)[{2}; ε], f(f(r ⊕ (b1 × r)) ⊕ b2 × r ⊕ b4 × f(r ⊕

(b1 × r)))[{3}; ε], r[{2, 3}, {b1 7→ 1, b2 7→ 0, b4 7→ 1}]}.

Obviously, r and r are unifiable. We can apply the Combine rule again, and get:

C3
mix = {r[{1}; ε], f(r ⊕ (b1 × r)) ⊕ (b1 × r)[{2}; ε], f(f(r ⊕ (b1 × r)) ⊕ b2 × r ⊕ b4 × f(r ⊕

(b1 × r)))[{3}; ε], r[{2, 3}, {b1 7→ 1, b2 7→ 0, b4 7→ 1}], 0[{1, 2, 3}, {b1 7→ 1, b2 7→ 0, b4 7→ 1}]}.

Algorithm 5 annotate and saturate

1: function annotate-and-saturate(Cmix)
2: //Cmix = {mt1,mt2, . . . ,mtn}
3:

4: C1
mix ← annotate(Cmix)

5: Saturate C1
mix using the Combine rule and Cancel rule.

6:

7: return Cn
mix, which is the result of the saturation

8: end function
9:

5.3 Putting Things Together

Example 5.5. Continuing with Example 5.4, we showed that 0[{1, 2, 3}; {b1 7→ 1, b2 7→ 0, b4 7→
1}] ∈ C3

mix. According to Lemma E.2, the XOR of all three terms in Cmix is 0 under {b1 7→
1, b2 7→ 0, b4 7→ 1}.

We can compose γM = {x1 7→ b1 × r, x2 7→ b2 × r ⊕ b4 × f(r ⊕ x1)} with {b1 7→ 1, b2 7→
0, b4 7→ 1} and get an admissible M⊕-substitution: σ = {x1 7→ r, x2 7→ f(0)} s.t. ⊕{r, f(r ⊕
x1)⊕ x1, f(f(r ⊕ x1)⊕ x2)}σ = 0.

Algorithm 6 describes a function xor-rooted-unify for solving ⊕-rooted local unification.
Appendix F proves properties (Soundness, Completeness and Termination) of xor-rooted-
unify.

14



Algorithm 6 Solving ⊕-rooted local unification

1: function xor-rooted-unify(M,C)
2: //M must be an ⊕-mapping.
3: //Assume: C = {t1, t2, . . . , tn}.
4:

5: (γM,Cmix)← remove-term-variables(M,C)
6: Cn

mix ← annotate-and-saturate(Cmix)
7: result← ∅
8: for all annotated mixed term amt in Cn

mix do
9: if amt is of the form 0[I; τ ] ∈ Cn

mix then
10: result← result ∪ (I, γM ◦ τ) //{ti|i ∈ I} is M⊕-unifiable with 0 under γM ◦ τ
11: end if
12: end for
13: if result = ∅ then
14: return not M⊕-unifiable
15: else
16: return (M⊕-unifiable, result)
17: end if
18: end function

6 Discussion

In this paper, we introduce a new unification problem, called local XOR unification. And we
present two concrete versions of the local XOR unification problem. f -rooted local unification
can be used to analyze modes of operation including Cipher Block Chaining, Propagating
Cipher Block Chaining, Accumulated Block Cipher, etc. ⊕-rooted local unification can be used
to analyze modes of operation including Cipher Feedback Mode, Output Feedback Mode, etc.

In Section 5, we discuss a method for solving the ⊕-rooted local unification problem. The no-
tion of depf (t), which we introduced in Section 5.2.1, is crucial for efficiency. We require that the
Combine rule and the Cancel rule must be applied on maximal terms, which overlap in depth.
For this reason, if we apply our method to Output Feedback Mode (or Cipher Feedback Mode),
no inference is allowed. The saturation process terminates immediately. This matches the in-
tuition why Output Feedback Mode is secure. In Output Feedback Mode, we generate a block
of random bits r, compute f(r), f(f(r)), f(f(f(r))) . . ., and use them to mask x1, x2, x3, . . .
just like one-time pad. The adversary cannot get rid of f(r), f(f(r)), f(f(f(r))), . . .. There-
fore Output Feedback Mode is secure. Using our method, any inference must be applied on
f(r), f(f(r)), f(f(f(r))), . . ., since they are the maximum summands in the ⊕-rooted terms
where they occur. Since no two of them can possibly unify and cancel with each other, there is
no way to make any progress towards obtaining 0.

The unification problems that we consider in this paper are related to security of modes of
operation in the bounded setting, where a bounded number of cipher-text blocks are considered.
As ongoing work, we are considering security of modes of operation in the unbounded setting,
where we consider an unbounded number of cipher-text blocks. We come up with sufficient
conditions for security of modes of operation. We also propose a method for checking those
conditions. The idea is based on the notion of depf of a term.

15



References

[1] Siva Anantharaman, Hai Lin, Christopher Lynch, Paliath Narendran, and Michaël Rusinowitch.
Cap unification: application to protocol security modulo homomorphic encryption. In AsiaCCS
2010, pages 192–203, 2010.

[2] Serdar Erbatur, Santiago Escobar, Deepak Kapur, Zhiqiang Liu, Christopher Lynch, Catherine
A. Meadows, José Meseguer, Paliath Narendran, Sonia Santiago, and Ralf Sasse. Asymmetric
unification: A new unification paradigm for cryptographic protocol analysis. In CADE 13, pages
231–248, 2013.

[3] Santiago Escobar, Deepak Kapur, Christopher Lynch, Catherine A. Meadows, José Meseguer,
Paliath Narendran, and Ralf Sasse. Protocol analysis in maude-npa using unification modulo ho-
momorphic encryption. In PPDP 2011, pages 65–76, 2011.

[4] Antoine Joux, Gwenaelle Martinet, and Frederic Valette. Blockwise-adaptive attackers revisiting
the (in)security of some provably secure encryption modes: CBC, GEM, IACBC. In 22nd Annual
International Cryptology Conference, pages 17–30, 2002.

[5] L. R. Knudsen. Block chaining modes of operation. Reports in Informatics, ISSN 0333-3590,
Department of Informatics, University of Bergen, Norway., 2000.

[6] Zhiqiang Liu and Christopher Lynch. Efficient general unification for xor with homomorphism. In
CADE, pages 407–421, 2011.

[7] Catherine Meadows. Symbolic and computational reasoning about cryptographic modes of opera-
tion. Cryptology ePrint Archive, Report 2020/142, 2020. https://eprint.iacr.org/2020/794.

16

https://eprint.iacr.org/2020/794


A An Algorithm for Checking Mf-substitution

Algorithm 7 Checking if some substitution τ is an admissible Mf -substitution

1: function Mf -admissible(M, τ)
// Checks if τ is an admissible Mf -substitution.

2: for all x ∈ domain(τ) do
3: if computable-by-adversary((xτ, τ,M, x)) = false then
4: return false
5: end if
6: end for
7: return true
8: end function
9:

10: function computable-by-adversary(t, τ,M, x)
11: /* Checks if tτ = t′τ , for some t′ ≺Mf

x. Or intuitively tτ is computable by an adversary
when generating x.*/

12:

13: if t is an f -rooted term or a constant then
14: Check if tτ ∈M(x)τ
15: else
16: if t = h(t′) then
17: return computable-by-adversary(t′, τ,M, x)
18: else //Assume t = t1 ⊕ . . .⊕ tn
19: return computable-by-adversary(t1, τ,M, x) and · · · and computable-by-

adversary(tn, τ,M, x)
20: end if
21: end if
22: end function

The function Mf -admissible in Algorithm 7 checks if some substitution is an admissible Mf -
substitution. It is based on the following 3 lemmas. Note that these 3 lemmas require that
M is an f -mapping. Otherwise if M maps each variable to a set of arbitrary terms including
⊕-rooted terms, the lemmas do not hold. For example, suppose M(x) = {f(r1)⊕f(r2), f(r1)}.
By Definition 3.2, (f(r1)⊕ f(r2))⊕ f(r1) ≺Mf

x. f(r2) =⊕ (f(r1)⊕ f(r2))⊕ f(r1), but for all
t ∈M(x), f(r2) 6=⊕ t.

Lemma A.1. Let M be an f -mapping, θ be a substitution. If t is an f -rooted term or a
constant, and tθ =⊕ t

′θ, for some t′ ≺Mf
x, then t′ ∈M(x).

Proof. Induction on ≺Mf
relation.

Suppose that t′ ∈M(x), this is trivial.
Suppose that t′ = h(t′′), where t′′ ≺Mf

x. This contradicts with our assumption that t is
an f -rooted term or a constant.

Suppose that t′ = t1 ⊕ t2 ⊕ . . .⊕ tn, t1 ≺Mf
x, t2 ≺Mf

x, . . ., tn ≺Mf
x. We consider three

cases. (1) If t′θ is an ⊕-rooted term, then this contradicts with our assumption that t is an
f -rooted term or a constant. (2) If t′θ = 0, we know that 0 ∈M(x). (3) If t′θ is some tiθ, by
induction hypothesis, ti ∈M(x).

17



Lemma A.2. Let M be an f -mapping, θ be a substitution. If t is an h-rooted term, and
tθ =⊕ t

′θ, for some t′ ≺Mf
x, then t′ must be of the form h(t′′), where t′′ ≺Mf

x.

Proof. Induction on ≺Mf
relation.

Suppose that t′ ∈ M(x). Since M is an f -mapping, t′ is either an f -rooted term or a
constant, which contradicts with our assumption that t is an h-rooted term.

Suppose that t′ = h(t′′), where t′′ ≺Mf
x. This lemma holds trivially.

Suppose that t′ = t1 ⊕ t2 ⊕ . . . ⊕ tn, t1 ≺Mf
x, t2 ≺Mf

x, . . ., tn ≺Mf
x. We consider

three cases. (1) If t′θ is an ⊕-rooted term, then this contradicts with our assumption that t
is an h-rooted term. (2) If t′θ = 0, again this contradicts with our assumption that t is an
h-rooted term. (3) If t′θ is some tiθ, by induction hypothesis, ti must be of the form h(t′′),
where t′′ ≺Mf

x.

Lemma A.3. Let M be an f -mapping, θ be a substitution. If t is an ⊕-rooted term, and
tθ =⊕ t′θ, for some t′ ≺Mf

x, then t′ must an ⊕-rooted term of the form t1 ⊕ t2 ⊕ . . . ⊕ tn,
where ti ≺Mf

x (1 ≤ i ≤ n).

Proof. Induction on ≺Mf
relation.

Suppose that t′ ∈ M(x). Since M is an f -mapping, t′ is either an f -rooted term or a
constant, which contradicts with our assumption that t is an ⊕-rooted term.

Suppose that t′ = h(t′′), t′′ ≺Mf
x. This contradicts with our assumption that t is an

⊕-rooted term.
Suppose that t′ = t1 ⊕ t2 ⊕ . . .⊕ tm, where each ti is not an ⊕-rooted term, and ti ≺Mf

x.
We consider three cases. (1) If t′θ is an ⊕-rooted term, then this lemma holds trivially. (2) If
t′θ = 0, this contradicts with our assumption that t is an h-rooted term. (3) If t′θ is some tiθ,
again this contradicts with our assumption that t is an h-rooted term..

Lemma A.4. Given any f -mapping M and any substitution τ , Mf -admissible(M, τ) always
terminates, furthermore it returns true if and only if τ is an admissible Mf substitution.

Proof. Mf -admissible(M, τ) checks if for all x ∈ domain(M), xτ = tτ , for some t ≺Mf
x. We

consider 3 cases:
(1) If xτ is an f -rooted term or a constant, by Lemma A.1, we only need to check if xτ = t′τ ,

for some t′ ∈M(x).
(2) If xτ = h(t′), by Lemma A.2, we only need to check if t′τ = t′′τ , for some t′′ ≺Mf

x.
(3) If xτ = t1⊕ . . .⊕ tn, by Lemma A.3, we only need to check if ti = t′τ , for some t′ ≺Mf

x.
check-term(t,M, x, τ) is a recursive function. Each time it calls check-term(t′,M, x, τ),

t′ must be a subterm of t. So it always terminates. Therefore Mf -admissible(M, τ) always
terminates.

18



B Properties of f-rooted-unify

In this section, we show that f-rooted-unify is sound, complete and terminating. Therefore
it is a decision procedure for f -rooted local unification, which we introduced in Section 3.1.

B.1 Termination

We use BOP(τ) to denote the set of bad open positions in τ . So

BOP(τ) = {(xτ, p) | (xτ, p) is a bad open position in τ}
The following theorem states that for any substitution τ , I1(τ) always terminates. The idea

that each inference either instantiates a variable in domain(M) or fixes a bad open position in
τ .

We define Mi = (|domain(M)− domain(τi)|, |BOP(τi)|).

Theorem B.1 (Termination). Given an f -mapping, two f -rooted terms t1 and t2, f-rooted-
unify(M, t1, t2) always terminates.

Proof. We only need to show that fix(τ) terminates, where τ ∈ CSU⊕(t1
?
= t2).

For any i > 0, τi+1 = Prev(τi, σi) or τi+1 = Cancel(τi, σi). We will show thatM1,M2,M3, . . .
is a decreasing sequence. There are two cases to consider.

Case 1. Suppose that some variable in domain(M) is instantiated by applying either
the Prev rule or the Cancel rule at the i-th iteration. |domain(M) − domain(τi+1)| <
|domain(M)− domain(τi)|, therefore Mi+1 < Mi.

Case 2. Suppose that no variable in domain(M) is instantiated at the i-th iteration. This
means that Domain(σi) contains only new variables that are generated by the procedure for uni-
fication modulo XOR. In this case, |domain(M)−domain(τi+1)| = |domain(M)−domain(τi)|,
but both the Prev rule and the Cancel rule fix at least one bad open position in τi, so
BOP(τi+1) <BOP(τi). Therefore Mi+1 < Mi.

Since M1,M2,M3, . . . is well founded, fix(τ) eventually terminates.

B.2 Soundness

Theorem B.2 (Soundness). Given an f -mapping, two f -rooted terms t1 and t2, if f-rooted-
unify(M, t1, t2) returns a substitution τ , then τ is a Mf -unifier of t1 and t2.

Proof. Since line 16 of Algorithm 2 checks if τ is an admissible Mf -substitution, if f-rooted-
unify(M, t1, t2) returns τ , then τ must be an admissible Mf -substitution.

We now show that τ is a unifier of t1 and t2 by induction. Initially this is true, since
τ ∈ CSU⊕(t1 =⊕ t2). Assume that τi is a unifier of t1 and t2. If the Prev rule is used at
the i-th iteration, τi+1 = Prev(τi, σi) = τiσi. If the Cancel rule is used at the i-th iteration,
τi+1 = Cancel(τi, σi) = τiσi. In both cases, τi+1 is an instance of τi. Since τi is a unifier of t1
and t2, τi+1 is also a unifier of t1 and t2.

Therefore τ is a Mf -unifier of t1 and t2.

B.3 Completeness

f-rooted-unify can find any minimum Mf -unifier, which we will define later. To illustrate
the idea, let us consider the following example.

19



Example B.1. In Example 4.2,
τ = {x2 7→ h(r1) ⊕ f(0), x1 7→ r1, x4 7→ f(r1 ⊕ r2), x3 7→ r1} is a Mf -unifier of f(x2) and

f(h(x3)⊕ f(0)⊕ f(x4)⊕ f(f(x3 ⊕ r2))). But there are other Mf -unifiers, e.g.:
τ ′ = {x2 7→ h(h(r1))⊕ f(0), x1 7→ r1, x4 7→ f(r1 ⊕ r2), x3 7→ h(r1)}
τ ′′ = {x2 7→ h(h(h(r1)))⊕ f(0), x1 7→ r1, x4 7→ f(r1 ⊕ r2), x3 7→ h(h(r1))}.
We want to be able to say that τ is a minimum Mf -unifier, but τ ′ and τ ′′ are not minimum

Mf -unifiers.

First we can transform one substitution τ into another substitution τL, which is defined as
follows.

Definition B.1. Let τ be a substitution, L be a list of open positions in τ . τL is a substitution,
and

• xτL = xτ [t]|p, where (xτ, p) ∈ L, t is a subterm of xτ |p and t 6= xτ |p.

• yτL = yτ , if (yτ, p) ∈ L.

We use R(τ) to denote the set of all possible substitutions that can be obtained by the
transformation described above.

R(τ) = {τL | L is a list of open positions.}

Definition B.2. Let M be an f -mapping, t1 and t2 be two f -rooted terms. τ is a minimum
Mf -unifier of t1 and t2 if

(1) τ is a Mf -unifier of t1 and t2.
(2) ∀τ ′ ∈R(τ), τ ′ is not a Mf -unifier of t1 and t2.

Let us consider Example B.1. By Definition B.2, τ is a minimum Mf -unifier of f(x2) and

f(h(x3)⊕ f(0)⊕ f(x4)⊕ f(f(x3 ⊕ r2))). But τ ′ is not, since τ ′{(x2τ
′,1),(x3τ

′,λ)} = τ , and τ is a
Mf -unifier of t1 and t2.

In the following definition, we define potential Mf -minimum unifiers of two terms t1 and t2.
And we will show that if we start from a potential Mf -minimum unifier τ of t1 and t2, we can
keep composing τ with some other substitution by making inferences, until we get a minimum
Mf -unifier of t1 and t2.

Definition B.3. Let M be an f -mapping, t1 and t2 be two f -rooted terms. τ is a potential
Mf -unifier of t1 and t2 if there exists a substitution σ s.t. τσ is a Mf -unifier of t1 and t2. τ is a
potential minimum Mf -unifier of t1 and t2 if there exists a substitution σ s.t. τσ is a minimum
Mf -unifier of t1 and t2.

Let M be an f -mapping, t1 and t2 be two f -rooted terms. By Lemma 4.1, if θ is a Mf -unifier
of t1 and t2, θ should not contain any bad open position. If some substitution τ contains some
bad open position (xτ, p), it can be dealt with in two possible ways. If xτ |p is a summand of a
term t, it is possible that xτ |p unifies with some other summand of t under some substitution
σ, therefore gets cancelled. In Example 4.2, this is how we deal with (x1τ, 3) and (x1τ, 4).
The other possibility is that we can extend (xτ, p), and get some bad innermost open position
(xτ, p′). By Lemma A.1, we only need to unify xτ |p′ with some term t′ ∈ M(x). In Example
4.2, this is how we deal with (x2τ, 1). We extend it to (x2τ, 1.1), which is a bad innermost open
position. We unify x2τ |1.1 with r1, which is in M(x2).

Lemma B.3. Let M be an f -mapping, τ be a substitution. For any bad open position (xτ, p)
in τ , (xτ, p) can be extended to some bad innermost open position (xτ, p′) in τ .

20



Proof. Induction on len(p′)− len(p).
If xτ |p is a variable, constant, or an f -rooted term, (xτ, p) is already a bad innermost open

position. So len(p′)− len(p) = 0.
Suppose that xτ |p = h(t1). (xτ, p.1) must also be bad open position in τ . Assume that

(xτ, p.1) can be extended to a bad innermost open position (xτ, p′) in τ by appending i1.i2...im
to p.1. Therefore (t, p) can be extended to the same bad innermost open position (t, p′) by
appending 1.i1.i2...im to p.

Suppose that xτ |p = t1 ⊕ t2 ⊕ . . . ⊕ tn. There must exist some i s.t. (xτ, p.i) is also a bad
open position in τ . Assume that (xτ, p.i) can be extended to a bad innermost open position
(xτ, p′) in τ by appending i1.i2...im to p.i. (xτ, p) can be extended to the same bad innermost
open position (xτ, p′) by appending i.i1.i2...im to p.

Lemma B.4. Let M be an f -mapping, t1 and t2 be two f -rooted terms. If τ is not a Mf -unifier
of t1 and t2, and τσ is a minimum Mf -unifier of t1 and t2, then for any bad open position
(xτ, p), at least one of the following is true.

(1) (xτ, p) can be extended to some bad innermost open position (xτ, p′) s.t. (xτ |p′ =⊕ tτ)σ,
for some t ∈M(x).

(2) xτ |p is a summand of an ⊕-rooted term t, t has some other summands t′1, t
′
2, . . . , t

′
m

s.t. (xτ |p ⊕ t′1 ⊕ t′2 ⊕ . . .⊕ t′m)σ = 0.

Proof. Let (xτ, p) be a bad open position in τ . By Lemma B.3, (xτ, p) can be extended to
some bad innermost open position (xτ, p′). If (2) does not hold, then (x(τσ), p) is also an
open position. We know that τσ is a minimum Mf -unifier of t1 and t2. By Lemma 4.1,
x(τσ)|p′ =⊕ t(τσ), for some t ≺Mf

x. So (xτ |p′ =⊕ tτ)σ. We now show that t ∈M(x). Since
(xτ, p′) is an innermost open position, xτ |p′ can only be a variable or an f -rooted term, or a
constant.

Case 1. xτ |p′ is a constant or f -rooted term. By Lemma A.1, t ∈M(x).
Case 2. xτ |p′ = x′. Then x′ 6∈ domain(τ) (Otherwise, xτ |p′ = x′τ). Since τσ is a minimum

Mf -unifier, t ∈M(x) (In order words, t is not built up from terms in M(x) using h and ⊕).

The following Lemma B.5 is our key lemma for proving completeness. According to Lemma
B.5, a potential minimum Mf -unifier is either good enough in the sense that it is already
a minimum Mf -unifier, or we can take an inference step to get another substitution, which
remains to be a potential minimum Mf -unifier. According to Theorem B.1, there cannot be
infinitely many inference steps, eventually we must get a minimum Mf -unifier.

Lemma B.5. Let M be an f -mapping. t1 and t2 are two f -rooted terms. If τ is a potential
minimum Mf -unifier of t1 and t2, then at least one of the following must be true:

(1) τ is a minimum Mf -unifier of t1 and t2.
(2) The Prev rule is applicable. Prev(τ, δ) is a potential minimum Mf -unifier of t1 and t2.
(3) The Cancel rule is applicable. Cancel(τ, δ) is a potential minimum Mf -unifier of t1 and
t2.

Proof. If (1) does not hold, by Lemma 4.1, there must be some bad open position (xτ, p). By
Lemma B.4, there are two cases to consider.

Case 1: (xτ, p) can be extended to some innermost open position (xτ, p′) s.t. (xτ |p′ =⊕
tτ)σ, for some t ∈ M(x). In this case, we use the Prev rule and get Prev(τ, δ), where δ ∈
CSU⊕(xτ |p′

?
= tτ). σ = δδ′, for some δ′. Since τσ is a minimum Mf -unifier of t1 and t2, so is

τδδ′. Therefore τδ, which is Prev(τ, δ), is a potential minimum Mf -unifier of t1 and t2.

21



Case 2: xτ |p is a summand of an ⊕-rooted term t, t has some other summands t′1, t
′
2, . . . , t

′
m

s.t. (xτ |p⊕ t′1⊕ t′2⊕ . . .⊕ t′m)σ =⊕ 0. In this case, we use the Cancel rule and get Cancel(τ, δ),

where δ ∈ CSU⊕((xτ |p⊕ t′1⊕ t′2⊕ . . .⊕ t′m)
?
= 0). σ = δδ′, for some δ′. Since τσ is a minimum

Mf -unifier of t1 and t2, so is τδδ′. Therefore τδ, which is Cancel(τ, δ), is a potential minimum
Mf -unifier of t1 and t2.

Theorem B.6 (Completeness). Let M be an f -mapping, t1 and t2 be two f -rooted terms. If
t1 and t2 are Mf -unifiable, then f-rooted-unify(M, t1, t2) outputs a minimum Mf -unifier
of t1 and t2.

Proof. If t1 and t2 are Mf -unifiable, then there exists a substitution τ ∈ CSU⊕(t1
?
= t2) s.t. τ

is a potential minimum Mf -unifier. By Lemma B.5, the loop invariant at Line 13 in Algorithm
2 is that τ is always a potential minimum Mf -unifier of t1 and t2. By Theorem B.1, the loop
(Line 13 through Line 15) in Algorithm 2 eventually terminates, at which point no rule applies
to τ . Therefore τ must be a minimum Mf -unifier of t1 and t2.

22



C Properties of remove-term-variables

In this appendix, we show that if remove-term-variables(M,C) (from Section 5.1) returns
(γM,Cmix), then γM ◦ τ is always an admissible M⊕-substitution, where τ is any Boolean
substitution.

In Section 5.1, we define an operator . Let ~B = 〈b1, b2, . . . , bn〉 be a vector of Boolean

variables, T ~B is defined to be b1× t1⊕ b2× t2⊕ . . . bn× tn. T ~B is called a linear combination
of t1, t2, . . . , tn. T defines a space of terms SPACET . A term t ∈ SPACET if and only
if there exists some Boolean vector ~B such that t = T ~B. Let ~B1 = 〈b11, b12, . . . , b1n〉 and
~B2 = 〈b21, b22, . . . , b2n〉 be two vectors. We define ~B1⊕ ~B2 to be 〈b11⊕b21, b12⊕b22, . . . , b1n⊕b2n〉.

The following two lemmas state some basic properties about spaces.

Lemma C.1. Let T be a set of terms. If ti ∈ SPACET for all 1 ≤ i ≤ n, then t1⊕t2⊕. . .⊕tn ∈
SPACET .

Proof. For all i, there exists ~Bi such that T ~Bi = ti. So T ( ~B1⊕ ~B2⊕. . .⊕ ~Bn) = t1⊕t2⊕. . .⊕tn.
Therefore, t1 ⊕ t2 ⊕ . . .⊕ tn ∈ SPACET .

Lemma C.2. Suppose that T1 ⊆ T2, then SPACET1
⊆ SPACET2

.

Proof. Suppose that T1 = {t1, t2, . . . , tm}, T2 = {t1, t2, . . . , tm, tm+1, . . . , tn}.
Take any t ∈ SPACET1

. t = T1 〈b1, b2, . . . , bm〉. Then t = T2 〈b1, b2, . . . , bm, 0, . . . , 0〉.
Therefore t ∈ SPACET2

.

Given any ⊕-mapping M, we require that if i < j, then M(xi) ⊆M(xj). By Lemma C.2,
if i < j, then SPACEM(xi) ⊆ SPACEM(xj).

We define γ∗ to be {x1 7→ t′1, x2 7→ t′2, . . . , xm 7→ t′m}, where t′i = M(x1) ~Bi, and ~Bi is a
vector of fresh Boolean variables. Let τM be the set of all Boolean substitutions for all the
Boolean variables occurring in ~Bi (1 ≤ i ≤ m). We define σM to be {γ∗ ◦ τ |τ ∈ τM}. We define
σ̂ to be {γM ◦ τ |τ ∈ τM}. We show that σ̂ is the set of all admissible M⊕-substitution. We
do this in two steps. We first show that σM is the set of all admissible M⊕-substitutions in
Lemma C.3. We then show that σM = σ̂ in Lemma C.6. Lemma C.4 and Lemma C.5 are used
to prove Lemma C.6.

Lemma C.3. σM is the set of all admissible M⊕-substitutions.

Proof. Take any admissible M⊕-substitution σ1, σ1 maps xi to the XOR of terms in some
subset Si of M(xi). Assume that M(xi) = {s1, . . . , sn}.

Take any substitution σ2 from σM. For any xi, σ2 maps xi to M(xi) ~Bi.

We set Bij to 1 if and only if si ∈ Si, where Bij is the j-th component of ~Bi. Then
σ1 = σ2.

Lemma C.4. Given any substitution σ from σM, ∀i, SPACEM(xi)σ ⊆ SPACENonV ar(M(xi))σ.

Proof. Induction on i.
M(x1) only contains ground terms, therefore M(x1)σ = NonV ar(M(x1))σ. The lemma

holds trivially.
Assume that SPACEM(xj)σ ⊆ SPACENonV ar(M(xj))σ, for all j < i. We show that for all t ∈

M(xi)σ, t ∈ SPACENonV ar(M(xi))σ. Therefore any linear combination of terms in M(xi)σ is
also in SPACENonV ar(M(xi))σ by Lemma C.1. Hence SPACEM(xi)σ ⊆ SPACENonV ar(M(xi))σ.
We consider two cases.

23



Case 1. If t ∈M(xi−1)σ, then t is in SPACEM(xi−1)σ, therefore also in SPACENonV ar(M(xi−1))σ

by induction hypothesis.
Case 2. Take any t ∈ M(xi) −M(xi−1), tσ = NonV ar(t)σ ⊕ V ar(t)σ. For any variable

xj in V ar(t), j < i. Therefore xjσ ∈ SPACEM(xj)σ, where j < i. By induction hypothesis,
xjσ ∈ SPACENonV ar(M(xj))σ. By Lemma C.2, xjσ ∈ SPACENonV ar(M(xi))σ. So V ar(t)σ ∈
SPACENonV ar(M(xi))σ. We know that NonV ar(t)σ ∈ SPACENonV ar(M(xi))σ. By Lemma
C.1, tσ ∈ SPACENonV ar(M(xi))σ.

Lemma C.5. Given any substitution σ from σ̂, ∀i, SPACENonV ar(M(xi))σ ⊆ SPACEM(xi)σ.

Proof. Induction on i.
M(x1) only contains ground terms, therefore NonV ar(M(x1))σ = M(x1)σ. The lemma

hold trivially.
Assume that SPACENonV ar(M(xj))σ ⊆ SPACEM(xj)σ, for all j < i. We show that for

any t ∈ NonV ar(M(xi))σ, t ∈ SPACEM(xi)σ. Therefore any linear combination of terms in
NonV ar(M(xi))σ is also in SPACEM(xi)σ by Lemma C.1. Hence SPACENonV ar(M(xi))σ ⊆
SPACEM(xi)σ. We consider two cases.

Case 1. If t ∈ NonV ar(M(xi−1))σ, then t is in SPACENonV ar(M(xi−1))σ, therefore also in
SPACEM(xi−1)σ by induction hypothesis.

Case 2. Take any t ∈M(xi)−M(xi−1), NonV ar(t)σ = tσ⊕V ar(t)σ. For any variable xj in
V ar(t), j < i. Therefore xjσ ∈ SPACENonV ar(M(xj))σ, where j < i. By induction hypothesis,
xjσ ∈ SPACEM(xj)σ. By Lemma C.2, xjσ ∈ SPACEM(xi)σ. So V ar(t)σ ∈ SPACEM(xi)σ.
We know that tσ ∈ SPACEM(xi)σ. By Lemma C.1, NonV ar(t)σ ∈ SPACEM(xi)σ.

Lemma C.6. σM = σ̂.

Proof. Take any σ ∈ σM, for any xi ∈ domain(σ), xiσ is some term t in SPACEM(xi)σ. By
Lemma C.4, t is also in SPACENonV ar(M(xi))σ. Therefore t ∈ σ̂.

Take any σ ∈ σ̂, for any xi ∈ domain(σ), xiσ is some term t in SPACENonV ar(M(xi))σ. By
Lemma C.5, t is also in SPACEM(xi)σ. Therefore t ∈ σM.

Lemma C.7. σ̂ is the set of all admissible M⊕-substitutions.

Proof. By Lemma C.3, σM is the set of all admissible M⊕-substitutions. By Lemma C.6,
σM = σ̂.

24



D Properties of boolean-unify

Lemma D.1 (Soundness). Let t1 and t2 be two terms without term variables. If boolean-
unify(t1, t2) returns τ , then τ is a Boolean unifier of t1 and t2.

Proof. We prove an invariant by induction, and we will use this invariant to prove this lemma.
Here is the invariant. For each state st in a trace of t1 and t2, if st = Eqs|τ and Eqs is unifiable,
then τ ∪ τ ′ is a Boolean unifier of t1 and t2, where τ ′ is any Boolean unifier of S.

If st is the initial state, the invariant holds trivially.
Assume that the invariant holds for sti = Eqsi|τi. Let τ ′i be any Boolean unifier of Eqsi,

then τ ′i ∪τi is a Boolean unifier of t1 and t2. We apply an inference and get sti+1 = Eqsi+1|τi+1.
We want to show that τ ′i+1 ∪ τi+1 is a Boolean unifier of t1 and t2, where τ ′i+1 is any Boolean
unifier of Eqsi+1. We consider 4 cases:

(1) If the Remove rule is applied, τi+1 = τi and τ ′i+1 = τ ′i . Since τ ′i ∪ τi is a Boolean unifier
of t1 and t2, τ ′i+1 ∪ τi+1 is also a Boolean unifier of t1 and t2.

(2) If the Disappear rule is applied on a term b× t, If for any Boolean unifier τ ′i of t1 and
t2, bτ ′i 6= 0, Si+1 is not unifiable, the invariant holds trivially. Otherwise, τi+1 = τi ∪ {b 7→ 0},
τ ′i = τ ′i+1 ∪ {b 7→ 0}. Since τ ′i ∪ τi is a Boolean unifier of t1 and t2, τ ′i+1 ∪ τi+1 is also a Boolean
unifier of t1 and t2.

(3) If the Duplicater rule is applied on b1 × r and b2 × r. If for any Boolean unifier τ ′i of
t1 and t2, b1τ

′
i 6= 1 or b2τ

′
i 6= 1, Si+1 is not unifiable, the invariant holds trivially. Otherwise,

τi+1 = τi ∪ {b1 7→ 1, b2 7→ 1}, τ ′i = τ ′i+1 ∪ {b1 7→ 1, b2 7→ 1}. Since τ ′i ∪ τi is a Boolean unifier of
t1 and t2, τ ′i+1 ∪ τi+1 is also a Boolean unifier of t1 and t2.

(4) If the Duplicatef rule is applied on b1× f(t) and b2× f(t′). If for any Boolean unifier τ ′i
of t1 and t2, b1τ

′
i 6= 1 or b2τ

′
i 6= 1, Si+1 is not unifiable, the invariant holds trivially. Otherwise,

τi+1 = τi ∪ {b1 7→ 1, b2 7→ 1}, τ ′i = τ ′i+1 ∪ {b1 7→ 1, b2 7→ 1}. Since τ ′i ∪ τi is a Boolean unifier of
t1 and t2, τ ′i+1 ∪ τi+1 is also a Boolean unifier of t1 and t2.

The invariant holds for all states in the trace. In particular, it holds for the final state
stn = ∅|τn. Therefore τn, which is what boolean-unify(t1, t2) returns, is a Boolean unifier of
t1 and t2.

Lemma D.2 (Termination). Let t1 and t2 be two terms without term variables, any trace of
t1 and t2 is finite.

Proof. Each inference decrease the total occurrences of f symbol and constants.
If the Disappear rule is used, an f symbol or a constant disappears.
If the Duplicater rule is used, two duplicate constants are cancelled, which decreases the

total occurrences by at least 2.
If the Duplicatef rule is used, the total occurrences decreases by at least 2.
If the Remove rule is used, two 0’s are removed, the total occurrences decreases by 2.

Lemma D.3 (Completeness). Let t1 and t2 be two terms without term variables. If τ is a
Boolean unifier of t1 and t2, then boolean-unify(t1, t2) returns τ (for some nondeterministic
choices of the inference rules).

Proof. Consider a trace st1, st2, . . . , stn, where st1 = {t1 ⊕ t2
?
= 0}|ε. We show that for any

i, if sti is of the form Eqsi|τi, where Eqsi 6= ∅ and Eqsi is unifiable under some τ ′i , then
we can make an inference to get Eqsi+1|τi+1, where Eqsi+1 is unifiable under some τ ′i+1 and
τi ∪ τ ′i = τi+1 ∪ τ ′i+1.

25



Consider the first equation eq in Eqsi. Suppose that eq is 0
?
= 0, we apply the Remove rule.

Otherwise suppose that eq is of the form b1 × t⊕ t′
?
= 0. We consider 3 cases.

(1) If b1τ
′
i = 0, we apply the Disappear rule. τi+1 = τi ∪ {b1 7→ 0}, τ ′i = τ ′i+1 ∪ {b1 7→ 0},

therefore τi ∪ τ ′i = τi+1 ∪ τ ′i+1.
(2) If b1τ

′
i = 1 and t is a constant r, then we apply the Duplicater rule on b1× r and b2× r,

which is a summand of t′. τi+1 = τi ∪ {b1 7→ 1, b2 7→ 1}, τ ′i = τ ′i+1 ∪ {b1 7→ 1, b2 7→ 1}, therefore
τi ∪ τ ′i = τi+1 ∪ τ ′i+1.

(3) If b1τ
′
i = 1 and t is of the form f(t′′), then we apply the Duplicater rule on b1×f(t′′) and

b2×f(t′′′), which is a summand of t′. τi+1 = τi∪{b1 7→ 1, b2 7→ 1}, τ ′i = τ ′i+1∪{b1 7→ 1, b2 7→ 1},
therefore τi ∪ τ ′i = τi+1 ∪ τ ′i+1.

So τ1 ∪ τ ′1 = τ2 ∪ τ ′2 = . . . = τn ∪ τ ′n.
For the initial state, τ1 = ε, τ ′1 = τ . For the final state τ ′n = ε. Therefore, τn = τ , which is

what boolean-unify(t1, t2) returns.

26



E Properties of annotate-and-saturate

In this appendix, we prove properties of annotate-and-saturate.
Throughout the process of saturating C1

mix, we maintain the following invariant.

Lemma E.1. Let C1
mix = {mt1[{1}; ε],mt2[{2}; ε], . . . ,mtn[{n}; ε]}. For all i, if t[I; τ ] ∈ Ci

mix,
then (⊕{mti|i ∈ I})τ =⊕ t.

Proof. We prove this lemma by induction on i.
When i = 1, this is trivial.
Case 1: Suppose that b1 × t1 ⊕ Γ1[I1; τ1] and b2 × t2 ⊕ Γ2[I2; τ2] are in Ci

mix, we apply the
Combine rule and get Γ1 ⊕ Γ2[I1 ∪ I2; τ1 ∪· τ2 ∪· τ3 ∪· {b1 7→ 1, b2 7→ 1}], where τ3 is a Boolean
unifier of t1 and t2.

By induction hypothesis, (⊕{tmi|i ∈ I1})τ1 =⊕ b1 × t1 ⊕ Γ1, and (⊕{tmi|i ∈ I2})τ2 =⊕
b2 × t2 ⊕ Γ2. So (⊕{tmi|i ∈ I1 ∪ I2})τ =⊕ Γ1 ⊕ Γ2, where τ = τ1 ∪· τ2 ∪· τ3 ∪· {b1 7→ 1, b2 7→ 1}.

Case 2: Suppose that b1 × t1 ⊕ b2 × t2 ⊕ Γ[I; τ1] is in Ci
mix, we apply the Cancel rule and

get Γ[I; τ1 ∪· τ2 ∪· {b1 7→ 1, b2 7→ 1}], where τ2 is a Boolean unifier of t1 and t2.
By induction hypothesis, (⊕{tmi|i ∈ I})τ1 =⊕ b1× t1⊕b2× t2⊕Γ. So (⊕{tmi|i ∈ I})τ = Γ,

where τ = τ1 ∪· τ2 ∪· {b1 7→ 1, b2 7→ 1}.

The following lemma follows directly from Lemma E.1

Lemma E.2 (Soundness). Let Cmix = {mt1,mt2, . . . ,mtn}. If 0[I; τ ] ∈ annotate-and-saturate(Cmix),
then (⊕{mti|i ∈ I})τ = 0.

Proof. According to Lemma E.1, since 0[I; τ ] ∈ Cn
mix, (⊕{mti|i ∈ I})τ = 0.

Let Cmix = {mt1,mt2, . . . ,mtn}. Let BV ar(Cmix) denotes the set of all Boolean variables
in Cmix. We define the following set S. Intuitively S is the set of all possible things that can
occur in Cn

mix. S is finite, therefore the saturation process always terminates.

S = {(⊕{mti|i ∈ I})τ [I; τ ] | I ⊆ {1, 2, . . . , n}, domain(τ) ⊆ BV ar(Cmix)}.

Lemma E.3 (Termination). For any set of mixed terms Cmix, annotate-and-saturate(Cmix)
always terminates.

Proof. After inference step i, S−Ci
mix becomes smaller than S−Ci−1

mix. Since S is a finite set,
the saturation process always terminates.

Definition E.1. Let C1
mix = {mt1[{1}; ε],mt2[{2}; ε], . . . ,mtn[{n}; ε]}. Let I be a set of inte-

gers, τ be a Boolean substitution. Ci
mix is solvable under (I, τ) if Ci

mix containsmti1 [Ii1 ; τi1 ],mti2 [Ii2 ; τi2 ], . . .mtim [Iim ; τim ]
s.t.

(i) Ii1 ∪ Ii2 ∪ . . . ∪ Iim = I, and ∀p, q, p 6= q → Iip ∩ Iiq = ∅.
(ii) There exists some τ ′ s.t. (mti1 ⊕mti2 ⊕ . . .mtim)τ ′ = 0 and τ ′ ∪· τi1 ∪· . . . ∪· τim = τ .

The following lemma is used to prove Lemma E.5

Lemma E.4. For all i, if Ci
mix is solvable under (I, τ), then one of the following must be true

(1) 0[I; τ ] ∈ Ci
mix.

(2) An inference rule is applicable, and Ci+1
mix is also solvable under (I, τ).

27



Proof. Since Ci
mix is solvable under (I, τ), Ci

mix containsmti1 [Ii1 ; τi1 ],mti2 [Ii2 ; τi2 ], . . .mtim [Iim ; τim ]
s.t.

(i) Ii1 ∪ Ii2 ∪ . . . ∪ Iim = I, and ∀p, q, p 6= q → Iip ∩ Iiq = ∅.
(ii) There exists some τ ′ s.t. (mti1 ⊕mti2 ⊕ . . .mtim)τ ′ = 0 and τ ′ ∪· τi1 ∪· . . . ∪· τim = τ .
If 0[I; τ ] 6∈ Ci

mix, pick a maximum summand b× t of ti1 ⊕ ti2 ⊕ . . . tim , there must exist some
other summand b′ × t′ of ti1 ⊕ ti2 ⊕ . . . tim s.t. (b× t)τ ′ =⊕ (b′ × t′)τ ′. We consider two cases:

(1) Suppose that both b × t and b′ × t′ occur in some tij (1 ≤ j ≤ m), so tij = (b × t) ⊕
(b′ × t′ ⊕ t′′) We apply the Cancel rule, and get t′′[Iij ; τi1 ∪· τ ′1], where τ ′1 is a Boolean unifier of

b× t and b′ × t′. Then τ ′ = τ ′1 ∪· τ ′2, for some τ ′2. Now Ci+1
mix contains ti1 [Ii1 ; τi1 ], . . . , t′′[Iij ; τij ∪

· τ ′1], . . . tim [Iim ; τim ] s.t.
(i) Ii1 ∪ Ii2 ∪ . . . ∪ Iim = I, and ∀p, q, p 6= q → Iip ∩ Iiq = ∅.
(ii) (ti1 ⊕ . . .⊕ t′′ ⊕ . . . tim)τ ′2 = 0 and τ ′2 ∪· τi1 ∪· . . . ∪· τ ′1 ∪· . . . ∪· τim = τ .
Therefore, Ci+1

mix is also solvable under (I, τ). b× t and b′ × t′.
(2) Otherwise, suppose that b×t is a summand of tix , and b′×t′ is a summand of tiy (x 6= y).

Suppose that tix = b × t ⊕ t′′ and tiy = b′ × t′ ⊕ t′′′. By applying the Combine rule, we get
t′′⊕ t′′′[Iix ∪· Iiy ; τix ∪· τix ∪· τ ′1], where τ ′1 is a Boolean unifier of b× t and b′× t′. Then τ ′ = τ ′1∪· τ ′2,

for some τ ′2. Now Ci+1
mix contains ti1 [Ii1 ; τi1 ], . . . , t′′ ⊕ t′′′[Iix ∪ Iiy ; τix ∪· τiy ∪· τ ′1], . . . tim [Iim ; τim ]

s.t.
(i) Ii1 ∪ Ii2 ∪ . . . ∪ Iim = I, and ∀p, q, p 6= q → Iip ∩ Iiq = ∅.
(ii) (ti1 ⊕ . . .⊕ t′′ ⊕ t′′′ ⊕ . . . tim)τ ′2 = 0 and τ ′2 ∪· τi1 ∪· . . . ∪· τ ′1 ∪· . . . ∪· τim = τ .
Therefore, Ci+1

mix is also solvable under (I, τ). b× t and b′ × t′.

Lemma E.5 (Completeness). Let Cmix = {mt1,mt2, . . . ,mtn}, and Cn
mix = annotate-and-

saturate(Cmix). If ⊕{mti | i ∈ I}τ = 0, then 0[I; τ ] ∈ Cn
mix.

Proof. If ⊕{mti | i ∈ I}τ = 0, then C1
mix is solvable under (I, τ). According to Lemma E.4, for

all i, either 0[I; τ ] ∈ Ci
mix or we can make an inference s.t. Ci+1

mix is still solvable under (I, τ).
According to Lemma E.3, eventually no inference is possible, therefore 0[I; τ ] ∈ Cn

mix.

28



F Properties of xor-rooted-unify

We prove the following properties about xor-rooted-unify.

Theorem F.1 (Soundness of xor-rooted-unify). Given any ⊕-mapping M, and any set of
pure terms C = {t1, t2, . . . , tn}. If xor-rooted-unify(M,C) returns (M⊕-unifiable, result),
then for any (I, σ) in result, {ti|i ∈ I} is M⊕-unifiable with 0 under σ.

Proof. Let Cmix = {mt1,mt2, . . . ,mtn}. Since Cmix = CγM, mti = tiγ
M (1 ≤ i ≤ n).

By Lemma E.2, if 0[I; τ ] ∈ annotate-and-saturate(Cmix), then (⊕{mti|i ∈ I})τ = 0.
Therefore (⊕{ti|i ∈ I})γMτ = 0, which means that (⊕{ti|i ∈ I})(γM ◦ τ) = 0.

γM ◦ τ ∈ σ̂. By Lemma C.7, γM ◦ τ is an admissible M⊕-substitution.

Theorem F.2 (Termination of xor-rooted-unify). For any ⊕-mapping and any set of pure
terms C, xor-rooted-unify(M,C) always terminates.

Proof. Obviously, remove-term-variables(M,C) terminates. By Lemma E.3, annotate-
and-saturate(Cmix) terminates. Therefore xor-rooted-unify(M,C) terminates.

Theorem F.3 (Completeness of xor-rooted-unify). Given any ⊕-mapping M, and any
set of pure terms C = {t1, t2, . . . , tn}. If {ti|i ∈ I} is M⊕-unifiable with 0 under σ, then
xor-rooted-unify(M,C) returns (M⊕-unifiable, result), where (I, σ) ∈ result.

Proof. {ti|i ∈ I} is M⊕-unifiable with 0 under σ. By Definition 3.6, ⊕{ti|i ∈ I}σ = 0, and
σ is an admissible M⊕-substitution. By Lemma C.7. σ ∈ σ̂, which means that there exits
some Boolean substitution τ s.t. γM ◦ τ = σ. Since Cmix = CγM, mti = tiγ

M (1 ≤ i ≤ n).
Then ⊕{ti|i ∈ I}(γM ◦ τ) = 0, which means that ⊕{mti|i ∈ I}τ = 0. By Lemma E.5,
0[I; τ ] ∈ Cn

mix. Therefore, xor-rooted-unify(M,C) returns (M⊕-unifiable, result), where
(I, σ) ∈ result.

29


	Introduction
	Preliminaries
	Local XOR Unification
	f-rooted Local Unification
	-rooted Local Unification
	Application to Cryptography

	Solving f-rooted Local Unification
	Solving -rooted Local Unification
	Handling Variables
	Applying Inference Rules
	Unifying Two Mixed Terms
	Applying High-Level Inference Rules

	Putting Things Together

	Discussion
	An Algorithm for Checking Mf-substitution
	Properties of f-rooted-unify
	Termination
	Soundness
	Completeness

	Properties of remove-term-variables
	Properties of boolean-unify
	Properties of annotate-and-saturate
	Properties of xor-rooted-unify

