
Analysing and Improving Shard Allocation
Protocols for Sharded Blockchains

Runchao Han∗†, Jiangshan Yu∗¶, Ren Zhang‡
∗Monash University, {runchao.han, jiangshan.yu}@monash.edu

†CSIRO-Data61
‡Nervos Foundation, ren@nervos.org

Abstract— Sharding is considered one of the most promis-
ing approaches to solve the scalability issue of permissionless
blockchains. In a sharding design, participants are split into
groups, called shards, and each shard only executes part of the
workloads. Despite its wide adoption in permissioned systems,
where participants are fixed and known to everyone, transferring
such success to permissionless blockchains is challenging, as it
is difficult to allocate participants to different shards uniformly.
Specifically, in a permissionless network, participants may join
and leave the system at any time, and there can be a considerable
number of Byzantine participants.

This paper focuses on the shard allocation protocols designed
for permissionless networks. We start from formally defining the
shard allocation protocol, including its syntax, correctness prop-
erties, and performance metrics. Then, we apply this framework
to evaluate the shard allocation subprotocols of seven state-of-the-
art sharded blockchains. Our evaluation shows that none of them
is fully correct or achieves satisfactory performance. We attribute
these deficiencies to their redundant security assumptions and
their extreme choices between two performance metrics: self-
balance and operability. We further prove a fundamental trade-
off between these two metrics, and prove that shard allocation
should be non-memoryless in order to parametrise this trade-
off. Non-memorylessness specifies that each shard allocation does
not only rely on the current and the incoming system states,
but also previous system states. Based on these insights, we
propose WORMHOLE, a non-memoryless shard allocation protocol
that minimises security assumptions and allows parametrisation
between self-balance and operability. We formally prove WORM-
HOLE’s correctness, and show that WORMHOLE outperforms
existing shard allocation protocols.

I. INTRODUCTION

Sharding is a common approach to scale distributed systems.
It partitions nodes in a network into some groups, called
shards. Nodes in different shards work concurrently, so the sys-
tem scales horizontally with the increasing number of shards.
Sharding has been widely adopted for scaling permissioned
systems, in which the set of nodes are fixed and predefined,
such as databases [1], file systems [2], and permissioned
blockchains [3].

Due to the success of leveraging sharding protocols to scale
permissioned systems, sharding is regarded as a promising
technique for scaling permissionless blockchains, where any-
one can join and leave the system at any time. However,
adapting sharding protocols in permissionless settings faces

¶ Corresponding author.

Shard 3

Shard 2

Shard 4

Shard 1

Shard 3

Shard 2

Shard 4

Shard 1

sharding

user
churn

Joining
nodes

Leaving
nodes

rebalancing

Shard 3

Shard 2

Shard 4

Shard 1

Moving
nodes

Figure 1: An example of shard allocation. New nodes (in blue)
may join the network and existing nodes (in red) may leave
the network. After a state update, a subset of nodes (in yellow)
may be relocated.

two challenges. First, the focus of traditional sharding pro-
tocols [4]–[8] has been on systems concerning crash faults
where nodes may stop responding, whereas permissionless
blockchains concern Byzantine faults where nodes may behave
arbitrarily. Second, as nodes in permissionless blockchains
may join or leave at any time, sharding protocols need to
dynamically re-balance the number of nodes in different
shards. Figure 1 gives an example of the shard allocation
process. In this example, five nodes are allocated in shard 3
and four of them left the network. Without rebalancing, the
only node in shard 3 will be a single point of failure.

Securely and dynamically allocating nodes into different
shards is the core component of sharded blockchains to
address the above challenges. While existing works on design-
ing [9]–[15] and analysing [16]–[18] sharded permissionless
blockchains studied this core component implicitly, their main
focus has been on cross-shard communication and intra-shard
consensus. A systematic study on this core component, which
we call shard allocation, is still missing.

Contributions. This paper provides the first study on shard

allocation— an overlooked core component for shared per-
missionless blockchains. In particular, we formalise the shard
allocation protocol along with its properties and performance
metrics, evaluate the shard allocation protocols in the existing
leading proposals against the defined criteria, and propose
WORMHOLE— a correct and efficient shard allocation pro-
tocol for permissionless blockchains. Our contributions are
summarised as follows.

1) We provide the first study on formalising the shard
allocation protocol for permissionless blockchains. We
formally define the syntax, correctness properties and
performance metrics for shard allocation. This can be
used as a framework to assist in designing and analysing
permissionless blockchain sharding protocols.

2) Based on our developed framework, we provide an eval-
uation of the extracted shard allocation components of
seven state-of-the-art permissionless sharded blockchains,
including five academic proposals Elastico [9] (CCS’16),
Omniledger [10] (S&P’18), Chainspace [12] (CCS’19),
RapidChain [11] (NDSS’19), and Monoxide [13]
(NSDI’19), and two industry projects Zilliqa [14] and
Ethereum 2.0 [19]. Our results show that none of these
protocols is fully correct or achieves satisfactory perfor-
mance.

3) We observe and prove the impossibility of simultane-
ously achieving optimal self-balance and operability.
The former represents the ability to dynamically re-
balance the number of nodes in different shards; and
the latter represents the system performance w.r.t. the
cost of re-allocating nodes to a different shard. While
this impossibility has been conjectured by the blockchain
community and informally studied [10], we formally
prove it’s impossible to achieve optimal values on both,
and reveal the trade-off between them. Our evaluated
shard allocation protocols fall into extreme values on
either self-balance or operability, which may lead to
security or performance issues.

4) We formally prove that to parametrise the trade-
off between self-balance and operability, the shard
allocation protocol should be non-memoryless. Non-
memorylessness specifies that each shard allocation does
not only rely on the current and the incoming system
states, but also previous system states. This opens a
new in-between design space and makes the system
configurable for different application scenarios.

5) We propose WORMHOLE, a correct and efficient
shard allocation protocol for permissionless sharded
blockchains. WORMHOLE relies on a randomness beacon
and lightweight cryptographic primitives such as Verifi-
able Random Functions (VRFs), achieves all correctness
properties and introduces negligible communication over-
head. In addition, by being non-memoryless, WORMHOLE
supports parametrisation of the trade-off between self-
balance and operability.

Scope. This paper only focuses on the shard allocation

Table I: Summary of notations.

Symbol Description
stt System state at round t
m Number of shards
nt Number of nodes in the network at round t
ntk Number of nodes in shard k at round t
αt, βt Average percentage of nodes joining and leaving the

system at round t, respectively. (βt ∈ [0, 1])
pp Public parameter
ski, pki Secret key and public key of node i
πi,stt,k Proof of assigning node i to shard k at round t
γ Probability of a node to stay at its shard after

UpdateShard(·) (γ ∈ [0, 1))

protocol. Sharded blockchains usually combine shard allo-
cation with other protocols such as consensus and cross-
shard communication. When analysing shard allocation, we
assume other protocols in sharded blockchains are secure. We
consider analysis of integrating shard allocation into sharded
blockchains as future work.

Paper organisation. Section II defines syntax, correct-
ness and performance metrics of shard allocation protocols.
Section III outlines the evaluation results on existing shard
allocation protocols, leading to our insights in Section IV.
Section V describes our shard allocation protocol WORM-
HOLE. Section VI presents related work before we conclude
in Section VII. Appendix A provides details of our evaluated
shard allocation protocols.

II. FORMALISING SHARD ALLOCATION

A. Definition

System setting and notations. We consider a permissionless
system with networked nodes. The system executes in rounds
and stt denotes the system state at round t. We assume a
total order on the system states. At any state, each node only
belongs to a single shard. Let k ∈ [1,m] be the unique identity
of a shard and ntk be the number of nodes in shard k at round
t. The total number of nodes in the system at round t is nt =∑m
k=1 n

t
k. Each node i has a pair of secret key ski and public

key pki, and is identified by its public key in the system.
We consider user churn [20]: existing nodes may leave and
new nodes may join the system at any time. Let αt and βt
be the average percentage of nodes joining and leaving the
network at round t, respectively, where β ≤ 1. That is, for
two consecutive states stt and stt+1, nt+1 = (1 +αt−βt)nt.
Let F (in) → out denote the assignment of the output of
F (in) to out. Let MSB(z, str) and LSB(z, str) be the z most
significant bits and least significant bits of str, respectively.
Table I summarises notations in this paper.

Syntax. We formally define shard allocation as follows.

Definition 1 (shard allocation). A shard allocation protocol
SA is a tuple of polynomial time algorithms

SA = (Setup, JoinShard,VerifyShard,UpdateShard)

SA.Setup(λ)→ (pp) : On input the security parameter λ,
outputs the public parameter pp.

2

SA.JoinShard(ski, pp, stt)→ (k, πi,stt,k) : On input a secret
key ski, the public parameter pp and state stt, outputs the
ID k of the shard assigned for node i, the proof πi,stt,k
of assigning i to k at stt.

SA.UpdateShard(ski, pp, stt, k, πi,stt,k, stt+1)→ (k′, πi,stt+1,k′)
: On input a secret key ski, the public parameter pp,
state stt, the shard index k, proof πi,stt,k and the next
state stt+1, outputs the identity k′ of the newly assigned
shard for i, a proof of shard assignment πi,stt+1,k′ .

SA.VerifyShard(pp, pki, stt, k, πi,stt,k)→ 0 or 1 :
Deterministic. On input the public parameter pp,
i’s public key pki, a system state stt, the shard index
k and a proof of shard assignment πi,stt,k, outputs 0
(false) or 1 (true).

When node i joins the system at state stt, node i is
allocated to a shard according to the output of executing
SA.JoinShard(·). It updates its shard allocation when the
state changes from st to st′ by executing SA.UpdateShard(·).
Given a shard k, public key pki and a proof πi,stt,k, anyone
can execute SA.VerifyShard to verify whether node i is
allocated into shard k at state stt. Algorithm 1 describes the
typical process of shard allocation.

Algorithm 1: The shard allocation process for node i.
// Join the system at state stt

(kt, πi,stt,kt)← SA.JoinShard(ski, pp, stt)
// Assign last state and shard

stnow, know, πnow ← stt, kt, πi,stt,kt
repeat

Wait for a new state st∗
// Update shard allocation

(k∗, πi,st∗,k∗)←
SA.UpdateShard(ski, pp, stnow, know, πi,stnow,knowst∗)
// Reassign last state and shard

stnow, know, πnow ← st∗, k∗, πi,st∗,k∗
until node i leaves the system

B. Correctness

We consider three correctness properties for shard alloca-
tion protocols, namely liveness, allocation-randomness, and
unbiasibility. We additionally consider allocation-privacy as
an optional property.
Liveness. A shard allocation protocol is live when nodes are
able to make progress in updating their shard membership.
This relies on the liveness of the underlying system, i.e., the
underlying system should always make progress in updating
the system state. We adapt the liveness definition by Garay et
al. [21].

Definition 2 (Liveness). Parametrised by a growth factor
τ ∈ R>0 and s ∈ N>0. shard allocation SA satisfies (τ, s)-
liveness iff there are at least bτ ·sc new states for any s rounds.

Allocation-randomness. To remain correct, each blockchain
assumes a certain threshold of Byzantine nodes (or power)

...

Figure 2: Update-randomness. After executing
SA.UpdateShard(·), the probability that a node stays
in its shard (say shard 1) is γ, and the probability of moving
to each other shard is 1−γ

m−1 .

in the system [22]. If a large portion of Byzantine nodes is
allocated into the same shard, the safety or liveness of this
shard may be broken. To avoid this from happening, each new
node should be allocated into a shard randomly [9], [10], [14].
We consider two parts of allocation-randomness, namely join-
randomness and update-randomness. Join-randomness speci-
fies that the newly joined nodes join each shard with equal
probability. Update-randomness specifies the probability dis-
tribution of existing nodes’ shard allocation upon new system
states. We formally define them as follows.

Definition 3 (Join-randomness). A shard allocation protocol
SA with m shards satisfies join-randomness iff for any secret
key ski, public parameter pp and state stt, the probability of
node i joining a shard k is

Pr

[
k = k′

(k′, πi,stt,k′)←
SA.JoinShard(ski, pp, stt)

]
=

1

m
± ε

where k, k′ ∈ [1,m], and ε is a negligible value.

For each update of the system state, the shard allocation
of existing nodes may need to be updated to re-balance the
number of nodes in different shards. However, when a node
moves from one shard to the other, it needs to perform several
operations including identifying peers in the new shard and
synchronise the knowledge with the new shard. These op-
erations introduce significant overhead and may dramatically
decrease the performance of the protocol [10], [23]–[25]. Thus,
only a small subset of existing nodes should be relocated for
each state update. During a state update, we consider that
an existing node stays in the same shard with probability γ.
Similar to the concern discussed in the join-randomness, we
define update-randomness as follows.

Definition 4 (Update-randomness). A shard allocation proto-
col SA with m shards satisfies update-randomness iff there
exists γ ∈ [0, 1) such that for any k ∈ [1,m], secret key ski
and public parameter pp, the probability of node i updates its
shard from k at state stt to k′′ at state stt+1 is

Pr

[
k′′ = k′

(k′, πi,stt+1,k′)←
SA.UpdateShard(ski, pp, stt, k, πi,stt,k, stt+1)

]
=

{
γ ± ε if k′ = k
1−γ
m−1 ± ε otherwise

3

where k′, k′′ ∈ [1,m], and ε is a negligible value.

When γ = 1
m , SA achieves optimal update-randomness.

Figure 2 represents an intuition behind the definition.

Definition 5 (Allocation-randomness). A shard allocation
protocol satisfies allocation-randomness if it satisfies join-
randomness and update-randomness.

Unbiasibility. The unbiasibility represents the ability of the
system preventing a node from manipulating the probability of
allocating it to a shard. While allocation-randomness defines
the probability distribution of shard allocation, unbiasibility
considers the possibility of Byzantine nodes manipulating the
protocol.

Definition 6 (Unbiasibility). A shard allocation protocol SA
satisfies unbiasibility iff given a system state, no node can
manipulate the probability distribution of the resulting shard
of SA.JoinShard(·) or SA.UpdateShard(·), except with neg-
ligible probability.

Allocation-privacy. We define allocation-privacy as an op-
tional property to protect the output of shard allocation for a
node before the node reveals the associated proofs. Allocation-
privacy may prevent certain attacks from a Byzantine node on
a target node or shard. Allocation-privacy may sacrifice a shard
allocation protocol’s performance, as a dedicated protocol for
finding peers of the same shard may be required [9], [14].

Definition 7 (Join-privacy). A shard allocation protocol SA
with m shards provides join-privacy iff for any secret key ski,
public parameter pp, and state stt, without the knowledge of
πi,stt,k and ski, the probability of making a correct guess k′

on k is

Pr

[
k′ = k

(k, πi,stt,k)←
SA.JoinShard(ski, pp, stt)

]
=

1

m
± ε

where k, k′ ∈ [1,m], and ε is a negligible value.

Definition 8 (Update-privacy). A shard allocation protocol
SA with m shards provides update-privacy iff for some γ ∈
[0, 1), any k ∈ [1,m], secret key ski, public parameter pp, and
two consecutive states stt and stt+1, without the knowledge of
πi,stt+1,k′ and ski, the probability of making a correct guess
k′′ on k′ is

Pr

[
k′′ = k′

(k′, πi,stt+1,k′)←
SA.UpdateShard(ski, pp, stt, k, πi,stt,k, stt+1)

]
=

{
γ ± ε if k′′ = k
1−γ
m−1 ± ε otherwise

where k′, k′′ ∈ [1,m], and ε is a negligible value.

Definition 9 (Allocation-privacy). A shard allocation protocol
SA satisfies allocation-privacy iff it satisfies both join-privacy
and update-privacy.

C. Performance metrics

We consider four performance metrics, namely communica-
tion complexity, Sybil cost, self-balance, and operability.

Communication complexity. It is the amount of commu-
nication required to complete a protocol [26]. For a shard
allocation protocol, we consider the communication complexity
of a node joining a shard and recomputing its shard when the
system state is updated. This does not include communication
of synchronising shards.
Sybil cost. shard allocation protocols should prevent Sybil
attacks [27] where an adversary pretends to be numerous nodes
and spams the network. To mitigate Sybil attacks, joining the
system should have a non-negligible cost. The cost can be
of diverse types, such as computing power introduced by the
Proof-of-Work [28] and cryptocurrency deposit introduced by
Proof-of-Stake [29].
Self-balance. To maximise the fault tolerance level of shards,
nodes should be uniformly distributed among shards. Oth-
erwise, the fault tolerance threshold of shards with fewer
nodes and the performance of shards with more nodes may be
reduced [13], [30]. Due to user churn and lack of global view,
reaching global load balance is impossible for permissionless
networks. Instead, the randomised self-balance approach —
where a subset of nodes move to other shards randomly —
provides the optimal load balance guarantee. We quantify the
self-balance as the ability that a shard allocation protocol
recovers from load imbalance.

Definition 10 (Self-balance). A shard allocation protocol with
m shards is ω-self-balanced iff for the largest possible ω ∈
[0, 1], we have

ω ≤ 1−
|nt+1
i − nt+1

j |
nt

, ∀i, j ∈ [1,m]

When ω = 1, the shard allocation protocol achieves optimal
self-balance, where the system can balance itself within one
round, regardless of the number of nodes joining or leaving
the system during the last round.
Operability. To balance the number of nodes in different
shards, in each round the shard allocation protocol relocates
some nodes from one shard to the other. When a node moves
to another shard, it should synchronise with the blockchain
of that shard, which introduces significant overhead and can
make the node unavailable for a long time[23]–[25]. The
operability was introduced to measure the cost of relocating
nodes [10]. We refine this notion by defining the operability Γ
as the probability of existing nodes staying at the same shard
when the system state is updated. Following our definition on
update-randomness (Definition 4), if a shard allocation proto-
col satisfies update-randomness with γ, then its operability is
Γ = γ, i.e., γ-operable.

When Γ = 1, the shard allocation protocol is most operable,
i.e., nodes will never move after joining the network. However,
in this case shards cannot keep balance in the presence of
user churn. Later in §IV, we will formally prove a trade-off
between self-balance and operability that, no correct shard
allocation protocol can achieve both optimal self-balance of 1
and optimal operability of 1 simultaneously, and discuss how
to parametrise this trade-off.

4

III. EVALUATING EXISTING SHARD ALLOCATION
PROTOCOLS

In this section, we evaluate the shard allocation protocols
of seven state-of-the-art sharded blockchains. Our evaluation
(summarised in Table II) shows that none of these shard allo-
cation protocols achieves all correctness properties, and some
of the protocols have high complexity and/or low operability.

A. Evaluation criteria

For our evaluation, we assume other components of these
sharded blockchains are fully correct. Our evaluation considers
three aspects, namely system models, correctness properties,
and performance metrics. We consider the standard system
model common to all sharded blockchains [9], [10], [14],
[22]. Section II-B and II-C define correctness properties and
performance metrics, respectively.

The system model considers three aspects, namely network
models, trust assumptions, and fault tolerance capacity. Net-
work model describes the timing guarantee of message deliver-
ies. There are three common types of network models, namely
synchronous, partially synchronous, and asynchronous [31].
A network is synchronous if messages will be delivered
within a known finite time-bound; is partially synchronous if
messages will be delivered within an unknown finite time-
bound; or is asynchronous if messages will be delivered
eventually but without a finite time-bound. Trust assumption
indicates the trustworthy components that the protocol should
assume to remain correct. Fault tolerance capacity indicates
the percentage of voting power controlled by Byzantine nodes
that the system tolerates. If each node has one vote in the
blockchain protocol, the voting power is quantified by the
number of nodes. If a node’s power is determined by its
computing power (e.g., in PoW-based consensus), the voting
power is quantified by the mining power of nodes. If a node’s
power is determined by its balance or deposit (e.g., Proof-of-
Stake-based consensus [29]), the voting power is quantified
by the stake of nodes.

B. Overview of evaluated proposals

We choose seven state-of-the-art sharded blockchains, in-
cluding five academic proposals Elastico [9], Omniledger [10],
Chainspace [12], RapidChain [11], and Monoxide [13], and
two industry projects Zilliqa [14] and Ethereum 2.0 (ETH
2.0) [19]. We briefly describe their shard allocation compo-
nents and defer details to Appendix A.

Elastico, Omniledger, RapidChain, and Zilliqa rely on dis-
tributed randomness generation (DRG) protocols for shard
allocation. Elstico [9] is the first protocol that introduces the
idea of blockchain sharding. In Elastico, nodes in a special
shard called final committee jointly run a commit-and-reveal
DRG protocol [32] to produce a random output, then each
node locally solves a PoW puzzle with this random output as
input. Each node will be assigned to a shard according to the
least significant bits (LSBs) of its PoW solution. Zilliqa [14]
is built upon Elastico, with several optimisations. In particular,
Zilliqa uses the hash of the last block as the randomness,

rather than running a DRG protocol. Omniledger [10] uses
RandHound as its DRG protocol to generate randomness.
RandHound has a better communication complexity than the
one [32] used by Elastico. Omniledger additionally relies on a
trusted identity authority to allocate nodes to different shards.
The identity authority knows all nodes in the network. Given
the latest randomness, the identity authority samples a subset
of pending nodes that are allowed to join the system and
shuffles all existing nodes in the network to different shards.

In RapidChain [11], each node should solve an offline PoW
puzzle before joining the system. To prevent pre-computing
PoW puzzles, RapidChain generates randomness periodically
using a DRG protocol based on Feldman VSS [33], and uses
the random output as a part of the input of PoW puzzles.
RapidChain uses a special shard called reference committee to
allocate nodes into different shards. The reference committee
assigns nodes into different shards using the Commensal
Cuckoo rule [34], which assures the load balance of shards
under churn. Commensal Cuckoo maps each node to a real-
number ID on the interval [0, 1). When a new node joins the
system with generated real number x, the reference committee
moves each of the nodes with ID close to x to a random shard.
Chainspace [12] is a sharded smart contract system. Nodes
can apply to move to other shards at any time, and whether
to approve such requests depends on the voting results of
nodes. The voting works over a special smart contract called
ManageShards, which is assumed secure by Chainspace.
Monoxide [13] and Ethereum 2.0 [15] simply allocate nodes
into different shards according to prefixes of their addresses.

C. System model

Network model. Elastico and RapidChain assume syn-
chronous network models, as they rely on DRG protocols
[32], [33]. Omniledger assumes partially synchronous net-
works. In Omniledger, nodes start from running RandHound,
which assumes partially synchronous networks. If RandHound
fails for five times, nodes will instead run the asynchronous
DRG [35]. All other proposals assume asynchronous networks.
Chainspace assigns nodes into different shards using transac-
tions on smart contracts, and transactions are committed to the
ledger asynchronously. Monoxide and ETH 2.0 assign nodes
into different shards simply by most significant bits (MSBs)
of addresses. Zilliqa replaces the DRG by using block hashes,
so no longer requires synchronous networks.

Trust assumption. Omniledger and Chainspace rely on
a trusted identity blockchain and smart contracts for shard
allocation, respectively. Other protocols assume no trustworthy
components.

Fault tolerance capacity. Elastico and Omniledger achieve
the fault tolerance level of 1

3 , which is inherited from their
DRG protocols. RapidChain cannot tolerate any faults, as
one faulty node can make the Feldman VSS-based DRG
lose liveness. Chainspace, Monoxide, Zilliqa, and ETH 2.0
can tolerate any fraction of adversaries. For Monoxide and
ETH 2.0, computing shards is offline. Chainspace assumes

5

Table II: Evaluation of seven permissionless shard allocation protocols. Red indicates strong assumptions, unsatisfied correctness
properties, and relatively poor performance. Yellow indicates unspecified assumptions, partly satisfied correctness properties, and
unspecified performance metrics. Green indicates weak assumptions, satisfied correctness properties, and better performance.

System model Correctness Performance metrics

State update
Netw

or
k

mod
el

Tru
st

ass
umptio

n

Fau
lt

tol
era

nce

Public
ve

rifi
ab

ilit
y

Live
ness

Allo
ca

tio
n-ra

nd.

Unbias
ibilit

y

Priv
ac

yo

Jo
in

co
mm. co

mpl.

Update
co

mm. co
mpl.

Syb
il

co
st

Self
-bala

nce

Opera
bilit

y

Elastico New block Sync. - 1
3

3 3 3 7* 3 O(nf) O(nf) Comp. 1 1
m

Omniledger Identity
authority

Part. sync. Identity
authority

1
3

3 3 3 3 7 O(1) O(n) ∼ O(n3) - 1 1
m

RapidChain Nodes
joining

Sync. - 0 7 3 3 3 7 O(n2) O(n2) Comp. 1− βt max(1− καtn, 0)

Chainspace - Async. Smart
contracts

1 3 3 7 7 7 - O(1) - 1− βt -

Monoxide - Async. - 1 3 3 7 3 7 0 0 No** 1− βt 1

Zilliqa New block Async. - 1 3 3 3 7* 3 0 0 Comp. 1 1
m

ETH 2.0 - Async. - 1 3 3 7 3 7 0 0 No** 1− βt 1

WORMHOLE (Our
proposal in §V)

New rand. Async. Rand.
Beacon

1 3 3 3 3 3 0 0 Comp. 1− βt + βt
2op

1− m−1
m·2op

o Optional. * Protected by PoW puzzles. ** Protected by Sybil-resistant consensus protocols.

trustworthy smart contracts. For Zilliqa, we assume blocks are
produced correctly and shard computation is offline.

D. Correctness

Public verifiability. All of these shard allocation protocols
achieve public verifiability except for RapidChain. Rapid-
Chain’s shard allocation is not publicly verifiable, as the
deployed Commensal Cuckoo protocol is not publicly verifi-
able. Elastico and Zilliqa achieve public verifiability by using
PoW puzzles; Omniledger achieves public verifiability as the
identity blockchain is operated publicly; Chainspace achieves
public verifiability using smart contracts; Monoxide and ETH
2.0 achieve public verifiability as they simply use MSBs of
addresses to shard nodes.
Liveness. As papers describing these sharded blockchains do
not specify parameters, we cannot determine the actual τ and s
for their liveness. Thus, we consider a shard allocation protocol
does not satisfy liveness when there exists an attack that can
stop the protocol from producing new system states. All shard
allocation protocols satisfy liveness except for Omniledger.
The leader election of RandHound may lose liveness in an
asynchronous network. In asynchronous networks, two subsets
of nodes A and B may agree on two different smallest tickets
and nominate two different leaders a and b. As Omniledger
chooses safety over liveness, nodes in A will discard all
messages from b, and vice versa. This leads to a scenario that
neither RandHound of A nor B will terminate. In addition, the
Collective Signing (CoSi) protocol [36] used in RandHound
may lose liveness under a single Byzantine node [37].
Allocation-randomness. Elastico, Omniledger, RapidChain,
and Zilliqa satisfy allocation-randomness, as for each new
round all nodes move to other shards randomly. Chainspace
satisfies neither join-randomness nor update-randomness, as
nodes can choose which shard to join. Monoxide and ETH 2.0
also satisfy neither of them, as nodes determine their shards
using prefixes of addresses and never move among shards.

Unbiasibility. Elastico and Zilliqa do not fully achieve
unbiasibility. Compared to the PoW puzzles in Bitcoin-like
systems, the PoW puzzles in Elastico and Zilliqa are relatively
easy to solve and each node in Elastico and Zilliqa solves the
PoW puzzle at least once within each round. This allows nodes
to solve multiple puzzles within a round to be allocated to a
preferred shard. Chainspace does not achieve unbiasibility, as
it does not satisfy allocation-randomness and nodes are free to
choose shards. Omniledger, RapidChain, Monoxide and ETH
2.0 satisfy unbiasibility.
Allocation-privacy. Only Elastico and Zilliqa satisfy
allocation-privacy. Given a new random number output, each
node should find a valid PoW solution, which is probabilistic.
Thus, without revealing the PoW solution, other nodes cannot
know which shard a node belongs to. Therefore, Elastico
and Zilliqa require an extra peer finding step. Elastico and
Zilliqa call this step “overlay setup”, and a special shard called
“directory committee” is responsible for helping nodes to
find their peers. Omniledger, RapidChain, and Chainspace do
not satisfy allocation-privacy as memberships can be queried
at the identity blockchain, the reference committee and the
ManageShards smart contract, respectively. Monoxide and
ETH 2.0 do not satisfy allocation-privacy, as nodes determine
their shards using their addresses, which are publicly known.

E. Performance

Communication complexity. The communication complexity
of Elastico’s JoinShard(·) and UpdateShard(·) is O(nf),
where n and f are the number of nodes and faulty nodes in the
network, respectively. In JoinShard(·) and UpdateShard(·),
the final committee runs the DRG protocol to produce a
random output, then each node locally finds a valid PoW
solution with the random output as input. The DRG protocol is
bottlenecked by the vector consensus [38], whose communica-
tion complexity is O(nf). Ideally, the final committee consists
of n

m nodes, so the communication complexity of JoinShard(·)

6

and UpdateShard(·) is O(nm
f
m) = O(nm

f
m) = O(nf) (m

is constant). The communication complexity of Omniledger’s
JoinShard(·) and UpdateShard(·) is O(1) and O(n) ∼ O(n3),
respectively. In Omniledger, a node communicates with the
identity authority when joining shards, and runs a DRG
protocol when updating shards. The best case of Omniledger’s
UpdateShard(·) is that a leader is elected with a VRF sortition,
then follows a successful run of RandHound, whose communi-
cation complexity is O(n). The worst case is that, after failing
leader elections five times, nodes have to run the asynchronous
DRG [35], whose communication complexity is O(n3). The
communication complexity of RapidChain’s JoinShard(·) and
UpdateShard(·) is O(n2). This is from Feldman VSS, which
has the communication complexity of O(nm

2) = O(n2) [33].
With Monoxide and Zilliqa, to join the system or update its
allocated shard, a node only needs to solve a PoW puzzle
offline, therefore there is no communication cost.

Sybil cost. The Sybil cost of Elastico, RapidChain, and
Zilliqa is performing computational work to solve a PoW
puzzle for joining a shard. Monoxide and ETH 2.0 do not
aim at addressing Sybil attacks within the shard allocation
component. Instead, they address Sybil attacks using Sybil-
resistant consensus protocols. Omniledger relies on the identity
authority to issue Sybil-resistant memberships but does not
provide details on how to issue them. Similarly, Chainspace
also does not provide details on how to issue memberships.

Self-balance. The self-balance of Elastico, Omniledger,
Monoxide, Zilliqa and ETH 2.0 is 1. For Elastico, Omniledger,
and Zilliqa, all nodes are shuffled after each round. The self-
balance of RapidChain, Chainspace, Monoxide and ETH 2.0
is 1− βt. When Γ = 1, no nodes will newly join the system,
and no node will move to other shards. Thus, self-balance is
n−βtn
n = 1− βt.

Operability. The operability of Elastico, Omniledger and
Zilliqa are 1

m , as all nodes are forced to change their
shards for each new round. The operability of RapidChain is
max(1− καtn, 0), where κ ∈ [0, 1] is the size of the interval
in which nodes should move to other shards, and αt is the
percentage of nodes joining the network at round t. Consider
there are αtn nodes joining the network. Each newly joined
node causes the reallocation of κn other nodes. The operability
then becomes 1− αtn·κn

n = 1−καtn. However, in reality the
operability cannot be smaller than 0. Thus, the operability
is max(1− καtn, 0). We cannot determine the operability of
Chainspace, as Chainspace does not specify how many nodes
can propose to change their shards. Monoxide and ETH 2.0
have the operability of 1, as nodes in Monoxide and ETH 2.0
never move to other shards.

IV. OBSERVATION AND INSIGHTS

We observe from Table II that the evaluated shard allocation
protocols cannot simultaneously achieve optimal self-balance
and operability. In fact, the operability is either 1 or 1

m
(except for RapidChain), and self-balance is either 1 − βt or
1, where value “1” is the optimal value. We formally analyse

this observation, and prove that it is impossible to achieve
optimal operability and self-balance simultaneously. We then
observe a property, called non-memoryless, that is necessary
for parametrising the trade-off between operability and self-
balance.

Impossibility. Intuitively, optimal self-balance requires all
nodes to be relocated at each new state, so that the number
of nodes can be distributed evenly into different shards.
Meanwhile, optimal operability requires all nodes to stay
within the same shard across upon a new state, as this saves
the cost of relocating nodes. We study their relation and
prove that a correct shard allocation protocol cannot achieve
both optimal self-balance and operability. We first analyse the
relationship between self-balance and γ (per Definition 4).
Then we show that unless βt = 0, i.e., no node leaves
the system, optimal self-balance and operability cannot be
achieved simultaneously.

Lemma 1. If a correct shard allocation protocol SA with m
shards satisfies update-randomness with γ, the self-balance ω
of SA is

ω = 1−
∣∣∣∣ (γm− 1)βt

m− 1

∣∣∣∣
where βt is the percentage of nodes leaving the network at
round t.

Proof. Let nt be the number of nodes in the system at round
t. According to Definition 10, for all k, the number ntk of
nodes in shard k at round t is nt

m . Assuming there are βtnt

nodes leaving the network at round t. Let ∆ntk be the number
of leaving nodes in shard k ∈ [1,m] at round t, we have∑m
k=1 ∆ntk = βtn

t. Upon the next system state stt+1, each
node executes SA.UpdateShard(·), and its resulting shard
complies with the probability distribution in Definition 4. After
executing SA.UpdateShard(·), there are some nodes in shard
k moving to other shards, and there are some nodes from other
shards moving to shard k as well.

By the definition of operability, there are γ(ntk − ∆ntk)
nodes in shard k that do not move to other shards. There are

(1− βt)nt − (ntk −∆ntk)

nodes that do not belong to shard k. By Definition 4, there
are

1− γ
m− 1

[(1− βt)nt − (ntk −∆ntk)]

nodes moving to shard k. Thus, the number nt+1
k of nodes in

shard k at round t+ 1 is

nt+1
k = γ(ntk −∆ntk) +

1− γ
m− 1

[(1− βt)nt − (ntk −∆ntk)]

(1)

=
γm− 1

m− 1
(ntk −∆ntk) +

(1− γ)(1− βt)
m− 1

nt (2)

7

By Definition 10, to find the largest ω, we should find the

largest
|nt+1

i −nt+1
j |

n , which can be calculated as

|nt+1
i − nt+1

j |
nt

=
|γm−1m−1 (nti −∆nti)−

γm−1
m−1 (ntj −∆ntj)|

nt
(3)

=
|γm−1m−1 (∆nti −∆ntj)|

nt
(4)

When (∆nti − ∆ntj) is maximal,
|nt+1

i −nt+1
j |

nt is maximal,
and ω is also maximal. As there are βtnt nodes leaving the
network in total, the maximal value of (∆nti −∆ntj) is βtnt.
When ∆nti −∆ntj = βtn

t,

ω = 1−
|nt+1
i − nt+1

j |
nt

(5)

= 1−
|γm−1m−1 (∆nti −∆ntj)|

nt
(6)

= 1−
|γm−1m−1 βtn

t|
nt

= 1−
∣∣∣∣ (γm− 1)βt

m− 1

∣∣∣∣ (7)

0.0 0.2 0.4 0.6 0.8 1.0
Operability

0.9995

0.9996

0.9997

0.9998

0.9999

1.0000

S
el

f-b
al

an
ce

Optimal, (1, 1)

γ=1, (1, 1− βt)

1e−6+1

γ= 1
m , (1m , 1)

γ=0, (0, 1− βt
m−1)

Figure 3: Relationship between operability and self-balance.
We pick m = 1000 and βt = 0.0005 as an example.

Figure 3 visualises the relationship between self-balance
and operability, according to Lemma 1. The line never reaches
the point (1, 1), indicating that SA can never achieve both
optimal self-balance and optimal operability. In addition, the
self-balance decreases to zero then increases with operability
increasing. When γ = 1

m , self-balance becomes 1, i.e., opti-
mal. With γ smaller than 1

m , (γm−1)βt

m−1 becomes less than zero
and keeps decreasing, so its absolute value keeps increasing.
When γ = 0, self-balance becomes 1− βt

m−1 . This is because
when γ = 0, all nodes are mandatory to change their shards.
As shard k has fewer shards, during SA.UpdateShard(·) it
loses fewer nodes but receives more nodes from other shards.

Theorem 1. Let βt be the percentage of nodes leaving the
network at round t. It is impossible for a correct shard

allocation protocol SA with m shards to achieve optimal self-
balance and operability simultaneously for any βt 6= 0 and
m > 1.

Proof. We prove this by contradiction. Assuming self-balance
ω = 1 and operability γ = 1. According to Lemma 1,
ω = 1 only when either βt = 0 or γm = 1. As γ = 1
and m > 1, γm > 1. Thus, SA can achieve ω = 1 and γ = 1
simultaneously only when βt = 0. However, βt > 0, which
leads to a contradiction.

Parameterising self-balance and operability. As shown in
Figure 3, (1, 1 − βt) and (1

m , 1) are two extreme points on
the line of relationship between self-balance and operability.
shard allocation protocols lying at these two points are im-
practical. However, none of the evaluated protocols allows the
flexibility of parametrising the trade-off between self-balance
and operability. We observe that, to parametrise self-balance
and operability, sharding protocols should be non-memoryless.
In signal processing, a system is said to be memoryless if
the output signal at each time depends only on the input at
that time [39]. On the contrary, non-memoryless indicates the
output does not only depend on the current input, but also
some previous inputs.

Definition 11 (Non-memoryless). We say a shard allocation
protocol SA is non-memoryless iff for any secret key ski,
public parameter pp, and shard k, the output of

SA.UpdateShard(ski, pp, stt, k, πi,stt,k, stt+1)

depends on system states earlier than stt.

As both self-balance and operability are related to the
probability γ (see Definition 4) of nodes staying at the same
shard, to be able to parametrise self-balance and operability, a
shard allocation protocol should have its memory on the shard
allocation in the previous states.

Theorem 2. If a correct shard allocation protocol SA is ω-
self-balanced and γ-operable where ω ∈ (0, 1− βt) and γ ∈
(1
m , 1), then SA is non-memoryless.

Proof. We prove this by contradiction. As-
suming SA is memoryless, i.e., the output of
SA.UpdateShard(ski, pp, stt, k, πi,stt,k, stt+1) only depends
on stt and stt+1. This means there exists no δ ≥ 1 such that
πi,stt,k involves any information of stt−δ .

When γ ∈ (1
m , 1), the distribution of the result-

ing shard of SA.UpdateShard(·) is non-uniform, given
the update-randomness property. In this case, executing
SA.UpdateShard(·) requires the knowledge of k — index of
the shard that i locates at state stt. Thus, πi,stt+1,k′ — one of
the output of SA.UpdateShard(·) — should enable verifiers
to verify node i is at shard k at state stt.

“Verify node i is at shard k at state stt” is achieved by
verifying πi,stt,k. This means πi,stt+1,k′ depends on stt and
πi,stt,k. Similarly, πi,stt,k depends on stt−1 and πi,stt−1,k, and
πi,stt−1,k depends on stt−2 and πi,stt−2,k. Recursively, πi,stt,k

8

depends on all historical system states. Thus, if the assumption
holds, then this contradicts update-randomness.

Remark 1. Note that when γ = 1
m or 1, SA.UpdateShard(·)

does not need to depend on any prior system state.
When γ = 1

m , the distribution of the resulting shard of
SA.UpdateShard(·) is uniform, so SA.UpdateShard(·) can
just assign nodes randomly according to the incoming system
state. When γ = 1, the resulting shard of SA.UpdateShard(·)
is certain, and SA.UpdateShard(·) does not need to depend
on any system state. All of our evaluated shard allocation
protocols choose γ = 1

m or 1, except for RapidChain using
Commensal Cuckoo and Chainspace allowing nodes to choose
shards upon requests.

V. WORMHOLE— SHARD ALLOCATION FROM
RANDOMNESS BEACON

Based on the gained insights, we propose WORMHOLE, a
correct and efficient permissionless shard allocation protocol
that supports parametrisation of self-balance and operability.
WORMHOLE only relies on a randomness beacon (e.g. [40]–
[43]) and a verifiable random function (e.g. [44]–[46].

For a fairer comparison, we also evaluate Distributed Ran-
domness Generation (DRG)-based shard allocation protocols
while replacing DRG protocols with an external randomness
beacon. The evaluation shows that DRG is the major source of
strong network and fault tolerance assumptions and introduces
significant communication overhead. However, even with a
randomness beacon, these DRG-based shard allocation pro-
tocols still suffer from some problems they originally have,
especially the poor operability.

A. Primitives

WORMHOLE relies on verifiable random functions (VRFs)
and randomness beacon, defined as follows.
Verifiable random functions. VRF [44] is a public-key
version of the cryptographic hash function. In addition to the
input string, VRF also requires a pair of secret and public keys.
Given an input string and a secret key, one can compute a hash
and a proof. Anyone knowing the associated public key and
the proof can verify whether the hash is from the input and
whether the hash is generated by the owner of the secret key.
Formally, a VRF is a tuple of four algorithms (VRFKeyGen,
VRFHash, VRFProve and VRFVerify).
• VRFKeyGen(λ) → (sk, pk): On input a security param-

eter λ, outputs the secret/public key pair (sk, pk).
• VRFHash(sk, str) → h: On input sk and an arbitrary-

length string str, outputs a fixed-length hash h.
• VRFProve(sk, str) → π: On input sk and str, outputs

the proof π for h.
• VRFVerify(pk, str, h, π) → {0, 1}: On input pk, str, h,
π, outputs the verification result 0 or 1.

A VRF should satisfy three security properties [47] as
follows.
• VRF-Uniqueness: Given a secret key sk and an input str,
VRFHash(sk, str) produces a unique valid output.

• VRF-Collision-Resistance: It is computationally hard to
find two inputs str and str′ that VRFHash(sk, str) =
VRFHash(sk, str′).

• VRF-Pseudorandomness: It is computationally hard to
distinguish the output of VRFHash(·) from a random
string if not knowing the corresponding public key and
proof.

Randomness beacon and distributed randomness genera-
tion. Randomness beacon protocols are designed to generate
randomness periodically, which are usually constructed from
distributed randomness generation (DRG) protocols [35], [42],
[48]–[54] — a family of protocols where nodes jointly produce
a random output. A randomness beacon should satisfy the
following properties [43]:
• RB-Availability: No node can prevent the protocol from

making progress.
• RB-Unpredictability: No node can know the value of the

random output before it is produced.
• RB-Unbiasibility: No node can influence the value of the

random output.
• RB-Public-Verifiability: Everyone can verify the correct-

ness of the random output.

B. Basic idea

𝑠𝑡1𝑠𝑡0 𝑠𝑡2

𝖵𝖱𝖥𝖧𝖺𝗌𝗁

xxxxxxxxxdabc

𝑠𝑘𝑖 𝖵𝖱𝖥𝖧𝖺𝗌𝗁

dabcxxxxx0456

=

Action of the node Join shard
#abc

Move to
shard #456

𝖵𝖱𝖥𝖧𝖺𝗌𝗁

1111xxxxxxxxx

Stay at
shard #456

𝑠𝑡3

𝖵𝖱𝖥𝖧𝖺𝗌𝗁

0456xxxxx1234

Move to
shard 234

=

......

......

......

......

Randomness Beacon

𝑚𝑜𝑑 𝑚 𝑚𝑜𝑑 𝑚 𝑚𝑜𝑑 𝑚

≠

Figure 4: An intuition of WORMHOLE. All numbers are in
hexadecimal, op = 4 and m = 163.

WORMHOLE relies on a secure randomness beacon RB.
Each new random output from RB updates the system state.
We consider each shard as a “universe”. Each time a new state
is generated, every node in the system travels through a series
of “wormholes” to arrive at a destination universe, which may
or may not be the same universe before travelling.

We introduce an operability parameter op to tune the
trade-off between self-balance and operability. The operability
parameter op defines the hardness of a node allocating to a
different shard. As shown in Figure 4, if the op least significant
bits (LSBs) of the previous state’s VRF output equal to the
op most significant bits (MSBs) of a incoming state’s VRF
output, then the node moves to a new shard according to the
incoming state’s VRF output, otherwise the node stays. If op is
very large, then the probability that nodes move to a different
shard is very small.

As proved in Theorem 2 and Remark 1, if it’s possible that
operability γ ∈ (1

m , 1), each membership proof should carry
information of all states rather than just the current and/or
incoming states. However, this keeps proof size growing as

9

the system operates. To limit the number of previous states
required to prove shard membership, we introduce a Sybil
resistance parameter sr. WORMHOLE runs in epochs, each
epoch consists of sr system states. Joining the system and
relocating a shard require the memory of ` random outputs,
where ` ∈ [sr, 2sr). In other words, for each shard allocation,
a node needs to travel through ` wormholes to reach the final
destination. The Sybil resistance parameter sr also controls
the sybil resistance degree. With larger sr, joining the system
will require nodes to run VRF for more times.

An adversary cannot move a node to its preferred shards
by repetitively joining the system. As VRF is deterministic,
the node is always allocated to the same shard if joining the
system at the same state. If the adversary assigns a new key
pair to this node, then it needs to compute ` VRFs again,
leading to non-negligible overhead. In addition, the adversary
cannot gather its nodes to the same shard to reach the shard’s
security threshold. Upon each new system state, some nodes
may be allocated to other shards.

Algorithm 2: Calculating the shard using VRF hashes.

Algorithm calculateShard(m, op, ht−`+1, . . . , ht):
shard id← ht−`+1 mod m
idx← t− `+ 1
for j ∈ [t− `+ 2, t] do

if MSB(op, hj) = LSB(op, hidx) then
shard id← hj mod m
idx← j

return shard id

C. Detailed construction

System setup (Algorithm 3) The setup algorithm takes a
security parameter λ as input, outputs the number of shards
m, the Sybil resistance parameter sr, and the operability
parameter op.

Algorithm 3: System setup.

Algorithm Setup(λ):
m, op, sr ← λ
return (m, op, sr)

Joining a shard (Algorithm 4) A node i executes
JoinShard(ski, pp, stt) in order to obtain a membership of
a shard at round t. First, node i calculates VRF hashes
and proofs of the latest ` system states, where ` = t
mod sr + sr. Node i calculates the ID k of the shard it
belongs to by calculateShard(·) (Algorithm 2). The proof
πi,stt,k that node i has a valid membership in shard k at
state st includes node i’s public key pki, a sequence of
VRF hashes ht−`+1, ht−`+2, . . . , ht, together with their proofs
πt−`+1, πt−`+2, . . . , πt.

Algorithm 4: Joining a shard.

Algorithm JoinShard(ski, pp, stt):
m, op, sr ← pp
`← t mod sr + sr
for j ∈ [t− `+ 1, t] do

hj ← VRFHash(ski, stj)
πj ← VRFProve(ski, stj)

k ← calculateShard(m, op, ht−`+1, . . . , ht)
πi,stt,k ← (pki, ht−`+1, . . . , ht, πt−`+1, . . . , πt)
Store πi,stt,k in memory
return k, πi,stt,k

Updating shard membership (Algorithm 5) Updating shard
membership follows a process similar to joining a shard. After
joining the system at round t, in the next state t+1 node i only
needs to calculate one more VRF hash of stt+1 and repeats
the process in Algorithm 4 over the sequence of states from
stt−`+1 to stt+1.

Algorithm 5: Updating shard membership.
Algorithm
UpdateShard(ski, pp, stt, k, πi,stt,k, stt+1):
m, op, sr ← pp
`← t mod sr + sr
(pki, ht−`+1, . . . , ht, πt−`+1, . . . , πt)← πi,stt,k
`+ ← (t+ 1) mod sr + sr
for j ∈ [t− `+ 1, t− `+ + 1] do

Remove hj and πj from memory

ht+1 ← VRFHash(ski, stt+1)
πt+1 ← VRFProve(ski, stt+1)
k′ ← calculateShard(m, op, ht−`++2, . . . , ht+1)
πi,stt+1,k′ ←
(pki, ht−`++2, . . . , ht+1, πt−`++2, . . . , πt+1)

Store πi,stt+1,k′ in memory
return k′, πi,stt+1,k′

Verifying shard membership (Algorithm 6) Verifying a
proof πi,stt,k of shard membership consists of two steps. The
verifier executes VRFVerify(·) to checks the validity of all `
VRF hashes and VRF proofs, and executes calculateShard(·)
over these VRF hashes to verify its output against k.

D. Security and performance analysis

We formally prove the correctness and evaluate the perfor-
mance of WORMHOLE.

Lemma 2. If the deployed RB generates bτ · sc random
outputs in any s round (where τ ∈ R>0 and s ∈ N>0), then
WORMHOLE satisfies (τ, s)-liveness.

Proof. We prove this by contradiction. Assuming that WORM-
HOLE does not satisfy (τ, s)-liveness, i.e., there exists a
sequence of s rounds when the system generates less than

10

Algorithm 6: Verifying shard membership.

Algorithm VerifyShard(pp, pki, stt, k, πi,stt,k):
m, op, sr ← pp
`← t mod sr + sr
(pki, hlast, . . . , ht, πlast, . . . , πt)← πi,stt,k
if last 6= t− `+ 1 then

return 0

for j ∈ [t− `+ 1, t] do
if VRFVerify(pki, stj , hj , πj) = 0 then

return 0

if k 6= calculateShard(m, op, ht−`+1, . . . , ht) then
return 0

return 1

bτ ·sc states. By RB-Availability, no node can preventRB from
producing fresh randomness. Each new random output updates
the system state. If RB generates bτ · sc random outputs in
any s rounds, then RB updates the system state for bτ · sc
times in any s rounds. Thus, if WORMHOLE does not satisfy
(τ, s)-liveness, then this contradicts RB-Availability.

Lemma 3. WORMHOLE satisfies unbiasibility.

Proof. We prove this by contradiction. Assuming that WORM-
HOLE does not satisfy unbiasibility: given a system state, an
adversary can manipulate the probability distribution of the
output shard of JoinShard(·) or UpdateShard(·) with non-
negligible probability. This consists of three attack vectors:
1) the adversary can manipulate the system state; 2) when
SA.JoinShard(·) or SA.UpdateShard(·) are probabilistic, the
adversary can keep generating memberships until outputting a
membership of its preferred shard; and 3) the adversary can
forge proofs of memberships of arbitrary shards.

By RB-Unbiasibility, the randomness produced by RB is
unbiasible, so the system state of WORMHOLE is unbiasible.
By VRF-Uniqueness, given a secret key, the VRF hash of the
system state is unique, which eliminates the last two attack
vectors. In addition, the uniqueness of the VRF hash of the
unbiasible system state indicates that the VRF hash is unbia-
sible. The output shard of JoinShard(·) or UpdateShard(·) is
a modulus of the VRF hash, which is also unbiasible. This
eliminates the first attack vector. Thus, if WORMHOLE does
not resist against the first attack vector, then this contradicts
RB-Unbiasibility; and if WORMHOLE does not resist against
the second and/or the last attack vectors, then this contradicts
VRF-Uniqueness.

Lemma 4. WORMHOLE satisfies join-randomness.

Proof. We prove this by contradiction. Assuming that WORM-
HOLE does not satisfy join-randomness, i.e., the probabilistic
of a node joining a shard k ∈ [1,m] is 1

m + ε for some
k and non-negligible ε. Running JoinShard(·) requires the
execution of VRFHash(·) over a series of system states. By

VRF-Pseudorandomness, VRF hashes of system states are
pseudorandom. As a modulo of a VRF hash, the output shard
of JoinShard(·) is also pseudorandom. Thus, if WORMHOLE
does not satisfy join-randomness, then this contradicts VRF-
Pseudorandomness.

Lemma 5. WORMHOLE satisfies update-randomness.

Proof. We prove this by contradiction. Assuming that WORM-
HOLE does not satisfy update-randomness, i.e., with non-
negligible probability, there is no γ such that the probability
of a node joining a shard k complies with the distribution in
Definition 4. When t = k · sr, the last VRF hash will change.
When this happens, all nodes will be shuffled. Note that this
is not frequent when sr is large. By VRF-Pseudorandomness,
the probability of moving to each shard is same. Thus, there
is a γ = 1

m that makes the output shard of UpdateShard(·) to
comply with the distribution in Definition 4.

When t 6= k · sr, the last VRF hash remains unchanged.
In UpdateShard(·), given the last VRF hash, the probability
that the op MSBs of the new VRF hash equal to op LSBs
of the last VRF hash is 1

2op . By VRF-Pseudorandomness, the
probability of moving to each other shard is same. Thus, there
is a γ = 1 − 1

2op ·
m−1
m = 1 − m−1

m·2op that makes the output
shard of UpdateShard(·) to comply with the distribution in
Definition 4.

Thus, if WORMHOLE does not satisfy update-randomness,
then this contradicts VRF-Pseudorandomness.

Lemma 6. WORMHOLE satisfies allocation-privacy.

Proof. This follows proofs of Lemma 4 and 5.

Theorem 3. WORMHOLE is a correct shard allocation pro-
tocol.

Proof. By Lemma 2-6, WORMHOLE is a correct shard allo-
cation protocol.

Performance metrics The communication complexity of
JoinShard(·) and UpdateShard(·) of WORMHOLE are O(1).
To execute JoinShard(·), the only communication that a node
should make is to receive ` random outputs, where ` = t
mod sr + sr. As sr is a constant, the communication com-
plexity of JoinShard(·) is O(1). To execute UpdateShard(·),
a node only need to receive the latest randomness, and
the communication complexity of UpdateShard(·) is also
O(1). WORMHOLE resists Sybil attacks using computation.
To execute JoinShard(·), a node should executes VRFHash
for ` times, where ` = t mod sr + sr. One can make
WORMHOLE more Sybil-resistant by making VRFHash(·)
more computation-intensive. WORMHOLE’s operability γ is
1− m−1

m·2op . By Proof V-D,

γ = 1− m− 1

m
· 1

2op
= 1− m− 1

m · 2op

11

The self-balance ω of WORMHOLE is 1− βt + βt

2op , where βt
is the percentage of nodes that leave from the system at round
t. By Definition 1,

ω = 1−
∣∣∣∣ (γm− 1)βt

m− 1

∣∣∣∣ (8)

= 1− 1

m− 1
· [(1− m− 1

m · 2op
)m− 1]βt (9)

= 1− 1

m− 1
· [(m− 1)− m− 1

2op
]βt (10)

= 1− (1− 1

2op
)βt (11)

= 1− βt +
βt
2op

(12)

E. Comparison with shard allocation protocols with random-
ness beacon

Elastico, Omniledger, RapidChain, and Zilliqa employ DRG
protocols, which can be replaced by a randomness beacon. As
DRG protocols usually rely on strong assumptions and suffer
from high communication complexity, replacing them by a
randomness beacon can significantly simplify assumptions,
improve security, and reduce communication overhead of
shard allocation protocols. For Elastico, the network model
can be asynchronous, the fault tolerance will be 1, and the
communication complexity will be constant. For Omniledger,
the network does not need to be partially synchronous, the
fault tolerance will be 1, and the communication complexity
of UpdateShard(·) will be O(n). RapidChain will be able
to assume synchronous networks and tolerate any percentage
of Byzantine faults, and the communication complexity of
JoinShard(·) and UpdateShard(·) will be O(n).

We evaluate these DRG-based shard allocation protocols
while replacing DRG protocols with a randomness beacon.
The evaluation in Table III shows that DRG is the major source
of strong network and fault tolerance assumptions and intro-
duces significant communication overhead. For example, with
a randomness beacon, all of these shard allocation protocols
can work in asynchronous networks, and three of them raise
their fault tolerance capacity to 1 and their communication
complexity to O(n) or even 0.

However, all of them still suffer from some problems
they originally have. Most results on their correctness remain
unchanged: RapidChain still lacks public verifiability; Elastico
and Zilliqa are still partially biasible; Omniledger and Rapid-
Chain still do not satisfy privacy. In addition, Omniledger
should still assume an identity authority for approving nodes
to join the system. Moreover, all of them still suffer from poor
operability.

F. Practical considerations

The randomness beacon assumption. WORMHOLE relies
on a randomness beacon as trusted third party. We consider
randomness beacon as an acceptable assumption. Randomness
beacon is a weak trusted third party — weaker than the identity
authority and the smart contract used in Omniledger and
Chainspace, respectively. A compromised randomness beacon

only breaks WORMHOLE’s liveness, but not the other four
properties. As long as the produced randomness is uniformly
distributed, then WORMHOLE remains correct. If the com-
promised randomness beacon produces biased randomness,
nodes can detect it by checking the randomness’ distribution.
If the compromised randomness beacon stops working, then
shard allocation only loses liveness. In addition, there have
been emerging decentralised randomness beacon protocols,
from both academia and industry. Researchers construct de-
centralised randomness beacon based on blockchains [41],
Publicly Verifiable Secret Sharing (PVSS) [42], [43], [55]
and/or Verifiable Delay Functions [56], [57]. Some coun-
tries [58]–[60] and organisations [61], [62] also deploy cen-
tralised randomness beacons as public services.

Construction without allocation-privacy. As mentioned in
§II-B, allocation-privacy is not always a desired property. To
remove allocation-privacy from WORMHOLE, one can replace
VRFHash(ski, stt) with H(pki||stt), where ski and pki are
key pairs of node i, stt is a system state, and H(·) is a
cryptographic hash function.

Overhead. WORMHOLE introduces little overhead for both
communication and computation. The majority of overhead
is propagating and verifying proofs of memberships. Each
proof of membership consists of a public key and ` = t
mod sr + sr ∈ [sr, 2sr) VRF outputs and VRF proofs.
For each membership proof, one should run VRFVerify(·) for
[sr, 2sr) times. A public key, a VRF output or a VRF proof
usually takes 32 bytes. Thus, the proof size is 32(`+1) = 32(t
mod sr + sr + 1) bytes.

Consider sr = 10, 000, which is relatively large. Upon
a new peer, a node should receive a membership proof of
approximately 320 ∼ 640 KB, and verify the proof by
running VRFVerify(·) for [10, 000, 20, 000) times. Upon a new
randomness, this node only needs to receive one more VRF
output the associated VRF proof, which can be small. If a node
connects with 125 inbound peers and 8 outbound peers (which
are maximum values of Bitcoin-core [63]), it should receive
∼ 85 MB for membership proofs, then keep synchronising and
verifying new VRF outputs and proofs upon new system states.
Compared to synchronising and verifying blockchains, propa-
gating and verifying membership proofs introduces negligible
overhead. In addition, we can compress membership proofs to
succinct ones using advanced cryptographic primitives, e.g.,
Proof-Carrying Data [64], [65].

VI. RELATED WORK

We now briefly review existing research on sharding dis-
tributed systems and compare our contributions with two
studies that systematising permissionless sharding designs.

Sharding for Crash Fault Tolerant distributed systems.
Sharding has been widely deployed in crash fault tolerance
(CFT) systems to raise their throughput. Allocating nodes to
shards in a CFT system is straightforward, as there is no
Byzantine adversaries in the system, and the total number of
nodes is fixed and known to everyone [1], [4], [66]. The main

12

Table III: Evaluation of shard allocation protocols that replace DRG with a randomness beacon. Meanings of colours are same
as Table II. F means the metric is improved by replacing DRG with a randomness beacon.

System model Correctness Performance metrics

State update
Netw

or
k

mod
el

Tru
st

ass
umptio

n

Fau
lt

tol
era

nce

Public
ve

rifi
ab

ilit
y

Live
ness

Allo
ca

tio
n-ra

nd.

Unbias
ibilit

y

Priv
ac

yo

Jo
in

co
mm. co

mpl.

Update
co

mm. co
mpl.

Syb
il

co
st

Self
-bala

nce

Opera
bilit

y

Elastico New block Async.F Rand. Beacon 1F 3 3 3 7* 3 0F 0F Comp. 1 1
m

Omniledger Identity
authority

Async.F Identity auth.
Rand. Beacon

1F 3 3 3 3 7 O(1) O(n)F - 1 1
m

RapidChain Nodes
joining

Async.F Rand. Beacon 1F 7 3 3 3 7 O(n)F O(n)F Comp. 1− βt max(1− καtn, 0)

Zilliqa New block Async.F Rand. Beacon 1 3 3 3 7* 3 0 0 Comp. 1 1
m

WORMHOLE (Our proposal in §V) New rand. Async. Rand. Beacon 1 3 3 3 3 3 0 0 Comp. 1− βt + βt
2op

1− m−1
m·2op

o Optional. * Protected by PoW puzzles.

challenge is to balance the computation, communication, and
storage workload. Despite a large number of load-balancing
algorithms [5]–[8], [67], none of them is applicable in the
permissionless setting as they do not tolerate Byzantine faults.
Distributed Hash Tables. Many peer-to-peer (P2P) storage
services [68], [69] employ Distributed Hash Tables (DHT) [70]
to assign file metadata, i.e., a list of keys, to their responsible
nodes. In a DHT, nodes share the same ID space with the keys;
a file’s metadata is stored at the nodes whose IDs are closest
to the keys. Although designed to function in a permissionless
environment, DHTs are vulnerable to several attacks [71]–[73],
therefore are not suitable for blockchains, which demands
strong consistency on financial data.
Distributed Slicing. Distributed Slicing [74] aims at grouping
nodes with heterogeneous computing and storage capacities
in a P2P network to optimize resource utilisation. In line
with CFT systems, these algorithms [75]–[78] require each
node to honestly report their computing and storage capacities,
therefore are not suitable in a Byzantine environment.
Evaluation of sharded blockchains. Wang et al. [16] propose
an evaluation framework based on Elastico’s architecture;
Avarikioti et al. [17] formalise sharded blockchains by ex-
tending the model of Garay et al. [21]. Both of them aim at
evaluating the entire sharded designs, and put most efforts on
DRG or cross-shard communication, neglecting the security
and performance challenges of shard allocation.

VII. CONCLUSION

In this paper, we formally define the permissionless shard
allocation protocol, including its syntax, correctness, and per-
formance metrics. Based on the formalisation, we evaluate
existing shard allocation protocols. Our evaluation shows that
none of them is correct, and some of them suffer from poor
performance or rely on unrealistic assumptions. From our
evaluation, we observe and formally prove a trade-off between
self-balance and operability, and discuss how to parametrise it.
Based on this insight, we propose WORMHOLE, a correct and
efficient shard allocation protocol from a randomness beacon.
WORMHOLE is correct and more efficient than our evaluated
shard allocation protocols, and supports parametrising Sybil
cost and the trade-off between self-balance and operability.

REFERENCES

[1] A. Lakshman and P. Malik, “Cassandra: a decentralized
structured storage system”, ACM SIGOPS Operating
Systems Review, vol. 44, no. 2, pp. 35–40, 2010.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The
Google file system”, in Proceedings of the nineteenth
ACM symposium on Operating systems principles,
2003, pp. 29–43.

[3] G. Danezis and S. Meiklejohn, “Centrally banked cryp-
tocurrencies”, arXiv preprint arXiv:1505.06895, 2015.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber, “Bigtable: A distributed storage system for
structured data”, ACM Transactions on Computer Sys-
tems (TOCS), vol. 26, no. 2, pp. 1–26, 2008.

[5] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulap-
ati, A. Lakshman, A. Pilchin, S. Sivasubramanian, P.
Vosshall, and W. Vogels, “Dynamo: Amazon’s highly
available key-value store”, ACM SIGOPS operating
systems review, vol. 41, no. 6, pp. 205–220, 2007.

[6] D. Didona and W. Zwaenepoel, “Size-aware sharding
for improving tail latencies in in-memory key-value
stores”, in 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), 2019,
pp. 79–94.

[7] B. Augustin, T. Friedman, and R. Teixeira, “Measuring
load-balanced paths in the Internet”, in Proceedings
of the 7th ACM SIGCOMM conference on Internet
measurement, 2007, pp. 149–160.

[8] M. Annamalai, K. Ravichandran, H. Srinivas, I.
Zinkovsky, L. Pan, T. Savor, D. Nagle, and M. Stumm,
“Sharding the shards: managing datastore locality at
scale with Akkio”, in 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
18), 2018, pp. 445–460.

[9] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert,
and P. Saxena, “A secure sharding protocol for open
blockchains”, in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
ACM, 2016, pp. 17–30.

13

[10] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly,
E. Syta, and B. Ford, “Omniledger: A secure, scale-
out, decentralized ledger via sharding”, in 2018 IEEE
Symposium on Security and Privacy (SP), IEEE, 2018,
pp. 583–598.

[11] M. Zamani, M. Movahedi, and M. Raykova, “Rapid-
chain: Scaling blockchain via full sharding”, in Pro-
ceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, ACM, 2018,
pp. 931–948.

[12] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn,
and G. Danezis, “Chainspace: A sharded smart contracts
platform”, arXiv preprint arXiv:1708.03778, 2017.

[13] J. Wang and H. Wang, “Monoxide: Scale out
Blockchains with Asynchronous Consensus Zones”, in
16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), 2019, pp. 95–112.

[14] Z. Team et al., “The ZILLIQA Technical Whitepaper”,
Retrieved September, vol. 16, p. 2019, 2017.

[15] (). Ethereum/eth2.0-specs, [Online]. Available: https://
github.com/ethereum/eth2.0-specs.

[16] G. Wang, Z. J. Shi, M. Nixon, and S. Han, Sok:
Sharding on blockchain, Cryptology ePrint Archive,
Report 2019/1178, 2019.

[17] G. Avarikioti, E. Kokoris-Kogias, and R. Wattenhofer,
“Divide and Scale: Formalization of Distributed Ledger
Sharding Protocols”, arXiv preprint arXiv:1910.10434,
2019.

[18] A. Zamyatin, M. Al-Bassam, D. Zindros, E. Kokoris-
Kogias, P. Moreno-Sanchez, A. Kiayias, and W. J.
Knottenbelt, “Sok: Communication across distributed
ledgers”, IACR Cryptology ePrint Archive, 2019: 1128,
Tech. Rep., 2019.

[19] (). Ethereum/wiki, [Online]. Available: https:/ /github.
com/ethereum/wiki.

[20] D. Stutzbach and R. Rejaie, “Understanding churn in
peer-to-peer networks”, in Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement, ACM,
2006, pp. 189–202.

[21] J. Garay, A. Kiayias, and N. Leonardos, “The bit-
coin backbone protocol: Analysis and applications”, in
Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Springer,
2015, pp. 281–310.

[22] C. Natoli, J. Yu, V. Gramoli, and P. Esteves-Verissimo,
“Deconstructing Blockchains: A Comprehensive Sur-
vey on Consensus, Membership and Structure”, arXiv
preprint arXiv:1908.08316, 2019.

[23] C. Decker and R. Wattenhofer, “Information propa-
gation in the bitcoin network”, in IEEE P2P 2013
Proceedings, IEEE, 2013, pp. 1–10.

[24] X. Qian, “Improved authenticated data structures for
blockchain synchronization”, PhD thesis, 2018.

[25] (). Warp sync - wiki parity tech documentation, [On-
line]. Available: https://wiki.parity.io/Warp-Sync.

[26] A. C.-C. Yao, “Some complexity questions related to
distributive computing (preliminary report)”, in Pro-
ceedings of the eleventh annual ACM symposium on
Theory of computing, 1979, pp. 209–213.

[27] J. R. Douceur, “The sybil attack”, in International work-
shop on peer-to-peer systems, Springer, 2002, pp. 251–
260.

[28] M. Jakobsson and A. Juels, “Proofs of work and bread
pudding protocols”, in Secure Information Networks,
Springer, 1999, pp. 258–272.

[29] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-
currency with proof-of-stake”, self-published paper, Au-
gust, vol. 19, 2012.

[30] J. Zhao, J. Yu, and J. K. Liu, “Consolidating Hash
Power in Blockchain Shards with a Forest”, in In-
ternational Conference on Information Security and
Cryptology, Springer, 2019, pp. 309–322.

[31] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus
in the presence of partial synchrony”, Journal of the
ACM (JACM), vol. 35, no. 2, pp. 288–323, 1988.

[32] B. Awerbuch and C. Scheideler, “Robust random num-
ber generation for peer-to-peer systems”, in Interna-
tional Conference On Principles Of Distributed Sys-
tems, Springer, 2006, pp. 275–289.

[33] P. Feldman, “A practical scheme for non-interactive
verifiable secret sharing”, in 28th Annual Symposium
on Foundations of Computer Science (sfcs 1987), IEEE,
1987, pp. 427–438.

[34] S. Sen and M. J. Freedman, “Commensal cuckoo: Se-
cure group partitioning for large-scale services”, ACM
SIGOPS Operating Systems Review, vol. 46, no. 1,
pp. 33–39, 2012.

[35] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles
in Constantinople: Practical asynchronous Byzantine
agreement using cryptography”, Journal of Cryptology,
vol. 18, no. 3, pp. 219–246, 2005.

[36] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jo-
vanovic, L. Gasser, N. Gailly, I. Khoffi, and B. Ford,
“Keeping authorities” honest or bust” with decentral-
ized witness cosigning”, in 2016 IEEE Symposium on
Security and Privacy (SP), Ieee, 2016, pp. 526–545.

[37] J. Yu, D. Kozhaya, J. Decouchant, and P. Verissimo,
“RepuCoin: Your reputation is your power”, IEEE
Transactions on Computers, 2019.

[38] M. Pease, R. Shostak, and L. Lamport, “Reaching
agreement in the presence of faults”, Journal of the
ACM (JACM), vol. 27, no. 2, pp. 228–234, 1980.

[39] A. V. Oppenheim, Discrete-time signal processing.
Pearson Education, 1999.

[40] B. Bünz, S. Goldfeder, and J. Bonneau, “Proofs-of-
delay and randomness beacons in ethereum”, IEEE
Security and Privacy on the blockchain (IEEE S&B),
2017.

[41] J. Bonneau, J. Clark, and S. Goldfeder, “On Bitcoin as
a public randomness source.”, IACR Cryptology ePrint
Archive, vol. 2015, p. 1015, 2015.

14

https://github.com/ethereum/eth2.0-specs
https://github.com/ethereum/eth2.0-specs
https://github.com/ethereum/wiki
https://github.com/ethereum/wiki
https://wiki.parity.io/Warp-Sync

[42] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L.
Gasser, I. Khoffi, M. J. Fischer, and B. Ford, “Scalable
bias-resistant distributed randomness”, in 2017 IEEE
Symposium on Security and Privacy (SP), Ieee, 2017,
pp. 444–460.

[43] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl,
“HydRand: Efficient Continuous Distributed Random-
ness”, in 2020 IEEE Symposium on Security and Pri-
vacy (SP), pp. 32–48.

[44] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random
functions”, in 40th Annual Symposium on Foundations
of Computer Science (Cat. No. 99CB37039), IEEE,
1999, pp. 120–130.

[45] Y. Dodis, “Efficient construction of (distributed) verifi-
able random functions”, in International Workshop on
Public Key Cryptography, Springer, 2003, pp. 1–17.

[46] S. Goldberg, J. Vcelak, D. Papadopoulos, and L.
Reyzin, “Verifiable random functions (VRFs)”, 2018.

[47] S Goldberg, D Papadopoulos, and J Vcelak, draft-
goldbe-vrf: Verifiable Random Functions.(2017), 2017.

[48] M. Blum, “Coin flipping by telephone a protocol for
solving impossible problems”, ACM SIGACT News,
vol. 15, no. 1, pp. 23–27, 1983.

[49] M. O. Rabin, “Transaction protection by beacons”,
Journal of Computer and System Sciences, vol. 27,
no. 2, pp. 256–267, 1983.

[50] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Se-
cure distributed key generation for discrete-log based
cryptosystems”, in International Conference on the
Theory and Applications of Cryptographic Techniques,
Springer, 1999, pp. 295–310.

[51] J. A. Halderman and B. Waters, “Harvesting verifiable
challenges from oblivious online sources”, in Proceed-
ings of the 14th ACM conference on Computer and
communications security, ACM, 2007, pp. 330–341.

[52] O. Oluwasanmi and J. Saia, “Scalable byzantine agree-
ment with a random beacon”, in Symposium on Self-
Stabilizing Systems, Springer, 2012, pp. 253–265.

[53] A. Kate and I. Goldberg, “Distributed key generation
for the internet”, in 2009 29th IEEE International
Conference on Distributed Computing Systems, IEEE,
2009, pp. 119–128.

[54] E. Kokoris-Kogias, A. Spiegelman, D. Malkhi, and I.
Abraham, “Bootstrapping Consensus Without Trusted
Setup: Fully Asynchronous Distributed Key Genera-
tion”,

[55] I. Cascudo and B. David, “Albatross: Publicly attestable
batched randomness based on secret sharing”,

[56] A. K. Lenstra and B. Wesolowski, “A random zoo:
Sloth, unicorn, and trx.”, IACR Cryptol. ePrint Arch.,
vol. 2015, p. 366, 2015.

[57] N. Ephraim, C. Freitag, I. Komargodski, and R. Pass,
“Continuous verifiable delay functions”, in Annual In-
ternational Conference on the Theory and Applications
of Cryptographic Techniques, Springer, 2020, pp. 125–
154.

[58] J. Kelsey, L. T. Brandão, R. Peralta, and H. Booth, “A
reference for randomness beacons: Format and protocol
version 2”, National Institute of Standards and Technol-
ogy, Tech. Rep., 2019.

[59] (). Random uchile - random uchile, [Online]. Available:
https://beacon.clcert.cl/en/.

[60] (). Brazilian beacon, [Online]. Available: https://beacon.
inmetro.gov.br/.

[61] (). Distributed randomness beacon — cloudflare, [On-
line]. Available: https : / / www . cloudflare . com /
leagueofentropy/.

[62] (). Unicorn beacon by lacal, [Online]. Available: http:
//trx.epfl.ch/beacon/index.php.

[63] A. M. Antonopoulos, Mastering Bitcoin: unlocking dig-
ital cryptocurrencies. ” O’Reilly Media, Inc.”, 2014.

[64] S. Bowe, J. Grigg, and D. Hopwood, “Halo: Recursive
Proof Composition without a Trusted Setup”, Cryp-
tology ePrint Archive, Report 2019/1021, Tech. Rep.,
2019.

[65] B. Bünz, A. Chiesa, P. Mishra, and N. Spooner, “Proof-
carrying data from accumulation schemes.”, IACR
Cryptol. ePrint Arch., vol. 2020, p. 499, 2020.

[66] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A.
Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz, D.
Weaver, and R. Yerneni, “PNUTS: Yahoo!’s hosted data
serving platform”, Proceedings of the VLDB Endow-
ment, vol. 1, no. 2, pp. 1277–1288, 2008.

[67] S. Che, G. Rodgers, B. Beckmann, and S. Reinhardt,
“Graph coloring on the GPU and some techniques to
improve load imbalance”, in 2015 IEEE International
Parallel and Distributed Processing Symposium Work-
shop, IEEE, 2015, pp. 610–617.

[68] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The
bittorrent p2p file-sharing system: Measurements and
analysis”, in International Workshop on Peer-to-Peer
Systems, Springer, 2005, pp. 205–216.

[69] Y. Kulbak, D. Bickson, et al., “The eMule protocol
specification”, eMule project, http://sourceforge. net,
2005.

[70] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker, “A scalable content-addressable network”,
in Proceedings of the 2001 conference on Applications,
technologies, architectures, and protocols for computer
communications, 2001, pp. 161–172.

[71] C. Lin, Y. Jiang, X. Chu, H. Yang, et al., “An effec-
tive early warning scheme against pollution dissemina-
tion for BitTorrent”, in GLOBECOM 2009-2009 IEEE
Global Telecommunications Conference, IEEE, 2009,
pp. 1–7.

[72] X. Lou and K. Hwang, “Collusive piracy prevention in
P2P content delivery networks”, IEEE Transactions on
Computers, vol. 58, no. 7, pp. 970–983, 2009.

[73] P. Dhungel, D. W. 0001, B. Schonhorst, and K. W.
Ross, “A measurement study of attacks on BitTorrent
leechers.”, in IPTPS, vol. 8, 2008, pp. 7–7.

15

https://beacon.clcert.cl/en/
https://beacon.inmetro.gov.br/
https://beacon.inmetro.gov.br/
https://www.cloudflare.com/leagueofentropy/
https://www.cloudflare.com/leagueofentropy/
http://trx.epfl.ch/beacon/index.php
http://trx.epfl.ch/beacon/index.php

[74] M. Jelasity and A.-M. Kermarrec, “Ordered slicing
of very large-scale overlay networks”, in Sixth IEEE
International Conference on Peer-to-Peer Computing
(P2P’06), IEEE, 2006, pp. 117–124.

[75] A. Fernández, V. Gramoli, E. Jiménez, A.-M. Kermar-
rec, and M. Raynal, “Distributed slicing in dynamic
systems”, in 27th International Conference on Dis-
tributed Computing Systems (ICDCS’07), IEEE, 2007,
pp. 66–66.

[76] V. Gramoli, Y. Vigfusson, K. Birman, A.-M. Kermarrec,
and R. van Renesse, “A fast distributed slicing algo-
rithm”, in Proceedings of the twenty-seventh ACM sym-
posium on Principles of distributed computing, 2008,
pp. 427–427.

[77] F. Maia, M. Matos, R. Oliveira, and E. Riviere, “Slic-
ing as a distributed systems primitive”, in 2013 Sixth
Latin-American Symposium on Dependable Computing,
IEEE, 2013, pp. 124–133.

[78] D. J. DeWitt, J. F. Naughton, and D. F. Schneider,
“Parallel sorting on a shared-nothing architecture us-
ing probabilistic splitting”, University of Wisconsin-
Madison Department of Computer Sciences, Tech. Rep.,
1991.

[79] B. Schoenmakers, “A simple publicly verifiable secret
sharing scheme and its application to electronic vot-
ing”, in Annual International Cryptology Conference,
Springer, 1999, pp. 148–164.

[80] (). Zilliqa - the next generation, high throughput
blockchain platform, [Online]. Available: https://zilliqa.
com/.

[81] (). Zilliqa developer portal · technical and api documen-
tation for participating in the zilliqa network., [Online].
Available: https://zilliqa.github.io/dev-portal/en/.

[82] (). Zilliqa/zilliqa at v5.0.1, [Online]. Available: https :
//github.com/Zilliqa/Zilliqa/tree/v5.0.1.

[83] G. Wood et al., “Ethereum: A secure decentralised gen-
eralised transaction ledger”, Ethereum project yellow
paper, vol. 151, no. 2014, pp. 1–32, 2014.

[84] V. Buterin. (). Casper the friendly finality gadget, [On-
line]. Available: https://vitalik.ca/files/casper note.html.

[85] ——, (). Serenity design rationale, [Online]. Available:
https : / / notes . ethereum . org / @vbuterin / rkhCgQteN ?
type=view.

[86] (). Phase 0 for humans, [Online]. Available: https : / /
notes.ethereum.org/@djrtwo/Bkn3zpwxB?type=view.

[87] (). Beacon chain research synopsis, [Online]. Available:
https:/ /github.com/prysmaticlabs/prysm/blob/master/
docs/PRIOR RESEARCH.md.

[88] (). Ethereum/wiki at
6aee544ccc427490e443639ed29a1e4597cb898e,
[Online]. Available: https://github.com/ethereum/wiki/
tree/6aee544ccc427490e443639ed29a1e4597cb898e.

[89] (). Ethereum/eth2.0-specs at v0.9.0, [Online]. Available:
https://github.com/ethereum/eth2.0-specs/tree/v0.9.0.

[90] (). Randao: A dao working as rng of ethereum, [Online].
Available: https://github.com/randao/randao.

APPENDIX

We attach the pseudocode of our evaluated proposals. Al-
gorithm 7-10 are pseudocode of Elastico, Omniledger, Rapid-
Chain and Zilliqa, respectively. We do not present pseudocode
for Monoxide or ETH 2.0, as their shard allocation protocols
simply distribute nodes to shards according to their IDs’
prefixes. We do not present pseudocode for Chainspace, as
it does not specify details on how nodes join the system and
nodes choose to move to other shards by themselves.

A. Modelling PoW.

PoW is frequently used in shard allocation protocols. We
model PoW as follows. PoW consists of two algorithms
(PoWWork,PoWVerify):
PoWWork(T, in)→ (nonce, out) : A probabilistic algo-

rithm. On input a difficulty parameter T and an input
in, outputs a string nonce and an output out.

PoWVerify(nonce, T, in)→ {0/1} : A deterministic algo-
rithm. On input nonce, T and in, outputs 0 (false) or
1 (true).

B. Elastico

In Elastico, a new block will trigger the state update, which
triggers the shard allocation protocol. Elastico’s shard alloca-
tion protocol employs a commit-then-reveal DRG protocol to
produce randomness, and PoW to assign nodes to different
shards. Elastico has a special shard called final committee,
which is responsible for executing the DRG protocol. With
a valid randomness as input, a node needs to run a PoW
satisfying a specified difficulty parameter. The prefix of a valid
PoW solution is ID of the shard that the node should join.

The DRG protocol works as follows. Let ns = n
m and

fs = f
m be the number of nodes and faulty nodes in the final

committee, respectively. First, each node in the final committee
chooses a random string, then broadcasts its hash to others.
The protocol assumes each node will receive ≥ 2

3ns hashes
after broadcasting. Second, nodes execute a vector consen-
sus [38] to agree on a set of hashes. The vector consensus
works under synchronous networks, and has the communi-
cation complexity of O(ns

fs). Third, each node broadcasts
its original random string to other nodes, and the protocol
assumes each node will have ≥ 2

3ns signed string/hash pairs.
Last, each node can arbitrarily choose 1

2ns + 1 strings, then
XOR them to get a valid randomness.

C. Omniledger

Similar to Elastico, Omniledger’s shard allocation protocol
is also constructed from DRG. In Omniledger, all nodes in the
network jointly run RandHound [42] - a leader-based DRG
protocol tolerating 1

3 faulty nodes - to generate the random-
ness. RandHound adapts Publicly Verifiable Secret Sharing
(PVSS) [79] to make the randomness publicly verifiable, and
CoSi [36] to improve the communication and space complex-
ity of generating multi-signatures. It has the communication
complexity of O(n), works under asynchronous network, and
tolerates 1

3 faulty nodes [42].

16

https://zilliqa.com/
https://zilliqa.com/
https://zilliqa.github.io/dev-portal/en/
https://github.com/Zilliqa/Zilliqa/tree/v5.0.1
https://github.com/Zilliqa/Zilliqa/tree/v5.0.1
https://vitalik.ca/files/casper_note.html
https://notes.ethereum.org/@vbuterin/rkhCgQteN?type=view
https://notes.ethereum.org/@vbuterin/rkhCgQteN?type=view
https://notes.ethereum.org/@djrtwo/Bkn3zpwxB?type=view
https://notes.ethereum.org/@djrtwo/Bkn3zpwxB?type=view
https://github.com/prysmaticlabs/prysm/blob/master/docs/PRIOR_RESEARCH.md
https://github.com/prysmaticlabs/prysm/blob/master/docs/PRIOR_RESEARCH.md
https://github.com/ethereum/wiki/tree/6aee544ccc427490e443639ed29a1e4597cb898e
https://github.com/ethereum/wiki/tree/6aee544ccc427490e443639ed29a1e4597cb898e
https://github.com/ethereum/eth2.0-specs/tree/v0.9.0
https://github.com/randao/randao

Algorithm 7: Elastico’s shard allocation protocol.
Preliminaries:
• State is the blockchain, and state update is triggered by

a new block.
• DRG is the commit-then-reveal DRG protocol.
• stt.T is the mining difficulty at state stt.
• t is the block template for the miner to mine.

Algorithm Setup(λ):
m← λ
return m, st0

Algorithm JoinShard(ski, pp, stt):
m← pp
if i is in final committee then

Run DRG with peers in final committee to get
a randomness as stt.R
Broadcast stt.R

else
Wait for a valid stt.R

nonce, out← PoWWork(stt.T, stt.R||t)
k ← out mod m
π ← (nonce, stt, t)
return k, π

Algorithm
UpdateShard(ski, pp, stt, k, πi,stt,k, stt+1):

(k′, π, stt+1)← JoinShard(ski, pp, stt+1)
return k′, π

Algorithm VerifyShard(pki, stt, k, πi,stt,k):
m← pp
(nonce, stt+1, t)← πi,stt,k
if stt+1 6= stt then

return 0
else if PoWVerify(nonce, stt.T, stt.R||t) == 0
then

return 0
else if k 6= out mod m then

return 0
return 1

As RandHound is leader-based, nodes should elect a leader
before running RandHound. In Omniledger, nodes run a
VRF [44]-based cryptographic sortition to elect a leader. Each
node first obtains the whole list of peers from the identity
authority. Then, each node computes a ticket by running
VRFHash(ski, ”leader”||peers||v), where ski is its secret
key, peers is the list of peers, and v is a view counter starting
from zero. Each node then broadcasts its ticket, and waits for
a timeout ∆. After ∆, each node takes the one with smallest
ticket as the leader, and the leader should start RandHound. If
the leader does not start RandHound after another ∆, nodes
will increase the view counter by 1, compute another ticket
and broadcast it again.

Omniledger assumes the leader election is highly possible

Algorithm 8: Omniledger’s shard allocation protocol.
Preliminaries:
• State is maintained and periodically updated by the

identity authority I .
• RandHound is the RandHound DRG protocol.
• CoinToss is the asynchronous Coin Toss protocol [35].

Algorithm Setup(λ):
m← λ
return m, st0

Algorithm JoinShard(ski, pp, stt):
Register pki on I
Get k, π from I
return k, π

Algorithm
UpdateShard(ski, pp, stt, k, πi,stt,k, stt+1):

peers← all peers stored in I at stt
for v ∈ [0, 5) do

ticketi ← VRFHash(ski, “leader
′′||peers||v)

Broadcast ticketi
Collect tickets until timer that timeouts in ∆
Find the smallest ticket as ticketj
if ticketi == ticketj then

πticket,i ←
VRFProve(ski, “leader

′′||peers||v)
Broadcast πticket,i
Start RandHound as a leader
generate the randomness from RandHound
as stt+1.R
break

else
Reset timer (still timeouts in ∆)
Wait for πticket,j within timer
Wait for pkj to start
stt+1.R← RandHound within timer
if Receive RandHound message from pkj
before ∆ then

Execute stt+1.R← RandHound(·)
break

v+ = 1

if stt.R == None then
Run CoinToss with all peers to generate the
randomness as stt.R

Calculate a permutation p using stt.R
k′ ← p[pki]
return k′,⊥

Algorithm VerifyShard(pki, stt, k, πi,stt,k):
Calculate a permutation p using stt.R
return p[pki] == k

17

to succeed. However, if the sortition fails for five times,
nodes quit the leader election as well as RandHound. Instead,
nodes produce the randomness using an asynchronous coin-
tossing protocol [35]. The coin-tossing protocol [35] does not
scale due to high communication complexity of O(n3), but
guarantees safety under asynchronous networks.

After generating a randomness, some new nodes can join
the system, and some existing nodes will change their shards.
Omniledger gradually swaps in newly joined nodes: for each
state update, each shard can only swap in ≤ n

m nodes from
pending nodes. Omniledger assumes a centralised identity
authority to manage pending nodes. Upon a new randomness,
the identity authority randomly selects some pending nodes to
join the system.

Similar with Elastico, Omniledger shuffles existing nodes
upon each randomness. From the identity authority, each node
knows all other nodes in the network. Upon a new randomness,
each node can permute an order on the list of peers. Each
node then divides the permuted list of peers to equally sized
intervals, and nodes in an interval belong to a shard.

D. RapidChain

In RapidChain, a node is required to find a valid PoW
solution before joining a shard. RapidChain employs a DRG
protocol only for preventing long range attacks, where one
pre-computes PoW solutions in order to take advantage of
consensus in the future. Nodes in a special shard called
reference committee executes DRG periodically. The DRG
protocol works as follows. First, each node in the reference
committee chooses a random string and shares it to others
using Feldman Verifiable Secret Sharing (VSS) [33]. Second,
each node adds received shares together to a single string, then
broadcasts it. Last, each node calculates the final randomness
using Lagrange interpolation on received strings. Feldman
VSS assumes a synchronous and complete network, as the
VSS-share step requires each node to receive all shares from
other nodes. Feldman VSS cannot tolerate any faults. If there
is a node who fails to send shares to all other nodes, the
protocol will restart. That is, a single faulty node can make
the protocol to lose liveness.

RapidChain’s shard allocation protocol employs the Com-
mensal Cuckoo rule [34] to partition nodes into different
shards. Each node is pseudorandomly mapped to a number
in [0, 1). The interval is then divided into smaller segments,
and nodes within the same segment belong to the same shard.
When a node a joins the network, it will “push forward” nodes
in a constant-size interval surrounding a to other shards. This
guarantees the load is balanced adaptively with new nodes
joining.

Commensal Cuckoo works under asynchronous model.
However, as Feldman VSS assumes synchrony, RapidChain’s
shard allocation protocol should assume synchrony to remain
correct. Like Feldman VSS, Commensal Cuckoo assumes
crash faults. As Commensal Cuckoo does not provide publicly
verifiable membership, a Byzantine node can choose not to
obey the protocol and stay in any shard freely.

Algorithm 9: RapidChain’s shard allocation protocol.
Preliminaries:
• State is the blockchain, and state update is triggered by

a new block.
• stt.T is the mining difficulty at state stt.
• DRG is the Feldman VSS-based DRG protocol.
• Cr is the reference committee.

Algorithm Setup(λ):
m← λ
return m, st0

Algorithm JoinShard(ski, pp, stt):
nonce, out←
PoWWork(stt.T, timestamp||pki||stt.R)
Send nonce, out to Cr
Cr creates a list of all active nodes l at last state
st−
Cr uses stt.R to randomly assign node i to a
shard k
Cr enforces nodes near node i to move to other
shards
return k,⊥

Algorithm
UpdateShard(ski, pp, stt, k, πi,stt,k, stt+1):

if Node i is in Cr then
Run DRG with peers in Cr to get a
randomness as stt+1.R

if Cr asks node i to move to another shard k′ then
Move to shard k′

else
k′ = k

return k′,⊥
Algorithm VerifyShard(pki, stt, k, πi,stt,k):

return 1

E. Chainspace

Chainspace uses a smart contract called ManageShards
to manage nodes’ membership. Nodes can request to move to
other shards by invoking transactions of ManageShards.

Note that ManageShards runs upon Chainspace itself.
While the security of ManageShards relies on the whole
system’s security, the system’s security relies on nodes. Mean-
while, nodes’ membership rely on ManageShards, which
leads to a chicken-and-egg problem. To avoid this chicken-
and-egg problem, Chainspace assumes ManageShards exe-
cutes correctly.

F. Monoxide

Monoxide’s identity system is similar to Bitcoin. Nodes are
free to create identities, and nodes are assigned to different
shards according to their addresses’ most significant bits
(MSBs).

Unlike other protocols, Monoxide’s shard allocation proto-
col does not seek to solve all problems in our formalisation.

18

Instead, it solves these problems by employing PoW-based
consensus upon the shard allocation protocol. In PoW-based
consensus, the voting power is decided by computing power
(a.k.a. mining power), and Sybil attacks can no longer be
profitable.

G. Zilliqa

Algorithm 10: Zilliqa’s shard allocation protocol.
Preliminaries:
• State is the blockchain, and state update is triggered by

a new block.
• stt.R and stt.T are the hash of the last block and the

mining difficulty at state stt, respectively.
• t is the block template for the miner to mine.

Algorithm Setup(λ):
m← λ
return m, st0

Algorithm JoinShard(ski, pp, stt):
m← pp
nonce, out← PoWWork(stt.T, stt.R||t)
k ← out mod m
π ← (nonce, stt, t)
return k, π

Algorithm
UpdateShard(ski, pp, stt, k, πi,stt,k, stt+1):

(k′, π, stt+1)← JoinShard(ski, pp, stt+1)
return k′, π

Algorithm VerifyShard(pki, stt, k, πi,stt,k):
m← pp
(nonce, stt+1, t)← πi,stt,k
if stt+1 6= stt then

return 0
else if PoWVerify(nonce, stt.T, stt.R||t) = 0 then

return 0
else if k 6= out mod m then

return 0
return 1

Zilliqa [80] is a permissionless sharded blockchain that
claims to achieve the throughput of over 2,828 transactions
per second. It follows the design of Elastico [9], but with
several optimisations. Our evaluation is based on Zilliqa’s
whitepaper [14], Zilliqa’s developer page [81], and Zilliqa’s
source code (the latest stable release v5.0.1) [82].

Different from Elastico which runs a DRG to generate
randomness, Zilliqa simply uses the SHA2 hash of the latest
block as randomness. Taking the randomness as input, each
node generates two valid PoW solutions. Each node should
solve two PoW puzzles within a time window of 60 seconds,
otherwise he cannot join any shard for this epoch. This means
propagating PoW solutions should finish within a time bound,
which implicitly assumes synchronous network. The first PoW
is used for selecting nodes to form the final committee, and

the second PoW is used for distributing the rest nodes to other
committees. The final committee is responsible for collecting
nodes in the network and helping nodes find their peers in the
same shards.

H. Ethereum 2.0

Ethereum 2.0 (ETH 2.0) is the next generation of
Ethereum [83]. ETH 2.0 aims at achieving better performance
by sharding, better privacy by using zkSNARKs, and better
energy efficiency by switching from PoW to PoS. There is
neither official whitepaper nor implementation for ETH 2.0.
Instead, ETH 2.0 is still under active development, and its
design is disaggregated in their wiki [19] and blogs [84]–[87],
and the Ethereum community provides the specification [15]
without having a technical whitepaper first. Our analysis
is based on the latest (29/10/2019) public official materi-
als, including the sharding FAQ of Ethereum Wiki branch
6aee544ccc427490e443639ed29a1e4597cb898e [88] and the
ETH 2.0 specification v0.9.0 Tonkatsu [89].

Following ETH1.0, ETH 2.0 has two types of accounts:
externally-owned account for wallets and smart contract ac-
count for smart contracts. Each account has an unique ID,
and accounts are assigned to different shards according to their
IDs. A node should use an externally-owned account to mine
Ether, the native cryptocurrency of Ethereum.

Like Monoxide, ETH 2.0 addresses Sybil attacks and load
balance in the consensus layer. More specifically, ETH 2.0
plans to employ Proof-of-Stake (PoS)-based consensus. In
PoS-based consensus, the voting power is decided by cryp-
tocurrency deposits a.k.a. staking power. As holding cryptocur-
rency deposits can be expensive, Sybil attacks can no longer
be profitable.

Note that ETH 2.0 also employs a DRG protocol (called
RANDAO [90]), but it is used for sampling “validators” (a
subset of nodes that can produce blocks) rather than shard
allocation.

19

	Introduction
	Formalising shard allocation
	Definition
	Correctness
	Performance metrics

	Evaluating existing shard allocation protocols
	Evaluation criteria
	Overview of evaluated proposals
	System model
	Correctness
	Performance

	Observation and insights
	Wormhole— Shard allocation from randomness beacon
	Primitives
	Basic idea
	Detailed construction
	Security and performance analysis
	Comparison with shard allocation protocols with randomness beacon
	Practical considerations

	Related work
	Conclusion
	Appendix
	Modelling PoW.
	Elastico
	Omniledger
	RapidChain
	Chainspace
	Monoxide
	Zilliqa
	Ethereum 2.0

