
Self-Processing Private Sensor Data via Garbled Encryption

Nathan Manohar*

UCLA
Abhishek Jain†

John Hopkins University
Amit Sahai‡

UCLA

Abstract
We introduce garbled encryption, a relaxation of secret-key
multi-input functional encryption (MiFE) where a function
key can be used to jointly compute upon only a particular
subset of all possible tuples of ciphertexts. We construct gar-
bled encryption for general functionalities based on one-way
functions.
We show that garbled encryption can be used to build a self-
processing private sensor data system where after a one-time
trusted setup phase, sensors deployed in the field can period-
ically broadcast encrypted readings of private data that can
be computed upon by anyone holding function keys to learn
processed output, without any interaction. Such a system can
be used to periodically check, e.g., whether a cluster of servers
are in an “alarm” state.
We implement our garbled encryption scheme and find that
it performs quite well, with function evaluations in the mi-
croseconds. The performance of our scheme was tested on a
standard commodity laptop.

1 Introduction

Self-Processing Private Sensor Data. Suppose a coalition
of countries (Coalition A) negotiates a 25-year treaty with
Country B, which proposes the deployment of a set of trusted
sensors in Country B, where each sensor provides an hourly
readout of radiation levels. However, to protect its privacy,
Country B is unwilling to have all raw sensor readings trans-
mitted in their entirety to Coalition A. Country B is only
willing to allow Coalition A to learn some processed form of
these sensor readings – for example to learn the maximum
radiation level observed at any of 16 sensor locations. Fur-
thermore, Coalition A and Country B are willing to execute a
once-and-for-all ceremony to build these trusted sensors. In-
deed, since the sensors are creating the “inputs” to our system,
it is crucial that they be built in a way that guarantees trust.
This could involve physical protections, as well as computer
security tools like secure multi-party computation. But after
this ceremony, and after the trusted sensors are deployed, how
can we ensure that Coalition A, in order to protect Country
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B’s privacy, learns only the hourly maximum radiation values,
and not more?

The most straightforward solution would be to trust a third
party to honestly process the sensor readings. However, even
if a third party seems trustworthy when the treaty is signed, it
may be unreasonable to assume that such trust would be main-
tained over the 25-year span of the treaty. A more complex
solution would be to have the trusted sensors communicate
among themselves to compute the maximum every hour and
only transmit this processed information. But this would re-
quire each trusted sensor to be able to reliably receive commu-
nication from other sensors; this may be infeasible (especially
over long durations of time) or simply undesirable as being
able to receive communication opens up each sensor to new
attack vectors. In this work, we ask: is it possible to build
practical solutions to this problem where each trusted sen-
sor is only required to be able to broadcast a short message?
Somewhat surprisingly, we show that this is achievable with-
out any communication between sensors, where the sensors
are only required to store an AES key and broadcast several
AES evaluations each time step.

Hardware Assumptions for Sensors vs. Hardware As-
sumptions for Receivers. Because sensors would need to be
physically deployed to collect readings, some level of physi-
cal trust and verification is essential for both sensor hardware
and deployment. This is reasonable because Country B, as the
country being monitored, would be subject to inspections that
would verify (only!) that sensors have not been tampered with
and remain correctly deployed. However, it is not reasonable
to assume any kind of physical trust for the receivers that
should obtain only processed sensor readings: Indeed, there
may be many users – hundreds or even millions of them –
that need to be able to monitor processed sensor readings. It
would be undesirable and perhaps infeasible to have inspec-
tors from Country B verify that receiver hardware has not
been tampered with. Such “reverse inspections” – where the
target country inspects the monitoring countries, would also
likely be politically problematic. For these reasons, we seek
solutions to this problem that do not involve tamper-proof
hardware assumptions for receivers.

Real World Applicability. Although the above discussion
dealt with a hypothetical treaty scenario, such situations arise
in the real world. The Iran nuclear deal, for example, requires
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Figure 1: The two steps of a self-processing sensor data
scheme. First, there is the trusted setup after which A has
function key data and B has sensors. Once B deploys the
sensors, any user U with access to the function key data can
monitor the sensor broadcasts and learn the function evalua-
tions.

that Iran “allow in international inspectors” [1] to directly
observe the state of affairs on the ground including obtain-
ing raw measurements, a prospect that it would undoubtedly
prefer to avoid. International environmental treaties, such as
the Basel Convention [2] and the Kyoto Protocol [3], include
commitments from many nations to limit their pollution and
other environmentally harmful activities, but without nations
agreeing to direct monitoring of raw data, it may be diffi-
cult to ascertain the extent to which a country is or is not
following the treaty. Such issues are not only applicable to
agreements between nations, but also extend to situations
between governments and companies as well. After the Volk-
swagen emissions scandal [4], a country may wish to sanction
Volkswagen in some manner and have a guarantee that its
cars meet the emissions standards. A sensor network could
be deployed to ensure that Volkswagen was complying with
emissions regulations, while simultaneously ensuring that the
sanctioning government does not gain access to details of
Volkswagen’s operating procedures that it wishes to remain
secret.

An Impractical Theoretical Solution. A theoretical solution
to this problem can be obtained via the notion of multi-input
functional encryption (MiFE) [5]. In a MiFE scheme, parties
can query a key generation authority for multi-input func-
tion keys that can be used to jointly evaluate the function
on a tuple of encrypted plaintexts. MiFE generalizes the no-
tion of (single-input) functional encryption [6–8] and can be
viewed as a non-interactive analogue of secure multiparty
computation [9, 10]. If such a primitive could be practically
realized, then in the above scenario, Coalition A and Country
B could generate a multi-input function key that will output

the maximum radiation level observed in a given hour given
appropriate ciphertexts as input. The deployed sensors could
then encrypt their observed radiation levels along with the
time and broadcast these ciphertexts. Using the MiFE func-
tion key, it would be possible for Coalition A to learn only the
hourly maximum radiation level and nothing more.

Unfortunately, despite extensive research, achieving full
security for MiFE while maintaining usable efficiency has re-
mained quite elusive. In fact, a construction of secret-key
MiFE that supports an unbounded number of ciphertexts
would imply indistinguishability obfuscation (iO)1 [5], which
is only currently known through heavy-duty cryptography and
nonstandard assumptions. Furthermore, known constructions
of secret-key MiFE for bounded ciphertexts from standard
assumptions [11, 12] require non-black-box use of crypto-
graphic primitives and are therefore unexplored with respect
to implementability and efficiency. Constructions of secret-
key MiFE from nonstandard multilinear maps [13] take 4
minutes running on a 32-core server for function evaluations
on 4.7 GB ciphertexts, while only achieving security with
respect to security parameter λ = 80. As a result, despite its
immense potential, MiFE has so far had limited impact on the
security world and does not give a practical solution to the
proposed problem.

Garbled Encryption. In this work, we give a practical so-
lution to this problem by introducing, constructing, and im-
plementing a new primitive called garbled encryption. Gar-
bled encryption is built from one-way functions (in particular,
AES) and can support function evaluations in a few microsec-
onds on modest hardware, while achieving security with re-
spect to the standard security parameter value of λ = 128.

Our starting observation is that, in practice, one might not
always need the full power of secret-key MiFE. For example, a
function key in secret-key MiFE needs to be compatible with
all ciphertexts, but there are many natural scenarios where
it may only be necessary to evaluate a function on some
of the ciphertexts. To illustrate this, in the treaty problem,
we only need the function key to allow for evaluation on
ciphertexts all encrypted during the same hour. In fact, using
MiFE is actually disadvantageous in this instance, since the
function key will be inherently compatible with all ciphertexts,
which would require the sensors to encrypt not only the sensor
reading, but also the time of the reading and the function key
to check that the times of all the ciphertexts are equal.

In order to determine which ciphertexts a function key
is compatible with, it is necessary that the ciphertexts be
labelled. Therefore, in garbled encryption, every ciphertext
has an associated index, and encryptors are required to satisfy
a promise that no two ciphertexts have the same index. Instead
of querying a key generation (keygen) authority for a key
corresponding to a function, in garbled encryption, a party

1Even a construction of secret-key MiFE that supports only a bounded
number of ciphertexts in each “position,” but an exponential number of
ciphertext combinations, implies iO.
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queries the keygen authority for a key corresponding to a
function and a tuple of indices. The function key issued by
the keygen authority can then be used to evaluate the function
on the tuple of ciphertexts corresponding to those indices. By
introducing this relaxation, we are able to achieve garbled
encryption that supports an unbounded number of ciphertexts
and function keys, using only OWFs (in particular, AES).

From Garbled Encryption to Self-Processing Private Sen-
sor Data. Using our new primitive, garbled encryption, we
are able to obtain a practical solution to the self-processing
private sensor data problem. After Coalition A and Country B
agree on the treaty, they execute a one-time trusted setup that
generates all the garbled encryption function keys needed for
the duration of the treaty and provides sensors to be deployed
in Country B. After these sensors have been appropriately
deployed, they will periodically broadcast ciphertexts that
can be used by Coalition A to learn the output of the desired
functionality (for example, the hourly maximum radiation
level). Note that once the sensors have been deployed, no ad-
ditional work is needed on the part of Coalition A or Country
B to keep the system running (they can go “offline”). In fact,
Coalition A can make all the function key information public
and any interested user could monitor the system and obtain
the function evaluation results. Furthermore, the ciphertexts
in our construction will correspond to several pseudorandom
function (PRF) evaluations, implemented via AES, so the sen-
sors can be computationally extremely weak and need only
support the most basic of cryptographic tools. The functional-
ities (determined at setup) that are supported by the scheme
are quite general. A function evaluation at time T ′ may be
on data generated at any time from setup until T ′, with any
number of sensor readings as input coming from as many or
as few different sensors as desired.

1.1 Our Results

Garbled Encryption. We formally define garbled encryption
and provide a construction from one-way functions (in partic-
ular, a PRF that can be instantiated using AES) that supports
an unbounded number of ciphertexts. We, in fact, provide
two constructions: a selectively secure scheme in the standard
model, and an adaptively secure scheme in the random oracle
model. In the adaptive security setting, the adversary can adap-
tively observe ciphertexts and function keys in any order, and
thus realistically models scenarios where an adversary may
observe broadcast ciphertexts before obtaining key material,
and then observe additional broadcast ciphertexts afterwards.
We also provide an implementation of our adaptively secure
garbled encryption scheme.

A simplified version of our adaptively secure garbled en-
cryption scheme also yields an adaptively secure garbling
scheme [14] where the wire keys are the same size as in non-
adaptive garbling schemes. To the best of our knowledge,

such a garbling scheme was not known previously. In particu-
lar, all previously known adaptive garbling schemes required
larger wire keys (even in the random oracle model). We be-
lieve that our adaptive garbling scheme with short wire keys
may be applicable to other scenarios where such a property is
desirable.

Our scheme requires the encryption algorithm to have a
state in a manner which we call index dependence. This is
the constraint that each ciphertext is labeled with an index
and that no two ciphertexts share the same index. Since index
dependence still supports parallelism, we don’t view this as a
major limitation. However, by introducing this natural relax-
ation, we are able to achieve a practical construction of this
primitive from standard assumptions.

Self-Processing Private Sensor Data and Implementation.
Finally, we give evaluation results for our adaptively secure
garbled encryption scheme. We find that it performs quite
well, with decryptions in the tens to hundreds of microsec-
onds when run on a standard commodity laptop. Table 1 gives
some of our evaluation results for self-processing private sen-
sor data via garbled encryption for a variety of functionalities.
Based on our evaluation results, we observe that our garbled
encryption scheme could be applied to an automated warning
system on 64 sensors that lasts for 10 years and issues an
all clear vs. anomaly detected reading every 10 minutes. In
such a setup, we find that the trusted authority need only be
online for 14 seconds and that users who wish to monitor the
warning system can do so by downloading a few kilobytes
of data and performing a 14 µs computation every 10 min-
utes. Furthermore, for Coalition A and Country B to realize
their 25-year treaty, they would need to perform a 2.2 minute
computation during the setup ceremony to generate the neces-
sary garbled circuits, which, when handed over to Coalition
A, would allow each country in Coalition A to learn the max-
imum radiation levels observed every hour for the next 25
years by performing a 385 µs computation every hour.

In summary, we believe that garbled encryption achieves a
practical solution for the self-processing private sensor data
problem and other situations that may arise requiring com-
puting on encrypted data without compromising data privacy
through leakage or the use of nonstandard assumptions.

Practical Deployment Challenges. Even though our perfor-
mance results show the practicality of our self-processing
private sensor data scheme, there are various challenges that
one would need to address before being confident in deploy-
ing such a system. These include issues such as sensor failure,
sensor compromise, and clock synchronization between sen-
sors. We discuss how to address such challenges in Section 8.

2 System Setting and Threat Model

A self-processing private sensor data system consists of the
following components that are created during a one-time

3



Table 1: Self-Processing Private Sensor Data via Garbled Encryption Performance Summary

Function # Inputs ` GE.KeyGen GE.Dec |GE.ct| |GE.sk|

DNF 64 1-bit 27 µs 14 µs 16 B 8.7 kB

Thresh 16 32-bit 523 µs 319 µs 512 B 42.8 kB

Max 16 32-bit 613 µs 385 µs 512 B 58.2 kB
∗ For all settings of parameters, running GE.Setup and GE.Enc took < 1 µs and
therefore this information is omitted from the table.

trusted ceremony.

• Sensors: These are weak computational devices with
small storage (enough to hold an AES key) that are
deployed in the field. Their job is, at each time step,
to take sensor readings, broadcast encryptions of the
sensor readings, and update their stored key for the next
time step. They do not communicate with each other or
any other parties.

• Function Key Data: This information is needed by any
user that wishes to monitor the sensor system. For sce-
narios where anybody is allowed to monitor the system,
these data can be stored in a publicly accessible location.
Observe that the function key data is generated before
any sensor readings have taken place and the sensors do
not have access to the function key data.

The following entities make use of the self-processing pri-
vate sensor data system.

• Private Data Owner: The private data owner appro-
priately places the sensors in the field. To protect
their privacy, they are unwilling to divulge the sensor
readings in the clear. However, they have agreed to
allow monitoring users to learn various functions of the
sensors readings.

• Monitoring Users: A monitoring user is any interested
party with access to the function key data that wishes to
monitor the sensor system. At each time step, they re-
ceive the encrypted broadcasts from the sensors and use
these, along with the function key data, to learn prede-
termined functions of sensor readings, potentially taken
during different time steps.

2.1 Threat Model
The goal of a self-processing private sensor data system is to
allow monitoring users to learn agreed-upon functions of the

sensor readings taken at various time steps, without violating
the privacy of the data owner. An attacker is allowed to ob-
serve all broadcasts from sensors and is given all the function
key data. Such an attacker should not be able to “learn any-
thing” about the data owner’s private data beyond what they
have agreed to disclose as part of the monitoring process. This
notion is captured formally via an indistinguishability secu-
rity game. We also allow an attacker to compromise sensors
at any point during the lifetime of the system and learn the
secret key stored on the sensor. In this event, we require that
the past privacy of the data owner be upheld. In particular, the
adversary should not be able to “learn anything” about previ-
ous sensor readings beyond what is allowed. We discuss how
to handle deployment challenges outside the threat model in
Sec. 8.

3 Preliminaries

Throughout the paper, we denote the security parameter by λ.
For an integer n ∈N, we use [n] to denote the set {1,2, . . . ,n}.
We use D0 ≈c D1 to denote that the distributions D0,D1
are computationally indistinguishable. Let bin(n) denote the
binary representation of n and bin(n)i denote the ith bit of
the binary representation. We use the symbol O to denote
random oracles and O(t)(x) to mean O(O(. . .(x))), where O
is applied t times.

3.1 Garbling Schemes
We recall the definition of garbling schemes [9, 15].

Definition 1 (Garbling Schemes [9, 15]). A garbling scheme
GC = (Gen,GrbI,GrbC,EvalGC) defined for a class of cir-
cuits C consists of the following polynomial time algorithms:

• Setup, Gen(1λ): On input security parameter λ, it gen-
erates the secret parameters gcsk.

• Generation of Wire Keys, GrbI(gcsk): On input secret
parameters gcsk, it generates the wire keys~k = (k1, . . . ,
k`), where ki = (k0

i ,k
1
i ). (Throughout, we will use the
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terms wire keys and labels interchangeably when refer-
ring to keys given out for each input bit to a garbled
circuit.)

• Garbled Circuit Generation, GrbC(gcsk,C,~k): On in-
put secret parameters gcsk, circuit C ∈ C , and wire keys
~k, it generates the garbled circuit Ĉ.

• Evaluation, EvalGC(Ĉ,(kx1
1 , . . . ,kx`

` )): On input gar-
bled circuit Ĉ and wire keys (kx1

1 , . . . ,kx`
` ), it generates

the output out.

It satisfies the following properties:

• Correctness: For every circuit C ∈ C of input length `,
x∈ {0,1}`, for every security parameter λ∈N, it should
hold that:

Pr


C(x)← EvalGC(Ĉ,(kx1

1 , . . . ,kx`
` )) :

gcsk← Gen(1λ),
((k0

1,k
1
1), . . . ,(k

0
` ,k

1
` ))← GrbI(gcsk),

Ĉ← GrbC(gcsk,C,((k0
1,k

1
1), . . .

. . . ,(k0
` ,k

1
` )))

= 1

• Security: There exists a PPT simulator SimGC such that
the following holds for every circuit C∈C of input length
`, x ∈ {0,1}`,(

Ĉ,kx1
1 , . . . ,kx`

`

)
∼=c SimGC(1λ,φ(C),C(x)),

where:

– gcsk← Gen(1λ)

– ((k0
1,k

1
1), . . . ,(k

0
` ,k

1
` ))← GrbI(gcsk)

– Ĉ← GrbC(gcsk,C,((k0
1,k

1
1), . . . ,(k

0
` ,k

1
` )))

– φ(C) is the topology of C.

Theorem 1 ( [9, 15, 16]). Assuming the existence of one-way
functions, there exists a secure garbling scheme GC where
GrbI outputs wire keys by choosing uniformly random values
over their domain. Furthermore, the scheme satisfies correct-
ness regardless of the choice of wire keys provided that k0

i and
k1

i are distinct for all i ∈ [`].

In our proof of selective security of garbled encryption,
we actually need a stronger notion of security for garbling
schemes, which we will refer to as chosen-wire key security.
In this notion of security, the adversary is additionally allowed
to choose the wire keys that correspond to its chosen input x
in the garbled circuit.

Definition 2 (Chosen-Wire Key Security). A garbling scheme
GC is said to be chosen-wire key secure if there exists a PPT
simulator SimGC such that the following holds for every

circuit C ∈ C of input length `, x ∈ {0,1}`, and wire keys
k = (k1, . . . ,k`).(

Ĉ,k
)
∼=c

(
SimGC

(
1λ,φ(C),C (x) ,k

)
,k
)
,

where:

• gcsk← Gen(1λ)

• ((k0
1,k

1
1), . . . ,(k

0
` ,k

1
` ))← GrbI(gcsk)

• Ĉ← GrbC(gcsk,C,~k)

• φ(C) is the topology of C

where ~k = (k1, . . . ,k`) with ki = (ki,k1
i ) if xi = 0 and ki =

(k0
i ,ki) if xi = 1.

Note that in the above definition, the wire keys correspond-
ing to the input x are fixed ahead of time and the other wire
keys (those corresponding to the bitwise negation of x) are
generated by GrbI.

Theorem 2. Assuming the existence of one-way functions,
there exists a chosen-wire key secure garbling scheme GC
where GrbI outputs wire keys by choosing uniformly random
values over their domain. Furthermore, the scheme satisfies
correctness regardless of the choice of wire keys provided that
k0

i and k1
i are distinct for all i ∈ [`].

We give a proof of Thm. 2 in Appendix B.1.

3.2 Adaptive Garbling Schemes
In order to obtain adaptively secure garbled encryption, we
will need to make use of adaptively secure garbling schemes.
Intuitively, an adaptively secure garbling scheme is secure
even if an adversary chooses the input to evaluate the circuit
on after it sees the garbled circuit. We require a strong no-
tion of an adaptively secure garbling scheme (referred to as
“fine-grained adaptive security [14]) where the adversary may
submit input queries bit by bit and choose future input queries
after it receives some of the input labels.

Definition 3 (Adaptively Secure Garbling Schemes). A gar-
bling scheme GC for circuit class C is adaptively secure if for
any PPT adversary A , there exists a PPT simulator SimGC
and a negligible function µ(·) such that for all sufficiently
large λ ∈ N, the advantage of A is

AdvGCA =∣∣∣Pr[ExptGCA (1λ,0) = 1]−Pr[ExptGCA (1λ,1) = 1]
∣∣∣

≤ µ(λ),

where for each b ∈ {0,1} and λ ∈ N, the experiment
ExptGCA (1λ,b) is defined below:
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1. Circuit query: A submits a circuit query C ∈ C to the
challenger Chal. Let ` denote the length of the input to
C.

2. If b = 0, Chal computes

• gcsk← Gen(1λ)

• ((k0
1,k

1
1), . . . ,(k

0
` ,k

1
` ))← GrbI(gcsk)

• Ĉ← GrbC(gcsk,C,((k0
1,k

1
1), . . . ,(k

0
` ,k

1
` )))

and sends Ĉ to A .

If b = 1, Chal computes

• Ĉ← SimGC(1λ,φ(C)),

where φ(C) is the topology of C and sends Ĉ to A .

3. Input queries: The following is repeated at most ` times.
A submits an index i and a bit value v to the challenger.
Chal keeps a set of queried indices S , initially set to /0

and a value y, initially set to⊥. If i 6∈ [`]\S , Chal returns
⊥. Else, Chal sets xi to v and sets S to S ∪{i}. If |S |= `,
then Chal sets x = x1 . . .x` and sets y =C(x).

If b = 0, then Chal returns ki = kxi
i .

If b= 1, then Chal returns ki← SimGC(⊥, i, |S |) if |S |<
` and ki← SimGC(y, i, |S |) if |S |= `.

4. The output of the experiment is then set to the output of
A .

Theorem 3 ( [14]). Assuming the existence of one-way func-
tions, there exists an adaptive garbling scheme GC in the
random oracle model. This can be obtained by applying a
transformation to any garbling scheme.

Remark 1. Our construction of adaptively secure garbled
encryption uses the adaptive garbling scheme from Thm. 3
in a non-black-box manner. The adaptive garbling scheme
from Thm. 3 shows how to transform a selectively secure
garbling scheme into an adaptively secure one. This works
as follows. Let Ĉ and (Xb

i )i∈[n],b∈{0,1} be the garbled circuit
and wire keys, respectively, of the selective secure scheme,
with each Xb

i ∈ {0,1}λ. For each i ∈ [n], a uniformly random
mask Zi←{0,1}λ is sampled. Set Z = Z1⊕ . . .⊕Zn. Let Yi =
Z||i. The adaptively secure garbled circuit is Ĉ′ = Ĉ⊕O ′(Y0)
and the wire keys are of length 2λ and are (Xb

i ⊕O(Yi),Zi)
(assume the output lengths of the random oracles are set
appropriately). Correctness follows since once one has a wire
key for each of the n input wires, one can compute Z and
unmask the garbled circuit and wire keys of the selectively
secure scheme. Adaptive security follows from the fact that
until one learns all n wire keys, Z is information theoretically
hidden and so the garbled circuit and wire keys look uniform.
In the proof of security, the simulator also samples Ĉ′, all the
Xb

i ’s, and the Zi’s uniformly at random.

3.3 Index Dependence
Throughout, we will require various algorithms to satisfy a
notion of statefulness, which we call index dependence.

Definition 4 (Index Dependence). An algorithm A is said
to be index dependent if it maintains a state S of the form
{i1, i2, . . . , i`} with each i j ∈ N. S begins as the empty set /0

and on each call to the algorithm, A is given an index i such
that i 6∈ S. It then adds i to S and runs with i as one of its
inputs.

An algorithm is said to be q-index dependent if the indices
in the state are all in [q].

Index dependence is necessary in order to ensure that no
two ciphertexts have the same index. In implementations of
our schemes, an encryptor can simply keep a counter of the
next free index and encrypt sequentially.

3.4 Garbled Encryption
Garbled encryption can be thought of as an indexed version
of secret-key MiFE where every ciphertext has an associated
index and the key generation algorithm takes sets of indices as
an additional input and generates a function key that can only
evaluate on ciphertexts with corresponding indices. As such,
we model our definition of garbled encryption in a manner
similar to the definition of MiFE found in the literature [5].

Syntax. Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be ensembles
where Xλ, Yλ are sets each with size dependent on λ. Let F =
{Fλ}λ∈N be an ensemble where each Fλ is a finite collection
of n-ary functions. Each function f ∈Fλ takes as input strings
x1, . . . ,xn, where each xi ∈ Xλ, and outputs f (x1, . . . ,xn) ∈ Yλ.
Let Q denote a set of sets, where each set Q ∈ Q is a subset
of Nn. (We note that our constructions of garbled encryption
do not require all the functions in the function class to have
the same arity. That is, our construction can simultaneously
handle, say a 2-ary and a 3-ary function. However, we define
garbled encryption for fixed arity functions for notational
simplicity throughout.)

A garbled encryption scheme GE for n-ary functions F
and query pattern Q consists of four algorithms
(GE.Setup,GE.KeyGen,GE.Enc,GE.Dec) described below:

• Setup. GE.Setup(1λ) is a PPT algorithm that takes as
input a security parameter λ and outputs the master secret
key GE.msk.

• Key Generation. GE.KeyGen(GE.msk, f ,Q) is a PPT
algorithm that takes as input the master secret key
GE.msk, a function f ∈ Fλ, and a set Q ∈ Q . It outputs
a functional key GE.sk f ,Q.

• Encryption. GE.Enc(GE.msk,m, i) is a PPT algorithm
that takes as input the master secret key GE.msk, a mes-
sage m ∈ Xλ, and an index i ∈ N. It outputs a ciphertext
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GE.ct. GE.Enc is index dependent and the ciphertext
GE.ct has an associated index i. If GE.Enc is asked to en-
crypt to an index j to which it has previously encrypted,
it will output ⊥.

• Decryption. GE.Dec(GE.sk f ,Q,GE.ct1, . . . ,GE.ctn) is a
deterministic algorithm that takes as input a functional
key GE.sk f ,Q and n ciphertexts GE.ct1, . . . ,GE.ctn. It
outputs a value y ∈ Yλ∪{⊥}.

Correctness. There exists a negligible function negl(·)
such that for all sufficiently large λ ∈ N, every n-ary func-
tion f ∈ Fλ, set Q∈Q , point ( j1, . . . , jn)∈Q, and input tuple
(x1, . . . ,xn) ∈ X n

λ
,

Pr


GE.msk← GE.Setup

(
1λ
)

;
GE.sk f ,Q← GE.KeyGen(GE.msk, f ,Q) ;
GE.Dec(GE.sk f ,Q,

(GE.Enc(GE.msk,xi, ji))
n
i=1)

6= f (x1, . . . ,xn)


≤ negl(λ)

where the probability is taken over the random coins of all
the algorithms.

Selective Security. We model indistinguishability-based
selective security for garbled encryption in a similar manner
as that for MiFE. The difference is that a function query in
the game for garbled encryption consists of both a function
f ∈ Fλ and a set Q ∈ Q and returns a function key GE.sk f ,Q
corresponding to ( f ,Q). We defer the full description of this
game to Appendix A.1.

Adaptive Security. One can consider a stronger notion of
security, called adaptive security, where the adversary can
interleave the challenge messages and the function queries
in any arbitrary order. We will construct adaptively secure
garbled encryption in the random oracle model. We defer the
full description of this game to Appendix A.1.

In this paper, we will focus on garbled encryption where
Q is taken to be the set containing all sets of singletons.
That is, a valid function query consists of a function f and
a tuple of indices ( j1, . . . , jn), and the resulting function key
allows for the function evaluation on the tuple of ciphertexts
corresponding to these indices. We leave constructions of
garbled encryption where Q is defined differently to future
work.

3.5 Time-Based Garbled Encryption
Using garbled encryption as defined above, it is possible to
build a self-processing private sensor data system. However,

the system that results does not allow sensors to update their
stored keys, which causes all sensor readings to be compro-
mised if a sensor is compromised by the attacker. To address
this, we propose a more general version of garbled encryp-
tion called time-based garbled encryption that supports key
updates. This will improve the security of the resulting self-
processing private sensor data system by preserving the pri-
vacy of past sensor readings in the event of a sensor compro-
mise.

The syntax of time-based garbled encryption is the same
as that of garbled encryption except that it additionally has
the key generation and encryption algorithms take as input a
time offset t ∈N. Intuitively, a time offset t corresponds to the
number of times that the sensor will have updated its stored
key (by hashing) before encrypting a particular message. A
function key with time offset t is compatible with encryptions
generated with time offset t. We define and construct time-
based garbled encryption in Appendix C.

4 Selectively Secure Garbled Encryption

We construct a selectively-secure garbled encryption scheme
that supports an unbounded number of ciphertexts in the stan-
dard model from one-way functions. The idea behind the con-
struction relies heavily on garbled circuits, hence the name
garbled encryption. In our construction, a ciphertext is simply
a set of wire keys corresponding to the message, which can
be used to evaluate garbled circuits. These wire keys will be
derived by a PRF evaluation that depends on the secret key
and the index j ∈ N of the encryption. Intuitively, there are
wire keys associated with every index j and when we encrypt
to this index, we select the wire keys that correspond to the
message. Since no two ciphertexts have the same index, only
one set of wire keys will ever be revealed for each index. A
function key for a function f and a tuple of indices ( j1, . . . , jn)
is then simply a garbled circuit that computes f with wire
keys corresponding to the indices ( j1, . . . , jn).

4.1 Construction
Let PRF = (PRF.Gen,PRF.Eval) be a pseudorandom func-
tion family with λ-bit keys that outputs in {0,1}λ and let
GC= (Gen,GrbI,GrbC,EvalGC) be a garbling scheme. Our
garbled encryption scheme GE for n-ary functions F and
query pattern Q , where Q is the set containing all sets of
singletons, is defined as follows:

Let ` = n · log |Xλ| denote the input length to circuits C
representing functions f ∈ F . We note that the indices (i−
1) · log |Xλ|+1, . . . , i · log |Xλ| correspond to the indices of the
input xi to C. Letting ri = (i−1) · log |Xλ| and `m = log |Xλ|,
we denote these indices as ri +1, . . . ,ri + `m.

• Setup. On input the security parameter 1λ, GE.Setup
runs PRF.Gen(1λ) to obtain a PRF key K and outputs
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GE.msk= K.

• Key Generation. On input the master secret
key GE.msk, a function f ∈ Fλ, and a set
Q = {( j1, . . . , jn)} ∈ Q , GE.KeyGen runs as fol-
lows:

Let C be a circuit for f . GE.KeyGen runs the garbled cir-
cuit generation algorithm Gen(1λ) to obtain the secret pa-
rameters gcsk. It then sets the garbling keys k j = (k0

j ,k
1
j )

for j ∈ [`] as follows: For i∈ [n], it sets the garbling keys
kri+α = (k0

ri+α,k
1
ri+α) for α ∈ [`m] to be

k0
ri+α = PRF.Eval(GE.msk, ji||α||0)

k1
ri+α = PRF.Eval(GE.msk, ji||α||1).

Setting~k = (k1, . . . ,k`), it then runs GrbC(gcsk,C,~k) to
obtain a garbled circuit Ĉ. GE.KeyGen outputs

(Ĉ,Q)

as GE.sk f ,Q.

• Encryption. On input the master secret key GE.msk, a
message m and an index j ∈ N, GE.Enc runs as follows:
GE.Enc is index dependent and maintains a state S ini-
tialized to the empty set /0. It first checks that j 6∈ S. If
j ∈ S, it returns⊥. Otherwise, it adds j to S and proceeds.

Defining k0
α and k1

α for α ∈ [`m] by

k0
α = PRF.Eval(GE.msk, j||α||0)

k1
α = PRF.Eval(GE.msk, j||α||1)

as above, GE.Enc computes

k =
(

kbin(m)1
1 , . . . ,k

bin(m)`m
`m

)
and outputs

( j,k)

as GE.ct. We refer to j as the index of this ciphertext.

• Decryption. On input a functional key GE.sk f ,Q =

(Ĉ,Q) and n ciphertexts GE.ct1, . . . ,GE.ctn, GE.Dec
first parses each GE.cti as ( ji,ki) and asserts that
( j1, . . . , jn) ∈ Q. If not, it outputs ⊥.

GE.Dec runs

EvalGC(Ĉ,(k1, . . . ,kn))

to obtain out and outputs this value.

4.2 Correctness
The correctness of our garbled encryption scheme follows
directly from the correctness of the garbling scheme GC and
Thm. 2. Consider any input tuple (x1, . . . ,xn)∈X n

λ
, n-ary func-

tion f ∈ Fλ, and set Q = {( j1, . . . , jn)}. Let GE.sk f ,Q denote
the function key for ( f ,Q) and GE.ct1, . . . ,GE.ctn denote en-
cryptions of (x1, j1), . . . ,(xn, jn), respectively. GE.sk f ,Q is of
the form (Ĉ,Q) and ciphertexts GE.cti are of the form ( ji,ki)
for i ∈ [n]. If we let

k = (k1, . . . ,kn),

we see that k is a vector of wire keys of length ` and for i∈ [n]
and α ∈ [`m], we note that

kri+α = PRF.Eval(GE.msk, ji||α||bα)

where bα is the αth bit of xi. But, Ĉ is the garbled circuit
obtained by running

gcsk← Gen(1λ),

Ĉ← GrbC(gcsk,C,((k0
1,k

1
1), . . . ,(k

0
` ,k

1
` )))

where

kb
ri+α = PRF.Eval(GE.msk, ji||α||b)

for i ∈ [n],α ∈ [`m]. Since PRF is pseudorandom, it follows
that k0

α and k1
α will be distinct for all α ∈ [`] with all but

negl(λ) probability, and therefore, by the correctness of GC
and Thm. 2, it follows that GE.Dec will output

EvalGC(Ĉ,k) =C(x1, . . . ,xn) = f (x1, . . . ,xn)

with overwhelming probability.

4.3 Security
Theorem 4. Assuming that PRF is a pseudorandom function
family and GC is a chosen-wire key secure garbling scheme
implied by Thm. 2, then GE is a selectively-secure garbled
encryption scheme.

We give a proof of Thm. 4 in Appendix B.2.

5 Adaptively Secure Garbled Encryption

We now describe our construction of adaptively secure garbled
encryption in the random oracle model. A natural idea for
obtaining such a scheme is to instantiate our construction of
selectively secure garbled encryption in Section 4 with an
adaptively secure garbling scheme. We, note, however, that
all known adaptive garbling schemes require larger wire key
sizes than non-adaptive garbling schemes. For example, wire
keys in the scheme of [14] have size twice that of keys in non-
adaptive garbling. If used naively, this would double the size
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of the ciphertexts in the garbled encryption scheme, which in
turn increases the amount of information that the sensors need
to broadcast in our self-processing sensor data application.

In order to avoid an increase in the requirements on the sen-
sors, we build an adaptive garbled encryption scheme where
the ciphertext size remains the same as in our selectively se-
cure construction; however, the function key sizes are larger.2

We achieve this effect by using the adaptive garbling scheme
of [14] in a slightly non-black-box manner as well as by mak-
ing some modifications to our selectively secure garbled en-
cryption scheme.

Recall that each wire key in the scheme of [14] is a tu-
ple of the form (X̃b

i ,Zi), where X̃b
i is a “masked” label, and

Zi’s denote the information that is used for computing the
masks. (See Remark 1 in Section 3.2.) A potential way to
ensure that wire keys are of size λ and not 2λ is to decouple
the tuple (X̃b

i ,Zi) such that the wire key now consists of X̃b
i

and the Zi value (for every wire key) is added to the garbled
circuit description (thereby increasing its size). This, how-
ever, has the effect of prematurely “fixing” the masks which
breaks the proof of adaptive security. To address this issue,
we use another masking layer, i.e., we carefully mask the
Zi values themselves such that the evaluator can obtain the
corresponding masks only once it has fixed its input to the
garbled circuit. Now, we can once again rely on the adaptive
security of the underlying garbling scheme, with the added
benefit that the wire keys are short. We refer the reader to the
formal construction below for more details.

We note that our adaptively secure garbled encryption
scheme for the simplified case of a single function key and
without any indexing, implies an adaptively secure garbling
scheme where the wire key sizes are the same as in non-
adaptive garbling schemes. To the best of our knowledge,
such a garbling scheme was not known previously. To com-
pare the tradeoff in the size of the wire keys vs. the size of the
garbled circuit, we observe that for a circuit C with ` inputs,
the adaptively secure garbling scheme of [14] has wire keys
of size 2λ. Our adaptively secure garbling scheme reduces
the size of the wire keys to be λ, but increases the size of the
garbled circuit by an additive amount of λ+(4λ)` compared
to the garbled circuit of [14]. If both the garbled circuit and
wire keys are given out together, then this tradeoff is not worth
it. However, in a self-processing sensor data scheme, all the
garbled circuits are generated during trusted setup and stored.
The sensors then generate the appropriate wire keys over the
lifetime of the system and broadcast them. In our situation, we
view this tradeoff as desirable since the pro of decreasing the
amount of transmitted data outweighs the con of increasing
the amount of initial storage. We believe that there may be
other settings where adaptively secure garbling schemes with
short wire keys are also desirable, in which case, our adaptive
garbling scheme would come in handy.

2For the self-processing sensor data application, we find this to be a
desirable trade-off.

5.1 Construction
We now proceed to give a formal description. Let O1 :
{0,1}3λ → {0,1}λ and O2 : {0,1}2λ → {0,1}2λ be random
oracles. Let PRF = (PRF.Gen,PRF.Eval) be a pseudoran-
dom function family with λ-bit keys that outputs in the range
{0,1}λ and let GC= (Gen,GrbI,GrbC,EvalGC) be the adap-
tively secure garbling scheme specified by Thm. 3. Let O
be the random oracle used by the adaptively secure garbling
scheme. Our garbled encryption scheme GE for n-ary func-
tions F and query pattern Q , where Q is the set containing
all sets of singletons, is defined as follows:

Recall our notation from Section 4. Let ` = n · log |Xλ|
denote the input length to circuits C representing functions
f ∈ F . We note that the indices (i− 1) · log |Xλ|+ 1, . . . , i ·
log |Xλ| correspond to the indices of the input xi to C. Let-
ting ri = (i−1) · log |Xλ| and `m = log |Xλ|, we denote these
indices as ri +1, . . . ,ri + `m.

• Setup. On input the security parameter 1λ, GE.Setup
runs PRF.Gen(1λ) to obtain a PRF key K and outputs
GE.msk= K.

• Key Generation. On input the master secret
key GE.msk, a function f ∈ Fλ, and a set
Q = {( j1, . . . , jn)} ∈ Q , GE.KeyGen runs as fol-
lows:

Let C be a circuit for f . GE.KeyGen then runs the gar-
bled circuit generation algorithm Gen(1λ) to obtain the
secret parameters gcsk. It then generates a uniformly
random string V ∈ {0,1}λ.

It then sets kα = (k0
α,k

1
α) for α ∈ [`] as follows:

For i∈ [n], it sets the garbling keys kri+α = (k0
ri+α,k

1
ri+α)

for α ∈ [`m] to be

k0
ri+α = PRF.Eval(GE.msk, ji||α||0)

k1
ri+α = PRF.Eval(GE.msk, ji||α||1).

For α ∈ [`], it sets Zα uniformly at random. Set Z =
Z1 ⊕ . . .⊕ Z`. For α ∈ [`], it sets Yα according to the
procedure specified by the garbling scheme of Thm. 3
and then sets Xb

α as O1(kb
α||V ||Z)⊕O(Yα). Let~k′ denote

the garbling keys as determined by the Xb
α’s, Yα’s and

Zα’s. It then runs GrbC(gcsk,C,~k′) to obtain a garbled
circuit Ĉ. For α ∈ [`],b ∈ {0,1}, let

T b
α = (Zα||0λ)⊕O2(kb

α||V ).

For each α, with probability 1/2, swap the values of T 0
α

and T 1
α .

GE.KeyGen outputs

(Ĉ,V,{T 0
α ,T

1
α }α∈[`],Q)
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as GE.sk f ,Q.

• Encryption. On input the master secret key GE.msk, a
message m and an index j ∈ N, GE.Enc runs as follows:
GE.Enc is index dependent and maintains a state S ini-
tialized to the empty set /0. It first checks that j 6∈ S. If
j ∈ S, it returns⊥. Otherwise, it adds j to S and proceeds.

Defining k0
α and k1

α for α ∈ [`m] by

k0
α = PRF.Eval(GE.msk, j||α||0)

k1
α = PRF.Eval(GE.msk, j||α||1)

as above, GE.Enc computes

k =
(

kbin(m)1
1 , . . . ,k

bin(m)`m
`m

)
and outputs

( j,k)

as GE.ct. We refer to j as the index of this ciphertext.

• Decryption. On input a functional key

GE.sk f ,Q = (Ĉ,V,{T 0
α ,T

1
α }α∈[`],Q) and n ciphertexts

GE.ct1, . . . ,GE.ctn, GE.Dec first parses each GE.cti as
( ji,ki) and asserts that ( j1, . . . , jn) ∈Q. If not, it outputs
⊥.

Let k = (k1, . . . ,kn). For α∈ [`], GE.Dec recovers Zα by
computing O2(kα||V )⊕T b

α for b ∈ {0,1} and setting Zα

to be the λ-bit prefix of the recovered value whose last
λ bits are all 0. Once all the Zα’s are recovered, GE.Dec
computes the Yα’s and Z =

⊕
Zα and then sets Xα as

O1(kα||V ||Z)⊕O(Yα). It then runs EvalGC on Ĉ with
the Xα’s to recover the output.

5.2 Correctness
The correctness of our garbled encryption scheme follows
directly from the correctness of the garbling scheme GC and
Thm. 3. Consider any input tuple (x1, . . . ,xn) ∈ X n

λ
, n-ary

function f ∈ Fλ, and set Q = {( j1, . . . , jn)}, where xi = xi′ if
ji = ji′ . Let GE.sk f ,Q denote the function key for ( f ,Q) and
GE.ct1, . . . ,GE.ctn denote encryptions of (x1, j1), . . . ,(xn, jn),
respectively (where GE.cti = GE.cti′ if (xi, ji) = (xi′ , ji′).
GE.sk f ,Q is of the form (Ĉ,V,{T 0

α ,T
1

α }α∈[`],Q) and cipher-
texts GE.cti are of the form ( ji,ki) for i ∈ [n]. If we let

k = (k1, . . . ,kn),

we see that k is a vector of wire keys of length `. For α ∈
[`], decryption proceeds by computing O2(kα||V )⊕T 0

α and
O2(kα||V )⊕T 1

α . For b ∈ {0,1}, we see that

O2(kα||V )⊕T b
α = O2(kα||V )⊕ (Zα||0λ)⊕O2(kb′

α ||V )

and thus decryption obtains (Zα||0λ) when kα = kb′
α and a

uniformly random looking value otherwise. Thus, we see
decryption correctly recovers Zα with overwhelming prob-
ability. Then, we note that O1(kα||V ||Z)⊕O(Yα) is the Xα

used by the garbling algorithm. So, decryption correctly re-
covers the labels Xα and therefore, by the correctness of the
garbling scheme, EvalGC run on Ĉ and the Xα’s will give us
f (x1, . . . ,xn).

5.3 Security

Theorem 5. Assuming that PRF is a pseudorandom function
family and GC is the adaptively secure garbling scheme of
Thm. 3, then GE is an adaptively secure garbled encryption
scheme.

We give a proof of Thm. 5 in Appendix B.3.

Note on Concrete Security. For a practical deployment of
garbled encryption, one might be interested in the concrete
security of our scheme. The concrete security depends on
and follows immediately from the concrete security of the
underlying garbling scheme and the number/size of garbled
circuits released. In our implementation, we used the garbled
circuit implementation of [17], which improves on the Just-
Garble [18] garbled circuit implementation by implementing
half-gates [19]. In order to obtain adaptively secure garbled
circuits, we applied the random oracle model transformation
of [14]. Both [18] and [14] provide thorough concrete security
analysis in the random oracle model of the garbled circuit con-
structions, and we refer an interested reader to these papers
for further details.

6 From Garbled Encryption to a Self-
Processing Private Sensor Data System

The garbled encryption constructions of Secs. 4 and 5 im-
mediately give rise to a self-processing private sensor data
system.

Let GE = (GE.Setup,GE.KeyGen,GE.Enc,GE.Dec) be a
garbled encryption scheme. Let n denote the number of sen-
sors and let T denote the number of time steps for the sensors
and ft for t ∈ [T ] denote the function to be computed on
the sensor readings during the tth time step (for notational
simplicity, we only consider one function and one sensor read-
ing per time step, but the scheme can naturally be extended
to support multiple functions and sensor readings per time
step). During the trusted ceremony, a key K← GE.Setup(1λ)
is generated and stored on each of the sensors. For t ∈ [T ],
compute GE.skt ← GE.KeyGen(K, ft ,(i1, i2, . . . , in)), where
(i1, i2, . . . , in) are the indices of the sensor readings that ft is
computed on. The function key data is set to be (GE.skt)t∈[T ].
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Table 2: Garbled Encryption Evaluation Results∗

Function # Inputs ` GE.KeyGen GE.Dec |GE.ct| |GE.sk| |selGE.sk|

DNF 64 1-bit 27 µs 14 µs 16 B 8.7 kB 2.0 kB

DNF 128 1-bit 54 µs 28 µs 16 B 17.4 kB 4.1 kB

DNF 256 1-bit 107 µs 56 µs 16 B 34.8 kB 8.2 kB

Thresh 8 32-bit 129 µs 78 µs 512 B 20.9 kB 7.2 kB

Thresh 16 32-bit 523 µs 319 µs 512 B 42.8 kB 15.4 kB

Max 8 16-bit 77 µs 48 µs 256 B 14.2 kB 7.2 kB

Max 8 32-bit 171 µs 107 µs 512 B 28.0 kB 14.3 kB

Max 16 32-bit 613 µs 385 µs 512 B 58.2 kB 30.7 kB
∗ For all settings of parameters, running GE.Setup and GE.Enc took < 1 µs and therefore this
information is omitted from the table. The results in this table are for adaptively secure garbled
encryption except for |selGE.sk|, which is the size of function keys if we only require selective
security.

Once the trusted setup is completed, at time step t,
the sensor i takes a measurement mi and broadcasts
GE.Enc(K,mi, i||t). By the correctness of garbled encryption,
any monitoring user with access to the function key data is
able to learn the desired function evaluation of the sensor
readings at every time step. By the security of garbled encryp-
tion, the private data owner’s privacy is protected against an
attacker that does not compromise the sensors.

Unfortunately, the above self-processing private sensor data
system is rendered completely insecure in the event of a sen-
sor compromise, as an attacker that learns the key K is able to
decrypt all encrypted readings and learn all the private sensor
data. To address this, we propose having the sensors update
their keys at each time step by hashing them. We formalize
this intuition by defining, constructing, and proving adaptive
security for time-based garbled encryption in Appendix C.
In the security notion for time-based garbled encryption, the
adversary is able to adaptively choose a time t at which to
compromise the sensors and learn the key stored on them. In
a similar manner, we can use time-based garbled encryption
to instantiate a self-processing private sensor data system. Let
TGE = (TGE.Setup,TGE.KeyGen,TGE.Enc,TGE.Dec) be
a time-based garbled encryption scheme. Let B be a bound
on the maximum number of time steps from the current time
in which a sensor reading will be used in a function compu-
tation. As before, a key K ← TGE.Setup(1λ) is generated
and stored on each of the sensors. For t ∈ [T ], function keys
TGE.skt ← TGE.KeyGen(K, ft ,(i1, i2, . . . , in), t) are gener-
ated. Once this setup is complete, at time step t, the sen-
sor i storing key Ki takes measurement mi and broadcasts
TGE.Enc(Ki,mi, i||t + j, j) for j = 0, . . . ,B. After that time

step has elapsed, it updates its stored key Ki to be O(Ki),
where O is the random oracle used in the time-based gar-
bled encryption construction to ratchet keys forward. Ob-
serve that since the key stored on a sensor at time t is
O(t)(K), sensor i’s outputs at time t are equivalent to if it
had run TGE.Enc(K,mi, i||t + j, t + j). However, the sensor
only knows O(t)(K) and not K, so an attacker that compro-
mises the sensor only recovers O(t)(K). By adaptive security
of time-based garbled encryption (see Appendix C), the pri-
vate data owner’s privacy for past sensor readings is protected
against an attacker that compromises the sensors.

Remark 2. Observe that in the above scheme, if the attacker
compromises one sensor, all sensors are compromised. Ideally,
one would want only the single sensor to be compromised.
Unfortunately, our approach cannot achieve this due to the
fact that garbled circuits do not provide any security guaran-
tee if the adversary is able to learn both wire keys for one of
the inputs. Thus, compromising a single sensor allows the ad-
versary to learn both wire keys for a single input, and we can
no longer appeal to garbled circuit security to argue that the
other sensors’ readings remain hidden. Similarly, we require
that all function computations are performed on ciphertexts
that were computed using the same underlying key (even if
the sensor readings were taken at different time steps). The
reason for this is that if ciphertexts were generated with re-
spect to different keys, then if the adversary compromises the
sensors and learns one of the keys, we will be in a similar
situation where the adversary can learn both labels for some
of the input wires, and we will be unable to appeal to garbled
circuit security. To avoid requiring computation only on sen-
sor readings taken during the same time step, we introduce
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a bound B and have the sensors encrypt the same reading
under future keys in order to use this reading in future com-
putations. We note that introducing this bound is only one
solution; if the functions ft follow some known pattern, then
the sensors could be programmed to easily know which time
step the sensor reading will be computed upon and encrypt
under the key for that time step by hashing the stored key.

7 Implementation and Evaluation

In order to determine the practical performance of garbled
encryption for our self-processing private sensor data appli-
cation, we implemented it and ran several tests on a variety
of parameter choices. We implemented both the selectively
secure and adaptively secure variants, but report on the per-
formance numbers for the adaptively secure variant.

Our starting point was the garbled circuit implementation
of [17], which improves on JustGarble [18], an open source
library for garbling and evaluating boolean circuits, by imple-
menting half-gates [19], among other improvements.

7.1 Implementation Details
The entire implementation was done in C. We used the stan-
dard 128-bit value for the security parameter, setting λ = 128.
We viewed messages as binary strings and allowed the length
of messages, `, and the number of inputs to be specified by the
user. We instantiated the underlying PRF in our construction
using AES128 and for adaptively secure garbled encryption,
used fixed-key AES as the random oracle. To ratchet keys for-
ward, one can use SHA256 as the underlying hash function.
We used the JustGarble library to build all circuits needed in
SCD (Simple Circuit Description) format and garble them.
We used the circuits of [20] as building blocks. Although our
scheme is easily parallelizable (different garbled circuits and
wire keys can be computed independently), we did not utilize
multiple threads and ran on a single core. Further implementa-
tion details of JustGarble can be found in [18] and the updated
library that supports half-gates can be found in [17].

The garbling libraries of [17] and JustGarble [18] imple-
ment selectively secure garbled circuits. They do not support
chosen wire-keys since the 0 and 1 labels must XOR to some
fixed secret block. For adaptively secure garbled encryption,
it was necessary to use our chosen wire-key transformation
and the transformations of [14] to obtain a fine-grained adap-
tively secure garbled circuit implementation. We then used
this adaptively secure garbled circuit scheme as the building
block for our garbled encryption implementation. In our con-
struction, when we padded by 0’s to ensure correctness of
encryption, we used correctness parameter of 80. With this pa-
rameter setting, a crude union bound for Coalition A-Country
B treaty example gives around a 1/253 chance of a single
decryption error at any point over the course of the 25 years
of the treaty.

7.2 Evaluation
All evaluations were ran on a 2012 MacBook Pro laptop
running Ubuntu 16.04 LTS that supports the AES-NI instruc-
tion set. The laptop has a 2.6 GHz Intel Core i7 processor
and 16 GB RAM. Since we did not leverage parallelism, all
evaluations were performed using a single core. The eval-
uation results for our adaptively secure garbled encryption
scheme for various functionalities, numbers of inputs, and
input lengths can be found in Table 2. All timings were taken
with microsecond resolution and were the average of 100,000
trials. We give timings for the functions DNF, Thresh, and
Max. DNF is the function that takes an `-bit input, breaks it
into 8 blocks of `/8 bits each, computes the AND of all the
bits in each block, and then computes the OR of all of the
AND computations. Thresh is the standard threshold func-
tion that sums all the inputs and outputs whether the resulting
sum is larger than some specified threshold value. Max is the
standard maximum function that outputs the largest value in a
series of input values. We include the sizes of all ciphertexts
and function keys to give a sense of the amount of data that
may need to be transmitted. Furthermore, we also include the
size of garbled encryption secret keys for the selectively se-
cure variants in Table 2 in order to give a sense of the amount
of space that can be saved if one is satisfied with the weaker
notion of selective security.

7.3 Self-Processing Private Sensor Data Per-
formance Analysis

Our garbled encryption implementation can be immediately
used to build self-processing private sensor data schemes (see
Sec. 6). Looking at the performance of our implementation
(Table 2), we see that setup and encryption are extremely fast
(< 1 µs) for all parameter settings and functionalities. Addi-
tionally, since the ciphertext is simply ` 128-bit wire keys,
the ciphertexts are very small, with sizes in the bytes. This
is particularly useful if the data collectors have limited com-
putational power and cryptographic capabilities, as they need
to only be able to run several AES evaluations and transmit
a few hundred bytes of data. Key generation and decryption,
which correspond to garbling a circuit and evaluating it, re-
spectively, are also both extremely fast, with timings in the
tens to hundreds of microseconds. With function keys in the
kilobytes, downloading a function key from a public source
is feasible for users wishing to monitor the system.

From our evaluation results, we observe the practicality of
garbled encryption to the following self-processing sensor
data scenarios:

Scenario 1: Suppose there are 64 sensors, 8 each in 8 dif-
ferent locations, taking pressure readings every 10 minutes.
The sensors either report normal pressure (0) or abnormal
pressure (1). We would like to issue a warning if all of the
sensors in an area report abnormal pressure for 4 consecutive
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Table 3: Self-Processing Private Sensor Data Performance Summary

# Sensors Evaluation Frequency System Duration Trusted Setup Time Data Size/Evaluation Evaluation Time

Scenario 1 64 10 min. 10 years 56.2 seconds 38.9 kB 56 µs

Scenario 2 16 1 hour 25 years 2.2 minutes 66.4 kB 385 µs

Scenario 1 corresponds to the DNF functionality on 256 1-bit inputs. Scenario 2 corresponds to the Max functionality on 16 32-bit inputs.

measurements, while keeping the readings hidden as we do
not want the public to know which location has an issue and
the sensors may be prone to false positives, which may cause
undue panic if the data is released in the clear.

This corresponds to evaluating DNF on an input x1|| . . . ||x8
with each xi ∈ {0,1}32, where each xi corresponds to a loca-
tion and contains the last 4 readings of all 8 sensors at that
location. So, we will need to compute wire keys for these in-
puts, garble the DNF function, and then evaluate the garbled
circuit to determine the function output on these inputs.

Based on our results in Table 2, we see that if we wanted
such a warning system to remain online for 10 years and out-
put a signal (“everything fine” or “anomaly detected”) every
10 minutes, this would require generating 525,600 garbled
circuits, which could be done in 56.2 seconds and would take
18.3 GB of storage. Moreover, once the trusted authority is
done generating these garbled circuits (56.2 seconds into the
10 years), it could go offline forever after it uploaded the
18.3 GB of garbled circuits, and the system would function
correctly for the next 10 years. Furthermore, an interested
party who wishes to monitor this warning system needs to
download only 34.8 kB of garbled circuit data and 4.1 kB of
ciphertext data every 10 minutes and perform a 56 µs compu-
tation. Note that the sensors can be very weak computational
devices and need only be capable of performing a single AES
evaluation and broadcasting 16 bytes every 10 minutes. Ad-
ditionally, anyone wishing to shut down the warning system
would need to tamper with the sensors deployed in the field,
since after 56.2 seconds, all information necessary to perform
the evaluation (apart from the still to be generated sensor data
and its published AES evaluations) is publicly available.

Scenario 2: Recalling the example in the introduction, we
saw that a coalition of countries (Coalition A) wanted to ne-
gotiate a 25-year treaty with Country B that would allow each
country in Coalition A to learn the maximum radiation level
observed every hour at any of the 16 sensors deployed through-
out Country B. Assuming the radiation measurement can be
given as a 32-bit integer, we see from our results in Table 2
that at the trusted setup ceremony, Country B would need to
generate 219,000 garbled circuits, which could be done in 2.2
minutes and would take 12.7 GB of storage. Once the garbled
circuits have been given to Coalition A and the sensors appro-
priately deployed in Country B, each member of Coalition A
could learn the maximum radiation level observed every hour

for the next 25 years by downloading 8.2 kB of ciphertext
data every hour and performing a 385 µs computation.

We summarize these results in Table 3. We observe that, in
general, the trusted setup time scales linearly with the total
system duration divided by the evaluation frequency, as this
corresponds to the number of garbled circuits that must be
generated at setup time. The data size/evaluation corresponds
to the size of the function key and ciphertext data that will
need to be downloaded to perform a function evaluation. The
evaluation time is simply the time to run GE.Dec. Both of
these values do not depend on the evaluation frequency or
the system duration, but rather only on the complexity of
the function to be evaluated (which, in turn, is dependent
on the number of sensors times the bit-length of the sensor
readings as this is the length of the input to the circuit). We
view this as a significant positive, as increasing the system
duration only increases the initial trusted setup time and the
amount of function key data to be stored, but does not affect
the performance of the system at each time step.

8 Practical Deployment Challenges

Our garbled encryption implementation is intended as a proof
of concept, and its performance suggests that our construction
could be used to build practical self-processing sensor data
schemes. However, there are various challenges that would
need to be addressed before one would be confident in de-
ploying such a system.

One desirable property would be for our system to be robust
to sensor failures. As currently described, a single sensor
failure can render the entire system unusable. To mitigate
this, in practice, one can either (i) run several trusted setups
and deploy the entire system several times in parallel or (ii)
deploy the sensors in a redundant manner. If N copies of
the system are deployed according to solution (i), then the
amount of stored function key data increases by a factor of
N and the system stays intact unless one sensor from each of
the N copies fails. If N copies of each sensor are deployed
(with different labels, but measuring the same data), then the
amount of stored function key data increases by Nm, where m
is the arity of the functions the scheme supports. However, this
system remains intact unless all N copies of the same sensor
fail. Which method to employ must be determined based
on the likelihood of sensor failure and the arity of functions
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that the scheme intends to support. Additionally, for systems
intended to remain functional for a long period of time, it
may be necessary to periodically replace sensors. This can
be done by executing the trusted setup again every so often,
or preferably, having the initial trusted setup also procure
“replacement” sensors to be installed at an appropriate point
in the future.

Another deployment consideration is the potential com-
promise of sensors. Indeed, each sensor must be equipped
with a secret key, which, if extracted, compromises the en-
tire system from that point forward. Our first observation is
that the sensors are deployed by the data owner. That is, in
our treaty scenario, Country B deploys the sensors in its own
territory and should be greatly incentivized to protect them
from outside tampering. However, in situations where Coun-
try B is incentivized to lie about the sensor readings, we want
protection from tampering by Country B itself as well. To
this end, the sensors can be equipped with a tamper-resistant
module [21] to prevent Country B from tampering with the
sensor without destroying the key in the process. Moreover,
the sensors can be equipped with a trusted platform module
(TPM) or a secure hardware enclave to protect the key, with
all encryption operations carried out in the trusted execution
environment. We can also require Country B to be subject
to periodic inspections that would verify that the sensors re-
main correctly deployed and have not been tampered with if
the protection provided by the tamper-resistant module is not
sufficient.

A final concern is that of clock synchronization. In par-
ticular, in order for the system to remain accurate, we need
noncommunicating sensors to have the same system time.
Over the course of the lifetime of the system, the various
clocks on the different sensors may fall out of sync. A first
observation is that in a variety of scenarios (for example, in
cases where we are taking a reading every hour), taking the
reading exactly on the hour is not of importance, and we
would not expect the clocks to go out of sync by more than an
hour. For situations with much more frequent readings, clock
synchronization may be an issue. In such cases, one would
use the various techniques on clock synchronization found in
the literature, which can handle even a limited connectivity
network between the sensors (see, for example, [22]).

9 Conclusions and Related Work

Conclusions Our garbled encryption implementation was
intended as a proof of concept to show that our construction is
practical for various self-processing sensor data scenarios. We
believe that garbled encryption itself is a useful primitive that
may be useful for other applications beyond self-processing
sensor data.

Garbled Circuits Garbled circuits were first introduced by
Yao [9] and have been studied extensively over the years. [16]
provides a formal proof and a rigorous treatment of Yao’s
construction and [15] gives abstractions of garbling schemes
and formal proofs of security. There have been many works,
such as [19, 20, 23–27], dedicated to reducing the amount of
data that must be transmitted per garbled gate. Additionally,
there have been various implementations (for example, [17–
19, 28, 29]) of garbled circuits.

Multi-input Functional Encryption and Practical FE
MiFE was first introduced in [5]. Constructing such schemes
and variants has been a topic of much research in recent
years [11–13, 30–33]. [34] introduced a relaxation of func-
tional encryption, called controlled functional encryption, in
order to obtain an implementable variant of FE. While our
study of garbled encryption comes from a similar motivation
(namely, efficient improvements), our approach is quite dif-
ferent. Specifically, unlike garbled encryption, controlled FE
requires a trusted authority to remain online at all times and
issue function keys for a function and ciphertext pair that
depend on the ciphertext. Furthermore, their work focuses on
the single-input setting, whereas we focus on the multi-input
setting.
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A Deferred Definitions

A.1 Security Definition for Garbled Encryp-
tion

Definition 5 (IND-secure Garbled Encryption). A garbled
encryption scheme GE for n-ary functions F = {Fλ}λ∈[N],
message space X = {Xλ}λ∈[N], and query pattern Q is se-
lectively secure if for any PPT adversary A , there exists a
negligible function µ(·) such that for all sufficiently large
λ ∈ N, the advantage of A is

AdvGEA =∣∣∣Pr[ExptGEA (1λ,0) = 1]−Pr[ExptGEA (1λ,1) = 1]
∣∣∣

≤ µ(λ),

where for each b ∈ {0,1} and λ ∈ N, the experiment
ExptGEA (1λ,b) is defined below:

1. Chal computes GE.msk← GE.Setup(1λ).
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2. Challenge message queries: The following is repeated
at most a polynomial number of times: A submits queries,
(xi,0,xi,1, ji), with xi,0,xi,1 ∈ Xλ and ji ∈ N, to the chal-
lenger Chal. Chal computes GE.cti← GE.Enc(GE.msk,
xi,b, ji). The challenger Chal then sends GE.cti to the
adversary A .

3. Function queries: The following is repeated at most a
polynomial number of times: A submits a function query
( f ,Q) ∈ Fλ×Q to Chal. The challenger Chal computes
GE.sk f ,Q← GE.KeyGen(GE.msk, f ,Q) and sends it to
A .

4. If there exists a function query ( f ,Q) and challenge
message queries

(
(x1,0,x1,1, j1), . . . ,(xn,0,xn,1, jn)

)
such that f (x1,0, . . . ,xn,0) 6= f (x1,1, . . . ,xn,1) and
( j1, . . . , jn) ∈ Q for j1, . . . , jn ∈ N, then the output of
the experiment is set to ⊥. Otherwise, the output of the
experiment is set to b′, where b′ is the output of A .

Definition 6 (Adaptive IND-secure Garbled Encryption). A
garbled encryption scheme GE for n-ary functions F =
{Fλ}λ∈[N], message space X = {Xλ}λ∈[N], and query pattern
Q is adaptively secure if for any PPT adversary A , there
exists a negligible function µ(·) such that for all sufficiently
large λ ∈ N, the advantage of A is

AdvGEA =∣∣∣Pr[ExptGEA (1λ,0) = 1]−Pr[ExptGEA (1λ,1) = 1]
∣∣∣

≤ µ(λ),

where for each b ∈ {0,1} and λ ∈ N, the experiment
ExptGEA (1λ,b) is defined below:

1. Chal computes GE.msk← GE.Setup(1λ).

2. The adversary is allowed to make the following two types
of queries in any arbitrary order.

• Challenge message query: A submits a query,
(i,xi,0,xi,1), with xi,0,xi,1 ∈ Xλ and i ∈ N, to
the challenger Chal. Chal computes GE.cti ←
GE.Enc(GE.msk,xi,b, i). The challenger Chal then
sends GE.cti to the adversary A .

• Function query: A submits a function query
( f ,Q)∈Fλ×Q to Chal. The challenger Chal com-
putes GE.sk f ,Q← GE.KeyGen(GE.msk, f ,Q) and
sends it to A .

3. If there exists a function query ( f ,Q) and challenge
message queries

(
(i1,x1,0,x1,1), . . . ,(in,xn,0,xn,1)

)
such

that f (x1,0, . . . ,xn,0) 6= f (x1,1, . . . ,xn,1) and (i1, . . . , in)∈
Q for i1, . . . , in ∈ N, then the output of the experiment is
set to ⊥. Otherwise, the output of the experiment is set
to b′, where b′ is the output of A .

B Deferred Proofs

B.1 Proof of Thm. 2
By Thm. 1, there exists GC = (Gen,GrbI,GrbC,EvalGC), a
secure garbling scheme. Let Π = (KeyGen,Enc,Dec) be an
IND-CPA secure symmetric key encryption scheme. Consider
the following garbling scheme GC′ = (Gen′,GrbI′,GrbC′,
EvalGC′) that is chosen-wire key secure.

• Gen′ = Gen and GrbI′ = GrbI.

• GrbC′(gcsk,C,~k): GrbC′ first generates wire keys~k′ uni-
formly at random. It then runs GrbC(gcsk,C,~k′) to ob-
tain Ĉ. For all i ∈ [`] and j ∈ {0,1}, GrbC′ computes
ct

j
i = Enc(k j

i ,k
′ j
i ||0 . . .0) where there are λ 0’s padded at

the end of the message. For each i∈ [`], it generates a ran-
dom bit bi ∈ {0,1} and sets ct′0i = ctbi

i and ct′1i = ct¬bi
i .

It then outputs (
Ĉ,{ct′ ji }i∈[`], j∈{0,1}

)
as its garbled circuit.

• EvalGC′((Ĉ,{ct j
i }i∈[`], j∈{0,1}),(k

x1
1 , . . . ,kx`

` )): For all i∈
[`], EvalGC′ runs Dec(kxi

i ,ct
0
i ) and Dec(kxi

i ,ct
1
i ). If nei-

ther or both of these resulting decryptions have λ

0’s padded at the end, EvalGC′ returns ⊥. Otherwise,
it removes the λ 0’s from the decryption that has
them and sets the result to be k′xi

i . EvalGC′ then runs
EvalGC(Ĉ,(k′x1

1 , . . . ,k′x`` )) and outputs the result.

Correctness: This follows immediately from the cor-
rectness of the original garbling scheme GC and the
correctness and security of the encryption scheme Π. If we
are given a garbled circuit (Ĉ,{ct j

i }i∈[`], j∈{0,1}) and wire
keys (kx1

1 , . . . ,kx`
` ), then by construction, for each i ∈ [`], one

of the ct
j
i ’s will decrypt using kxi

i to give k′xi
i ||0 . . .0. With all

but negl(λ) probability, none of the others will decrypt to a
value that has λ 0’s at the end. Therefore with overwhelming
probability, EvalGC′ will correctly recover (k′xi

i , . . . ,k
′x`
` )

and by the correctness of GC, the EvalGC computation will
output C(x).

Chosen Wire-Key Security: The simulator SimGC′(1λ,
φ(C),C(x),k) for GC′ runs as follows: It first runs the simula-
tor for GC, SimGC(1λ,φ(C),C(x)) to obtain (Ĉ,(k′1, . . . ,k

′
`)).

It then computes, for all i∈ [`], cti = Enc(ki,k′i||0 . . .0) where
k′i is padded by λ 0’s. It then generates wire keys r1, . . . ,r`
and r′1, . . . ,r

′
` uniformly at random and computes ct′i =
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Enc(ri,r′i||0 . . .0) for all i ∈ [`]. Then, for all i ∈ [`], it uni-
formly generates a bit bi ∈ {0,1} and sets ctbi

i = cti and
ct¬bi

i = ct′i. It then outputs(
Ĉ,{ct j

i }i∈[`], j∈{0,1}

)
as its garbled circuit.

We will now show that the output of SimGC′ is indistin-
guishable from the honestly generated garbled circuit.

Let H0 denote the “real" game where on input a circuit C ∈
C of input length `, x∈ {0,1}`, and wire keys k= (k1, . . . ,k`),
the garbled circuit is generated normally as in Definition 2.

Let H`+1 denote the “fake" game where on the
above input, the garbled circuit is generated by running
SimGC′(1λ,φ(C),C(x),k).

For i ∈ [`], let Hi denote the intermediate game where on
the above input, the garbled circuit is generated as in Hi−1
except when GrbC′ computes ct¬xi

i using Enc, it sets

ct¬xi
i = Enc(k¬xi

i ,ri||0 . . .0),

where ri is a uniformly random wire key. So, in H`, the garbled
circuit generator only encrypts the wire keys corresponding
to x from Ĉ← GrbC(gcsk,C,~k′) using the input wire keys
k = (k1, . . . ,k`) and does not encrypt the wire keys of Ĉ cor-
responding to the bitwise negation of x.

Lemma 1. For all i ∈ [`],

Hi−1 ≈c Hi.

Suppose there exists an algorithm A that can distinguish
between Hi−1 and Hi with nonnegligible probability. Then,
consider the following algorithm A ′ that can break the IND-
CPA security of Π. A ′ runs A and when A makes an oracle
query (C,x,k), A ′ runs the Hi−1 game except at the step
where it would usually compute

ct¬xi
i = Enc(k¬xi

i ,k′¬xi
i ||0 . . .0).

Instead, it submits the pair of messages
(k′¬xi

i ||0 . . .0,ri||0 . . .0) to its oracle and sets ct¬xi
i to

be its result. A ′ then outputs the response of A . Note that if
the random bit b of A ′’s oracle was set to 0, then it perfectly
simulates Hi−1 and if its random bit was set to 1, it perfectly
simulates Hi. Therefore, if A can distinguish these two
hybrids, then A ′ can break the IND-CPA security of Π.
Therefore, it must be that Hi−1 ≈c Hi.

Lemma 2.

H` ≈c H`+1.

Suppose there exists an algorithm A that can distinguish
between H` and H`+1 with nonnegligible probability. Then,

there exists an algorithm A ′ that can break the security of
the secure garbling scheme GC used in the construction of
GC′. A ′ simply runs SimGC′(1λ,φ(C),C(x),k) and when
the SimGC′ would run SimGC, the simulator for GC, A ′
queries its oracle on (C,x) and uses this as the output
of SimGC. Note that if A ′’s oracle is the actual garbling
scheme, it perfectly simulates H` and if its oracle is SimGC,
it perfectly simulates H`+1. Therefore, if A exists, then A ′
can distinguish between the output of SimGC and the actual
garbled circuit, contradicting the security of GC.

So, it follows that H0 ≈c H`+1 and therefore, GC′ is a
chosen-wire key secure garbling scheme.

B.2 Proof of Thm. 4
We will show that ExptGEA (1λ,0) ≈c ExptGEA (1λ,1) via a
series of hybrid games.

Hybrid game H0(1λ,b). This game is the same as
ExptGEA (1λ,b) except for the following: Whenever the
challenger Chal would generate wire keys corresponding to
an index j or a function query ( f ,Q), Chal generates these
wire keys uniformly at random instead of running PRF.Eval.
It then stores these wire keys in a lookup table and if it ever
needs a wire key corresponding to an index or function query
that was previously generated, it uses the value stored in
the table instead of generating a new random value. This
can be viewed as modifying ExptGEA (1λ,b) by replacing
PRF.Eval(GE.msk, ·) by a truly random function.

Hybrid game H1(1λ,b). This game is the same as
H0(1λ,b) except for the following. Whenever the challenger
Chal would generate a garbled circuit Ĉ for a function query
( f ,( j1, . . . , jn)), Chal generates the garbled circuit by running
the garbled circuit simulator

SimGC(1λ,φ(C), f (x1, . . . ,xn),k)

where x1, . . . ,xn are the messages corresponding to the indices
j1, . . . , jn, respectively and k are the wire keys corresponding
to (x1, j1), . . . ,(xn, jn) (by finding them in the stored lookup
table if they had been generated previously or else by choos-
ing them uniformly at random). Note that this is possible
because A must submit all challenge message queries prior
to any function key queries. If a message xi is undefined,
Chal samples it uniformly at random so that f (x1, . . . ,xn) is
defined.

Lemma 3.

ExptGEA (1λ,b)≈c H0(1λ,b).
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Suppose there exists some algorithm A that can distinguish
between the two games with nonnegligible advantage. Then,
consider the algorithm A ′ that can distinguish PRF from a
truly random function with nonnegligible advantage.

A ′ runs A and simulates the role of the challenger Chal
in the game ExptGEA (1λ,b) with the following modifica-
tion. Whenever Chal would compute PRF.Eval(GE.msk, ·)
on some input x, Chal instead queries its random oracle F on
x. If A guesses that it is playing game H0(1λ,b), A ′ guesses
that F is a truly random function and if A guesses that it is
playing ExptGEA (1λ,b), A ′ guesses that F is a PRF.

Note that if F is a PRF, then A ′ simulates the game
ExptGEA (1λ,b) exactly. Similarly, if F is a truly random func-
tion, then A ′ simulates the game H0(1λ,b) exactly. Therefore,
it follows that A ′ could distinguish between PRF and a truly
random function with nonnegligible advantage, breaking the
pseudorandomness property of PRF.

Lemma 4.

H0(1λ,b)≈c H1(1λ,b).

Suppose there exists some algorithm A that can distinguish
between the two games with nonnegligible advantage. Then,
consider the algorithm A ′ that breaks the chosen-wire key
security of GC.

A ′ runs A and simulates the role of the challenger Chal in
the game H0(1λ,b) with the following modification. When-
ever Chal would need to output a garbled circuit Ĉ by respond-
ing to a function query ( f ,( j1, . . . , jn)), A ′ instead queries its
oracle on circuit C, input x, and garbled circuit labels~k and
outputs the resulting circuit. Here, C is the circuit computing
f , x is the input x1|| . . . ||xn, where xi is the message corre-
sponding to index ji, and~k are the wire keys corresponding
to the indices ( j1, . . . , jn). If any of the messages, xi or wire
keys in ~k are undefined (there was no message submitted
corresponding to ji), A ′ generates them randomly and stores
them in a lookup table. If A guesses that it is playing game
H0(1λ,b), then A ′ guesses that its oracle is GrbC and if A
guesses that it is playing H1(1λ,b), then A ′ guesses that its
oracle is SimGC.

Note that if A ′’s oracle is GrbC, then A ′ simulates the
game H0(1λ,b) perfectly. Similarly, if A ′’s oracle is SimGC,
then A ′ simulates the game H1(1λ,b) perfectly. Therefore, it
follows that A ′ could distinguish between the output of GrbC
with specified input wire keys and SimGC with nonnegligible
advantage, contradicting the chosen-wire key security of the
garbling scheme GC.

Lemma 5.

H1(1λ,0)≈c H1(1λ,1).

Since the adversary’s view in both of these games does not
depend on the actual value of the messages, but rather on only

the function evaluations f (x1, . . . ,xn) that the adversary can
compute, and since the adversary can only submit challenge
message pairs that agree on all computable function evalua-
tions, it follows that the view of any admissible adversary in
these games is identical.

Combining the above lemmas, it follows that

ExptGEA (1λ,0)≈c Expt
GE
A (1λ,1)

B.3 Proof of Thm. 5
We will show that ExptGEA (1λ,0) ≈c ExptGEA (1λ,1) via a
series of hybrid games.

Hybrid game H0(1λ,τ). This game is the same as
ExptGEA (1λ,τ) except for the following: Whenever the
challenger Chal would generate wire keys corresponding
to an index j, Chal generates these wire keys uniformly at
random instead of running PRF.Eval. It then stores these
wire keys in a lookup table and if it ever needs a wire key
corresponding to an index that was previously generated,
it uses the value stored in the table instead of generating
a new random value. This can be viewed as modifying
ExptGEA (1λ,τ) by replacing PRF.Eval(GE.msk, ·) by a truly
random function.

Hybrid game H1(1λ,τ). This game is the same as
H0(1λ,τ) except for the following: Whenever the challenger
Chal would respond to a function query, it generates the Xb

α’s
uniformly at random and programs O1 so that O1(kb

α||V ||Z)⊕
O(Yα) =Xb

α. Similarly, it generates the T b
α values uniformly at

random and programs O2 so that O2(kb
α||V )⊕ (Zα||0λ) = T b

α .

Hybrid game H2(1λ,τ). This game is the same as
H1(1λ,τ) except for the following: Whenever the challenger
Chal would generate a garbled circuit Ĉ for a function query
( f ,( j1, . . . , jn)), Chal generates the garbled circuit Ĉ by run-
ning the adaptive garbled circuit simulator

Ĉ← SimGC(1λ,φ(C)),

It sets T b
α for α ∈ [`],b ∈ {0,1} to be uniformly random

strings.
Whenever the challenger Chal has given out both a function

key (Ĉ,V,{T 0
α ,T

1
α }α∈[`],Q) and an input label kα for wire

α ∈ [`], it runs SimGC on the same input query to obtain
the simulated label k′α = (Xα⊕O(Yα),Zα). It then samples a
uniformly random bit b′ and programs O2 so that O2(kα||V )⊕
T b′

α = Zα||0λ. Once it has submitted an input query for every
α ∈ [`], it programs O1 so that O1(kα||V ||Z)⊕O(Yα) = Xα.
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Hybrid game H3(1λ,τ). This game is the same as
H2(1λ,τ) except for the following: Whenever the challenger
Chal would generate wire keys k0

α,k
1
α for an input index

α ∈ [`], it instead generates a single wire key kα and uses
this as the value for both k0

α and k1
α.

Lemma 6.

ExptGEA (1λ,τ)≈c H0(1λ,τ).

Suppose there exists some algorithm A that can distinguish
between the two games with nonnegligible advantage. Then,
consider the algorithm A ′ that can distinguish PRF from a
truly random function with nonnegligible advantage.

A ′ runs A and simulates the role of the challenger Chal
in the game ExptGEA (1λ,τ) with the following modifica-
tion. Whenever Chal would compute PRF.Eval(GE.msk, ·)
on some input x, Chal instead queries its random oracle F on
x. If A guesses that it is playing game H0(1λ,τ), A ′ guesses
that F is a truly random function and if A guesses that it is
playing ExptGEA (1λ,τ), A ′ guesses that F is a PRF.

Note that if F is a PRF, then A ′ simulates the game
ExptGEA (1λ,τ) exactly. Similarly, if F is a truly random func-
tion, then A ′ simulates the game H0(1λ,τ) exactly. Therefore,
it follows that A ′ could distinguish between PRF and a truly
random function with nonnegligible advantage, breaking the
pseudorandomness property of PRF.

Lemma 7.

H0(1λ,τ)≈c H1(1λ,τ).

These two hybrids have identical behavior and are therefore
indistinguishable.

Lemma 8.

H1(1λ,τ)≈c H2(1λ,τ).

Suppose there exists some algorithm A that can distinguish
between the two games with nonnegligible advantage. Then,
consider the algorithm A ′ that breaks the adaptive security of
GC.

A ′ runs A and simulates the role of the challenger Chal in
the game H1(1λ,τ) with the following modification. When-
ever Chal would need to output a garbled circuit Ĉ by respond-
ing to a function query ( f ,( j1, . . . , jn)), A ′ instead queries its
oracle on circuit C to receive a garbled circuit Ĉ. Whenever
A makes an input query, if a corresponding function query
has been made A ′ queries its oracle on this input and sets k′α
to be the received value. If not, A ′ will query its oracle on the
above once a corresponding function query has been made.

Note that if A ′’s oracle is the real garbled circuit, then
A ′ perfect simulates H1(1λ,τ) for A . If A ′’s oracle is
the simulated garbled circuit, then A ′ perfectly simulates
H2(1λ,τ) for A .

Lemma 9.

H2(1λ,τ)≈c H3(1λ,τ).

These two hybrids have identical behavior since at most
one of k0

α or k1
α is ever used, so the fact that they are identical

is irrelevant.

Lemma 10.

H3(1λ,0)≈c H3(1λ,1).

Since the adversary’s view in both of these games does not
depend on the actual value of the messages, but rather on only
the function evaluations f (x1, . . . ,xn) that the adversary can
compute, and since the adversary can only submit challenge
message pairs that agree on all computable function evalua-
tions, it follows that the view of any admissible adversary
in these games is identical. Note that the input queries to
SimGC do depend on the input, but SimGC’s behavior is only
dependent on the function evaluation and not on the actual
input, therefore the views are identical.

Combining the above lemmas, it follows that

ExptGEA (1λ,0)≈c Expt
GE
A (1λ,1)

C Time-Based Garbled Encryption

In this section, we formally define, construct, and prove adap-
tive security for time-based garbled encryption.

C.1 Definition
Syntax. Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be ensembles
where Xλ, Yλ are sets each with size dependent on λ. Let F =
{Fλ}λ∈N be an ensemble where each Fλ is a finite collection
of n-ary functions. Each function f ∈Fλ takes as input strings
x1, . . . ,xn, where each xi ∈ Xλ, and outputs f (x1, . . . ,xn) ∈ Yλ.
Let Q denote a set of sets, where each set Q ∈ Q is a subset
of Nn.

A time-based garbled encryption scheme TGE for n-ary
functions F and query pattern Q consists of four algorithms
(TGE.Setup,TGE.KeyGen,TGE.Enc,TGE.Dec) described
below:

• Setup. TGE.Setup(1λ) is a PPT algorithm that takes
as input a security parameter λ and outputs the master
secret key TGE.msk.

• Key Generation. TGE.KeyGen(TGE.msk, f ,Q, t) is a
PPT algorithm that takes as input the master secret key
TGE.msk, a function f ∈ Fλ, a set Q ∈ Q , and a time
offset t ∈ N. It outputs a functional key TGE.sk f ,Q,t .
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• Encryption. TGE.Enc(TGE.msk,m, i, t) is a PPT algo-
rithm that takes as input the master secret key TGE.msk,
a message m ∈ Xλ, an index i ∈ N, and a time offset
t ∈ N. It outputs a ciphertext TGE.ct. TGE.Enc is index
dependent and the ciphertext TGE.ct has an associated
index i. If TGE.Enc is asked to encrypt to an index j to
which it has previously encrypted, it will output ⊥.

• Decryption. TGE.Dec(TGE.sk f ,Q,t ,TGE.ct1, . . . ,
TGE.ctn) is a deterministic algorithm that takes as
input a functional key TGE.sk f ,Q,t and n ciphertexts
TGE.ct1, . . . ,TGE.ctn. It outputs a value y ∈ Yλ∪{⊥}.

Correctness. There exists a negligible function negl(·)
such that for all sufficiently large λ ∈ N, every n-ary func-
tion f ∈ Fλ, set Q ∈ Q , point ( j1, . . . , jn) ∈ Q, time offset
t ∈ N, and input tuple (x1, . . . ,xn) ∈ X n

λ
,

Pr


TGE.msk← TGE.Setup

(
1λ
)

;
TGE.sk f ,Q,t ← TGE.KeyGen(TGE.msk, f ,Q, t) ;
TGE.Dec(TGE.sk f ,Q,t ,

(TGE.Enc(TGE.msk,xi, ji, t))
n
i=1)

6= f (x1, . . . ,xn)


≤ negl(λ)

where the probability is taken over the random coins of all
the algorithms.

Adaptive Security. The adaptive security definition for
time-based garbled encryption is analogous to the one for
garbled encryption, updated to match the new syntax. Fur-
thermore, we allow the adversary to make key queries for a
time t ∈ N, and the adversary is given back O(t)(TGE.msk),
where O : {0,1}λ→{0,1}λ is the random oracle used in the
construction to ratchet keys forward. In the sensor applica-
tion, this will correspond to the situation where the adversary
compromises a sensor at time t and learns the key stored on
the sensor.

Definition 7 (Adaptive Security). A time-based garbled en-
cryption scheme TGE for n-ary functions F = {Fλ}λ∈[N],
message space X = {Xλ}λ∈[N], and query pattern Q is adap-
tively secure with respect to key oracle O if for any PPT
adversary A , there exists a negligible function µ(·) such that
for all sufficiently large λ ∈ N, the advantage of A is

AdvTGEA =∣∣∣Pr[ExptTGEA (1λ,0) = 1]−Pr[ExptTGEA (1λ,1) = 1]
∣∣∣

≤ µ(λ),

where for each b ∈ {0,1} and λ ∈ N, the experiment
ExptTGEA (1λ,b) is defined below:

1. Chal computes TGE.msk← TGE.Setup(1λ).

2. The adversary is allowed to make the following three
types of queries in any arbitrary order.

• Challenge message query: A submits a query,
(i,xi,0,xi,1, t), with xi,0,xi,1 ∈ Xλ, i ∈ N, and t ∈ N,
to the challenger Chal. Chal computes TGE.cti←
TGE.Enc(TGE.msk,xi,b, i, t). The challenger Chal
then sends TGE.cti to the adversary A .

• Function query: A submits a function query
( f ,Q, t) ∈ Fλ ×Q ×N to Chal. The challenger
Chal computes TGE.sk f ,Q,t ← TGE.KeyGen(
TGE.msk, f ,Q, t) and sends it to A .

• Key query: A submits a time offset t ∈N. The chal-
lenger Chal computes O(t)(TGE.msk) and sends
the result to A .

3. If there exists a function query ( f ,Q, t) and challenge
message queries

(
(i1,x1,0,x1,1, t1), . . . ,(in,xn,0,xn,1, tn)

)
such that f (x1,0, . . . ,xn,0) 6= f (x1,1, . . . ,xn,1) and
(i1, . . . , in) ∈ Q for i1, . . . , in ∈ N, then the output of the
experiment is set to ⊥. Additionally, if there exists a key
query t and a challenge message query (i,xi,0,xi,1, t ′)
with t ′ ≥ t, then the output of the experiment is set to
⊥. Otherwise, the output of the experiment is set to b′,
where b′ is the output of A .

C.2 Construction
The construction is the same as the adaptively secure garbled
encryption construction in Section 5 except that we apply
a random oracle t times to the master secret key prior to
generating the wire keys for a garbled circuit, where t is the
time offset for the key generation or encryption algorithm
in which the wire keys are generated. We provide the full
construction for completeness.

Let O1 : {0,1}3λ→{0,1}λ, O2 : {0,1}2λ→{0,1}2λ, and
O3 : {0,1}λ → {0,1}λ be random oracles. Let PRF =
(PRF.Gen,PRF.Eval) be a pseudorandom function family
with λ-bit keys that outputs in the range {0,1}λ and let
GC=(Gen,GrbI,GrbC,EvalGC) be the adaptively secure gar-
bling scheme specified by Thm. 3. Let O be the random oracle
used by the adaptively secure garbling scheme. Our time-
based garbled encryption scheme TGE for n-ary functions F
and query pattern Q , where Q is the set containing all sets of
singletons, is defined as follows:

Recalling notation from before, let `= n · log |Xλ| denote
the input length to circuits C representing functions f ∈ F .
We note that the indices (i− 1) · log |Xλ|+ 1, . . . , i · log |Xλ|
correspond to the indices of the input xi to C. Letting ri =
(i−1) · log |Xλ| and `m = log |Xλ|, we denote these indices as
ri +1, . . . ,ri + `m.

• Setup. On input the security parameter 1λ, TGE.Setup
runs PRF.Gen(1λ) to obtain a PRF key K and outputs

21



TGE.msk= K.

• Key Generation. On input the master secret key
TGE.msk, a function f ∈ Fλ, a set Q = {( j1, . . . , jn)} ∈
Q , and a time offset t ∈N, TGE.KeyGen runs as follows:

Let C be a circuit for f . TGE.KeyGen then runs the
garbled circuit generation algorithm Gen(1λ) to obtain
the secret parameters gcsk. It then generates a uniformly
random string V ∈ {0,1}λ.

It then sets kα = (k0
α,k

1
α) for α ∈ [`] as follows:

For i∈ [n], it sets the garbling keys kri+α = (k0
ri+α,k

1
ri+α)

for α ∈ [`m] to be

k0
ri+α = PRF.Eval(O(t)

3 (TGE.msk), ji||α||0)

k1
ri+α = PRF.Eval(O(t)

3 (TGE.msk), ji||α||1).

For α ∈ [`], it sets Zα uniformly at random. Set Z =
Z1 ⊕ . . .⊕ Z`. For α ∈ [`], it sets Yα according to the
procedure specified by the garbling scheme of Thm. 3
and then sets Xb

α as O1(kb
α||V ||Z)⊕O(Yα). Let~k′ denote

the garbling keys as determined by the Xb
α’s, Yα’s and

Zα’s. It then runs GrbC(gcsk,C,~k′) to obtain a garbled
circuit Ĉ. For α ∈ [`],b ∈ {0,1}, let

T b
α = (Zα||0λ)⊕O2(kb

α||V ).

For each α, with probability 1/2, swap the values of T 0
α

and T 1
α .

TGE.KeyGen outputs

(Ĉ,V,{T 0
α ,T

1
α }α∈[`],Q)

as TGE.sk f ,Q,t .

• Encryption. On input the master secret key TGE.msk,
a message m, an index j ∈ N, and a time offset t ∈ N,
TGE.Enc runs as follows: TGE.Enc is index dependent
and maintains a state S initialized to the empty set /0. It
first checks that j 6∈ S. If j ∈ S, it returns ⊥. Otherwise,
it adds j to S and proceeds.

Defining k0
α and k1

α for α ∈ [`m] by

k0
α = PRF.Eval(O(t)

3 (TGE.msk), j||α||0)

k1
α = PRF.Eval(O(t)

3 (TGE.msk), j||α||1)

as above, TGE.Enc computes

k =
(

kbin(m)1
1 , . . . ,k

bin(m)`m
`m

)
and outputs

( j,k)
as TGE.ct. We refer to j as the index of this ciphertext.

• Decryption. On input a functional key

TGE.sk f ,Q,t = (Ĉ,V,{T 0
α ,T

1
α }α∈[`],Q) and n cipher-

texts TGE.ct1, . . . ,TGE.ctn, TGE.Dec first parses each
TGE.cti as ( ji,ki) and asserts that ( j1, . . . , jn) ∈ Q. If
not, it outputs ⊥.

Let k = (k1, . . . ,kn). For α ∈ [`], TGE.Dec recovers Zα

by computing O2(kα||V )⊕T b
α for b ∈ {0,1} and setting

Zα to be the λ-bit prefix of the recovered value whose
last λ bits are all 0. Once all the Zα’s are recovered,
TGE.Dec computes the Yα’s and Z =

⊕
Zα and then sets

Xα as O1(kα||V ||Z)⊕O(Yα). It then runs EvalGC on Ĉ
with the Xα’s to recover the output.

C.3 Correctness
Correctness follows analogously to that of the adaptive gar-
bling construction of Section 5, observing that O(t)

3 (·) is ap-
plied to TGE.msk when generating the input labels for a
garbled circuit in both the key generation and encryption al-
gorithms.

C.4 Adaptive Security
We will prove adaptive security of our construction with re-
spect to the key oracle O3. The proof follows in a similar
manner to the proof of adaptive security for the garbled en-
cryption construction in Sec. 5. The main difference is that
if the adversary asks for a key query for some time t and
has already asked for a functional key TGE.sk f ,Q,t ′ for some
time t ′ ≥ t, then we need a way to ensure that TGE.sk f ,Q,t ′ is
compatible with all combinations of input labels, since the
adversary now possesses the appropriate key for time offset
t and is able to learn all the input labels corresponding to
the garbled circuit in TGE.sk f ,Q,t ′ . Fortunately, this is pos-
sible because the simulator for the adaptive garbled circuit
construction of Thm. 3 outputs a uniformly random string as
the garbled circuit and later programs its random oracle. So,
when the adversary makes a key query for time t, we will run
the real garbled circuit algorithm and then program the appro-
priate random oracles so that the result matches the garbled
circuit we already gave out. Formally, we show the following.

Theorem 6. Assuming that PRF is a pseudorandom function
family and GC is the adaptively secure garbling scheme of
Thm. 3, then TGE is an adaptively secure time-based garbled
encryption scheme with respect to O3.

Stronger Adaptive Security Definition for the Adaptive
Garbling Scheme of Thm. 3. In order to prove security,
we first establish that the adaptive garbling scheme of Thm. 3
actually satisfies a stronger notion of security than Def. 3,
where between steps 2 and 3, we give the adversary a choice:
the adversary can either proceed with the game as in Def. 3
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or ask to see all input labels. If the adversary asks for all
input labels, the challenger must (using C,Ĉ) be able to give
the adversary all the input labels. To see this holds, observe
that if b = 0, the challenger already has all the labels and can
just give them out. If b = 1, the challenger can simply run the
real garbling algorithm and then program O ′ so that O ′(Y0)
unmasks Ĉ′ appropriately. As we observed in Remark 1, Z is
information theoretically hidden from the adversary after step
2 of the game, so Y0 = Z||0 is also information theoretically
hidden.

We will show that ExptTGEA (1λ,0)≈c Expt
TGE
A (1λ,1) via a

series of hybrid games.

Hybrid game H0(1λ,τ). This game is the same as
ExptTGEA (1λ,τ) except for the following:

Whenever the challenger Chal would respond to a function
query with time offset t, it first checks if a key query has
been made for some time offset t ′ ≤ t. If such a key query
has been made, it responds to the function query as before.
Otherwise, it instead samples the Xb

α’s, and the T b
α values

uniformly at random when outputting the function key. Then,
as soon as a challenge query is made with time offset t or
a key query is made with some time offset t ′ for t ′ ≤ t, it
programs O1 so that O1(kb

α||V ||Z)⊕O(Yα) = Xb
α and O2 so

that O2(kb
α||V )⊕ (Zα||0λ) = T b

α .

Hybrid game H1(1λ,τ). This game is the same as
H0(1λ,τ) except for the following: Whenever the challenger
Chal would generate wire keys corresponding to an index
j and time offset t when running TGE.Enc, Chal generates
these wire keys uniformly at random instead of running
PRF.Eval. It then stores these wire keys in a lookup table and
if it ever needs a wire key corresponding to an index and time
offset that was previously generated, it uses the value stored
in the table instead of generating a new random value. This
can be viewed as modifying ExptTGEA (1λ,τ) by replacing
PRF.Eval(O(t)

3 (TGE.msk), ·) by a truly random function.

Hybrid game H2(1λ,τ). This game is the same as
H1(1λ,τ) except for the following: Whenever the challenger
Chal would generate a garbled circuit Ĉ for a function query
( f ,( j1, . . . , jn), t), it first checks if a key query has been made
for some time offset t ′ ≤ t. If such a key query has been
made, it responds to the function query as before. Otherwise,
Chal generates the garbled circuit Ĉ by running the adaptive
garbled circuit simulator

Ĉ← SimGC(1λ,φ(C)),

It sets T b
α for α ∈ [`],b ∈ {0,1} to be uniformly random

strings.

Then, whenever the challenger Chal has given out both a
function key (Ĉ,V,{T 0

α ,T
1

α }α∈[`],Q) with time offset t and an
input label kα for wire α ∈ [`] (by responding to a challenge
query with time offset t), it runs SimGC on the same input
query to obtain the simulated label k′α = (Xα⊕O(Yα),Zα). It
then samples a uniformly random bit b′ and programs O2 so
that O2(kα||V )⊕T b′

α = Zα||0λ. Once it has submitted an input
query for every α∈ [`], it programs O1 so that O1(kα||V ||Z)⊕
O(Yα) = Xα.

Alternatively, whenever the challenger is asked to respond
to a key query for time offset t ′ ≤ t, it instead runs the honest
underlying selectively secure garbled circuit algorithm with
the circuit corresponding to f and the labels set to the Xb

α’s that
were generated when computing the function key to obtain
a garbled circuit Ĉ′. It then programs the underlying oracle
O of the adaptive garbling scheme so that Ĉ′⊕O(Y0) = Ĉ,
where Ĉ is the original garbled circuit Chal had given out
when responding to the function query.

Note that by the restrictions imposed on the adversary, only
one of the two above conditions can ever occur.

Hybrid game H3(1λ,τ). This game is the same as
H2(1λ,τ) except for the following: Whenever the challenger
Chal would generate wire keys k0

α,k
1
α for an input index

α ∈ [`] when responding to a challenge query, it instead gen-
erates a single wire key kα and uses this as the value for both
k0

α and k1
α.

Lemma 11.

ExptTGEA (1λ,τ)≈c H0(1λ,τ).

This hybrids are indistinguishable to an adversary unless
it is able to query O1 on some kb

α||V ||Z or O2 on some kb
α||V

prior to them being programmed. However, this can only be
done if the adversary can determine some kb

α prior to the
programming. However, from the view of the adversary, the
kb

α’s are the output of PRF with a uniformly random key. Thus,
an adversary that could do this with nonnegligible probability
would have to be able to distinguish the PRF from uniform, a
contradiction.

Lemma 12.

H0(1λ,τ)≈c H1(1λ,τ).

Suppose there exists some algorithm A that can distinguish
between the two games with nonnegligible advantage. Then,
consider the algorithm A ′ that can distinguish PRF from a
truly random function with nonnegligible advantage.

A ′ runs A and simulates the role of the challenger Chal
in the game ExptTGEA (1λ,τ) with the following modification.
Whenever Chal would compute PRF.Eval(O(t)

3 (TGE.msk), ·)
on some input x when running TGE.Enc, Chal instead queries
its random oracle F on (t,x). If A guesses that it is playing
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game H1(1λ,τ), A ′ guesses that F is a truly random function
and if A guesses that it is playing H0(1λ,τ), A ′ guesses that
F is a PRF. The random oracle F on (t,x) either outputs a
uniformly random value or computes PRF(Kt ,x), where Kt
is the tth uniformly random key. Observe that since A ′ only
queries F when Chal would need to respond to a challenge
query.

Note that if F is a PRF, then A ′ simulates the game
H0(1λ,τ) exactly. Similarly, if F is a truly random function,
then A ′ simulates the game H1(1λ,τ) exactly. Therefore, it
follows that A ′ could distinguish between PRF and a truly
random function with nonnegligible advantage, breaking the
pseudorandomness property of PRF.

Lemma 13.

H1(1λ,τ)≈c H2(1λ,τ).

Suppose there exists some algorithm A that can distinguish
between the two games with nonnegligible advantage. Then,
consider the algorithm A ′ that breaks the stronger adaptive
security of GC detailed above.

A ′ runs A and simulates the role of the challenger Chal in
the game H1(1λ,τ) with the following modification. When-
ever Chal would need to output a garbled circuit Ĉ by respond-
ing to a function query ( f ,( j1, . . . , jn), t), A ′ instead queries
its oracle on circuit C to receive a garbled circuit Ĉ. Whenever
A makes an input query with time offset t, if a corresponding
function query has been made with time offset t, A ′ queries its
oracle on this input and sets k′α to be the received value. If not,
A ′ will query its oracle on the above once a corresponding
function query has been made.

If instead, A makes a key query for time offset t ′ ≤ t, A ′
asks to see all input labels after receiving Ĉ.

Note that if A ′’s oracle is the real garbled circuit, then
A ′ perfect simulates H1(1λ,τ) for A . If A ′’s oracle is
the simulated garbled circuit, then A ′ perfectly simulates
H2(1λ,τ) for A .

Lemma 14.

H2(1λ,τ)≈c H3(1λ,τ).

These two hybrids have identical behavior since at most
one of k0

α or k1
α is ever used, so the fact that they are identical

is irrelevant.

Lemma 15.

H3(1λ,0)≈c H3(1λ,1).

Since the adversary’s view in both of these games does not
depend on the actual value of the messages, but rather on only
the function evaluations f (x1, . . . ,xn) that the adversary can
compute, and since the adversary can only submit challenge
message pairs that agree on all computable function evalua-
tions, it follows that the view of any admissible adversary
in these games is identical. Note that the input queries to
SimGC do depend on the input, but SimGC’s behavior is only
dependent on the function evaluation and not on the actual
input, therefore the views are identical.

Combining the above lemmas, it follows that

ExptTGEA (1λ,0)≈c Expt
TGE
A (1λ,1)
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