Quantum-resistant Public-key Authenticated Encryption with
Keyword Search for Industrial Internet of Things

Zi-Yuan Liu!, Yi-Fan Tseng!, Raylin Tso!, and Masahiro Mambo?

! Department of Computer Science, National Chengchi University, Taipei, Taiwan
{zyliu, yftseng, raylin}@cs.nccu.edu.tw
2 Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
mambo@ec.t.kanazawa-u.ac.jp

Abstract. The industrial Internet of Things (IIoT) integrates sensors, instruments, equipment, and industrial
applications, enabling traditional industries to automate and intelligently process data. To reduce the cost and
demand of required service equipment, IIoT relies on cloud computing to further process and store data. However,
the means for ensuring the privacy and confidentiality of the outsourced data and the maintenance of flexibility
in the use of these data remain unclear. Public-key authenticated encryption with keyword search (PAEKS) is
a variant of public-key encryption with keyword search that not only allows users to search encrypted data by
specifying keywords but also prevents insider keyword guessing attacks (IKGAs). However, all current PAEKS
schemes are based on the discrete logarithm assumption and are therefore vulnerable to quantum attacks.
Additionally, the security of these schemes are only proven under random oracle and are considered insufficiently
secure. In this study, we first introduce a generic PAEKS construction that enjoys the security under IKGAs in
the standard model. Based on the framework, we propose a novel instantiation of quantum-resistant PAEKS
that is based on ring learning with errors assumption. Compared with its state-of-the-art counterparts, our
instantiation is more efficient and secure.

Keywords: Public-key authenticated encryption with keyword search - Insider keyword guessing attacks - Industrial
IoT - Quantum-resistant

1 Introduction

The Internet of Things (IoT) is a system that connects a large set of devices to a network, where these devices
can communicate with each other over the network. Industrial IoT (IIoT) is a particular type of IoT that fully
utilizes the advantages of IoT for remote detection, monitoring, and management in industry. Because the volume of
data and computation in industry is very large, and long-term storage is required, IIoT is highly reliant on cloud
computing technology to reduce the cost of storage and computing environments (Fig . Despite the numerous
benefits of processing IIoT data through cloud computing, industrial data typically have commercial value and
thus necessitate privacy protection when such sensitive data are offloaded to the cloud. Therefore, to ensure data
confidentiality, sensitive data should be encrypted before being uploaded to the cloud.

In addition to data confidentiality, data sharing is indispensable in IIoT. For instance, in an industrial organization,
the administrator in the information department (i.e., the data sender) must share the data collected from IoT
devices with an administrator from another department (i.e., the data receiver). To ensure data confidentiality, the
data sender encrypts the data by using the public key of the data receivers. However, in such a method, if the data
receiver wants to retrieve the data from the ciphertext stored in the cloud, the data receiver must download all the
ciphertext and further decrypt it, which consumes considerable time and resources.

Public-key encryption with keyword search (PEKS), first introduced by Boneh [@], is highly suited to the
aforementioned application environment because PEKS makes the ciphertext searchable. Furthermore, in PEKS, a
data sender not only uploads encrypted data but also and uploads the encrypted keywords related to the data using
the data receiver’s public key. To download the data related to a specified keyword, the data receiver can use their
private key to generate a corresponding trapdoor and submit the trapdoor to the cloud server. The cloud server can
then identify encrypted keywords corresponding to the trapdoor and then returns the corresponding encrypted data
to the data receiver. A secure PEKS scheme is required to ensure that the ciphertext and trapdoor leak no keyword
information to the malicious outsiders. However, Byun [7] noted that having only the two aforementioned security
requirements is insufficient because the cloud server may be malicious, where the malicious cloud server guesses the
keyword hiding in the trapdoor—a type of attack called insider keyword guessing attacks (IKGAs). In particular,
because the cloud server can adaptively generate a ciphertext for any keyword by using the data receiver’s public

2 Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, and Masahiro Mambo

key, through trial and error, test for that self-made ciphertext that is matched with the trapdoor received from the
data receiver. As mentioned in [7], because the keyword space is not large enough, there is a high probability that
keyword-related information searched for by the data receiver is leaked to the malicious cloud server.

To prevent IKGA, some early PEKS schemes have used additional servers to perform tests, in place of the
original server. This method is called designated-tester PEKS [37] or dual-server PEKS [T2[T3|1TI32/10]. When
servers do not collude, IKGAs do not occur. However, using additional servers can significantly increase the cost of
communication. Furthermore, the means for ensuring that servers do not collude remain unclear. Recently, Huang
and Li [20] introduced a new cryptography primitive called public-key authenticated encryption with keyword search
(PAEKS). In this primitive, the data sender not only generates but also authenticates ciphertext, whereas a trapdoor
generated from the data receiver is only valid to the ciphertext authenticated by the specific data sender. Therefore,
the cloud server cannot perform IKGAs. Because of the higher efficiency and greater convenience compared with
designated-tester PEKS schemes, many PAEKS schemes [I825/34I35|3624/40] have been formulated for further
application in IoT and IToT as well as in cloud computing environments.

Unfortunately, these PAEKS schemes are only proven under random oracle model (ROM). As described in
[23/48], ROM can be said to be unnatural and markedly different from the construction of the real world; thus,
there is both a theoretical drawback and also a practical concern of the constructions proven under ROM. How to
obtain a secure PAEKS scheme avoiding such heuristics is still an important question.

Shor [39138] reported on quantum algorithms that can violate the traditional number-theoretic assumptions, such
as the integer factoring assumption and discrete logarithm assumption. In particular, the advent of the 53-qubit
quantum computer, proposed by Arute et al. [3], may improve quantum computing technology and affect the
existing cryptographic systems. Because the security of existing PAEKS schemes is based on the discrete logarithm
assumption, quantum computers can come to pose a potential threat to existing schemes. Hence, the means of
constructing a quantum-resistant PEAKS scheme is an emerging issue among scholars and practitioners.

(@D (@] A > -D

:

) = it B @
31— : -

Ql' . lr.:;iéi
e

E%
EA

Fig. 1. Typical network architecture for IIoT.

1.1 Owur Contribution

In this paper, we introduce a novel solution for constructing a quantum-resistant PAEKS scheme for use in IToT.
At a high level, the original keyword space is commonly found and easy to test. Our strategy is to allow a data
sender and data receiver to generate an “extended keyword” from an original keyword without interacting with
each other. In this method, the ciphertext and trapdoor are generated using the extended keyword instead of the
original keyword. Because the keyword space increases after the keyword is extended, the malicious cloud server
cannot generate a valid ciphertext to perform IKGAs.

Accordingly, we provide a generic PAEKS construction by leveraging a two-tier identity-based key encapsulation
mechanism (IBKEM), a pseudorandom generator (PRG), and anonymous identity-based encryption (IBE). We
also present two rigorous proofs to show that our construction satisfies the security requirements of PAEKS. These
requirements are indistinguishability against chosen keyword attacks (IND-CKA) and indistinguishability against
IKGAs (IND-IKGA) under a multi-user setting in a standard model, without ROM. Furthermore, we first employ

Quantum-resistant Public-key Authenticated Encryption with Keyword Search 3

Katsumata and Yamada’s adaptively anonymous IBE [2] to obtain a two-tier IBKEM under the ring learning with
errors (RLWE) assumption. We then combine the scheme in [2I] with the two-tier IBKEM scheme to obtain an
instantiation of PAKES. Because the security of [21] is inherited, we obtain the first quantum-resistant instantiation
of PAEKS. The comparison results of our scheme with other state-of-the-art PAKES schemes are presented in Table
] and Figure [3} our instantiation was demonstrated to be not only more secure but also more efficient with respect
to ciphertext generation, trapdoor generation, and testing.

1.2 Related Work

The PEKS schemes against IKGAs can be separated into three categories: designated-tester (or called dual-server)
PEKS, PAEKS, and witness-based searchable encryption.

The concept of designated-tester PEKS was first introduced by Rhee et al. [37], who proposed a PEKS scheme
that supports trapdoor indistinguishability. Chen et al. [T2[T3|TT] followed this concept and proposed a variant
scheme, called dual-server PEKS, which can be used against IKGAs if the servers do not collude with each other.
However, Huang [19] indicates that [I2IT3ITI] are susceptible to IKGAs. Recently, Chen et al. [10] introduced an
efficient dual-server scheme that is resistant to IKGAs without needing any pairing computations. In addition,
Mao et al. [32] suggested a quantum-resistant designated-tester PEKS scheme, which is also the first lattice-based
PEKS that is protected from IKGAs. However, the above schemes requires that servers do not collude with each
other, which is difficult to guarantee in many scenarios. Moreover, construction costs and communications costs are
increased in this method.

Considering these limitations, scholars thus began to study methods for constructing trapdoors that are only valid
for certain ciphertexts. Fang et al. [I5/16] first considered using a one-time signature to authenticate the ciphertext,
while having the trapdoor be valid only for the authenticated ciphertext, a method that improved resistance to
TIKGA. Huang and Li [20] formally defined the system model and security model for PAEKS. Noroozi and Eslami [34]
first considered Huang and Li’s scheme [20] is not secure against IKGAs and further improved [20] without incurring
additional cost complexity. To resist quantum attacks, Zhang et al. [4I] proposed a lattice-based PAEKS scheme;
however, Liu et al. [26] recently demonstrated that the security model of that work is flawed and therefore cannot
withstand IKGAs. Pakniat et al. [35] introduced the first certificateless PAEKS scheme for an IoT environment.
Moreover, Li et al. [24] and Qin et al. [36] further prevented malicious adversary eavesdrops on the transmission
channel of ciphertext and trapdoor, and executes the test algorithm to determine whether the two ciphertexts shared
the same keyword. Although the aforementioned PAEKS schemes resist IKGAs, these schemes are based on the
discrete logarithm assumption, which make them vulnerable to attacks from quantum computers.

Ma et al. [31] introduced a cryptographic primitive called “witness-based searchable encryption,” in which the
trapdoor is valid only when the ciphertext has a witness relation to the trapdoor. Chen et al. [I4] formulated an
improvement to reduce the complexity of the trapdoor size. Inspired by [31], Liu et al. [27] introduced a new concept
called “designated-ciphertext searchable encryption,” where the trapdoor is designated to a ciphertext; this concept
affords users with a quantum-resistant instantiation. Despite their advantages, however, these schemes require
the data sender to interact with the data receiver; moreover, they incur additional communication costs and are
inapplicable to many scenarios.

1.3 Organization of the Paper

The rest of the paper is organized as follows. Section [2| introduces the preliminaries, and Section [3| recalls the
definition of the building blocks used in our generic construction. Moreover, Section [4] provides the definition and
security requirement of the PAEKS. Next, Sections [5] and [6] introduce our generic constriction before providing the
security proofs. Section [7] elaborates on the first quantum-resistant PAEKS instantiation, and Section [§] details the
analysis of the communication cost and computation cost incurred in the related PAEKS schemes. Finally, Section [J]
concludes this study.

2 Preliminary
For simplicity and readability, we use the notations in Table [1| throughout the manuscript.

2.1 Lattices

We now introduce the basic concepts underlying lattices that are used in our instantiation. An m-dimension lattice
A is an additive discrete subgroup of R™, which can be defined as follows.

4 Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, and Masahiro Mambo

Table 1. Notations

lNotation [Description

1A Security parameter

A Adversary

B Challenger

o Oracle

n PAEKS

4 IBE

(0 2-tier IBKEM

F Pseudorandom generator

IDS Identity space

cSs Ciphertext space

KS Shared key space

PS Plaintext space

w Keyword space

N, Z,R Natural number, integer number, real number
G1,Gr Cyclic group

v,V Vector, matrix

allb Concatenation of element a and b

s S Sampling an element s from S uniformly at random
T Gram-Schmidt orthogonalization of T
[v] The bit length of element v

(v, 1 V]| The Euclidean norm of v and V

negl(-), poly(-)|Negligible function, polynomial function
PPT Probabilistic polynomial-time

R Ring R = Z[X]/X" + 1

o() Embedding function: ¢ : R — Z"

rot Ring homomorphism rot : R — Z™*"

Definition 1 (Lattice). We say that a m-dimension lattice A generated by a basis B = [by|---|b,] € R™*" s
defined by

A(B) = A(bl, . ,bn) = { Zbiai\ai c Z},
i=1
where by, -+, b, € R™ are n linear independent vectors.

In addition, for a prime ¢, a matrix A € Zy*™, and a vector u € Z;, we can define the following three sets [Tl

— Ay :={e€Z™ | 3Is € Z" where As = e mod ¢}.
- A(JI- ={e€Z™ | Ae=0mod ¢}.
- Ay :={e€Z™ | Ae = umod ¢}.

2.2 Discrete Gaussian Distributions

For any vector ¢ € R™ and any positive real number s, we define the following two notations:

— ps.c(X) =exp (_W7|\x;2c||2>.

- ps,c(A) = Z ps,c(x)‘

xeA

The discrete Gaussian distribution over the lattice A with center ¢ and parameter s can then be defined as
Dy 5,0(X) = ps,c(x)/ps,c(A) for any x € A. Note that we usually omit c if ¢ is 0.

Quantum-resistant Public-key Authenticated Encryption with Keyword Search 5

2.3 Rings and Ideal Lattices

Here, we briefly introduce rings and ideal lattices, as formulated in previous studies [29/30]. Let n be a power of
2. The ring can then be defined as R = Z[X]/®,,(X), where &,,(X) = X™ 4 1 is the mth cyclotomic polynomial
and m = 2n. Furthermore, for some integer ¢, we use R, to denote R/qR = Z[X]/(q, P (X)). Because we can
consider the coefficients in R as the elements on Z™, we define a embedding function ¢ : R — Z", which maps
b= z;:ol BiX* € R to [Bo,B1, + ,Bn_1] € Z". Furthermore, we can expend the embedding function and define
the ring homomorphism rot : R — Z"*", where the ith row in Z"*" is ¢(b- X'~ mod &,,(X)) € Z". We also use
51(R) := max|,, ||z - rot(R)]|2 to define the largest singular value of R € R**".

Ring Learning with Errors Assumption The security of our instantiation is based on the famous lattice hard
assumption, which is the ring learning with errors (RLWE) assumption, first introduced by Lybashevsky et al.
[29030].

Definition 2 (Ring Learning with Errors Assumption [21I])). Let A be a security parameter. Given n =
n(A), k= k(n), a prime integer ¢ = q(n) > 2, an error distribution x = x(n) over Ry, an advantage for the RLWE
problem of A is defined as follows.

AdviVE e — P A({ag, v}) = 1] = PrlA({as, ais + e}) — 1],

where ay, -+ ,Qk, V1, ,Vk, S & Ry andeq, - e & We say that RLWE,, i 4 assumption holds if for all PPT
A, Advf‘LWE""“"I’X is negligible.

)

Trapdoor Functions over Rings The following recalls two important trapdoor functions in the “ring setting’
[21] that are used in our instantiation.

Lemma 1 (TrapGen) [33]). Let n be a power of 2, q be a prime larger than 4n such that ¢ = 3 mod 8, and
b, p € ZF satisfying p < %\/q/n. There is a randomized polynomial time algorithm TrapGen(1™, 1%, q, p) that outputs
a vector a € R’(; and a matriz Ty € R*** when k > 2log,q. Here, rot(al)T € Z;’X”k is a full-rank matriz and

rot(Ta) € Z2**"% is a basis for A-(rot(a™)T). Besides, a is close to uniform and ||rot(Tallcs) = O(bp - \/nlog, q).

Lemma 2 (SampleLeft [9]). Let n be a power of 2, q be a prime larger than 4n such that ¢ = 3 mod 8, and
b,p € ZT satisfying p < 3+/q/n. Given a,b € R’; where rot(al)T rot(bT)T are full-rank, an element u € R,,
a matriz Ty € RF** such that rot(T,) € Z™*™ is a basis for At(rot(a®)T), and a Gaussian parameter o >
llrot(Ta)llgs - w(v/1og nk), there is a randomized polynomial time algorithm SampleLeft(a, b, u, T4, o) that outputs a

2k i ff
vector € € R*" sampled from the distribution that close to Diloge(w([ror(aT)T|rot(bT)T]),a'

Homomorphic Computation We recall the PubEvalg : (R’;)d — R’; function used in our instantiation to hash
identities to R’q“. This function can be defined as

b if d =1,
PubEvaly(by, -+ ,bg) =4 ' _, ' ’
by - g; ! (PubEvalg_i(bs, -+ ,bg)) ifd > 2.
In this definition, d € N, by, -+ ;by € R’;. Moreover, gb_l(-) is a deterministic polynomial time algorithm [33]
that takes the input u € R’qC to output R € [—b, b]’f%m such that gyR = u, where g, = [1]b] - - |bk/_1|0] € R’; is a
gadget matrix for b € ZT and k > k' = |log, q].

3 Building Blocks

In this section, we recall three crucial cryptographic primitives, namely two-tier IBKEM, IBE, and PRG, which are
used as the building blocks in our generic construction.

6 Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, and Masahiro Mambo

3.1 Two-tier IBKEM

A two-tier IBKEM (2 comprises the five algorithms: (Setup, Extract, Ency, Encq, Dec) along with an identity space
IDS, ciphertext space CS, and symmetric key space KS. These algorithms are described as follows.

— Setup(1?) — (msk, mpk): This is the setup algorithm that takes the security parameter 1* as its input and
outputs a master private key msk and a master public key mpk.

— Extract(msk,id € IDS) — skiq: This is the extraction algorithm that takes the two inputs of a master private
key msk and identity id € ID.S and outputs a private key skiq for the identity.

— Ency(mpk) — (ct,r): This is the first encapsulation algorithm that takes the input of a master public key mpk
and outputs a ciphertext ct € C'S and a randomness r.

— Enca(mpk,id, r) — k/L: This is the second encapsulation algorithm that takes the three inputs of a master public
key mpk, identity id, and randomness r and outputs either a symmetric key k € K S or the reject symbol L.

— Dec(skig, id, ct) — k/L: This is the decryption algorithm that takes the three inputs of a private key skiq, identity
id, and ciphertext ct and outputs either symmetric key k € K.S or a reject symbol L.

Definition 3 (Correctness of 2-tier IBKEM). A two-tier IBKEM §2 is correct if for all security parameters 17,
all master key pairs (msk, mpk) output by Setup(1*), all private keys skiq for identity id output by Extract(msk, id),
all (ct,r) pairs output by Ency(mpk), and all k values output by Enco(mpk,id,r), the following equation holds:

Pr[Dec(skig, id, ct) = k] = 1 — negl(}).

The basis security requirement of two-tier IBKEM is IND-CPA, which ensures that no PPT adversary can
distinguish whether the challenge ciphertext is generated from the Enc; and Enc; algorithm or is randomly chosen
from the ciphertext space CS. This security requirement can be modeled by the following security game played
between an adversary A and a challenger B.

Game - IND-CPA:

— Initialization. The challenger B first runs (msk, mpk) < Setup(1*). B then sends the master public key mpk to
A and keeps the master private key msk secret.

— Phase 1. The adversary A is given access to query the extract oracle with any identity id, and B returns a valid
private key skiq for identity id by using Extract algorithm.

— Challenge. A submits B an identity id* that has not been queried to extract oracle in Phase 1. B randomly
selects a bit b € {0,1}. If b = 0, B generate a true ciphertext by using Enc; and Ency. Otherwise, B randomly
selects a ciphertext from the ciphertext space. B then returns the ciphertext as a challenge to A.

— Phase 2. A can continue querying the extract oracle as Phase 1. The only restriction is that A cannot query
the extract oracle with the identity id™.

— Guess. A outputs a bit v’ € {0,1}.
The advantage of A is defined as

AdvH% AN = [Prb =] - 1.

Definition 4 (IND-CPA Security of two-tier IBKEM). A two-tier IBKEM scheme §2 is IND-CPA secure if
for all PPT adversaries A, Advg&'CPA()\) is negligible.

3.2 IBE

An IBE scheme ¥ comprises four algorithms (Setup, Extract, Enc, Dec) along with an identity space I DS, ciphertext
space CS, and plaintext space P.S, described as follows.

— Setup(1?) — (msk, mpk): This is the setup algorithm that takes the security parameter 1* as its input and
outputs a master private key msk and master public key mpk.

— Extract(msk, id) — skiq: This is the eztraction algorithm that takes the two inputs of a master private key msk
and identity id € I DS and outputs a private key sk;q for the identity.

Quantum-resistant Public-key Authenticated Encryption with Keyword Search 7

— Enc(mpk,id, m) — ctjg: This is the encryption algorithm that takes the three inputs of a master public key mpk,
identity id, and plaintext m € PS and outputs a ciphertext ctiy € C'S.

— Dec(skig, ctia) — m: This is the decryption algorithm that takes the two inputs of a private key skiq (for identity
id) and ciphertext ctjg and outputs a plaintext m € PS.

Definition 5 (Correctness of IBE). An IBE ¥ is correct if, for all security parameters 1, all master key pairs
(msk, mpk) output by Setup(1?), all private keys skig for identity id output by Extract(msk,id), and all ciphertexts
(ctiq) output by Enc(mpk,id, m), the following equation holds:

Pr[Dec(skig, ctig) = m] = 1 — negl(A).

The basis requirement of IBE is indistinguishability against chosen plaintext attacks. However, our instantiation
requires a stronger security requirement called indistinguishability and anonymity against chosen plaintext and chosen
identity attacks (IND-ANON-ID-CPA). IND-ANON-ID-CPA security ensures that no PPT adversary can retrieve any
information pertaining to the identity and the message from a challenge ciphertext, as modelled by the following game.

Game - IND-ANON-ID-CPA:

— Initialization. The challenger B first runs (msk, mpk) < Setup(1*) and then sends the master public key mpk
to A and keeps master private key msk secret.

— Phase 1. The adversary A is given access to query the extract oracle with any identity id, and B returns a valid
private key skiq for identity id by using the Extract algorithm.

— Challenge. A submits B two messages mg, m; and two identities idg, id] that have not been queried to extract
the oracle. B randomly chooses a bit b € {0,1} and then computes ct* < Enc(mpk, id;, m;). Finally, B returns
the challenge ciphertext ct* to A.

— Phase 2. A can continue querying the oracle per Phase 1. The only restriction is that A cannot query the
extract oracle with idj and idJ.

— Guess. A outputs a bit v’ € {0,1}.
The advantage of A is defined as
Advlql/\l’liANON-lD-CPA(/\) — [Pr[p=1b]— %‘

Definition 6 (IND-ANON-ID-CPA Security of IBE). An IBE scheme ¥ is IND-ANON-ID-CPA secure if

Advya‘ANON'lD'CPA(A) 1s negligible for all PPT adversaries A.

For analytical convenience, in this work, we consider an IBE to be anonymous if the IBE is IND-ANON-ID-CPA
secure.

3.3 Pseudorandom Generator (PRG)

Informally, suppose that a distribution D is pseudorandom if no PPT distinguisher that can distinguish a string s is
either selected from the distribution D or randomly selected from a uniform distribution. We provide the following
definition of the pseudorandom generator in [22].

Definition 7 (Pseudorandom Generator). Let F': {0,1}"™ — {0,1}™ be a deterministic PPT algorithm, where
n' = poly(n) and m > n. We say that F is a pseudorandom generator the following two conditions are satisfied:

— FEzxpansion: For every n, it holds that m > n.
— Pseudorandomness: For all PPT distinguishers D,

|Pr[D(r) = 1] — Pr[D(F(s)) = 1]| < negl(n),

where 1 & {0,1}™ and seed s & {0,1}™.

4 PAEKS

In this section we introduce the system model and the security requirements of PAEKS.

8 Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, and Masahiro Mambo

Cloud Servers

"‘ Private Private '.\
Information Information
Data Senders / Data Receivers
Register Register

Identities Identities

R

Trusted Authority

Fig. 2. System model for the proposed PAEKS scheme.

4.1 System Model

A PAEKS has four entities: a trusted authority, data sender, data receiver, and cloud server (Fig . In practice, the
data sender and data receiver register their identity with the trusted authority and obtain their public/private key
pairs. A PAEKS scheme IT comprises six algorithms: (Setup, KeyGeng, KeyGeng, PAEKS, Trapdoor, Test) together
with a keyword space W, which are detailed as follows.

— Setup(1*) — (PP, msk): This is the setup algorithm that takes the security parameter 1* as input, and outputs
a system parameter PP and a master private key msk. Note that the master private key is hold by trusted
authority.

— KeyGeng (PP, msk,ids) — (pks,sks): This is the data sender key generation algorithm that interacts between
data sender and trusted authority. It takes a system parameter PP, master private key msk, and an identity ids
as input, and outputs data sender’s public key pks and private key sks.

— KeyGeng (PP, msk, idr) — (pkg, skr): This is the data receiver key generation algorithm that interacts between
data receiver and trusted authority. It takes a system parameter PP, master private key msk, and an identity idg
as input, and outputs data receiver’s public key pkr and private key skg.

— PAEKS(PP, pks, sks, pkr, kw) — ct: This is the authenticated encryption algorithm that takes a system parameter
PP, data sender’s public key pks and private key sks, data receiver’s public key pkgr, and a keyword kw € W,
and outputs a searchable ciphertext ct.

— Trapdoor (PP, pkg, skr, pks, kw) — tw: This is the trapdoor algorithm that takes a system parameter PP, data
receiver’s public key pkg and private key skgr, data sender’s public key pks, and a keyword kw € W, and outputs
a trapdoor tw.

— Test(PP, ct,tw) — 1/0: This is the test algorithm that takes a system parameter PP, searchable ciphertext ct,
and a trapdoor tw, and outputs 1 if ct and tw correspond the same keyword; outputs 0, otherwise.

Definition 8 (Correctness of PAEKS). A PAEKS scheme II is correct if, for all security parameters 1*, all sys-
tem parameter/master private key pairs (PP, msk) output by Setup(1*), all data sender ids s key pairs (pks, sks) output
by KeyGeng (PP, msk,ids), all data receiver idr’s key pairs (pkg, skr) output by KeyGeng(PP, msk,idR), all searchable
ciphertexts ct output by PAEKS(PP, pks, sks, pkg, kw), and all trapdoors tw output by Trapdoor(PP, pkg, skr, pks, kw),
the following equation holds:

1, ifct,t tains th kw;
TeSt(PP, Ct7tW) _ {0 Z;heru\?;szon awmns € same KW

Quantum-resistant Public-key Authenticated Encryption with Keyword Search 9

4.2 Security Requirements

The basic secure requirement of the PAEKS scheme is IND-CKA and IND-IKGA. Specifically, IND-CKA and
IND-IKGA security ensures that no PPT adversary can obtain any information regarding the keyword from the
searchable ciphertext and keyword, respectively. We follow the method of [34] to model the aforementioned two
security requirements in the multi-user context by using two security games featuring interaction between the
adversary A and challenger B. Because the malicious insider has more power than the malicious outsider has, we
only consider the IND-IKGA in this work. Note that we use idy, pky, and sky to denote some user U’s identity,
public key, and private key, respectively.

Game - IND-CKA:

— Initialization. The challenger B first runs (PP, msk) < Setup(1*). The algorithm then chooses two identities
ids, idg and runs (pks, sks) < KeyGeng (PP, msk,ids) and (pkg, skr) + KeyGeng (PP, msk,idgr). Finally, B sends
the system parameter PP, data sender’s public key pks, and data receiver’s public key pkg to A while keeping
secret the master private key msk, data sender’s private key sks, and data sender’s private key skgr.

— Phase 1. A can make polynomially many queries to oracles Opkgens, OPKGeng, OTrapdoor, and Opaeks, B then
responds as follows.

o OpKgens (idy): B runs (pku, sky) <= KeyGens(PP, msk, idy). Then, B returns pky to A, and keeps sky secret.
® OpkGeng (du): B runs (pky,sky) < KeyGeng (PP, msk,idy). Then, B returns pky to 4, and keeps sky secret.
o Opaexs(kw, pky): B computes ct < PAEKS(PP, pky, sky, pkgr, kw) and returns ct to .A.

o Oftrapdoor (kw, pky): B computes tw < Trapdoor(PP, pky, sky, pks, kw) and returns tw to A.

— Challenge. After the end of Phase 1, A outputs two keywords kwg, kw] € W with the restriction that
(kwg, pkr) and (kwy, pkr) have not been queried to oracles Opagxs and Orapdoor in Phase 1. B first chooses a
random bit b € {0,1} and then returns ct* = (¥.ct*, h) +- PAEKS(PP, pks, sks, pkr, kw;) to A.

— Phase 2. A can continue to make queries, as was the case in Phase 1. The only restriction is that A cannot
make any query to Opagks on (kw}, pks) and to Orapdoor 01 (kw}, pkg) for i = 0, 1.

— Guess. A outputs its guess b’ € {0,1}.
The advantage of A is defined as

Advi%EA0N) = [Prip =] - 1.

Definition 9 (IND-CKA security of PAEKS). A PAEKS scheme {2 is IND-CKA secure if for all PPT

adversaries A, Adv'ﬁﬂ{CKA()\) is negligible.

Game - IND-IKGA:

— Initialization. The challenger B first runs (PP, msk) < Setup(1*) and then runs (pks, sks) +— KeyGens(PP, msk)
and then runs (pkg, skr) < KeyGengr (PP, msk). Finally, B sends the system parameter PP, data sender’s public
key pks, and data receiver’s public key pkgr to A while keeping secret the master private key msk, data sender’s
private key sks, and data sender’s private key skg.

— Phase 1. A can make polynomially many queries to oracles Opkgens; OpKGeng, OTrapdoor, ald Opagks with any
keyword kw and any user’s public key pky, B then responds as follows.

o OpKgens (idy): B runs (pky, sky) < KeyGens(PP, msk, idy). Then, B returns pky to A, and keeps sky secret.
o Opkgeng (idu): B runs (pky,sky) < KeyGeng(PP, msk, idy). Then, B returns pky to A, and keeps sky secret.
o Opaexs(kw, pky): B computes ct < PAEKS(PP, pky, sky, pkgr, kw) and returns ct to .A.

o Otrapdoor (kw, pky): B computes tw < Trapdoor(PP, pky, sky, pks, kw) and returns tw to A.

— Challenge. After the end of Phase 1, A outputs two keywords kwj, kw] € W with the restriction that
(kwy, pkr) and (kw7, pkr) have not been queried to oracles Opagks and OTrapdoor in Phase 1. B first selects a
random bit b € {0,1} and then returns tw* < Trapdoor(PP, pkg, skgr, pks, kw}) to A.

10 Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, and Masahiro Mambo

— Phase 2. A can continue to make queries, as was the case in Phase 1. The only restriction is that A cannot
make any query to Opagks on (kw}, pks) and to Orapdoor 01 (kw}, pkg) for i = 0, 1.

— Guess. A outputs its guess b’ € {0,1}.
The advantage of A is defined as

AdvoRA) = [Prb =b] - 1.

Definition 10 (IND-IKGA security of PAEKS). A PAEKS scheme {2 is IND-IKGA secure if for all PPT

adversaries A, Adv'gB{'KGA(/\) is negligible.

5 Generic PAEKS Construction

We now construct our generic PAEKS. Specifically, we demonstrate how a PAEKS scheme can be constructed by
combing an anonymous IBE, PRG, and two-tier IBKEM.

The high-level conception of our construction is that through two-tier IBKEM, the data sender and data receiver
can obtain the shared key shk without interaction. The data sender and data receiver each use this shared key to
extend the keyword by computing f <— F(kw||shk), where F is PRG. Rather than using the original keyword kw, the
data sender and data receiver use the extended keyword f to generate a ciphertext and trapdoor, respectively. The
data sender takes f as an “identity” to generate a ciphertext for the data receiver by using an anonymous IBE. The
data receiver can extract a private key for identity f and take this private key as the corresponding trapdoor. By
using this trapdoor, the cloud server can search for the ciphertext containing the keyword kw. In addition, because
the ciphertext and trapdoor are using the output of PRG as the identity and because the IBE is anonymous, PPT
adversaries cannot obtain any information regarding the keyword from the ciphertext and trapdoor.

To construct a PAEKS scheme IT = (Setup, KeyGens, KeyGeng, PAEKS, Trapdoor, Test) with the keyword
space W, we use the following cryptosystems as the building block. Let ¥ = (Setup, Extract, Enc, Dec) be an
anonymous IBE scheme with the identity space W.IDS, ciphertext space ¥.C'S, and plaintext space W.PS. Let
2 = (Setup, Extract, Ency, Ency, Dec) be a two-tier IBKEM scheme with the identity space £2.IDS, ciphertext
space 2.CS, and symmetric key space 2.KS. In addition, let F : X —) be a PRG that maps X to), where
X = {kw||shk | kw € W Ashk € 2.KS} and Y = W.IDS. The generic construction is detailed in the subsequent
section. Note that although our construction is based on identity-based cryptosystems, the entire construction
remains in the public key setting.

— Setup(1*) — (PP, msk): Given a security parameter 1*, this algorithm runs as follows.
1. Choose a proper PRG F: X —).

2. Choose a secure hash function H : {0, 1}* — {0, 1}?, where a, 8 € Z7.

3. Generate (£2.msk, £2.mpk) < £2.Setup(1*).

W

. Output system parameter PP := (A, £2.mpk, H, F) and master private key msk := £2.msk. Note that msk is
kept secret by the trusted authority.

— KeyGeng(PP, msk,ids) — (pks,sks): Given a system parameter PP = (), £2.mpk, H,F), a master private key

msk = {2.msk, and a data sender’s identity ids € §2.1D.S, data sender and trusted authority interact as follows.

1. The data sender registers the identity ids to trusted authority which return §2.skig; < {2.Extract({2.msk, ids)

and ({2.cts, £2.rs) < 2.Ency (mpk).
2. Output data sender’s public key pks := (ids, 2.cts) and private key sks := (£2.skigs, £2.15).

— KeyGeng (PP, msk, idr) — (pkr,skr): Given a system parameter PP = (), £2.mpk, H, F), a master private key
msk = §2.msk, and a data receiver’s identity idg € £2.1DS, data receiver and trusted authority interact as follows.

1. The data receiver registers this identity idg to trusted authority which return §2.skig, < §2.Extract(£2.msk, idr)
and (f2.ctgr, £2.rr) < 2.Ency(mpk).

2. Compute (¥.mpk, ¥.msk) <+ ¥.Setup(1?).

3. Output data receiver’s public key pkg := (idr, {2.ctgr, ¥.mpk) and private key skg := (£2.skiqg, §2.rr, ¥.msk).

Quantum-resistant Public-key Authenticated Encryption with Keyword Search 11

— PAEKS(PP, pks, sks, pkr, kw) — ct: Given a system parameter PP = (\, £2.mpk, H, F), a data sender’s public key
pks = (ids, £2.cts) and private key sks = (§2.skiqs, §2.r5), a data receiver’s public key pkgr = (£2.idg, £2.ctr, ¥.mpk),
and a keyword kw € W, data sender works as follows.

1. Compute kids,idR — Q.DeC(Q.SkidS, idg, .Q.CtR).

2. Compute Kigy igs < £2.Enco(£2.mpk, idg, £2.rs).
3. Compute shk < kigs,idz @ Kidg,ids, Where @ is an operation compatible with the key space.

4. Compute f < F(kw||shk).

5. Choose a random r <~ ¥.PS and compute ¥.ctyy P.Enc(¥.mpk,f,r).
6. Compute h = H(W.ctyw, r).

7. Output a searchable ciphertext ct := (¥.ctkw, h).

— Trapdoor(PP, pkg, skg, pks, kw) — tw: Given a system parameter PP = (A, 2.mpk,H,F), a data receiver’s
public key pkg = (idr, £2.ctr, ¥.mpk) and private key skgr = (£2.skidg, £2.rr, ¥.msk), a data sender’s public key
pks = (ids, £2.cts), and a keyword kw € W, data receiver works as follows.

1. Compute kigq igs < §2.Dec(§2.skiqy, idr, £2.cts).

2. Compute Kigq igx < £2.Enco(£2.mpk, ids, £2.rg).

3. Compute shk < Kigg ids @ Kids,idz, Where & is an operation compatible with the key space.
4. Compute f < F(kw||shk).

5. Compute W.skyy < W.Extract(¥.msk, f).

6. Output a trapdoor tw := W.sky,, for keyword kw.

— Test(PP, ct, tw): Given a system parameter PP = (A, 2.mpk, H, F), a searchable ciphertext ct = (¥.ctyw, h), and a
trapdoor tw = W.sky,, for keyword kw, cloud server works as follows.
1. Compute r < ¥.Dec(¥.skyw, ¥.Ctiw)-

2. Output 1 if H(W.ct,r) = h; outputs 0, otherwise.

Correctness. Notably, the data sender and data receiver rely on the underlying two-tier IBKEM to exchange an
extended keyword and the extended keyword acts as an identity in the underlying IBE scheme. Therefore, the
proposed construction is correct if and only if the underlying anonymous IBE and two-tier IBKEM are correct.

6 Security Proofs

The following provides two security proofs to show that our generic construction is IND-KGA secure and IND-IKGA
secure under standard model.

Theorem 1. The proposed PAEKS scheme II is IND-CKA secure if the underlying IBE scheme W is IND-ANON-
ID-CPA secure.

Proof (Proof of Theorem . If adversary A can win the IND-CKA game with a non-negligible advantage, then
challenger B can win the IND-ANON-ID-CPA game of the underlying IBE scheme ¥ with a non-negligible advantage.
Their interaction is as follows.

— Initialization. Given the security parameter 1*, B first chooses the proper secure hash function H and
pseudorandom generator F and invokes the IND-ANON-ID-CPA game of ¥ to obtain ¥.mpk. Next, B executes
the following steps.

e Compute (£2.msk, £2.mpk) «+ 2.Setup(1*).

12 Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, and Masahiro Mambo

e Choose ids and idg from 2.IDS.
e Compute (2.skig; « 2.Extract(£2.msk, ids) and §2.skig, < §2.Extract(£2.msk, idg).

e Compute ({£2.cts, 2.rs) < £2.Enc;(mpk) and (£2.ctg, $2.rg) < 2.Enc;(mpk).
Finally, B sends the data sender’s public key pks = (ids,f2.cts), data receiver’s public key pkr =
(idg, £2.ctg, ?.mpk), and system parameter PP = (A 2.mpk,H,F) to A, and keeps master private key
msk = (£2.msk, £2.skig , £2.skiq) secret.

— Phase 1. A can make polynomially many queries to oracles Opkgens (idu), Opkaeng (1du); OTrapdoor(kw, pky), and
Opaeks (kw, pky), B then responds as follows.
o Opkeens (idy): B first computes 2.skig, §2.Extract(£2.msk,idy) and (£2.cty, £2.ry) < 2.Ency(mpk). B then
returns pky = (idy, 2.cty) to A and keeps sky = (£2.skig,, ru) secret.

o Opkaeng (idy): B first computes 2.skiq, < £2.Extract({2.msk,idy) and ({2.cty, £2.ry) < £2.Enc;(mpk). B also
computes (¥.mpk,¥.msk) < W.Setup(1*). Finally, B returns pky = (idy, f2.cty, ¥.mpk) to A and keeps
sky = (£2.skigy, £2.ry, ¥.msk) secret.

° OPAEKS(kW; pku)i B first computes kids,idu — Q.Dec(!).skids, ids, .Q.Ctu) and kidu,ids —
2.Enco(£2.mpk, idy, £2.rs). Then, B computes shk < kiggid, @ kidy,ids and computes f < F(kw||shk).
Next, B randomly chooses r + {0,1}*, computes ¥.ctyy < P.Enc(¥.mpk, f, r) and computes h = H(¥.ctyw, r).
Finally, B returns ct = (¥.ctyw, h) to A.

o Otrapdoor(kw, pky): B first computes kidg,id, — 2.Dec(£2.skigq, idRr, 2.cty) and Kigyidg =
2.Ency(£2.mpk, idy, £2.rg). Then, B computes shk < kiggidy © kidy,idx and computes f <— F(kw||shk).
Next, B invokes W.Extract oracle of the IND-ANON-ID-CPA game on f, and is given ¥.sky,. Finally, B
returns a trapdoor tw = ¥.sky,, to A.

— Challenge. After the end of Phase 1, A outputs two keywords kwg, kwj € W with the following restriction: for
i=0,1, (kw;, pks) and (kw;, pkr) have not been queried to oracles Opagks and Otrapdoor in Phase 1, respectively.
B then selects a bit b € {0,1} and runs the subsequent steps.
1. Compute kids,idR — Q.Dec(().skids, idg, Q.CtR).

2. Compute Kigy,ids < £2.Enco(£2.mpk, idg, £2.rs).
3. Compute shk + kigs idz @ Kidg,ids -
4. Compute fg < F(kwy|shk) and f; < F(kwj||shk).

5. Invoke the Challenge phase of the IND-ANON-ID-CPA game on (fg, f1,r), where r is randomly chosen from
{0,1}*, and is given ¥.ct*.

6. Compute h = H(W.ct*,r).

7. Return ct* = (¥.ct*, h) to A.

— Phase 2. A can continue to make queries, as was the case in Phase 1. The only restriction is that A cannot
make any query to Opagks and OTtrapdoor regarding (kw;, pks) and (kw;, pkgr), respectively.

— Guess. A outputs its guess b’. Then, B follows A’s answer and outputs b'.
Regardless of whether W.ct* is generated from fy or fy, from A’s perspective, ct* = (W.ct*, h) is a valid searchable
ciphertext. Thus, A can whether distinguish ¥.ct* is generated from fy or f; and win the IND-CKA game with

non-negligible advantage. Then, B can follow A’s answer to win the IND-ANON-ID-CPA of the underlying IBE
scheme ¥ with the non-negligible advantage. Therefore, we have

AdVIgE&CKA()\) < Adv!}/\l’%—ANON—ID-CPA()\))

Theorem 2. The proposed PAEKS scheme II is IND-IKGA secure if the underlying pseudorandom generator F
satisfies pseudorandomness.

Quantum-resistant Public-key Authenticated Encryption with Keyword Search 13

Proof (Proof of Theorem|%). Let A be a PPT adversary that attacks the IND-IKGA security of the PAEKS scheme
II with advantage Adv'ﬁ) AflKGA()\). We prove Theorem [2| through the following two games, where we define E; to be

the event that A wins Game;.

Gamey: This is the original IND-IKGA game, defined in Section [d] The simulation of this game is similar to
Theorem [1} except for the challenge phase.

— Challenge. After the end of Phase 1, A outputs two keywords kwg, kwj € W with the following restriction: for
i=0,1, (kw}, pkr) and (kw}, pkr) have not been queried to oracles Opagks and OTrapdoor it Phase 1, respectively.
B then runs the following steps:
1. Random choose a bit 8 € {0,1}.

2. Compute Kigg,ids ¢ 2.Dec(£2.skigg, idr, £2.cts).

3. Compute Kigq igx < £2.Enco(£2.mpk, ids, £2.rg).

4. Compute shk < Kidg,ids @ Kids,idz» Where @ is an operation compatible with the key space.
5. Compute f < F(kwg||shk).

6. Return a challenge trapdoor tw* «— ¥.Extract(¥.msk, f) to A.

By the definition,
Adv% A (N = |Pr[Eo] — 3.

Game;: In this game, we make the following minor conceptual change to the aforementioned game. In the
challenge phase, the challenger B substitutes the value ct* < W.Enc(pkg, f, r) with ct* + ¥.Enc(pkg, ', r), where f/
is randomly selected from the output space) of the underlying pseudorandom generator). Then, according to
Lemma [3] because the pseudorandom generator F satisfies pseudorandomness, no distinguisher can distinguish f
from f’ with non-negligible probability:

[Pr[Eo] — Pr[Eq]| = AdvEig ().

Lemma 3. For all PPT algorithms Ay, |Pr[Eg] — Pr[E;]| is negligible if the underlying pseudorandom generator F
satisfies pseudorandomness.

Proof (Proof of Lemma @ If Ay can win the IND-IKGA game with non-negligible advantage, then there exists a
challenger B that can win the pseudorandom game of the underlying pseudorandom generator with non-negligible
advantage. B constructs a hybrid game, interacting with 4; as follows. Given a challenge string T' €) and the
description of a pseudorandom generator F’, B constructs a hybrid game, interacting with A; as follows.

— Initialization. B chooses the public parameter following the proposed construction, with the following exception:
rather than selecting a proper pseudorandom generator from the pseudorandom generator family, B sets F’
as a system parameter. B then follows the previous game to generate the system parameter params, data
sender’s key pair (pks,sks), and data receiver’s key pair (pkg,skr). Finally, B sends (PP, pks, pkg) to A and
keeps (msk, sks, skr) secret.

— Phase 1. A; can make polynomially many queries to oracles as was the case in a previous game.

— Challenge. After the end of Phase 1, A; outputs two keywords kwg, kwj € W with the following restriction: for
i=0,1, (kw}, pks) and (kw;, pkr) have not been queried to oracles Opagks and Otrapdoor it Phase 1, respectively.
B then runs the subsequent steps.
1. Set f*=T.

2. Compute tw* = W.Extract(¥.msk, f*).

3. Return tw* to A;.

— Phase 2. A can continue to make queries, same as in Phase 1. The only restriction is that A; cannot make
any query to Opaexs on (kw;, pks) and OTrapdoor 00 (kw;, pkg), for i = 0, 1.

14 Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, and Masahiro Mambo

— Guess. A; outputs its guess b'.

If T is generated from F’, B provides the view of Gameg to Ajz; if T is a random string sampled from), then B
provides the view of Game; to A;. Hence, if |Pr[Eq] — Pr[E;]| is non-negligible, B has a non-negligible advantage
against the pseudorandom generator security game. Therefore, the advantage of A; is

|Pr[Eo] — Pr[Eq]| = Advis ().
Lemma 4. Pr[E;] = 0.

Proof (Proof of Lemma . The proof of this lemma is intuitive. Because the trapdoor tw* contains no information
regarding the keyword, the adversary can only return b’ by guessing.

Combining Lemmas [3| and 4] we can conclude that the advantage of A in winning the IND-IKGA game is

_ 1
Advio () = ‘[EO] - 2‘

_ ‘Pr[El] + AdvEf;f(A)‘
< Advig(N).

This completes the proof.

Table 2. Comparison of Security Properties with Other PAEKS Schemes

Schemes IKGAs Quantum-resistance Security
HL17 [20] X X ROM
HMZKL17 [18] v X ROM
NE18 [34] 4 X ROM
LHSYS19 [24] v X ROM
WZMKH19 [40] 4 X ROM
LLYSTH19 [25] 4 X ROM
QCHLZ20 [36] v X ROM
PSE20 [35] 4 X ROM
Ours v v SM

v: the scheme supports the corresponding feature.
X: the scheme fails in supporting the corresponding feature.
ROM: random oracle model; SM: standard model.

Table 3. Experimentation Platform Information

Description Data

CPU AMD Ryzen 5-2600 3.4GHz
CPU processor number 6

Operation system Ubuntu 18.04

Linux kernel version 5.3.0-59-generic

Random access memory 16.3GB

Solid state disk 232.9GB

7 Concrete Instantiation

In this section we give a concrete instantiation by adopting Katsumata and Yamada’s adaptively anonymous IBE
[21], which is secure under the RLWE assumption. In other words, we first follow the idea in [5] to tweak [21]
and obtain a two-tier IBKEM. We then combine this two-tier IBKEM with Katsumata and Yamada’s IBE [2I] to
instantiate a quantum-resistant PAEKS scheme. The instantiation is comprehensively detailed in the subsequent
section.

Quantum-resistant Public-key Authenticated Encryption with Keyword Search 15

Table 4. Notations of Operations and Their Running Time

Notations Operations Running time (ms)
T Hash-to-point 59.423115
Tep Bilinear pairing 7.526549
Tsm Scalar multiplication over point 4.094151
Tam General multiplication over point 0.022241
Tex Modular exponentiation over point 4.153842
Tpa Addition over point 0.019013
Taa General hash function 0.008724
Trrc Pseudorandom generation 0.005132
TprMm Multiplication over polynomial ring 0.003416
Tprra Addition over polynomial ring 0.001813
Tsanm SampleLeft function 6.219831

Table 5. Comparison of Needing Operations with Other PAEKS Schemes

Schemes Ciphertext generation Trapdoor generation Testing
HL17 [20] T +3Tex +Tam Ty +Tep+Tex 2Tsp +Tom
HMZKL17 [18] Tu +3T8p +5Tsm +2Tpa + 2754 T +Tep + 3Tsm + 2Tpa +2Tua 2T8p + 2Tsy +Tam + 2Tpa + 2THa
NE18 [34] Tu +3Tex +Tom Ty +Tep +Tex 2Tp +Tom
LHSYS19 [24] 2Ty +2Tsp + 3Tex ATy +Tep +Tom 2Tsp +Tam + 2Tex
WZMKH19 [40] T + 6Tsm + 2Tpa + 2THA Ta ++Tp +9Tsm +4Tpa +Thaa 2T8p +4Tsy +Tex +2Tpa +ThHa
LLYSTH19 [25] Tx + 3Tsnm + Tpa Tu +Tgp +4Tsm + 2Tpa 2Tgp + 2Tsm +Tam + 2Tpa
QCHLZ20 [36] 3Ty +2Tp +3Tex + Tua 3T +1Tep + 2TEex Ty +Tpp
PSE20 [35] T +Tep 4+ 3Tsnm +2THA Ta +Tep +Tsy +ThaA Tsyv +Tha
2THa +TpPre Taa +TpPrc
Ours +(6k +) Trry + (2k + 2)TPRa +(4k +4)Tpry + Tsam Tua+ (2k+ 1)TprMm

— Setup(1*): Given a security parameter 1*, this algorithm runs as follows.
1. Choose a proper PRG F : {0, 1}5T" — {0, 1}~+n+L,

2. Choose three secure hash functions:
e Hy: {0, 1} — {0, 1}~

o Hy: {0, 1}2+14m — f0, 1},

3. Run (a,T,) < TrapGen(1™, 1™ q, p), where a € R’q“, and T € RF*F
4. Pick u & Ry, bo,by; & RE for (i,) € [d] x [4].

5. Choose a deterministic function H : {0,1}* — R} defined as H(m) = by +
Z PubEvalg(bi j,,--- ,baj,) € R’q“, where S is an efficiently computable injective map

(J1,+,da)€S(m)
that maps a message m € {0, 1}" to a subset S(m) of [1,/]¢, where ¢ = [r'/4].

6. Outputs PP = (a, b, {b; ;} (i j)e[dx[¢, u, H) and master private key msk = T. Note that msk is kept secret
by the trusted authority.

— KeyGeng (PP, msk, ids): Given a system parameter PP, a master private key msk, and an identity ids € {0,1}",
data sender and trusted authority interact as follows.
1. Data sender registers his/her identity ids to trusted authority. The trusted authority computes the following

steps.

$ $
(a) Choose sg,vs < Ry, and xg51,Xg2 < (DT)F.

(b) Compute pg = sgla|H(ids)] + [xs,1|xs,2] € ng.

16

Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, and Masahiro Mambo

250

B Ciphertext generation
M@ Trapdoor generation
B Test

200

Time (ms)
G
o

-
o
o

50

HMZKL17 HLSYS19

WZMKH19 LLYSTH19 QCHLZ20
Schemes

PSE20

Fig. 3. Comparison of computational costs with other PAEKS schemes.

(¢) Compute eg < SampleLeft(a, H(ids), u, Ta, o).

(d) Return (sg,ps,es) to data sender.

2. Data sender outputs his/her public key pks = (ids, ps, vs) and private key sks = (eg, sg).

— KeyGeng (PP, msk, idg): Given a system parameter PP, a master private key msk, and an identity idg € {0,1}",
data receiver and trusted authority interact as follows.

1.

Data sender registers his/her identity idg to trusted authority. The trusted authority computes the following
steps.

(a) Choose sg,vR & Ry, and xR 1,XR2 & (D%?F’f(;,)k.
(b) Compute pr = sglalH(ids)] + [xg,1|XRr2] € ng.
(c) Compute er < SampleLeft(a, H(idr),u, T, o).

(d) Return (sgr,pr,er) to data sender.

Data receiver then computes (ag, Tag) < TrapGen(1",1™,q, p).
Pick ugr (i qubR,Obe,i,j (i R]; for (’L,]) S [d] X [5]

Choose a deterministic function Hr : {0,1}* — R’; defined as Hg(m) = Dbgro +
Z PubEvalg(bgr.1,, - ,br,dj,) € R’q“, where S is an efficiently computable injective map that

(41, ja)€S(m)

maps a message m € {0,1}* to a subset S(m) of [1,£]?, where £ = [r!/?].

Data sender outputs his/her public key pkr = (idr, Pr, VR, @R, Pr,0, {PR,ij }(i,j)e[dx[> Ur, Hr) and private
key SkR = (eR, SR,TR).

Quantum-resistant Public-key Authenticated Encryption with Keyword Search 17

Table 6. Comparison of Communication Costs with Other PAEKS Schemes

Schemes Ciphertext overhead Trapdoor overhead
HL17 [20] 2G| |G|
HMZKL17 [18] |G| |G|
NE18 [34] |G| |G
LHSYS19 [24] 2|Gi1| + |G| |G1| + |G|
WZMKH19 [40] 2|G4| 2|G1| + |G|
LLYSTH19 [25] |G| |G|
QCHLZ20 [36] |G1] + |p| |G|
PSE20 [35] 2|G4| |G|
Ours 3nk|q| +n 2nk|o|

n: a power of 2.

p, q: module.

G1,Gr: cyclic group.

k: poly(n).

o: Gaussian parameter.

— PAEKS(PP, pks, sks, pkr, kw): Given a system parameter PP, data sender’s public key pks and private key SKs,
data receiver’s public key pkg, and a keyword kw € {0,1}*, data sender runs the following steps.

—_

[\

9.

ks,1 = ([(2/q) - #(vr — ss[alH(ids)])]) mod 2) € {0,1}".
ks2 = ([(2/q) - p(vs — Psegﬂ) mod 2) € {0,1}".
shks < kg1 @ ks,2.

Compute pseudo_kw < Hj (F(kw||shkg)).

Choose a random & & {0,1}".

Choose sg,vg & Ry, x50 & D%‘iﬁfgéq and xg,1,Xg,2 & (D)P,
Compute ¢g = sgugr + zs,0 + [¢/2] - €, ¢1 = ss[ar|Hr(pseudo_kw)] + [xs.1|x5,2].
Compute h = Hz(cp, cq,b).

Output a searchable ciphertext ct = (co, 1, h).

— Trapdoor: Given a system parameter PP, data receiver’s public key pkr and private key skgr, data sender’s public
key pks, and a keyword kw € {0,1}*, data receiver runs the following steps.

—_

[\V]

4.

5

6

k1 = (L(2/a) - 6(vr — preb)]) mod 2) € {0,1}".

kis = (1(2/0) - dlvs — srlalH(ide)])]) mod 2) € {0,1}".
shkp < kp.1 @ kp.o.

Compute pseudo_kw < Hq (F(kw||shkg)).

Compute t < SampleLeft(ag, Hr(pseudo_kw), ug, Tg, o).

Output a trapdoor tw = t.

— Test: Given a system parameter PP, a searchable ciphertext ct, ans a trapdoor tw, cloud server works as follows.

1.

2.

Compute & = (|(2/q) - ¢(co — c1tT)] mod 2).

If Ha(co, c1,¢&’) = h, output 1; otherwise, output 0.

18 Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, and Masahiro Mambo

7.1 Parameter Selection

Due to the correctness and the security of our instantiation is based on [21I], we follow the parameter selection in
[21]; that is, the following conditions should be hold:

— the error term is less than aqw(v/logn)+ vnka'cw(y/log nk such that the instantiation has negligible decryption
error, where aqw(v/logn) + vnka'ow(y/lognk < ¢/5 ([2I] Lemma 10).

p <1/2y/q/n and k > 2log, q such that TrapGen can work (Lemma.

— k > [log, q] such that the gadget matrix g, can be defined ([2I] Lemma 5).

— 0 > O(bp - \/nlog,q - w(y/lognk) and o < 51(R)Vb?+1 - w(y/logn), where s;(R) < 7 - kpv/n(VEk +
w(y/n)) ((cn)dil +bnk%) for some absolute constant 7, such that SampleLeft and SampleRight can

work (Lemma 2] [21] Eq. 37).

— o > 2aq(s1(R) + 1), aq > w(y/lognk), and aq > n3/2kY/4w(log”* n) such that the IBE scheme in [35] is secure
([21] Theorem 1).

For our instantiation, we set the concrete parameters as Type 2 IBE in [21], i.e., k = 8d + 12,9 = n2d+3 p =

d 2d—

3
p=ni,o=n wlogn),a=n"24"5 . wlog?n)!, and o/ = nét3 . w(log? n)~! to ensure that our instantiation is

correct.

8 Comparison and Analysis

To the best of our knowledge, although existing PAEKS schemes [18342436/35/40125] can defend against IKGAs,
these schemes cannot defend against quantum attacks because the security of these schemes are based on the discrete
logarithm assumption. In this section, we first compare our proposed instantiation with these existing schemes
with respect to their security properties. We then compared these schemes with respect to their computational and
communication complexities.

Table [2| lists the results of our comparison between our instantiation and its counterpart PAEKS schemes with
respect to their security properties. Because our instantiation inherits the security of [I7I1], it can be considered to
be based on the lattice hard assumption. In other words, only our instantiation has the ability to resist quantum
attacks and IKGAs simultaneously.

We subsequently conducted such a comparison with respect to computational complexity when generating
searchable ciphertexts and trapdoors. For simplicity, we only considered the time-consuming operations listed
in Table [d Experiments simulating these operations were performed on a PC; the efficiency of the methods are
detailed in Table |3| In particular, the operations of Ty, Tp, Tsn, Tanm, Tex, and Tp4 were obtained by using
a pairing-based cryptography library (PBC)—under Type-A pairing with a 160-bit group order and a 2048-bit
group element for Gy and Gr [28]. Tpra, Tpra, and Tsap were simulated using an NFLIib libarary [2] with the
parameters d = 2, n = 512, and k = 30. Moreover, Tprc was obtained using the AES-256 algorithnﬂ7 and Ty a
was simulated using the SHA3-256 algorithm’] The computational costs for the methods are compared in Table
The results indicate that our instantiation took the least time to generate the ciphertext and trapdoor as well as to
perform tests; such speed was due to our method not requiring any time-consuming operations, such as bilinear
pairing and hash-to-point.

Additionally, we also conducted such a comparison with respect to communication complexity (which was
indicated by the size of the ciphertext and trapdoor). The comparison results are detailed in Table @ For the
pairing-based schemes, the pairing operation is represented by e : G; X G; — Gp, where G; and G are 2048-bit
elements. Moreover, because the group order of the pairing is 160 bit, |p| = 160. For our instantiation, n = 512,
k =30, |o| = 20, and |q| = 63. To ensure security, our instantiation must be set in high dimensions. Therefore, in
contrast to its counterpart schemes, our instantiation yielded ciphertext and trapdoor sizes of 3nk|q| + n = 2903040
bits and 2nk|o| = 614400 bits, respectively.

3 https://github.com/kokke/tiny-AES-c
4 https://github.com/brainhub/SHA3IUF

https://github.com/kokke/tiny-AES-c
https://github.com/brainhub/SHA3IUF

Quantum-resistant Public-key Authenticated Encryption with Keyword Search 19
9 Conclusion

In this work, we introduced a new method for constructing a generic PAEKS scheme, which is secure against IND-
KGA and IND-IKGAs under multi-user context in standard model. In addition, we provided a lattice-based concrete
instantiation based on the lattice hard assumption. Compared with current PAEKS schemes, our instantiation is not
only the first PAEKS scheme that is quantum-resistant and secure under standard model but also the most efficient
scheme with respect to computational cost.

Recently, PAEKS schemes [2436] consider the designated testability of PAEKS, which ensures that only designated
server can execute the test function. Hence, even when an adversary monitors the communication channel between a
user and the cloud for the encrypted ciphertext and its corresponding trapdoor, they cannot learn any information
regarding the user’s search pattern. We intend to investigate the aforementioned problem in our future work.

Acknowledgment

This research was supported by the Ministry of Science and Technology, Taiwan (ROC), under Project Numbers
MOST 108-2218-E-004-001-, MOST 108-2218-E-004-002-MY2, MOST 109-2218-E-011-007-.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the Standard Model. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110. pp. 553-572. Springer, Berlin, Heidelberg (2010)

2. Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A.; Killijian, M.O., Lepoint, T.: NFLIlib: NTT-based Fast Lattice
Library. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610. pp. 341-356. Springer Cham (2016)

3. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G., Buell,
D.A., et al.: Quantum Supremacy using a Programmable Superconducting Processor. Nature 574(7779), 505-510 (2019).
https://doi.org/10.1038/s41586-019-1666-5

4. Bellare, M., Boldyreva, A., Palacio, A.: An Uninstantiable Random-oracle-model Scheme for a Hybrid-encryption Problem.
In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. pp. 171-188. Springer, Berlin, Heidelberg (2004)

5. Blazy, O., Chevalier, C.: Non-Interactive Key Exchange from Identity-Based Encryption. In: ARES 2018. Association for
Computing Machinery (2018). |https://doi.org/10.1145/3230833.3230864

6. Boneh, D.; Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption with Keyword Search. In: Cachin, C.,
Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027. pp. 506-522. Springer, Berlin, Heidelberg (2004)

7. Byun, JJW., Rhee, H.S., Park, H.A., Lee, D.H.: Off-line Keyword Guessing Attacks on Recent Keyword Search Schemes
over Encrypted Data. In: Jonker, W., Petkovic, M. (eds.) SDM 2006. LNCS, vol. 4165. pp. 75-83. Springer, Berlin,
Heidelberg (2006). https://doi.org/10.1007/11844662_6

8. Canetti, R., Goldreich, O., Halevi, S.: The Random Oracle Methodology, Revisited. J. ACM 51(4), 557-594 (2004)

9. Cash, D., Hotheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Delegate a Lattice Basis. In: Gilbert, H. (ed.)
EUROCRYPT 2010. LNCS, vol. 6110. pp. 523-552. Springer Berlin Heidelberg (2010)

10. Chen, B., Wu, L., Zeadally, S., He, D.: Dual-Server Public-Key Authenticated Encryption With Keyword Search. IEEE
Trans. Cloud Comput. (2019), (early access)

11. Chen, R., Mu, Y., Yang, G., Guo, F., Huang, X., Wang, X., Wang, Y.: Server-aided public key encryp-
tion with keyword search. IEEE Trans. on Information Forensics and Security 11(12), 2833-2842 (2016).
https://doi.org/10.1109/TIFS.2016.2599293

12. Chen, R., Mu, Y., Yang, G., Guo, F., Wang, X.: A New General Framework for Secure Public Key Encryption with
Keyword Search. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS, vol. 9144. pp. 59-76. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-19962-7_4

13. Chen, R., Mu, Y., Yang, G., Guo, F., Wang, X.: Dual-server Public-key Encryption with Keyword Search
for Secure Cloud Storage. IEEE Trans. on Information Forensics and Security 11(4), 789-798 (2015).
https://doi.org/10.1109/TIFS.2015.2510822

14. Chen, Y.C., Xie, X., Wang, P.S., Tso, R.: Witness-based Searchable Encryption with Optimal Overhead for Cloud-edge Com-
puting. Future Gener. Comput. Syst. 100, 715-723 (2019). |https://doi.org/https://doi.org/10.1016 /j.future.2019.05.038

15. Fang, L., Susilo, W., Ge, C., Wang, J.: A Secure Channel Free Public Key Encryption with Keyword Search Scheme
without Random Oracle. In: Garay, J., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888. pp. 248-258. Springer,
Berlin, Heidelberg (2009)

16. Fang, L., Susilo, W., Ge, C., Wang, J.: Public Key Encryption with Keyword Search Secure against Keyword Guessing
Attacks without Random Oracle. Inf. Sci. 238, 221-241 (2013). https://doi.org/10.1016/j.ins.2013.03.008

17. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for Hard Lattices and New Cryptographic Constructions. In:
STOC 2008. pp. 197-206. Association for Computing Machinery (2008)

https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1145/3230833.3230864
https://doi.org/10.1007/11844662_6
https://doi.org/10.1109/TIFS.2016.2599293
https://doi.org/10.1007/978-3-319-19962-7_4
https://doi.org/10.1109/TIFS.2015.2510822
https://doi.org/https://doi.org/10.1016/j.future.2019.05.038
https://doi.org/10.1016/j.ins.2013.03.008

20

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, and Masahiro Mambo

He, D., Ma, M., Zeadally, S., Kumar, N., Liang, K.: Certificateless Public Key Authenticated Encryption with Keyword
Search for Industrial Internet of Things. IEEE Trans. on Ind. Informatics 14(8), 3618-3627 (2017)

Huang, K., Tso, R.: Provable Secure Dual-server Public Key Encryption with Keyword Search. In: 2017 IEEE 2nd
International Verification and Security Workshop (IVSW). pp. 39-44. IEEE (2017)

Huang, Q., Li, H.: An Efficient Public-key Searchable Encryption Scheme Secure against Inside Keyword Guessing Attacks.
Inf. Sci. 403, 1-14 (2017). lhttps://doi.org/10.1016/].ins.2017.03.038

Katsumata, S., Yamada, S.: Partitioning via Non-linear Polynomial Functions: More compact IBEs from Ideal Lattices
and Bilinear Maps. In: Cheon, J., Takagi, T. (eds.) ASTACRYPT 2016. LNCS, vol. 10032. pp. 682—712. Springer, Berlin,
Heidelberg (2016)

Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and Hall/CRC (2014)

Leurent, G., Nguyen, P.Q.: How Risky is the Random-oracle Model? In: Halevi, S. (ed.) CRYPTO 2009. pp. 445—464.
Springer, Berlin, Heidelberg (2009)

Li, H., Huang, Q., Shen, J., Yang, G., Susilo, W.: Designated-server Identity-based Authenticated Encryption with
Keyword Search for Encrypted Emails. Inf. Sci. 481, 330-343 (2019)

Liu, X., Li, H., Yang, G., Susilo, W., Tonien, J., Huang, Q.: Towards Enhanced Security for Certificateless Public-Key
Authenticated Encryption with Keyword Search. In: Steinfeld, R., Yuen, T. (eds.) ProvSec 2019. LNCS, vol. 11821. pp.
113-129. Springer Cham (2019)

Liu, Z.Y., Tseng, Y.F., Tso, R.: Cryptanalysis of “FS-PEKS: Lattice-based forward secure public-key encryption with
keyword search for cloud-assisted industrial Internet of things”. Cryptology ePrint Archive, Report 2020/651 (2020),
https://eprint.iacr.org/2020/651

Liu, Z.Y., Tseng, Y.F., Tso, R., Mambo, M.: Designated-ciphertext searchable encryption. Cryptology ePrint Archive,
Report 2019/1418 (2019), https://eprint.iacr.org/2019/1418

Lynn, B.: PBC Library the Pairing-cryptography Library (2014)

Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with Errors over Rings. In: Gibert, H. (ed.)
EUROCRYPT 2010. LNCS, vol. 6110. pp. 1-23. Springer, Berlin, Heidelberg (2010)

Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with Errors over Rings. J. ACM 60(6), 1-35
(2013)

Ma, S., Mu, Y., Susilo, W., Yang, B.: Witness-based Searchable Encryption. Inf. Sci. 453, 364-378 (2018).
https://doi.org/10.1016/j.ins.2018.04.012

Mao, Y., Fu, X., Guo, C., Wu, G.: Public Key Encryption with Conjunctive Keyword Search Secure against Keyword Guess-
ing Attack from Lattices. Trans. Emerg. Telecommun. Technolo. 30(11), e3531 (2019). https://doi.org/10.1002/ett.3531
Micciancio, D., Peikert, C.: Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller. In: Pointcheval, D., Johansson, T.
(eds.) EUROCRYPT 2012. LNCS, vol. 7237. pp. 700-718. Springer, Berlin, Heidelberg (2012)

Noroozi, M., Eslami, Z.: Public Key Authenticated Encryption with Keyword Search: Revisited. IET Information Security
13(4), 336-342 (2018)

Pakniat, N., Shiraly, D., Eslami, Z.: Certificateless Authenticated Encryption with Keyword Search: Enhanced Security
Model and a Concrete Construction for Industrial IoT. J. Inf. Secur. Appl. 53, 102525 (2020)

Qin, B., Chen, Y., Huang, Q., Liu, X., Zheng, D.: Public-key Authenticated Encryption with Keyword Search Revisited:
Security Model and Constructions. Inf. Sci. 516, 515-528 (2020)

Rhee, H.S., Park, J.H., Susilo, W., Lee, D.H.: Trapdoor Security in a Searchable Public-key Encryption Scheme with a
Designated Tester. J. Syst. Softw. 83(5), 763-771 (2010). https://doi.org/10.1016/].jss.2009.11.726

Shor, P.W.: Algorithms for Quantum Computation: Discrete Logarithms and Factoring. In: FOCS 1994. pp. 124-134.
IEEE (1994). https://doi.org/10.1109/SFCS.1994.365700

Shor, P.W.: Polynomial-time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer.
SIAM Review 41(2), 303-332 (1999). https://doi.org/10.1137/S0097539795293172

Wu, L., Zhang, Y., Ma, M., Kumar, N., He, D.: Certificateless Searchable Public Key Authenticated Encryption with
Designated Tester for Cloud-assisted Medical Internet of Things. Ann. of Telecommunications 74(7-8), 423-434 (2019)

Zhang, X., Xu, C., Wang, H., Zhang, Y., Wang, S.: FS-PEKS: Lattice-based Forward Secure Public-key Encryption
with Keyword Search for Cloud-assisted Industrial Internet of Things. IEEE Trans. Dependable Secur. Comput. (2019).
https://doi.org/10.1109/TDSC.2019.2914117, (early access)

https://doi.org/10.1016/j.ins.2017.03.038
https://eprint.iacr.org/2020/651
https://eprint.iacr.org/2019/1418
https://doi.org/10.1016/j.ins.2018.04.012
https://doi.org/10.1002/ett.3531
https://doi.org/10.1016/j.jss.2009.11.726
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1109/TDSC.2019.2914117

	Quantum-resistant Public-key Authenticated Encryption with Keyword Search for Industrial Internet of Things

