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Abstract

We present a computer-verified formalization of the post-quantum security proof of the
Fujisaki-Okamoto transform (as analyzed by Hovelmanns, Kiltz, Schige, and Unruh,
PKC 2020). The formalization is done in quantum relational Hoare logic and checked
in the grhl-tool (Unruh, POPL 2019).
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1 Introduction

In this paper, we present the first formal verification of the post-quantum security of the
Fujisaki-Okamoto transform.

Cryptographic security proofs tend to be complex, and, due to their complexity, error prone.
Small mistakes in a proof can be difficult to notice and may invalidate the whole proof. For
example, the proof of the OAEP construction [8] went through a number of fixes [19, 20, 34]
until it was finally formally proven in [5] after years of industrial use. The PRF/PRP switching
lemma was a standard textbook example for many years before it was shown that the standard



proof is flawed [10]. And more recently, an attack on the ISO standardized blockcipher mode
OCB2 [25] was found [24], even though OCB2 was believed to be proven secure by [31].

While a rigorous and well-structured proof style (e.g., using sequences of games as advocated
in [10, 35]) can reduce the potential for hidden errors and imprecisions, it is still very hard to
write a proof that is 100% correct. (Especially when proof techniques such as random oracles
[13] or rewinding [42, 45] are used.) And especially if a mistake in a proof happens in a step
that seems very intuitive, it is quite likely that the mistake will also not be spotted by a reader.

This problem is exacerbated in the case of post-quantum security (i.e., security against
quantum adversaries): Post-quantum security proofs need to reason about quantum algorithms
(the adversary). Our intuition is shaped by the experience with the classical world, and it is
easy to have a wrong intuition about quantum phenomena. This makes it particularly easy for
seemingly reasonable but incorrect proof steps to stay undetected in a post-quantum security
proof.

In a nutshell, to ensure high confidence in a post-quantum security proof, it is not sufficient to
merely have it checked by a human. Instead, we advocate formal (or computer-aided) verification:
the security proof is verified by software that checks every proof step. In this paper, we present
the first such formal verification, namely of a variant of the Fujisaki-Okamoto transform [18] as
analyzed by Hovelmanns, Kiltz, Schige, and Unruh [23].

Post-quantum security. Quantum computers have long been known to be a potential threat
to cryptographic protocols, in particular public key encryption. Shor’s algorithm [33] allows
us to efficiently solve the integer factorization and discrete logarithm problems, thus breaking
RSA and ElGamal and variants thereof. This breaks all commonly used public key encryption
and signature schemes. Of course, as of today, there are no quantum computers that even
come close to being able to execute Shor’s algorithm on reasonable problem sizes. Yet, there is
constant progress towards larger and more powerful quantum computers (see, e.g., the recent
breakthrough by Google [3]). In light of this, it is likely that quantum computers will be able
to break today’s public key encryption and signature schemes (and possibly other kinds of
cryptosystems) in the foreseeable future. Since the development, standardization, and industrial
deployment of a cryptosystem can take many years, we need to develop and analyze future
post-quantum secure protocols already today. One important step in this direction is the NIST
post-quantum competition [29] that will select a few post-quantum public-key encryption and
signature schemes for industrial standardization.

Quantum random oracles. One important proof technique in cryptography are random oracles
[9]. In a proof in the random oracle model, we idealize hash functions by assuming that every
hash function is simply a uniformly random function. (All algorithms including the adversary get
oracle access to that function.) Based on this assumption, security proofs become considerably
simpler. In some cases, we only know security proofs in the random oracle model. Of course, this
comes at a cost: This assumption is an idealization; concluding that a protocol that is secure in
the random oracle model is also secure using a real-world hash function is merely a heuristic
argument. (And this heuristic is known to be false in certain contrived cases, e.g., [15].)

As first explicitly pointed out by [13], in the quantum setting, the random oracle becomes
more involved: To get a realistic modeling, the adversary needs to be given superposition access
to the random oracle, i.e., the adversary can evaluate the random oracle/hash function in a
quantum superposition of many possible inputs. Due to this, quantum random oracle proofs
are much harder than in the classical setting. In particular, lazy sampling (where we pick each
output of the random oracle on demand when it is queried) does not work since all inputs can be
queried simultaneously on the first query. Nonetheless, for a number of special cases, there are
proof techniques for the quantum random oracle model (QROM). For example, 2¢-wise functions
[47], semi-constant distributions [47], small range distribution [46], oracle indistinguishability



[46], and the one-way to hiding (O2H) theorem [44], just to mention a few.!

Of importance for this paper is the O2H theorem which exists in a number of variants (e.g.,
[1, 40, 41, 44]). The O2H theorem tells us — very roughly — that the probability of noticing
whether a specific output H(x) of the random oracle has been changed (“reprogrammed”) can
be bounded in terms of the probability of guessing that input x. This technique is used in a
number of QROM proofs, in particular those for the FO transform described next.

Fujisaki-Okamoto. A common approach for constructing public key encryption schemes is
the Fujisaki-Okamoto (FO) transform [18] or a variant thereof. The FO transform takes a
public-key encryption scheme with some weak passive security notion (such as IND-CPA or
one-way security) and transforms it into an actively secure public-key encryption or KEME
scheme (IND-CCA security). On a very high level, instead of executing the encryption algorithm
with true randomness, the FO transform hashes the plaintext and uses the resulting hash value
as the randomness for the encryption algorithm. This removes some of the flexibility the attacker
has when constructing fake ciphertexts and makes chosen-ciphertext attacks impossible. The
advantage of the FO transform is that it gets us IND-CCA security at no or almost no increase in
ciphertext size or computational cost. The disadvantage is that the FO transform is only proven
in the random oracle model, which means that there is a heuristic element to its security proof.
Due to its high efficiency, the FO transform or some variations thereof is used in basically all
public key encryption candidates in the NIST competition. Because of this, it is very important
to understand the post-quantum security of the FO transform. However, due to the intricacies of
the quantum random oracle model, proving the security of the FO transform is not as easy as in
the classical setting. The first positive result was made by Ebrahimi Targhi and Unruh [36] who
proved the security of an FO variant that includes one more hash value in the ciphertext. This
additional hash had no obvious advantages but was required for their proof technique.®> That
result was adapted by [21] to several other FO variants, but still using an additional hash. (][21]
also gives an excellent overview over the different FO variants, even if the security results are
not state-of-the-art any more.) The first result to prove post-quantum security of FO without
an additional hash was given by Saito, Xagawa, and Yamakawa [32]. To achieve this, they
introduced a new intermediate security notion called “disjoint simulatability”. However, [32]
relies on the assumption that the underlying passively-secure encryption scheme has perfect
correctness, i.e., the probability of incorrectly decrypting honestly generated ciphertexts is zero.
Unfortunately, this is not the case with typical lattice-based encryption schemes (they have a
negligible failure probability), making the results of [32] inapplicable to many relevant encryption
schemes such as, to the best of our knowledge, all lattice-based NIST candidates. This situation
was resolved by Hovelmanns, Kiltz, Schige, and Unruh [23] who show the security of an FO
variant (without additional hash) that is secure even in the presence of decryption failures. (This
result is the one we formalize in this work. We will refer to [23], specifically to the part concerned
with the FO transformation, as HKSU in the following.)

Formal verification of cryptography. As mentioned above, a state-of-the-art approach for
writing cryptographic security proofs are sequences of games. This approach is also well suited

"However, these do not and cannot cover all situations handled by classical proof techniques. Ambainis,
Rosmanis, and Unruh [2] show that in some cases, protocols that are secure in the classical ROM are insecure in
the QROM.

2A KEM, key encapsulation scheme, differs from an encryption scheme in that it does not allow us to encrypt
an arbitrary message but instead encrypts a uniformly random message. Raw public key encryption schemes are
almost always combined with symmetric encryption schemes to build hybrid encryption schemes. In these, the
public key scheme is only used to encrypt a random key anyway, so a KEM is sufficient. (See [17] for more on
this.) Hence KEMs and public key encryption schemes are equivalent for most practical purposes.

3Having the additional hash allows us to define an extraction algorithm that inverts the hash in order to recover
the randomness used by the encryption algorithm. In the classical setting this is not necessary because we can
simply observe the list of oracle queries performed by the adversary.



for formal verification. A number of frameworks/tools use this approach for verifying classical
cryptography: CryptoVerif [12], CertiCrypt [6], EasyCrypt [4], FCF [30], CryptHOL [7], and
Verypto [11]. CryptoVerif tries to automatically determine a sequence of games by using a set
of fixed rewriting rules for games. This has the advantage of reducing user effort, but it also
means that the framework is more limited in terms of what game transformations are possible.
In contrast, the other frameworks require the user to explicitly specify the games that constitute
the security proof (as is done in a pen-and-paper proof), and to additionally provide justification
for the fact that two consecutive games are indeed related as claimed. This justification will
often be considerably more detailed than in a pen-and-paper proof where the fact that two
slightly different games are equivalent will often be declared to be obvious.

One approach for proving the relationship of consecutive games is to give a proof in relational
Hoare logic. Relational Hoare logic is a logic that allows us to express the relationship between
two programs by specifying a relational precondition and a relational postcondition. A relational
Hoare judgment of the form {A} ¢ ~ ®{B} intuitively means that if the variables of the programs
¢ and 0 are related as described by the precondition A before execution, and we execute ¢ and 9,
then afterwards their variables will be related as described by B. A very simple example would
be {z; <z}x+x+1 ~ <+ x+1{x; <z}. This means that if the variable x in the left
program is smaller-equal than in the right one, and both programs increase x, then x in the left
program will still be smaller-equal than in the right one. As this example shows, relational Hoare
logic can express more complex relationships than simple equivalence of two games. This makes
the approach very powerful. To reason about cryptography, one needs a variant of relational
Hoare logic that supports probabilistic programs. Such a probabilistic relational Hoare logic
(pPRHL) was developed for this purpose by Barthe, Grégoire, and Zanella Béguelin [6]. Both
CertiCrypt [6] and its popular successor EasyCrypt use pRHL for proving the relationship
between cryptographic games.

Formal verification of quantum cryptography. When considering the verification of post-
quantum cryptography, one might wonder whether the tools developed for classical cryptography
may not already be sufficient.® Unfortunately, this is not the case. The soundness of the existing
tools is proven relative to classical semantics of the protocols and of the adversary. In fact, at
least for EasyCrypt and CryptHOL, Unruh [43] gave an explicit example of a protocol® which
can be shown secure in EasyCrypt and CryptHOL but which is known not to be secure against
quantum adversaries. For the purpose of verifying quantum cryptography, Unruh [43] introduced
a generalization of pRHL, quantum relational Hoare logic (QRHL) that allows to prove relational
statements about quantum programs. (We will describe qRHL in more detail in Section 2.)
Unruh [43] also developed a tool qrhl-tool for reasoning in qRHL for the purpose of verifying
quantum cryptography. However, except for a toy example, the post-quantum security of a very
simple encryption schemeﬁ, to the best of our knowledge, no post-quantum security proof has
been formally verified before this work. qrhl-tool uses a hybrid approach: Reasoning about
qRHL judgments is hardcoded in the tool, but verification conditions (i.e., auxiliary subgoals,
e.g., implications between invariants) are outsourced to the theorem prover Isabelle/HOL [28].

Our contribution. In this work, we formally verified the security proof of the FO transformation
from HKSU [23].7 The FO-variant analyzed by HKSU is a state-of-the-art construction for

4For actual quantum protocols where honest participants use quantum communication, this is clearly not the
case because the protocol itself cannot be described in the tool.

®The CHSH game [16] which is a simple case of a multi-prover proof system.

50ne-time IND-CPA security of the symmetric encryption scheme Enc(k,m) := G(k) @ m.

"To be precise, we formalize the security proof from the February 2019 version [22] of [23]. The proof has
been improved upon in later revisions of the paper. In particular, the requirement of injective encryption (see
footnote 13) has been removed. We formalized the earlier version of the proof since the formalization was already
under way when the proof was updated. Their new proof does not use substantially different techniques, and



building efficient public-key encryption schemes, and can be applied to many of the NIST
submissions to get IND-CCA secure encryption schemes (e.g., Frodo [26] or Kyber [14]).

Our formalization follows the overall structure of HKSU (i.e., it uses roughly the same
games) but introduces many additional intermediate games. (Altogether, our proof defines 136
programs, which covers games, oracles, and explicitly constructed adversaries in reductions.)
The formalization has 3455 lines of proof in qRHL and 1727 lines of proof in Isabelle/HOL for
auxiliary lemmas. (Not counting comments and blank lines or files autogenerated by search &
replace from others.) We mostly follow the structure of HKSU (but in many places we need to
do some adjustments to achieve the level of rigor required for formal verification). In the process,
we identified a few best practices for doing proofs in qrhl-tool that we list in Section 2.4.

We furthermore extended the qgrhl-tool with a tactic 02h that implements an application of
the Semiclassical O2H Theorem [1]. This is needed in HKSU, but the O2H Theorem is often in
post-quantum crypto proofs, so we expect this addition to be very useful for future verifications,
too. (See Appendix B for details.)

Organization. In Section 2, we review qRHL and the qrhl-tool. In Section 3, we review
the result and part of the proof from HKSU. In Section 4, we go through the parts of the
formalization that make up the specification of the main result. In Section 5, we discuss the
formal proof. The source code of the formalization is provided in [37].

2 Quantum Relational Hoare Logic

In this section, we give an overview of quantum relational Hoare logic (qRHL). We will not give
formal definitions or a set of reasoning rules. For these, refer to [43]. Instead, our aim is to give
an intuitive understanding of the logic that allows to understand (most of) the reasoning steps
in our formalization.

2.1 Quantum While Language

qRHL allows us to reason about the relationship between quantum programs (that encode
cryptographic games). The programs are written in a simple while language that has the
following syntax (where ¢ and d stand for programs):

¢,0 := skip (no operation)
c;0 (sequential composition)
X4+ e (classical assignment)
x & e (classical sampling)
if e then ¢ else d (conditional)
while e do ¢ (loop)
qi-.-qn e (initialization of quantum registers)
apply etoqi...q, (quantum application)
X < measure qj ...q, with e (measurement)
{local V;¢} (local variable declaration)

The language distinguishes two kinds of variables, quantum and classical. In the above syntax,
classical variables are denoted by x and quantum variables by q. The command x < e evaluates
the expression e (which can be any well-typed mathematical expression involving only classical

we believe that formalizing their new proof in qRHL would not pose any challenges different from the ones
encountered in this work. However, since their new proof is an almost complete rewrite (i.e., a different proof), it
is not possible to simply update our formalization. Instead, a new development from scratch would be needed.



variables) and assigns the value to x. In contrast x & ¢ evaluates e which is supposed to
evaluate to a distribution D, and then samples the new value of x according to D. If- and
while-statements branch depending on a classical expression e.

To initialize quantum variables, we use qi . .. qp, & e. Here e is evaluated to return a quantum
state (i.e., a classical expression returning the description of a quantum state). Then q; ...qy
are jointly initialized with that state. E.g., we can write q < |x) (where x is a classical bit
variable) to initialize a quantum bit q.

Given an expression e that computes a unitary U, we use apply e to q; ...q, to apply U
jointly to qi1 ...qn. E.g., apply CNOT to qiqo.

X < measure q; ...q, with e evaluates e to get a description of a measurement, measures
qi - .-q, jointly with that measurement and assigns the result to x. Typically, e might be
something like computational_basis, denoting a computational basis measurement.

Finally, {local V;¢} declares the variables V' as local inside ¢. (This is an extension of the
language from [39].)

2.2 qRHL Judgements

Recall from the introduction that in relational Hoare logics, judgments are of the form
{A} ¢ ~ 9 {B} where ¢, are programs, and A, B are relational predicates (the pre- and postcon-
dition). In particular, {A} ¢ ~ 9 {B} means that if the variables of ¢,d (jointly) satisfy A before
execution, then they (jointly) satisfy B after execution.®

Predicates. The same idea is used in qRHL but the concept of predicates becomes more complex
because we want to express something about the state of quantum variables. In fact, predicates
in qRHL are subspaces of the Hilbert space of all possible states of the quantum variables of the
two programs. We will illustrate this by an example:

Say q is a quantum variable in the first program ¢. We refer to q as q; to distinguish it from
a variable with the same name in program 0. Say we want to express the fact that q; is in state
|+). That means that the whole system (i.e., all quantum variables together), are in a state of
the form |+)q, ® |¥)vars Where vars are all other variables (of ¢ and d), except q;. The set of
all states of this form forms a subspace of the Hilbert space of all possible states of the quantum
variables. Thus A := {|4+)q, @ |Y)vars : |¥) € Hvars} (With Hyars denoting the corresponding
Hilbert space) is a subspace and thus a valid predicate for use in a qRHL judgment. For example,
we could then write {A} apply X to q ~ skip {A} to express the fact that, if q is in state |+)
in the left program, and we apply X (a quantum bit flip) to q, then afterwards q is still in
state |+). Of course, writing A explicitly as a set is very cumbersome. (And, in the setting of
formal verification, one would then have no syntactic guarantees that the resulting set is indeed
a valid predicate.) Instead, we have the shorthand span{|+)}»q; to denote the above predicate
A. (More generally, S»q ...q, means that qj ...q, are jointly in a state in S.)

We can build more complex predicates by combining existing ones. E.g., if A, A’ are predicates,
then AN B is a predicate that intuitively denotes the fact that both A and B hold. And A + B,
the sum of two subspaces is somewhat akin to a disjunction of predicates. Or given an operator
D (e.g., a unitary or a projector), D - A is a predicate, too. (D - A is the pointwise multiplication
of the vectors in A with D.) These predicates have less clear intuitive meanings but may arise
from applying certain reasoning rules.

We will also often have to compare predicates. A C B means that A is a subspace of B for all
values of the classical variables. Intuitively, this means A implies B.

8There is a subtlety here: Since the two programs are not jointly executed (they live in separate worlds, so
to say) there is no obvious notion of the joint distribution or state of the programs after execution. Thus the
definition of the meaning of {A}¢ ~ 9 {B} is a bit more complicated than presented here. We refer to [43] for a
formal exposition.



Predicates with classical variables. In most cases, however, we do not only have quantum
variables, but also classical variables. Especially in a post-quantum cryptography setting, the
majority of variables in a predicate tends to be classical. Support for classical variables in qRHL
predicates is straightforward: A predicate A can be an expression containing classical variables.
Those are then substituted with the current values of those variables, and the result is a subspace
that describes the state of the quantum variables as explained above. For example, we can write
the predicate span{|x2)}»q;. This would mean that q; (a qubit in the left program) is in state
|x2).

This already allows us to build complex predicates, but it is rather inconvenient if we want
to express something about the classical variables only, e.g., if we want to express that x; = x9
always holds. To express such classical facts, we use an additional shorthand: €la[b] is defined to
be H (the full Hilbert space) if b = true, and defined to be 0 (the subspace containing only 0) if
b = false. Why is this useful? Consider the predicate €la[x; = x3]. If x; = x9, this evaluates
to Cla[true] = H. Since H contains all possible states, the state of the quantum variables will
necessarily be contained in €la[true], hence the predicate is satisfied. If x; # x2, Cla[x; = x2]
evaluates to Cla[false| = 0, and the state of the quantum variables will not be contained in
Cla[false|, hence the predicate will not be satisfied. Thus, €la[x; = x2] is satisfied iff x; = x;
the state of the quantum variables does not matter. In general Claje] allows us to translate any
classical predicate e into a quantum predicate. (And this predicate can then be combined with
quantum predicates, e.g., €la[x; = x3] N span{|+)}»q.)

Quantum equality. One very important special case of predicates are equalities. We will often
need to express that the variables of the left and right programs have the same values. We
have already seen how to do this for classical variables. For quantum variables, the situation
is more complex. We cannot write €la[q; = q2], this is not even a meaningful expression
(inside €la]...], only classical variables are allowed). Instead, we need to define a subspace
that in some way expresses the fact that two quantum variables are equal. The solution
proposed in [43] (and that is shown there to be the only possibility if we expect certain natural
laws to hold) is: Let qi =quant g2 denote the subspace of all states that are invariant under
exchanging q; and gz (i.e., invariant under applying a swap operation). Then q; =quant Q2 is
a quantum predicate (but not a Boolean expression, notwithstanding the suggestive notation).
And - this is less easy to see but shown in [43] — q1 =quant d2 does indeed capture the idea
that q; and qo have the same value in a meaningful way. We can now write, for example,
Clajx; = X2] N (g1 =quant d2) to denote the fact that the variables x (classical) and q (quantum)
have the same value in both programs. In particular, if ¢ only contains those two variables, we
have {(’:[a[xl = X2] N (A1 =quant qg)} c~c {(’:[a[xl = X2] N (A1 =quant qg)}. What if there are
more quantum variables? The advantage of the quantum equality is that we hardly ever need
to recall the actual definition in terms of swap invariance. All we need to remember is that
q1 =quant 92 is a quantum predicate/subspace that intuitively encodes equality of q; and qs.

If we have more than two variables that we wish to compare, qgl) . qgn) =quant qél) .. .qgn)

can be defined analogously. It intuitively means that the variable tuple qgl) . qgn) in the first
program has the same state as qgl) . qgn) in the second program.

There are, however, a few pitfalls and subtleties that one should be aware of:

e While q; =quant 9} (comparison of two variables in the left program) is well-defined, it
lacks a clear intuitive meaning. The idea that quantum equality implies the equality of the
states of the variables only works if all the variables on the lhs (left hand side) of =quant
are from the left program, and all the variables on the rhs (right hand side) are from the
right one. (Or vice versa.)

® (1 =quant 92 implies more than just equality between q; and qo. It additionally means
that q; and q2 are not entangled with any other variables. There is no way to express
equality between variables that may be entangled with other variables not occurring in the



quantum equality.

e While classical equality satisfies the rule that (x1,y1) = (x2,¥y2) is equivalent to x; =
X2/A\y1 = Y2, this is not the case for quantum equality. In fact, (q1 =quant 92)N(d] =quant d5)
implies (is a subset of) q1q] =quant d2d5 but not vice versa. (This should not come as a
total surprise given the previous point: (g1 =quant d2) N (4} =quant d5) implies that q; and
q2 are not entangled, while q;q} =quant 9295 allows them to be entangled with each other,
just not with other variables.)

The most common form of predicate that we will see is A= := C[a[xgl) = xgl) ARRRWA xgl) = xgl)] N
(qgl) .. qgm) =quant qgl) e qgm)). In fact, if both sides have the same program ¢ (and ¢ contains
no variables besides the ones mentioned in A-), then {A~}¢ ~ ¢{A-} holds. Intuitively, this
means: if the inputs of two programs are equal, the outputs are equal.

2.3 Reasoning in qRHL

To derive qRHL judgments, one will hardly ever go directly through the definition of qRHL
itself. Instead one derives complex qRHL judgments from elementary ones. For example, to
derive the elementary {€la[x; = 0]} x <+ x4+ 1 ~ skip {Cla[x; = 1]}, we use the AsSIGN]1 rule
[43] that states {B{e1/x1}}x < e ~ skip {B}. (Here e; is the expression e where all variables
y are replaced by y1. And B{e;/x1} means every occurrence of x; in B is replaced by e;.) With
B := Cla[x; = 1], we get from AsSIGN1: {€la[x; +1=1]}x < e ~ skip {€la[x; = 1]}. Since
x1 4+ 1 = 1 is logically equivalent to x; = 1 (assuming the type of x is, e.g., integers or reals), this
statement is equivalent to {€la[x; = 0]} x -~ x + 1 ~ skip {€la[x; = 1]}. (This is an example
of reasoning in the “ambient logic”: Besides application of qRHL rules, we need to use “normal”
mathematics to derive facts about predicates. This is external to qRHL itself.)

One can then combine several judgments into one, using, e.g., the SEQ rule: “If {A}¢ ~ 92 {B}
and {B}¢ ~ 9 {C} holds, then {A}¢;¢’ ~ 9;9"{C} holds.” For example, once we have de-
rived {Cla[true]} x +— 1 ~ skip {€Cla[x; = 1]} and {Cla[x; = 1]} skip ~ y « 1 {€Cla[x; = y2|}
(using the ASSIGN1 rule and its rhs variant ASSIGN2), we conclude using SEQ that
{Claftrue]}x <~ 1 ~ y < 1{Cla[x; = y2]}. (We use here implicitly that x < 1;skip is the
same as X < 1 and analogously for skip;y < 1.)

We will not give the full list of rules here, see [43] and the manual of [38] for a comprehensive
list.

One common approach to prove more complex qRHL judgments is backward rea-
soning:  One starts by stating the judgment one wants to prove, say G; :=
{Cla[true]} x <~ 1 ~ y < 1{€la[x; = y2|}. Then one applies one qRHL rule to the very last
statement on the left or right, say y < 1. By application of the SEQ and ASSIGN2 rule, we see
that Gy := {Cla[true]} x +— 1 ~ skip {€la[x; = 1]} implies G;. So we have reduced our current
goal to showing G5. (Using a reasoning step that can be fully automated.) By application of
SEQ and ASSIGN1, we see that G5 := {€la[true]}skip ~ skip {€la[l = 1]} implies G2. So our
new proof goal is G3. And finally, G5 is implied by G4 := (€la[true] C €la[l = 1]). So our final
goal is G4 which is a trivial statement in ambient logic because 1 = 1 is true. Hence the proof
concludes and (G holds. The advantage of this approach is that it is fully mechanical in many
cases, e.g., for sequences of assignments and applications of unitaries. The proof tool grhl-tool
(see the next section) follows exactly this approach.

So far, we have gotten a glimpse how to derive qRHL judgments. In a cryptographic
proof, however, we are interested not in qRHL judgments but in statements about probabilities.
Fortunately, we can derive those directly from a qRHL judgment using the QRHLELIMEQ rule.
It states (somewhat simplified): Assuming X and Q are all the variables occurring in ¢, 9, then
{e1a[X; = X5] N (Q1 =quant Q2)} ¢ ~ d{Clafe; = f>]} implies Prle : ¢] < Pr[f : d]. (Here
Pr[e : ¢] denotes the probability that the Boolean expression e is true after executing ¢, and
analogously Pr[f :9].) A variant of the rule (with <= instead of =) allows us to derive an



equality of probabilities. Thus to derive an inequality or equality of probabilities of program
outcomes, we convert it into a qRHL proof goal with QRHLELIMEQ, and then use the reasoning
rules of qRHL to derive that qRHL judgment. This is, on a high level, how crypto proofs in
gRHL are done (modulo many concrete details).

2.4 The gqrhl-tool

While reasoning using qRHL in pen-and-paper proofs is possible in principle, gRHL was specif-
ically designed for formal verification on the computer. To that end, an interactive theorem
prover for qRHL was developed, grhl-tool [38, 43]. To execute our formalization, version 0.5 is
required. See README.txt there for instructions on how to check/edit our formalization, and
manual.pdf for detailed information. In the following, we recap the most important facts about
the tool.

In addition to that review, we also list some “best practices” for developing proofs in the
tool, based on our experience while formalizing HKSU.

Architecture of the tool. qrhl-tool has a hybrid architecture: It embeds the theorem prover
Isabelle/HOL, and all reasoning in the ambient logic is done by Isabelle/HOL. The tool handles
qRHL judgments directly. As a consequence, proofs are written in two files: .thy files contain
native Isabelle/HOL code and can reason only about ambient logic (no support for qRHL
itself). Those .thy files are also used to specify the logical background of the formalization
(e.g., declaring constants such as the encryption function in our development). .qrhl files are
executed natively by gqrhl-tool and contain specifications of programs, as well as proofs in
qRHL. They can also contain proofs in ambient logic (arbitrary Isabelle/HOL tactics can be
invoked) but this is only suitable for simple proofs in ambient logic. Complex ambient logic facts
are best proven as an auxiliary lemma in the .thy files. It is possible to split a proof into many
files by including one .qrhl file from another using the include command.ﬁ

The tool can be run in two modes, batch and interactive mode. In batch mode, a given .qrhl
file is checked on the command-line and the run aborts with an error if the proof is incorrect. In
interactive mode, an Emacs/ProofGeneral-based user interface allows us to edit and execute
the proofs. In this mode, included files are not checked, this speeds up the development process
significantly.

BEST PRACTICE: Create one file variables. grhl that declares all program variables and
loads the . thy files. Furthermore, create a separate file p. qrhl for every declared program p, and
a separate file Temma_1. qrhl for every lemma 1. This allows us to execute proofs without too
much runtime overhead and at the same time allows us to find quickly which entity is declared
where. ©

Declarations. All program variables that occur in any analyzed program need to be declared
globally (even if the variable is used only as a local variable). This is done using classical/quan-
tum/ambient var x : type where type is any type understood by Isabelle/HOL. (ambient
var declares an unspecified constant value that can be used in programs and in ambient logic
subgoals.) Programs are declared by program name := { code } where code is a quantum
program as described in Section 2.1. For describing games this approach is sufficient, but when
specifying adversaries or oracles or helper functions, we would like to define procedures that
take arguments and have return values. Unfortunately, such procedure calls are not supported
by the language underlying qRHL yet. What has to be done instead is to pass values to/from

9The tool automatically disregards duplicate include commands, thus it is possible to have files with a complex
dependency structure.



procedures via global variables. A program X can be invoked by another program using call X,'°
and we need to write the program X so that it communicates with the invoking program via
global variables that are set aside for this purpose. While this approach is not very convenient,
we found that with disciplined variable use, no bigger problems arise.

One highly important feature in more advanced cryptographic definitions and proofs are
oracles. Roughly speaking, an oracle is a program O that is given as an argument to another
program A, so that the other program can execute it whenever needed. (For example, an
adversary A may get access to a decryption oracle Dec that decrypts messages passed to it.)
Programs that take oracles are supported by gqrhl-tool. One can declare a program via,
e.g., program prog(01,02) := {code} where code can contain, e.g., a call 01 statement.
Then prog is a program that needs to be instantiated with oracles when invoked, e.g.: call
prog(Enc,Dec).

Finally, to model adversaries we need to declare programs of unspecified code. (This then
means that anything that is proven holds for any adversary.) The command adversary A
declares an adversary A that can be invoked via call A. Additional arguments to the adversary
command allow to specify global variables that the adversary may access, and whether A expects
oracles.

BEST PRACTICE: When declaring a program that is intended as a subroutine (e.g., an oracle
or an adversary), make explicit which global variables are used as inputs/outputs to simulate
procedure calls. (E.g., an adversary might be annotated with a comment “Input: ¢ (ciphertext).
Output: b (guessed bit). Internal state: stated.”)

All variables (especially quantum variables) that are used that are not needed between consec-
utive invocations should be made local at the beginning of the program using the local program
statement.

When invoking a program taking an oracle (e.g., call A(queryH) where queryH expects
inputs/outputs in variables Hin,Hout), the input/output variables should be made local at that
call. (E.g., { local Hin,Hout; call A(queryH); }.) Otherwise, qrhl-tool will not be able
to determine that Hin,Hout are not changed globally, even if the code of A internally already
contains a local statement.

print programname can be used in interactive mode to check the list of variables used by a
program.

Following these rules may make many proofs somewhat longer (due to additional boilerplate
for removing local commands) but it removes a lot of potential for conflicts in variable use.
(Especially with quantum variables: due to the idiosyncrasies of the quantum equality, any
quantum variable used non-locally by a subprogram will have to be carried around explicitly in all
quantum equalities.) ©

Note that qRHL did not initially support local variables. The addition of local variables to
grhl-tool and the corresponding theory [39] were prompted by our experiences in the present
formalization. Without local variables, it becomes very difficult to maintain a larger formalization
involving quantum equalities.

Proving lemmas. Finally, to state a lemma one can either state a lemma in ambient logic (ex-
tended with syntax Pr[...] for talking about the results of program executions), or qrhl subgoals.
The command lemma name: formula states the former, the command qrhl name: {precon-
dition} call X; ~ call Y; {postcondition} the latter. The syntax Prle : prog(rho)]

denotes the probability that the Boolean expression e is true after running prog with initial quan-
tum state rho. Most of the time we will thus state lemmas of the form Pr[b=1 : progl(rho)]

= Pr[b=1 : prog2(rho)] where rho is an ambient variable (meaning, the initial state is arbi-

'%Semantically, call X is not a separate language feature. It just means that the source code of X is included
verbatim at this point.
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trary). This can be converted into a qRHL subgoal using the tactic byqrhl (implementing the
rule QREHLELIMEQ).

Once one has stated a qRHL proof goal, the proof proceeds via backwards reasoning as
described in Section 2.3. For example, to remove the last assign statement from a goal (and
rewrite the postcondition accordingly) as done in Section 2.3, one writes wp left/right (or wp
n m for the last n/m statements on the left/right). Once all statements are gone (skip on both
sides), the tactic skip replaces {A} skip ~ skip {B} by the ambient logic goal A C B. Another
important tactic is conseq pre/post: C which replaces the current pre-/postcondition by C
(and adds a ambient logic subgoal to prove that this replacement is justified). This allows to
clean up subgoals and increases readability. The tactic simp simplifies the current goal using the
Isabelle/HOL simplifier.

To operate on ambient logic subgoals, one can use, e.g., simp (which may remove a subgoal
if it can be proven by the Isabelle/HOL simplifier). Or rule x to apply a lemma x that has
been proven, e.g., in the .thy files. Or isa m to apply an arbitrary Isabelle/HOL proof method
m. (The full syntax of Isabelle/HOL is supported in the latter. A useful simple example is isa
auto which often works where simp fails.)

Once all subgoals are proven, ged finishes the proof and the lemma is available for use in
other proofs.

BEST PRACTICE: To make proofs more maintainable, before each tactic invocation add a
comment which line of code it addresses. E.g., wp left will always affect the last command of
the left program. If that command is, e.g., ¢ <= 1+y, add the comment # z. This ensures that
if a change in a program definition breaks an existing proof, it is easier to find out where the
proof script went out of sync.

Additionally, at reqular intervals add the tactic conseq post: X commands where X is the
current postcondition (possibly, but not necessarily simplified). This serves both as a documenta-
tion of the current state of the proof, and it makes maintenance easier because the proof will fail
at the first point where the postcondition is not what was expected anymore (as opposed to failing
at a later point). ¢

Isabelle/HOL micro primer. For an introduction to Isabelle/HOL we recommend [27]. Here, we
only give some minimal information to help reading the code fragments in the paper (Figures 7-9).
This micro primer does not does not allow us to understand the definitions given in this paper in
depth. In particular, to understand them in depth one needs to know the predefined constants
in Isabelle/HOL and in the grhl-tool. But with the syntax given here, it should at least be
possible to make educated guesses about the meanings of the definitions.

All constants in Isabelle/HOL are typed. A function f taking arguments of types t1,...,t,
and returning ¢ has type t; = --- = t, = t. To invoke £ with arguments aq,...,a,, we write
faay ... ay. (Not £(ay,...,a,).) To declare (axiomatically) the existence of a new constant
c of type type, we write

axiomatization c :: type where facts

Here the optional facts are logical propositions that we assume about c. For example, we can
declare the existence of a commutative binary operation op on natural numbers via

axiomatization op :: "nat=nat=nat” where comm: "op x y = op y x”

Instead of axiomatizing constants, we can also define them in terms of existing constants. This
cannot introduce logical inconsistencies. The syntax for this is

definition ¢ :: type where "¢ arguments = definition”

Instead of = we can also write «> when defining a proposition (i.e., if the return type is bool).
For example, if we wanted to define the operation op above as twice the sum of its arguments,
we could write:
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DSreaI DSfake

01 (pk, sk) < Keygen() 05 (pk, sk) < Keygen()
02 m— M 06 ¢ < Enc(pk)
03 ¢ < Enc(pk, m) 07 b <+ A(pk,c)

04 b <« A(pk,c)

Figure 1: Games from definition of disjoint simulatability. In the random oracle model, A is
additionally given oracle access to all random oracles.

definition op :: ”nat = nat = nat” where "op x y = 2 * (x + y)”

The parts before where are optional and will be inferred if necessary.

This summary of the operation of gqrhl-tool does not, of course, replace a reading of the manual.
However, it should give a first impression as well as help in reading Sections 4-5.

3 Fujisaki-Okamato a la HKSU

In this section, we describe the FO variant analyzed by HKSU [23] and their proof. We stress
that the proof we analyzed (and describe here) is the one from the earlier version [22] of HKSU,
it has been rewritten since we started our formalization.

The goal of the FO transform is to transform an encryption scheme that is passively secure
into a chosen-ciphertext secure key encapsulation mechanism (KEM). The variant analyzed by
HKSU can be described modularly by consecutively applying three transformations (called Punc,
T, and U;%) to the passively secure encryption scheme.

3.1 Transformation Punc

We start with a base public-key encryption scheme (Keygen, Encg, Decy) with message space
M. We assume the base scheme to be IND-CPA secure. (We assume further that decryption
is deterministic, but we do not assume that decryption succeeds with probability 1, or that
decrypting a valid ciphertext returns the original plaintext with probability 1.)

The first step is to construct a scheme with disjoint simulatability (DS). DS security [32]
means that there exists a fake encryption algorithm Enc that (without being given a plaintext)
returns ciphertexts that are indistinguishable from valid encryptions of random messages, but
that are guaranteed to be distinct from any valid ciphertext with high probability.

More precisely:

Definition 1 (Disjoint simulatability) We call (Keygen,Enc,Dec) with message space
M and randommness space R DS secure iff for any quantum-polynomial-time A,
|Pr[b =1:DSeat] —Prjb=1: DSfakeH is negligible, for the games defined in Figure 1.

We say (Keygen,Enc,Dec) is e-disjoint iff for all possible public keys pk,
Pr[(3m € M,r € R. ¢ = Enc(pk,m;r)) : ¢ + Enc(pk)] <e.

The transformation Punc is very straightforward: The encryption scheme is not really
modified (i.e., the resulting Keygen, Enc, Dec are the same in the base scheme). But the message
space is reduced by one element. I.e., we simply declare one plaintext m as invalid, hence
encryptions of that plaintext will be disjoint from valid ciphertexts, and thus we can produce
fake encryptions Enc by encrypting 7. We summarize Punc in Figure 2. (We slightly generalized
the transformation by allowing M to be an arbitrary proper subset of My, i.e., we can remove
more than one element. This could be relevant if we want the set of messages to still be, e.g.,
representable as fixed length bitstrings.) The proof that the resulting scheme is both DS and
IND-CPA secure is very straightforward, and we omit it here. (But we have formalized it, of
course.)
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Enc := Encg, Dec := Decg, Keygen := Keygen,
M g_MO,mGMO\M7
Enc(pk) := Enco(pk, ).

Figure 2: Transformation Punc. Input scheme: (Encg, Decy, Keygen,) with message space M.
Output scheme: (Enc, Dec, Keygen) with message space My and fake encryption algorithm Enc.

Keygen’ := Keygen, M’ := M, Enc’ := Enc,
Enc’(pk, m) := Enc(pk, m; G(m)).
Dec'(sk,c) :=if m = L or Enc'(pk,m) # ¢

then return L else return m

(where m := Dec(sk, c)).

Figure 3: Transformation T. Input scheme: (Enc, Dec, Keygen) with message space M and fake
encryption algorithm Enc. Output scheme: (Enc’, Dec’, Keygen’) with message space M’ and

fake encryption algorithm Enc’. G : M — R is a hash function (modeled as a random oracle).

3.2 Transformation T

Transformation Punc gave us a DS secure encryption scheme Enc. However, as the starting point
for the transformation Uﬁ below, we need a deterministic encryption scheme (that is still DS
secure).

Transformation T achieves this by a simple technique: Instead of running Enc normally (i.e.,
Enc(pk, m;r) with r uniformly from the randomness space R), the modified encryption algorithm
Enc’ computes the randomness r from the message m as r := G(m). Here G is a hash function
(modeled as a random oracle in the proof).

Transformation T also strengthens the decryption algorithm: The decryption algorithm
resulting from T rejects any invalid ciphertexts (i.e., any ciphertext that is not in the range
of Enc’). This is achieved by adding an extra check to the decryption algorithm Dec’: After
decrypting a ciphertext c, resulting in a message m, m is reencrypted and compared with
the ciphertext c. Since Enc’ is deterministic, this will always succeed for honestly generated
ciphertexts, but it will always fail for invalid ones.

We summarize transformation T in Figure 3.

Security of transformation T. HKSU shows the following:

Theorem 1 (DS security of Enc’, informal) If Enc is e-disjoint, so is Enc’. If Enc is DS secure
and IND-CPA secure, then Enc’ is DS secure.

(In HKSU, the result is given with concrete security bounds.)

The core idea of the proof is to show that the adversary cannot distinguish between uniform
randomness (as used in Enc) and randomness r := G(m*) where m”* is the challenge message (as
used in Enc’). This is shown by bounding the probability for guessing m* and then using the
Semiclassical O2H theorem [1] to bound the distinguishing probability.

We omit the proof from this exposition (our explanations will focus on the more complex
proof of transformation Uz below). The full proof can be found in [22].

3.3 Transformation U%

Finally, the transformation U;%Z takes the deterministic DS secure encryption scheme and trans-
forms it into a KEM. In a KEM, we have an encapsulation algorithm Encaps that, instead of
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Keygen,:o() : Encaps(pk): Decaps(sk, c) with sk = (sk', k):

(pk sk’) < Keygen'() 05 m M’ 09 m := Dec(sk’, c)
02 k& Kprr 06 ¢ « Enc'(pk,m) 10 if m = 1 then return K := PRF(k, c)
03 sk := (sk', k) 07 K := H(m) 11 else return K := H(m)
04 return (pk, sk) 08 return (K c)

Figure 4: Transformation U;ﬁ. Input scheme: (Enc’, Dec’, Keygen’) with message space M’ and

fake encryption algorithm Enc’. Output scheme: (Keygenro, Encaps, Decaps) with key space K.
(The key space is the space of encapsulated keys, not of public/secret key pairs.) PRF is a
pseudorandom function with key space Kprg. H : M’ — K is a hash function (modeled as a
random oracle).

accepting a plaintext as input, uses a random (symmetric) key K as plaintext (intended for use
in a symmetric encryption scheme) and returns both that key and the ciphertext. (We stress
that K must not be confused with the public/secret keys of the KEM.) And the decapsulation
algorithm Decaps takes the ciphertext and returns the key, like a decryption does.

The encapsulation algorithm constructed by transformation U#b picks a uniform m & M’ and
encrypts it (resulting in a ciphertext ¢). However, instead of using m directly as the symmetric
key, the key is set to be K := H(m). (Here H is a hash function modeled as a random oracle.)

Decapsulating c is straightforward: By decrypting ¢ we get m back, and then we can compute
the key K := H(m). However, there is a subtlety in case of decryption failures: If m = L,
then Decaps does not return L, but instead returns a key K that is indistinguishable from one
that would result from a successful decryption. (This is called “implicit rejection”; as opposed
to “explicit rejection” that would return 1.) This key K is generated from the ciphertext as
K := PRF(k, c) where PRF is a pseudorandom function. 1" And the PRF- key k is part of the
secret key of the KEM. (We cannot use K := H(c) for some hash function H because then the
adversary could notice that K is the hash of ¢ since His public.)

We describe the transformation U,’fl in Figure 4.

Security of transformation Uq’fl. HKSU does not show the security of transformation U;ﬁ (in the
sense of showing that Encaps is secure if Enc’ satisfies certain properties), but instead directly
analyzes the result of applying both T and U;ﬁ. That is, they show that Encaps is secure if Enc
satisfies certain properties.!? HKSU does not completely modularize the proof (i.e., it does not
separately analyze T and lF;L) but shows the following:

Theorem 2 Assume Enc has injective encryptzon and is IND-CPA secure and DS secure
and e-disjoint, and has €'-correctness.'* (For negligible ,&') Then Encaps (as constructed by
transformations T and U’K from Enc) is is IND-CCA secure.

The result stated in HKSU includes concrete security bounds.
We also recall the definition of IND-CCA security for KEMs used in the preceding theorem:

"'Note that HKSU [22] instead uses a secret random function H,. (Not a public random function like the
random oracle.) But it is understood that this secret random function is to be implemented by a PRF. Here, we
directly use the PRF since we want to avoid keeping the proof step that replaces the PRF by a random function
implicit.

12But note that the proof still uses the result from Theorem 1 as part of its proof, so we do have at least
partially a modularized analysis.

'3This means that for any mo # m1 in the message space, Enc(pk, mo) # Enc(pk, m1) with probability 1. Note
that this does not imply the possibility of correct decryption: While information theoretically, the plaintext
is determined by the ciphertext, it may be computationally infeasible to determine the correct plaintext with
probability 1, even given the secret key.

'4This means that for random (pk, sk) < Keygen() and worst-case m, Dec(sk, Enc(pk,m)) = m with probability
at least 1 —e. See [22] for a precise definition.
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Game IND-CCA, Game IND-CCA; Oracle DECAPS(c # ¢¥)
01 (pk, sk) < Keygenro() 04 (pk, sk) < Keygengo() 08 K < Decaps(sk, c)
02 (K*,c*) < Encaps(pk) 05 (K*,c*) < Encaps(pk) 09 return K
03 b < APECAPS (% K*) 06 K* & K

07 b« ADECAPS(pk,’C*’K*)

Figure 5: Games in the definition of IND-CCA security. In the random oracle model, A is
additionally given oracle access to all random oracles.

Definition 2 A KEM (Keygengo, Encaps, Decaps) with key space K is IND-CCA secure iff for
any quantum-polynomial-time adversary A, |Pr[b=1:IND-CCAg] — Pr[b=1": |ND—CCA1]| 18
negligible, using the games from Figure 5.

Intuitively, this means that A cannot distinguish between the true key K* contained in the
ciphertext ¢* and a uniformly random key K*.

Note that in this definition, we slightly deviate from HKSU: In HKSU, only one game is given.
This game picks randomly whether to play IND-CCAg or IND-CCA; from our definition. The
security definition then requires that the adversary guesses which game is played with probability
negligibly close to % (We call this a “bit-guessing-style definition”) In contrast, our definition
requires the adversary to distinguish with its output bit between two games. (We call this a
“distinguishing-style definition”.) It is well-known that bit-guessing-style and distinguishing-style
definitions are equivalent. But in the context of formal verification, it seems (according to our
experiences) easier to work with distinguishing-style definitions.

Security proof of transformation U#L. We give a compressed overview of the proof of Theorem 2
from HKSU. For details, see [22].

Fix an adversary A. By definition of IND-CCA security (Definition 2), we need to bound
|Pr[b =1:IND-CCAg] — Pr[b =1 : IND-CCA,]| for the games from Figure 5.

We use essentially the same games in this proof as HKSU, with one difference: Since we
decided to define IND-CCA security via a distinguishing-style definition, we need to adapt the
games accordingly. All arguments from HKSU carry over trivially to our changed presentation.

The first step is to rewrite IND-CCAg by unfolding the definitions of Keygengg, Encaps,
Decaps. (I.e., we make all constructions introduced by T and U;,K1 explicit.) In addition, we
replace the PRF by a uniformly random function H, (that is not accessible to the adversary).
The resulting game is:

Game 0 DECAPS(c # ¢*)

01 GE(M—=R), H & (C—>K) 08 m:=Dec(sk,c)

02 H & (M —=K) 09 if m = L or Enc(pk, m;G(m)) # ¢
03 (pk, sk) < Keygen() 10 then return K := H,(c)

04 m* <~ M 11 else return K := H(m)

05 ¢* < Enc(pk, m*; G(m™))

06 K* := H(m")

07 b «— ADECAPS,H,G(pkjc*7K*)
Here (A — B) denotes the set all of functions from A to B. And C is the ciphertext space. (Just
the syntactic space, not the set of valid ciphertexts.)

From the fact that PRF is a pseudorandom function, we get that
|Pr[b =1:IND-CCAg] — Pr[b = 1 : Game 0]| is negligible.

Next, we chose the random oracle H differently: Instead of chosing H uniformly, we define it as
the composition of a uniformly random function H, and the encryption function Enc(pk, —; G(—)).
(The — stands for the function argument.) Since Enc has injective encryption, Enc(pk, —; G(—))
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is injective, and thus H is still uniformly distributed. We get the following game (changed lines
are marked with boldface line numbers):

Game 1 DEcAPS(c # ¢*)

01 G (M—=R), H & (C—>K) 05 m:=Dec(sk,c)

02 Hy + (C = K) 10 if m = L or Enc(pk, m; G(m)) # ¢
03 H := Hy(Enc(pk,—; G(—))) 11 then return K := H,(c)

04 (pk, sk) < Keygen() 12 else return K := Hy(c)

05 m* <~ M

06 ¢* « Enc(pk, m*; G(m™*))
07 K* := Hgy(c*)
08 b« ADECAPS,H,G(pk’C*7K*)
Note that we additionally replaced two invocations H(m*), H(m) by H,(c*), Hy(c). By

construction, the new invocations return the same values. We have Pr[b = 1 : Game 0] = Pr[b =
1: Game 1].

In the next game hop, we change the decapsulation oracle. Instead of returning H,(c) or
H,(c), depending on the result of the decryption, we now always return Hy(c). The resulting
game is:

Game 2 DECAPS(c # ¢*)
00 G+~ (M—=R), Hy & (C—=K) 09 return K := H(c)

02 Hy < (C = K)

03 H := Hy(Enc(pk,—;G(—)))

04 (pk, sk) < Keygen()

05 m* < M

06 ¢* < Enc(pk, m*; G(m™))

07 K* := Hy(c*)

08 b« ADECAPS,H,G(pkvc*7K*)

Since H, and H, are both random functions, at the first glance it might seem that this change
does not matter at all, the return value is still random. However, H, is indirectly accessible to
the adversary via H! A more careful case analysis reveals that the adversary can distinguish
the two games if it finds a message m with “bad randomness”. That is, a message m such
that Dec(sk, Enc(pk, m;7)) # m where r := G(m). If such bad randomness did not exist (i.e.,
when using a perfectly correct base scheme), this case would never happen. However, we do not
assume perfect correctness. The solution from HKSU is to first replace the uniformly chosen
aé (M — R) by a G that outputs only good randomness (short: a “good G”). I.e., for each m,
G(m) := r is chosen uniformly from the set of all » with Dec(sk, Enc(pk, m;r)) = m. Once we
have such a good G, bad randomness does not occur any more, and we can show that switching
between H, and H, cannot be noticed (zero distinguishing probability). And then we replace G
back by G & (M —=R).

To show that replacing the uniform G by a good GG, HKSU reduces distinguishing the two
situations to distinguishing a sparse binary function F' from a constant-zero function Fj (given
as an oracle). And for that distinguishing problem (called GDPB), they give a lemma that shows
the impossibility of distinguishing the F' and Fj.

Altogether, we get that |Pr[b =1: Game 1] — Pr[b = 1 : Game 2]| is negligible.

Our formalization deviates somewhat from that proof: Instead of using the lemma about
GDPB (which we would have to implement in the tool, first), we use the O2H Theorem [1] to
show this indistinguishability. (We had to implement the O2H Theorem anyway because it is
used in the analysis of transformation T.)

Note that this makes our bound somewhat worse. In HKSU, the proof step involving GDPB
leads to a summand of O(¢%§) in the final bound, while we achieve O(gv/9) instead (last but one
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summand of (1)). Here ¢ is the number of queries and 0 the correctness error of the underlying
scheme.

In the next game, we change how the challenge ciphertext c¢* is generated. Instead of
encrypting m*, we simply produce a fake ciphertext ¢* < Enc(pk). The resulting game is:

Game 3 DEcAPS(c # ¢¥)
01 G+~ (M—=R), Hy & (C—K) 09 return K := H(c)
02 Hy + (C = K)
03 H := Hy(Enc(pk,—; G(—)))
04 (pk, sk) < Keygen()
05 m* &~ M
06 c* < Enc(pk)
07 K* := Hy(c*)
08 b «— ADECAPS,H,G(pk’C*7K*)
By DS security of Enc, this fake encryption cannot be distinguished from a real en-

cryption. (Note that the secret key is not used any more in Game 2.) Hence
|[Pr[b =1: Game 2] — Pr[b = 1 : Game 3]| is negligible.

Finally, we change how K™ is chosen. Instead of picking K* := H,(c*), we chose K* uniformly:

Game 4 DEcAPS(c # ¢*)
00 G~ (M —=TR), Hy & (C—K) 09 return K := H(c)

02 Hy + (C = K)

03 H := Hy(Enc(pk,—; G(—)))

04 (pk, sk) < Keygen()

05 m* & M

06 ¢* + Enc(pk)

or K* &K

08 b« ADECAPS,H,G(pk,C*,K*)
Since H, is a random function, this change can only be noticed if H,(c*) is queried somewhere
else. The adversary has access to H, via H, but through H it can only query H, on values
that are in the range of Enc. But since ¢* was constructed as a fake encryption Enc(pk), the
e-disjointness of Enc guarantees that c* is, with overwhelming probability, not in the range
of Enc. In that case, H,(c*) is independent from anything the adversary might query. Thus
|[Pr[b =1: Game 3] — Pr[b = 1 : Game 4]| is negligible.

So far, we have shown that the games IND-CCAg and Game 4 are indistinguishable. To
show indistinguishability of IND-CCAg and IND-CCA;, we write down a similar sequence of
games Game 0’ to Game 4’ where K* is chosen uniformly (as in IND-CCA;). We then have
indistinguishability of IND-CCA; and Game 4’. Game 4 and Game 4’ are identical, thus IND-CCAq
and IND-CCA; are indistinguishable, finishing the proof of IND-CCA security of Encaps.

4 Formalizing HKSU — The Specification

A proof (formal or pen-and-paper) will consist of two separate parts: A specification of the
result that is proven, and the proof itself. This separation is important because if we trust
that the proof is correct, we only need to read the specification. In a pen-and-paper proof,
this specification will usually consist of the theorem together with all information required for
interpreting the theorem, i.e., all definitions that the theorem refers to, as well as all assumptions
(if they are not stated within the theorem itself). In the case of formal verification, we tend
to trust the proof (because it has been verified by the computer) but we have to check the
specification — does it indeed encode what we intended to prove?

17



lemma security_encFO:
abs(Pr[b=1: indcca_encFO_0(rho)] — Pr[b=1: indcca_encFO_1(rho)])
<=
abs (Pr[b=1:PRF_real (rho)] — Pr[b=1:PRF_ideal (rho)])
+ abs (Pr[b=1:PRF_real’(rho)] — Pr[b=1:PRF_ideal ’(rho)])
+ abs (Pr[b=1l:indcpa_enc0.0’’’(rho)] — Pr[b=1:indcpa_enc0_1’’’(rho)])
+ 2 % sqrt(l4+q) * sqrt(abs(Pr[b=1:indcpa_enc0_0’’(rho)]
— Pr[b=1l:indcpa_enc0-1"’(rho)])
+ 4 % q / card (msg_space()))
+ abs (Pr[b=1l:indcpa_enc0_0’(rho)] — Pr[b=1:indcpa_enc0_1’(rho)])
+ 2 % sqrt(l+q) * sqrt(abs(Pr[b=1:indcpa_enc0-0(rho)]
— Pr[b=1:indcpa_enc0_1(rho)])
+ 4 % q / card (msg_space()))
+ 8 % sqrt(4 * (q+gD+2) * (g+gD+1)
x correctness params0 keygen0 encO decO msg_spaceQ)
4+ 2 % correctness params0 keygenO encO decO msg_spaceQ.

Figure 6: The main theorem. File: lemma_security_encF0.qrhl

In this section we go through the specification part of our HKSU formalization (available at
[37]). It consists roughly of five parts: The main theorem. The specification of the encryption
algorithm and other functions in Isabelle/HOL. The specification of the security definitions
(security games). The specification of the adversary. And the specification of the reduction-
adversaries (we explain below why this is a relevant part of the specification).

The main theorem. The source code for the main theorem is shown in Figure 6. Line 2 is the
IND-CCA advantage Advcca of the adversary attacking the KEM Encaps resulting from the
transformations Punc, T, U#L. (See Section 3.3.) Advcca is defined as the difference between the
probability of adversary-output b = 1 in games indcca_encF0_0 and indcca_encF0_1. We will
see those games below. In line 4 we have the advantage Advpgrg of a reduction-adversaryf against
the pseudorandom function PRF, expressed as the probability-difference between games PRF_real
and PRF_ideal. In line 5, we have basically the same but with respect to a different reduction-
adversary. We have two reduction-adversaries for PRF since we used the pseudorandomness
twice in the proof. Since the adversary is hardcoded in the games,f we express this in terms
of further games PRF_real’ and PRF_ideal’. In line 6 we have the IND-CPA advantage
Adv{pa of a reduction-adversary against the base scheme Ency, expressed in terms of games

indcpa_enc0_0’’" and indcpa_enc0_1’’’. Similarly, we have advantages Adv{p, in lines 7-8,
AdvézpA in line 10, and Advcpa in lines 11-12, against further reduction-adversaries. The term
0 := correctness params0O ... in lines 15 and 16 refers to the correctness of Ency, i.e., we

assume Encg to be d-correct. (Cf. footnote 14 for the meaning and Figure 7 for the formalization
of correctness.) Finally, card (msg_space()) is the cardinality of the message space M of
Enc. qg,qm,qp are the number of queries made to the three oracles, and ¢ := qg + 2qr. With
the notation we introduced in this explanation, we can write the main theorem more readably:

Advcea < Advpgrr + AdV:DRF + AdVé’pA +24/1+ q\/AdVsz +4q/| M|

+ Advepa + 24/1 + gy/Advepa + 4q/| M|
+8vVA4(q+qD +2)(q+qD+1)5+25. (1)

15By reduction-adversary, we mean an adversary that we have explicitly constructed.

Dye to a lack of a proper module system in grhl-tool, we have a lot of code duplication. A module system
for games and adversaries such as in EasyCrypt would be a valuable addition to qrhl-tool and would have
simplified our proofs considerably.
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definition ”force_into M x = (if xeéM then x else SOME m. meM)”

definition correctness_pkskm where ”correctness_pkskm enc dec p pk sk m
= Prob (enc p pk m) {c. dec p sk ¢ # Some m}”

definition correctness_pksk where "correctness_pksk enc dec msg_space p pk sk
= (SUP memsg_space p. correctness_pkskm enc dec p pk sk m)”

definition correctness where ”correctness P keygen enc dec msg_space =
expectation’ P (Ap. expectation’ (keygen p)
(A(pk,sk). correctness_pksk enc dec msg_space p pk sk))”

definition "injective_enc_pk p enc msg_space pk +—
(VYmlemsg_space p. Vm2€msg_space p.
disjnt (supp (enc p pk ml)) (supp (enc p pk m2)))”

definition "injective_enc P keygen enc msg_space <+—
(Vpesupp P. V(pk,sk)€esupp (keygen p). injective_enc_pk p enc msg_space pk)”

axiomatization gD qG gqH :: nat
where gD > 1” and "qG > 1”7 and "qH > 1”

; definition "q = qG + 2 % qH”

Figure 7: Some definitions from General_Definitions.thy. See page 11 for a micro primer on
Isabelle/HOL syntax.

Encryption algorithm and other definitions. In order to make sense of the main theorem, we
first need to check the definitions of the KEM and the building blocks used in its construction. The
simplest is the pseudorandom function PRF, defined in Figure 8, lines 1-2. The axiomatization
command declares two constants PRF (the PRF) and keygenPRF (the key generation algorithm
for the PRF, given as a distribution over keys). It furthermore axiomatizes the fact the key
generation is a total distribution (axiom keygenPRF_total). (We do not need to axiomatize the
security of PRF; its security is used implicitly by having Advprr occur in the main theorem.)
Similarly, we axiomatize the encryption scheme Encg in lines 4-16. All encryption schemes in
our work consist of a public parameter distribution (we only use this here for chosing the random
oracles), a key generation, an encryption, a decryption algorithm, and a message space (which we
allow to depend on the public parameters). The base scheme does not have public parameters,
so we define params0 as the point distribution that always returns the dummy value () (line 4).
The key generation keygenO (lines 6-9) takes the public parameter and returns a distribution
of public/secret key pairs. We assume that key generation is a total distribution (axiom
weight_keygen0). Additionally we assume a function pk_of_sk that returns the corresponding
pk for every sk in the support of keygen.z We define the encryption by first defining encOr,
a function that takes the public parameters, public key, message, and explicit randomness to
compute a ciphertext (line 11). From this we define encO as the distribution resulting from
applying encOr to the uniform distribution on the randomness (line 12). Decryption (decO,

line 13) may fail, hence the return type is msg option, which means it can be None or Some m

with a message m. Finally, msg_space0 is a non-empty set (lines 15-16). We have an additional
axiom encO_injective (lines 18-19) which encodes the assumption that our base scheme is
injective. (Cf. footnote 13 for the meaning and Figure 7 for the formalization of injective_enc.)

The transformations Punc, T, and U;Kn are given in Figure 9. As with our base scheme, we
always define a deterministic encryption/encapsulation that takes explicit randomness first. The

1" This assumption is not explicit in HKSU but clearly necessary for defining the decryption in transformation
T: since the decryption re-encrypts, it needs to know the public key.
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2

axiomatization PRF :: "prfkey = ciph = key” and keygenPRF :: ”prfkey distr”
where keygenPRF_total: "weight keygenPRF = 17

definition ”params0 = point_distr ()”
axiomatization keygen0 :: ”unit = (pk * sk) distr”
and pk_of_sk :: 7”sk = pk”

where pk_of_sk: ”(pk,sk) € supp (keygen ()) = pk-of_sk sk = pk”
and weight_keygen0: ”weight (keygenO ()) = 17

axiomatization encOr :: ”"unit = pk = msg = rand = ciph”
definition ”"encO0 _ pk m = map_distr (encOr () pk m) (uniform UNIV)”
axiomatization decO :: "unit = sk = ciph = msg option”

5 axiomatization msg _space0 :: “unit = msg set”

where nonempty_msg space0: ”msg _space0 () # {}”

axiomatization where
encO_injective: "injective_enc paramsO keygenO encO msg _space0”

Figure 8: Building blocks: Base scheme and pseudorandom function. File: Base_Scheme.thy
(last line: FO_Specification.thy). See page 11 for a micro primer on Isabelle/HOL syntax.

final KEM consists of the functions keygenF0, encapsF0, decapsFO, etc. We omit a discussion
of the details of the function definitions, they follow our exposition in Section 3.

Security definitions / games. Next we have to understand the games that define the various
advantages in the main theorem. We start with the IND-CCA security of Encaps. Advcca
was defined as the difference in probabilities that an adversary A (Adv_INDCCA_encFO in our
case) outputs b = 1 in games indcca_encF0_0/1. The formalization of these games is given in
Figure 10. It is a direct encoding of the games in Figure 5, with several small differences: Since we
do not support procedures with parameters and return values, we use the global variables in_pk
and in_cstar and Kstar for the inputs pk and ¢* and K*. And the global variable b is used for
the return value (guessing bit). Below, when defining the adversary, we will then make sure the
adversary gets access to those global Variables.f Access to the oracle decapsQuery is by passing
it to the adversary as one of the oracles. Communication with decapsQuery is through variables
c (input) and K’ (output). It checks explicitly whether ¢ # ¢* and returns None otherwise. (In
Figure 5, it was not made explicit how we enforce ¢ # ¢*.) Additionally, we model the access
to the random oracles G, H by giving A access to queryG, queryH. queryG operates on global
variables Gin, Gout and applies the unitary transformation Uoracle G on them. (Uoracle is a
built-in function that transforms a function G into a unitary |z,y) — |,y & G(x)).) Analogously
queryH.

Similarly we define the games used in the rhs of the main theorem. The games PRF_real and
PRF_ideal defining PRF-security for adversary Adv_PRF are given in Figure 11. Again, we define
oracles to either evaluate a pseudo-random function PRF or a random function RF and pass them
to the adversary. The adversary Adv_PRF is explicitly defined in terms of Adv_INDCCA_encFQ
as part of our reduction, but its implementation details do not matter for us (except for some
necessary sanity checks, see below). The primed variants Adv_real’ and Adv_ideal’ are
identical except that they use a different reduction-adversary.

Similarly, we define IND-CPA security of Ency against Adv_INDCPA_encO_1/2 in Figure 12.
The primed variants are identical except that they use a different adversary.

8We do not use pk and cstar directly for passing pk and c* since that would mean giving A access to those
variables. Then A could change the value of pk and ¢* but the oracle decapsQuery relies on having the original
values of pk and c*.
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1
2
3
3

1

definition ”params = params(0”
definition "keygen = keygen0”

definition ”encr = encOr”

definition 7dec P sk ¢ = (case decO P sk ¢ of Some m = if m €
msg_space P then Some m else None | None => None)”

definition ”fakeenc _ pk = encO () pk puncture”

”

definition ”enc _ pk m = map_distr (encr () pk m) (uniform UNIV)”

definition paramsT where "paramsT = uniform UNIV”
definition "keygenT G = keygen ()7
definition ”encrT G pk m = encr () pk m (G m)”
definition ”"encT G pk m = point_distr (encrT G pk m)”
definition ”decT G sk ¢ = (case dec () sk ¢ of None = None
| Some m = if encrT G (pk_of_sk sk) m = ¢ then Some m else None)”
definition ”fakeencT G = fakeenc ()”
definition ”msg spaceT G = msg_space ()”

definition paramsFO where ”paramsFO = uniform UNIV”

definition keyspaceFO where “keyspaceFO _ = UNIV”

definition “keygenFO = (A(G,H). map_distr (A((pk,sk),prfk). (pk,(sk,prfk)))
(product_distr (keygenT G) keygenPRF))”

definition ”encapsrFO = (A(G,H) pk r. (H(r), encrT G pk r))”

definition ”encapsFO GH pk = map_distr (encapsrFO GH pk)
(uniform (msg_spaceT (fst GH)))”

definition ”decapsFO = (A(G,H) (sk,prfk) c. case decT G sk c¢ of

None = Some (PRF prfk c¢) | Some m = Some(H(m)))”

Figure O: Functions resulting from transformations Punc, T, U;ﬁ. Files:
Punc_Specification.thy (l.1-6), T_Specification.thy (1.8-15), FO_Specification.thy
(1.17-25). See page 11 for a micro primer on Isabelle/HOL syntax.

The adversary. In the games indcca_encFO_1/2, we wuse the adversary A =
Adv_INDCCA_encFO0. Since we want the main theorem to hold for arbitrary adversaries, we
need to declare the adversary as an unspecified program. This is done in Figure 13. It declares
that the adversary has access to the variables classA, quantA, b, in_pk, in_cstar, Kstar, i.e.,
we say the adversary has those free variables. Here classA, quantA are the global state of
the adversary (consisting of one quantum and one classical variable), and the others are the
variables used for inputs/outputs of the adversary. Furthermore, the adversary needs to be able
to access the variables Hin, Hout, Gin, Gout, c, K’ that are used as inputs/outputs for its oracles
decapsQuery, queryG, queryH (see above). Those variables are not declared as free variables
(i.e., the adversary will have to hide them under a local command) but may be used internally,
in particular before or after invoking the oracle. Finally, calls 7,7,7 means that the adversary
takes three oracles.

However, we are not interested in arbitrary adversaries, but in ones that always terminate
and that make < qg,q,qp queries to its various oracles. For this, we add various axioms
to the file axioms.qrhl, stating the termination and the number of queries performed when
instantiated with various oracles. The file is reproduced in Appendix A. Unfortunately, this file
contains a lot of repetitions because qrhl-tool does not allow us to allquantify over the oracles,
so we need to state the axioms for any oracle we want to instantiate the adversary With.E

Reduction-adversaries. Finally, to fully check whether the main theorem states what we want
it to state (namely, that the KEM Encaps is secure assuming that the underlying encryption
scheme Ency and the PRF are secure), we also need to inspect the reduction-adversaries. This
is because the main theorem basically says: If Adv_INDCCA_encFO breaks Encaps, then one of

19 Another place where a more advanced module system would help, cf. footnote 16.
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2

program indcca_encFO_0 := { 21 program queryG := {
(G,H) <8 paramsFO; 22 on Gin,Gout apply (Uoracle G);
(pk,skfo) <$ keygenFO (G,H); 23 }.
(Kstar ,cstar) <$ encapsFO (G,H) pk; 2
in_pk <— pk; 25 program queryH := {
in_cstar <— cstar; 26 on Hin,Hout apply (Uoracle H);

call Adv_INDCCA_encFO 27 }.
(queryG , queryH , decapsQuery ); 28
. 20 program decapsQuery := {
30 if (c=cstar) then
program indcca_encFO_1 := { 31 K’ <— None;
(G,H) <$ paramsFO; 32 else
(pk, skfo) <$ keygenFO (G,H); 33 K’ <— decapsFO (G,H) skfo c;
(Kstar, cstar) <3 encapsFO (G,H) 4 b

p
Kstar <$ uniform (keyspaceFO (G,H
in_pk <— pk;
in_cstar <— cstar;
call Adv_ INDCCA_encFO
(queryG , queryH , decapsQuery );

Figure 10: IND-CCA security definition for Encaps. Files: indcca_encfo_0.qrhl, ind-
cca_encfo_1.qrhl, decapsQuery.qrhl, queryG.qrhl, queryH.qrhl.

program PRF_real := { 10 program queryPRF := {
prfk <$ keygenPRF; 11 K <— PRF prfk c;
call Adv_PRF(queryPRF); 12 }.
}. 13
14 program queryRF := {
program PRF _ideal := { 15 K <= RF c;
RF <$ uniform UNIV; 16 }.
call Adv_PRF(queryRF);
1.

Figure 11: Pseudorandomness game for Adv_PRF. Files PRF_real.qrhl, PRF_ideal.qrhl,
queryPRF.qrhl, queryRF.qrhl.

the adversaries in the games on the rhs breaks Ency or PRF. (IL.e., one of Adv_PRF, Adv_PRF’,
Adv_INDCPA_enc0/1, etc.) But this is vacuously true — it is easy to construct an adversary
that breaks Ency or PRF. Namely, that adversary could run in exponential-time and perform a
brute-force attack. Or that adversary could directly access the global variables containing, e.g.,
the secret key. So, while the exact details of what the reduction-adversaries do are not important,
we need to check: Are the reduction-adversaries quantum-polynomial-time if Adv_INDCCA_encFO
is? (Or even some more refined runtime relationship if we want tight concrete security bounds.)
And do the reduction-adversaries access only variables that are not used by the security games
themselves? The latter can be checked using the print command in interactive mode that prints
all variables of a program (e.g., print Adv_PRF). This shows that the adversaries in the PRF
games only access cstar, classA, b, ¢, K’, quantA, and in particular not prfk or RF. And the
adversaries in the IND-CPA games access only Find, mstar, S, in_cstar, in_pk, classA, b,
is_puncture, G, quantA, but not the forbidden sk, pk, cstar.? To check the runtime of the
adversaries, there is currently no better way than to manually inspect the code of all adversaries
explicitly to see whether they do anything that increases the runtime too much.?! To the best

20 Again, a more refined module system would allow us to automatically derive that certain variable-disjointness
conditions hold, cf. footnote 16.

ncluding  recursively  invoked  programs, we mneed to check: Adv_PRF, Adv_PRF’,
Adv_INDCPA_encO_1, Adv_INDCPA_encO_2, Adv_INDCPA_encO_1’, Adv_INDCPA_enc0O_2’, Adv_INDCPA_enc0_2’’,
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12
13

program indcpa_enc0_0 := { 14 program indcpa_enc0_1 := {

(pk,sk) <% keygenO (); 15 (pk,sk) <$ keygenO ();

in_pk <— pk; 16 in_pk <— pk;

call Adv_INDCPA_enc0_1; 17 call Adv_INDCPA_enc0_1;

mOstar <— force_into 18 mOstar <— force_into
(msg_space0 ()) mOstar; 19 (msg_space0 ()) mOstar;

mlstar <— force_into 20 mlstar <— force_into
(msg_space0()) mlstar; 21 (msg_space0()) mlstar;
cstar <$ encO () pk mOstar; 22 cstar <$ encO () pk mlstar;

in_pk <— pk; 2 in_pk <— pk;

in_cstar <— cstar; 24 in_cstar <— cstar;

call Adv_ INDCPA _enc0_2; 25 call Adv_INDCPA _enc0_2;
}. 26 }.

Figure 12: IND-CPA security definition of Ency for Adv_INDCPA_encO_1/2. Files ind-
cpa_encO_1.qrhl, indcpa_enc0_0.qrhl.

adversary Adv_INDCCA_encFO
vars classA, quantA, b, in_pk, in_cstar, Kstar
inner Hin, Hout, Gin, Gout, c¢, K’ calls 7,7,7.

Figure 13: Adversary declaration. File: Adv_INDCCA_encF0.qrhl.

of our knowledge, this is the state-of-the-art also in classical crypto verification. We believe
that coming up with formal verification support for runtime analysis in grhl-tool and similar
tools is a very important next step. If this would be solved, the reduction-adversaries could be
removed from the list of things we need to check as part of the specification.

By checking all the above points, we can have confidence that the formal proof indeed proves
the right thing. (There are quite a lot of points to check, but we stress that in a pen-and-paper
proof, the situation is similar — one needs to check whether all security definitions are correct,
etc.)

5 Formalizing HKSU — The Proof

Since the formal proof is much too long to go through in detail, we only show
a few select elements here to given an impression. HKSU shows security of three
transformations Punc, T, U;Kn. The proof follows the overall structure of HKSU,
lemma_ds_security.qrhl and lemma_indcpa_security.qrhl establishing DS and IND-
CPA security of Punc, lemma_ds_encT_security.qrhl establishing DS security of T, and
lemma_encF0_indcca.qrhl establishing IND-CCA security of the combination of T and U;{‘L.
Finally lemma_security_encF0.qrhl combines all those results into one overall result, the
“main theorem” discussed in Section 4.

lemma_encF0_indcca.qrhl establishes IND-CCA security using the same sequence of games
as described in Section 3.3, encoded as programs gameOFQ, ..., game4F0, game3FQ’, ..., gameOF0’
in the eponymous files. (The primed variants are very similar to the nonprimed ones and are
autogenerated by search & replace.)

Adv_INDCPA_encO_2’’’, decapsQueryPRF, Adv_INDCPA_enc_1, Adv_INDCPA_enc_2, Adv_INDCPA_enc_2’,
Adv_DS_enc, Adv_DS_enc’, queryGPuncturedS, Adv_DS_encT, Adv_DS_encT’, queryH_Hq, decaps-
Query2_adv_cstar. This is a lot to check but the checks are fortunately very simple.
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Game 1 to Game 2. We zoom in some more onto the proof of the relationship between Game 1
and Game 2 (lemma_gamelF0_game2F0.qrhl). We follow the basic intuition from Section 3.3,
and split the proof of that step into the following subgames (all in eponymous .qrhl files):

(1)
(2)

gamelF0: Game 1 from Section 3.3.

gamelF0_goodbad: In this game, we prepare for replacing uniform G by a good G. For
this purpose, instead of picking G uniformly, we pick a good Ggood (i.e., picking Ggood(m)
uniformly from the good randomnesses for every m) and a bad Gbad, and a set S of
messages. We define G(m) to be Ggood(m) if m ¢ S and Gbad(m) otherwise. By choosing
the distribution of S properly, we have that the resulting G is still uniform.

We additionally remove all direct access to G, and make sure that queryG is used everywhere
instead. This is necessary for bringing the game into the shape needed in the following step.
This means all classical queries to G (e.g., in the creation of the challenge ciphertext) need
to be replaced by quantum queries with subsequent measurements (we define a wrapper
oracle ClassicalQueryG(queryG) for this), and we cannot simply define the function H in
terms of G (see Game 1, line 03 in Section 3.3). Instead, we need to construct an oracle
queryH_Hq that implements superposition queries of H in terms of superposition queries of
G (via queryG). This makes this proof step considerably more complex than many of the
other game steps.

That Pr[b = 1] does not change is shown in lemma_gamelF0_goodbad.qrhl.
gamelF0_goodbad_o2h_right: We rewrite the previous game to have the right shape for
the O2H theorem. The O2H theorem allows us to replace one oracle by another one that
differs only in a few (hard to find) places. In order to apply the O2H theorem [1] (or
the o2h tactic in qrhl-tool), the game needs to have a very specific form: count <«
0;(S,G,G", 7)) & D;{ local V;call Apzy(Count(query)) } for an oracle Count that
counts queries in variable count and query that implements superposition queries to G’.
The distribution D and the program Apgzy can be chosen freely. In our case we choose
D := goodbad_o2h_distr such that G’ is G from the previous game, and G is Ggood, and
we choose Apsy = Adv_02H_Game1FO0 to simulate the rest of the game. We show that the
probability of Pr[b = 1] does not change (lemma_gamelF0_goodbad_o2h_right.qrhl).
game1F0_goodbad_o2h_left: We replace queries to G’ by queries to G (recall that G was, in
the previous game, made to return only good randomness). The Semiclassical O2H theorem
[1] (implemented via our tactic o2h) allows us to do this replacement. In the resulting game
Pr[b = 1] will differ by an amount that can be bounded in terms of the probability of finding
an element in S. Bounding this probability involves a side-chain of games that we omit here.
Altogether, lemma_game1F0_o2h_concrete.qrhl gives a concrete bound on the difference
of Pr[b =1].

gamelF0_goodbad_o2h_left’: We remove the query-counting wrapper oracle Count that
was introduced for the o2h tactic. We do this in a separate game step because it
would be in the way in the next step. The probability Pr[b = 1] does not change
(lemma_game1F0_goodbad_o2h_left’.qrhl).

gamelFO0_goodbad_o2h_left_class: We unwrap the adversary Adv_02H_GamelF0 again
which we introduced in (3). We also undo the various replacements done in (2) (which
ensured that G was never used directly) to make the game simpler for the following steps. The
probability Pr[b = 1] does not change (lemma_game1F0_goodbad_o2h_left_class.qrhl).
game1F0_goodbad_badpk: In (2), we ignored one problem: Even if there is just one m
without any good randomness, then it is not well-defined to pick G uniformly from the
set of good G’s because that set is empty.ﬁ For that reason, in (2), we actually defined
G(m) to be good if good randomness exists. But this definition breaks the next step
below which relies on the fact that all randomness is good. Our solution is to introduce
a predicate bad_pk pk sk that tells us whether there is an m (for that key pair) without

22This problem also exists in HKSU but was not noticed there.
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good randomness. We then change the definition of the game to make a case distinction
on bad_pk pk sk. If true, the new game behaves in a way that makes the next proof step
trivially true. If false, the new game behaves as before. The probability for bad_pk pk sk
is bounded by the correctness error of Encg, so we can bound the difference of Pr[b = 1] in
lemma_gamelF0_goodbad_badpk.qrhl.

(8) game2F0_goodbad_range: In the previous games, the choice whether DECAPS returns
H,(c) or Hy(c) depended on whether we have a reencryption failure or not. (See DECAPS
in Game 1 in Section 3.3.) Instead, we use H,(c) or H,(c) depending on whether c is
in the range of Enc’. We can show that, assuming good randomness, these two condi-
tions are equivalent. Since G contains only good randomness, Pr[b = 1] does not change
(lemma_game1F0_game2F0_o2h.qrhl).

(9) game2F0_goodbad_o2h_left’: In the previous game, Decaps returns H,(c) if ¢ is not in the
range of Enc’. We replace this by always returning H,(c) as in Game 2 (Section 3.3). By
analysis of the game, we can see that H, is used in other places of the game only on the range
of Enc’ = encT, hence Hy(c) and H,(c) are both fresh randomness if ¢ is not in the range.
Hence the replacement does not change Pr[b = 1] (lemma_game2F0_goodbad_range.qrhl).

(10) The rest of the proof steps are analogous to those done in (2)-
(6), in reverse order (lemma_game2F0_goodbad_o2h_left_class.qrhl,
]:amma_gameQFO_goodbad_o2h_left >.qrhl, lemma_game2F0_o2h_concrete.qrhl,
lemma_game2F0_goodbad_o2h_right.qrhl, lemma_game2F0_goodbad.qrhl) until we
reach game2F0.

Verification of ClassicalQueryG. To finish our illustration, we give the details of one of the
subproofs of step (2), namely the proof that accessing G directly is the same querying G via
ClassicalQueryG(queryG). The source of ClassicalQueryG is given in Figure 14, lines 1-6.
It initializes Gin with |gin), Gout with |gout), calls the query oracle (which will query G in
superposition), and measures Gout into gout. Lines 8-11 claim that after doing so (in the
right program) we will have gout2 = G2(gin2). And furthermore, that this preserves quantum
equality of quantA, aux between the left and right side. Lines 13-14 inlines the definitions of the
programs that we use, and lines 16-17 removes the local variable declarations. (The subgoal now
has the same pre-/postcondition as before, but the right program is the code of ClassicalQueryG
without the local statement.) Then wp right (line 19) consumes the statement gout <- mea-
sure Gout with computational_basis, and the postcondition becomes (after simplification)
what is written in lines 20-21. Basically, this proof step tells us that having |gin2,G2 gin2) in
Gin2,Gout?2 is sufficient for having gout2 = G2(gin2) after measurement. Next (lines 24-27)
we consume “on Gin,Gout apply (Uoracle G)” from queryG (see Figure 10, evaluation of G in
superposition) and show that now it is sufficient to have |gin2,0) in Gin2,Gout2. In lines 29-33,
we remove the initialization Gout <q ket 0, now the necessary condition is to have |gin) in
Gin2. And in lines 35-37, we remove Gin <q ket gin, removing the last requirement. Now
left and right program are both skip and the pre-/postcondition are identical. The skip tactic
(line 39) solves such a qRHL subgoal.
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. program ClassicalQueryG (query) := {
2 local Gin, Gout;
3 Gin <q ket gin;
Gout <q ket 0;
5 call query;
6 gout <— measure Gout with computational_basis; }.

s qrhl ClassicalQueryG_queryG:

o {top M [quantAl,auxl] =q [quantA2, aux2]}

10 skip; 7 call ClassicalQueryG (queryG);

11 {Cla[gout2 = G2(gin2)] M [quantAl,auxl] =q [quantA2,aux2]}.

13 inline ClassicalQueryG.
14 inline queryG.

16 local remove right .

17 simp !.

18

19 wp right.

0o conseq post: [quantAl,auxl] =q [quantA2,aux2]

1 M Span {ket (gin2, G2 gin2)}»[Gin2, Gout2].

2 simp! auxba aux5b.

4 wp right.

5 conseq post: [quantAl, auxl] =q [quantA2,aux2]

6 M Span {ket (gin2, 0)}»[Gin2, Gout2].
7 simp! applyOpSpace_Span.

9 wp right.
0o conseq post: [quantAl,auxl] =q [quantA2,aux2]
M Span {ket gin2}»[Gin2].

1
2 rule aux6.
3 simp !.

|

5 wp right.
6 conseq post: [quantAl,auxl] =q [quantA2,aux2].
7 simp! leq_space_div.

30 skip.

10 simp!.
11 qed.

Figure 14: Verification of ClassicalQueryG. Files: ClassicalQueryG.qrhl (l.1-6),
lemma_ClassicalQueryG_queryG.qrhl (1.8-41).
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A Axioms about the adversary

The following lists all the axioms about the adversary Adv_INDCCA_encFO that we assume. The
can be found in file axioms.qrhl. The axioms with postcondition Cla[True] axiomatize that
the adversary terminates in various conditions, the others axiomatize the number of queries the
adversary makes.

The fact that a program A terminates can, by semantics of qRHL, compactly be expressed
as {Cla[true|} A ~ skip {Cla[true]}. By definition, this means for any initial states, A and
the empty program skip terminate with the same probability, and their final states satisfy
the predicate €la[true]. Since €la[true| is always satisfied, and since skip terminates with
probability 1, this means that A terminates with probability 1 (and nothing more than that).

Since A := Adv_INDCCA_encFO takes three oracles, we would Ilike to ex-
press something like “for all oracles Op,02,03 (that are themselves terminating),
{Cla[true]} A(O1,02,03) ~ skip {C€la[true|}”. Unfortunately, grhl-tool does not support
quantification over programs, hence we instead give a number of axioms of this form, for the
different oracles O, O2, O3 that occur throughout our proof. Each of those statements is “proven”
with the tactic admit which axiomatizes the proof goal.
qrhl Adv_INDCCA_encFO_lossless_dq2: {Cla[True]}

call Adv_INDCCA_encFO(queryG ,queryH, decapsQuery2); ~ skip; {Cla[True]}.

admit .
qed.

qrhl Adv_INDCCA_encFO_lossless_dql: {Cla[True]}
call Adv_INDCCA_encFO(queryG ,queryH,decapsQueryl); ~ skip; {Cla[True]}.
admit .
qed .

qrhl Adv_INDCCA_encFO_lossless_bpk: {Cla[True]}
call Adv_INDCCA_encFO (queryG ,queryH ,decapsQueryl_badpk); ~ skip; {Cla[True]}.
admit .
qed .

qrhl Adv_INDCCA_encFO_lossless_Gmeas_Hq_ac: {Cla[Truel}
call Adv_INDCCA_encFO (Count (queryGmeasured) ,queryH_Hq (Count (queryGmeasured)) ,
decapsQuery2_adv_cstar); ~ skip; {Cla[True]}.
admit .
qed .

qrhl Adv_INDCCA_encFO_lossless_C_Gmeas_Hq_dqlG: {Cla[True]l}
call Adv_INDCCA_encFO(Count (queryGmeasured) ,queryH_Hq (Count (queryGmeasured)) ,
decapsQueryl_G (Count (queryGmeasured ))); ~ skip; {Cla[True]}.
admit .
qed .

qrhl Adv_INDCCA_encFO_lossless_C_Gmeas_Hq-dq2G: {Cla[True]l}
call Adv_INDCCA_encFO(Count (queryGmeasured) ,queryH_Hq (Count (queryGmeasured)) ,
decapsQuery2_G (Count (queryGmeasured ))); ~ skip; {Cla[True]}.
admit .
qed .

Furthermore, we need to axiomatize the fact that A := Adv_INDCCA_encFO calls its first
oracle < q¢ times, its second oracle < gy times, and its third oracle < ¢p times. As with the termi-
nation, this property cannot be stated generally, instead we encode it for different combinations of
oracles given to A separately, and for each such case, explicitly count the queries to one of the ora-
cle of interest. For example, the first case is that we give the oracles queryG, queryH_Hq(queryG)
and decapsQueryl to A, and want to specify that this implies < gqg + 2qy queries to queryG.
(There is a factor of 2 in there because queryH_Hq, see Figure 15, invokes queryG twice.) To
count this, we define a wrapper oracle Count (X) (Figure 15) that, when invoked, increases a
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program queryH Hq(queryGG) := {
local Gin, Gout;
Gout <q ket 0;

on Hin,Gin apply comm_op;
call queryGG;

on (Gin,Gout),Hout apply Uoracle (%(m,g). mk Hq’ Hq HO g pk m);

call queryGG;
on Hin,Gin apply comm_op;

}.
program Count(0) := {
call O;
count <— count + 1;
1.

Figure 15: Oracle queryH_Hq and wrapper Count.

counter count and runs X. Thus, to state that A(queryG, queryH Hq(queryG), decapsQuery1)
calls queryG at < gg + 2qmy times, we state that if initially count = 0, after running
A(Count(queryG), queryH_Hq(Count(queryG)), decapsQueryl), count < g + 2qy. This is ex-
pressed by the following axiomatized qRHL judgment. All following judgments follow the same
ideas, for slightly different combinations of oracles.

qrhl Adv_INDCCA_encFO_countG: {Cla[countl=0]}
call Adv_INDCCA_encFO(Count (queryG) ,queryH_Hq (Count (queryG)) ,decapsQueryl);
~ skip; {Cla[countl < qG+2xqH]}.
admit .
qed.

qrhl Adv_INDCCA_encFO_countG_Hg-ac: {Cla[countl=0]}
call Adv_INDCCA_encFO(Count (queryG) ,queryH_Hq (Count (queryG)) ,
decapsQuery2_adv_cstar );~ skip;
{Cla[countl < qG+2xqH]}.
admit .
qed.

qrhl Adv_INDCCA_encFO_countG’_Hqg_ac: {Cla[countl=0]}
call Adv_INDCCA_encFO(Count (queryG’) ,queryH_Hq (Count (queryG’)) ,
decapsQuery2_adv_cstar); ~ skip;
{Cla[countl < qG+2xqH]}.
admit .
qed .

qrhl Adv_INDCCA_encFO_count_decapsQueryl_G: {Cla[countl=1]}
call Adv_INDCCA_encFO(Count (queryG) ,queryH_Hq(Count (queryG)) ,
decapsQueryl_G (Count(queryG))); ~ skip;
{Cla[countl < qG+2xgH+1+gD]}.
admit .
qed.

qrhl Adv_INDCCA_encFO_count_decapsQuery2_G: {Cla[countl=1]}
call Adv_INDCCA_encFO (Count (queryG) ,queryH Hq(Count (queryG)) ,
decapsQuery2_G (Count (queryG))); ~ skip;
{Cla[countl < qG+2xgH+1+gD]}.
admit .

; qed.

qrhl Adv_INDCCA_encFO_countG’: {Cla[countl=0]}
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call Adv_INDCCA_encFO (Count (queryG’) ,queryH_Hq (Count (queryG’)) , decapsQueryl );
~ skip; {Cla[countl < qG+2xqH]}.
admit .
qed .

qrhl Adv_INDCCA_encFO_count_decapsQueryl G ’: {Cla[countl=1]}
call Adv_INDCCA_encFO(Count (queryG’) ,queryH_Hq (Count (queryG’)) ,
decapsQueryl_G (Count (queryG’))); ~ skip;
{Cla[countl < qG+2xqH+qD+1]}.
admit .
qed .

qrhl Adv_INDCCA_encFO_count_decapsQuery2_-G’: {Cla[countl=1]}
call Adv_INDCCA_encFO (Count (queryG’) ,queryH_Hq(Count (queryG’)) ,
decapsQuery2_G (Count (queryG’))); ~ skip;
{Cla[countl < qG+2xqH+qD+1]}.
admit .
qed .

qrhl Adv_INDCCA_encFO_countGpunc: {Cla[countl=0]}
call Adv_INDCCA_encFO(Count (queryGPuncturedS),
queryH_Hq (Count (queryGPuncturedS)) ,decapsQueryl); ~ skip;
{Cla[countl < qG+2xqH]}.
admit .

) qed.

qrhl Adv_INDCCA_encFO_countGpunc_Hq_ac: {Cla[countl=0]}
call Adv_INDCCA_encFO(Count (queryGPuncturedsS),
queryH_Hq (Count (queryGPuncturedS)) ,decapsQuery2_adv_cstar );
~ skip; {Cla[countl < qG+2xqH]}.
admit .
qed.

qrhl Adv_INDCCA_encFO_countGmeas_Hq_-ac: {Cla[countl=0]}
call Adv_INDCCA_encFO(Count (queryGmeasured) ,queryH_Hq (Count (queryGmeasured)) ,
decapsQuery2_adv_cstar); ~ skip;
{Cla[countl < qG+2xqH]}.
admit .
qed .

qrhl Adv_INDCCA_encFO_count_Gmeas_Hq_-dq1G_1: {Cla[countl=1]}
call Adv_INDCCA_encFO(Count (queryGmeasured) ,queryH_Hq (Count (queryGmeasured)) ,
decapsQueryl_G (Count (queryGmeasured )));
~ skip; {Cla[countl < qG+2xqH+qD+1]}.
admit .
qed .

qrhl Adv_INDCCA_encFO_count_Gmeas_Hq_dq2G_1: {Cla[countl=1]}
call Adv_INDCCA_encFO(Count (queryGmeasured),queryH_Hq(Count (queryGmeasured)) ,
decapsQuery2_G (Count (queryGmeasured )));
~ skip; {Cla[countl < qG+2xqH+qD+1]}.
admit .

s qed.

qrhl Adv_INDCCA_encFO_count_decapsQueryl_Gpunc: {Cla[countl=1]}
call Adv_INDCCA_encFO(Count (queryGPuncturedS) ,queryH_Hq(Count (queryGPuncturedS)),
decapsQueryl_G (Count (queryGPuncturedS)));
~ skip; {Cla[countl < qG+2xqH+qD+1]}.
admit .
qed .

qrhl Adv_INDCCA _encFO_count_decapsQuery2_Gpunc: {Cla[countl=1]}
call Adv_INDCCA_encFO (Count (queryGPuncturedS) ,queryH_Hq (Count (queryGPuncturedS)),
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decapsQuery2_G (Count (queryGPuncturedS)));
~ skip; {Cla[countl < qG+2xqH+qD+1]}.
admit .
qed .

B O2H Theorem

As part of our formalization of HKSU, we implemented support for using the O2H Theorem [1]
in qrhl-tool. In this section, we give a short recap of the O2H Theorem and describe the new
tactic.

B.1 The theorems

We state one case of the O2H Theorem from [1]. (The original theorem additionally contains
several alternative formulations. It also supports tighter bounds for the case that the adversary
performs multiple oracle queries in parallel. The form we state here is the main variant of the
theorem.)

Theorem 3 (Semi-classical O2H [1, Thm. 1]) Let S C X be random. Let G,H : X — Y be
random functions satisfying Vo ¢ S. G(x) = H(x). Let z be a random bitstring. (S,G, H,z may
have arbitrary joint distribution.)

Let A be an oracle algorithm making < q queries.

Let
P i=Prb=1:b« A"(2)]
Pright = Pr[b=1:b + A%(2)]
Pind := Pr[Found : A\%(2)]
Then

‘Pleft_Pright’ <2 (Q+1)'Pﬁnd

In this theorem, the notation G \ S represents a “punctured” oracle: Whenever this oracle is
queried, instead of applying the unitary Ug : |z, y) — |2,y ® G(x)), it first measures whether the
r-register contains a value in S (i.e., it performs a measurement with projector Pg := " o|x)(z).
If the measurement succeeds, we say the event Found occurs. And only then G\ S applies the
unitary Ug. (In other words, besides applying G, we measure whether we found one of the
marked values in S.)

What is this theorem good for?

Consider two games that are identical, except that the random oracleﬁ used in the two
games is allowed to differ in a small number of values. (For example, the first game might use a
random function G, while the second game we use the function H which equals G except at one
position x, where we set H(x) to be some challenge value.) Then we can use the O2H Theorem
to bound the probability with which an adversary A distinguishes the two games in terms of the
(usually easier to bound) probability that A finds an input where G and H differ.

The two games to be distinguished can always be rewritten as in Pef;, Prignt in the theorem
(by using a suitable distribution of S, G, H, z), where S is the set of places where the oracles
may differ (in our example, S = {z}) and z is arbitrary auxiliary information. Then the game
where the adversary tries to find an input where G and H differ is given as in Pg,q. The event
Found is raised by the oracle G \ S when the adversary queries a value in S. Thus, we are now
left to analyze a search problem instead of a distinguishing problem.

23We say random oracle here for simplicity, although the O2H Theorem does not require that this oracle is
uniformly distributed.
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There is one caveat, though: The punctured oracle G \ S performs a partial measurement of
the input register. This makes the analysis of the probability that A finds a value in S harder.
For example, it is possible that the measurement whether the input is in S leaks information
about S to A (even if the measurement outcome is not given to the adversary) and thus help A
to find an = € S. Fortunately, [1] provides the following theorem to deal with this:?4

Theorem 4 (Search in semi-classical oracle [1, Thm. 2]) Let A be any quantum oracle algorithm
making some number of queries at depth at most d to a semi-classical oracle with domain X .
Let S C X and z be of arbitrary type. (S,z may have arbitrary joint distribution.)

Let BE be an algorithm that on input z chooses i < {1,...,d}; runs A%(z) until (just before)
the i-th query; then measures all query input registers in the computational basis and outputs the
measurement outcome.

Then

Pr[Found : A%\9(2)] < 4d - Pr[guess € S : guess < B%(2)] (2)

So this theorem allows us to upper bound the probability of finding a value in the punctured
oracle G'\ S (such as in the game Pf,4 above) by the probability that a related adversary (that
runs A and measures a random query) finds an element of S. But BY uses the regular oracle G
(with no measurement involved). Thus the rhs (which we now need to bound) is a game in the
regular setting (where oracles do not partially measure their inputs). (How to actually bound
the rhs is now a different question that depends on the specific setting. For example, it might
be that G,z and S = {x} are independent, and then the rhs is bounded by the probability of
guessing a uniformly random x.)

B.2 Tactics

We implemented two tactics in qrhl-tool, one for invocations of the O2H Theorem (Theorem 3),
and one for invocations of Theorem 4.

O2H Tactic o2h. To apply the O2H Theorem, we have the tactic o2h. As a precondition for
applying this tactic, the games listed in Figure 16 must be defined. The games must be defined
exactly as written there, except that the names of the games, as well as the names of the variables
(IN, OUT, G, S, H, z, in_S, found, count) may be chosen arbitrarily. And distr can be an
arbitrary constant expression (meaning, the expression must not contain any program variables
but may contain ambient variables). Furthermore, we require that the type of the oracle outputs
(i.e., B if G has type a = () is of type class xor_group, otherwise Uoracle is not well-defined.

That is, queryG and queryH are implementations of the oracles that perform superposition
queries to the functions G and H (using input/output registers IN, OUT). Count is a wrapper
oracle that counts oracle queries (to express the bound on the number of queries performed by A).
Let the programs left, right are just the programs defined in Pjef, Prigns in the O2H Theorem.
(Except that we additionally added a counter count that explicitly counts the oracle queries.)
Finally, queryGS implements the punctured oracle G\ S and stores in the variable found whether
a value in S was queried. (In the definition of that program, “proj_classical_set S” is the
projector Pg, and binary_measurement constructs a binary measurement from that projector.)
Thus the game find corresponds to Pfg.

Since the games have to be in this precise form, the first step before applying the tactic o2h
will be to rewrite the games of interest in this specific form (for a suitably defined distribution
distr) and show that the original and rewritten game have the same probability of b = 1.

24 Again, we give the special case that does not improve the bound for adversaries making parallel queries.
Furthermore, we slightly change the theorem: In our presentation, A gets the oracle G or G \ S, respectively. In
the original, A gets the oracle @3¢ (that does nothing) or Ogc (that only measures whether the input register is
in S), respectively. Our form of the theorem is an immediate consequence of the original by using the fact that G
is the same as applying O5¢ and then G, and G \ S is the same as applying O2¢ and then G.
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program queryG := {
on IN, OUT apply (Uoracle G);
}.

program queryGS := {
in_S <— measure IN with binary_measurement (proj_classical_set S);
if (in_S=1) then found <— True; else skip;
call queryG;

.

program queryH := {
on IN, OUT apply (Uoracle H);
).

5 program Count(O) := {

call O;
count <— count + 1;

.

program left := {
count <— O0;
(S,G,H,z) <$ distr;
{ local vars; call A(Count(queryG)); }

}.

program right := {
count <— O0;
(S,G,H,z) <$ distr;
{ local vars; call A(Count(queryH)); }

.

2 program find := {

count <— 0;

(S,G,H,z) <$ distr;

found <— False;

{ local vars; call A(Count(queryGS)); }

.

Figure 16: Games required by o2h tactic. The local variable declaration local vars can be
omitted (but then must be omitted in all games).

The tactic o2h can then be applied to proof goals of the exact form:

abs ( Pr[b=1 : left(rho)] — Pr[b=1 : right(rho)] )
<=2 x sqrt( (14+real q) % Pr[found : find(rho)] )

where left and right are the games from Figure 16 and q is an expression (of type nat). (This
is exactly the shape of the conclusion of Theorem 3.)

When applying the tactic o2h (without any additional arguments), it checks whether all
involved games have the right form and that none of the variables count,found,G,H,S,in_S
are in the free variables of A (but A is allowed to access IN,0UT,b,z). If these checks succeeds,
the tactic produces four subgoals:

Pricount < q : left(rho)] =1
Pr[count q : right(rho)] =1

<
s Pricount < q : find(rho)] =1
X

VS G H z (S,G,H,z) € supp distr - x ¢ S - G x =H x

The first three of them express the requirement that A makes at most ¢ oracle queries (recall
that count counts the oracle queries because of the wrapper oracle Count). And the fourth one
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program queryG := {
on IN, OUT apply (Uoracle G);

}.

program queryGS := {
in_S <— measure IN with binary_measurement (proj_classical_set S);
if (in_S=1) then found <— True; else skip;
call queryG;

.

program queryGM := {
if (count=stop_at) then
guess <— measure IN with computational basis;
else
skip ;

call queryG;

.

program Count(0) := {
call O;
count <— count + 1;

Y.

5 program left := {

count <— O0;

(S,G,z) <% distr;

found <— False;

{ local vars; call A(Count(queryGS)); }

.

3 program right := {

count <— O0;

stop_at <$ uniform {..<q};

(S,G,z) <8 distr;

{ local vars; call A(Count(queryGM)); }
.

Figure 17: Games required by semiclassical tactic. The local variable declaration local vars
can be omitted (but then must be omitted in all games).

expresses the fact that Vo ¢ S, G(z) = H(x) when S, G, H are chosen according to distr. (This
is one of the premises of the O2H Theorem.)

Semiclassical-search tactic semiclassical. To invoke Theorem 4, we use the tactic semiclas-
sical. This tactic requires that games of the exact form as in Figure 17 are defined. (Again, the
names of the games, as well as the variables (IN, OUT, G, S, H, z, in_S, found, count, stop_at,
guess) can be arbitrary, and the output type of G must be of type class xor_group. distr and
q are arbitrary constant expressions.) See the description of the tactic o2h for programs queryG,
queryGS, Count. The program queryGM is an oracle that first checks whether the number of
the current oracle query is stop_at before querying G. If so, the input to G is measured in
the computational basis and stored in guess. This corresponds to the query performed by the
adversary B in Theorem 4. (Where stop_at is ¢ in B.) And finally, the game left is like the
find game in tactic o2h (i.e., lhs of the conclusion of Theorem 4) while the right game is rhs of
the conclusion of Theorem 4.

Then the tactic semiclassical, invoked without any arguments, expects a subgoal of the
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form:

Pr[found : left (rho)]
<=4 % real q * Pr[guesseS : right(rho)]

It checks whether all games are as in Figure 17 and whether the free variables of A contain none
of G, S, H, in\_S, found, count, stop\_at, guess (but A may access IN, OUT, z, b).
If so, the tactic produces the following new subgoals:

Pricount < q : left(rho)] =1
Pr[count < q : right(rho)] =1

Here q is the same expression as in the definition of program queryGM and right. These
subgoals express the fact that the adversary makes at most ¢ oracle queries.
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