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Abstract. Let Fp be a prime finite field (p > 5) and Eb : y20 = x30 + b be an elliptic Fp-
curve of j-invariant 0. In this article we produce the simplified SWU hashing to curves
Eb having an Fp2-isogeny of degree 5. This condition is fulfilled for some Barreto–Naehrig
curves, including BN512 from the standard ISO/IEC 15946-5. Moreover, we show how to
implement the simplified SWU hashing in constant time (for any j-invariant), namely without
quadratic residuosity tests and inversions in Fp. Thus in addition to the protection against
timing attacks, the new hashing h : Fp → Eb(Fp) turns out to be much more efficient than the
(universal) SWU hashing, which generally requires to perform 2 quadratic residuosity tests.
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Introduction

For definiteness, we will suppose that Eb is an ordinary curve. According to [1, Example V.4.4]
this condition means that p ≡ 1 (mod 3), i.e., ω := 3

√
1 ∈ Fp, where ω 6= 1. Many protocols

of pairing-based cryptography [2] use a mapping h : Fp → Eb(Fp) called hashing [2, §8] such
that the cardinality of its image equals Θ(p) = Θ

(
|Eb(Fp)|

)
. In this type of cryptography

the priority is given to the curves Eb, because the pairing computation on them is the most
efficient (see [2, §4]).
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For c ∈ F∗p (such that
√
c /∈ Fp) let E ′b : y21 = c(x31 + b) be the (unique) quadratic Fp-twist

of Eb and

K ′b := (Eb×E ′b)/[−1] K ′b : y2 = c(x30 + b)(x31 + b) ⊂ A3
(x0,x1,y)

,

where y := y0y1, be the Kummer surface (see, e.g., [3, §2]) of the direct product Eb×E ′b.
Let us give a strict mathematical definition so that the article is equally interesting to

algebraic geometers, and not just to cryptographers. Simplified SWU hashing is any non-
constant rational Fp-map hSWU : A1 99K K ′b, that is an Fp-parametrization of any rational
(possibly singular) Fp-curve [4] on K ′b. It is known that hSWU induces a (usual) hashing h
(a constant-time implementation is represented in §2). We know from [5] that finding hSWU

is generally considered a difficult task only if 3
√
b /∈ Fp, that is 2 - |Eb(Fp)|. Therefore for

definiteness, it is further assumed that this condition is met.
The quotient by the point (0,

√
b) ∈ Eb(Fp2) always gives the (unique) Fp-endomorphism

of degree 3 on Eb. If 3
√

4b ∈ Fp, then the curve Eb also has a vertical Fp-isogeny (see its
definition in [6, Proposition 36]) of degree 3 onto the curve of j = −215533 [7, Table 1],
since the 3-division polynomial of Eb equals ψ3(x) = 3x(x3 + 4b). In this case, the problem
of constructing hSWU is obviously reduced to the analogous problem already solved for j 6= 0
(see, e.g, [8]). In particular, this reduction applies to the curve BN256 from [9] early very
popular in the industry. Thus we will assume that 3

√
4b /∈ Fp.

In fact, in order to construct hSWU , it is sufficient that the curve Eb has a vertical Fp2-
isogeny. Moreover, if its degree is lower, then the computation of hSWU (and hence h) is more
efficient in practice. This fact was realized in [3], where we use a vertical Fp2-isogeny of degree
2, which exists for any curve of j-invariant 1728. This article is devoted to the case of degree
5 (and j = 0).

Let t1 be the Fp-trace and D1 = t21 − 4p be the Fp-discriminant of Eb. Since the Fp2-trace
t2 = t21 − 2p, then the Fp2-discriminant D2 = t22 − 4p2 = t21D1. According to [6, Proposition
37] the curve Eb has a vertical Fp2-isogeny of degree 5, undefined over Fp, (we denote it
by φ+ : E+ → Eb) if and only if 5 | t1. Moreover, in this case Eb does not have Fp-isogenies
of degree 5, because 5 cannot simultaneously divide t1 and D1. By the way, Eb never has
horizontal isogenies (or, equivalently for j = 0, endomorphisms) of degree 5. Finally, it is
easy to check that quite popular Barreto–Naehrig (BN) curves [2, Example 4.2] cannot have
Fp-isogenies of degree 5 at all.

In particular, the desired condition is fulfilled for the Fp-curves BN512 and BN638 from
[10, §4.1] (the first is also from [11, Part 5]), where the numbers in the notation are equal to
dlog2(p)e. Such bit lengths will become actual for pairing-based cryptography in the future,
hence these curves are potentially useful. Factorizing D1, we see that the smallest degree of
a vertical Fp-isogeny for BN512 (resp. BN638) is 1291 (resp. 1523). Therefore the idea of [8,
§4.3] does not work here.

1 Main result

The 5-division polynomial of the curve Eb equals

ψ5(x) = f5(x
3), where f5(z) := 5z4 + 380bz3 − 240b2z2 − 1600b3z − 256b4.
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E+×E−
ϕ→ Eb×Eb

ψ→ Eb×E ′b
ρ ↓ ρ ↓ ↓ ρ

K±
ϕ→ Kb

ψ→ K ′b

Figure 1

We get that any point of order 5 on Eb has the form P =
(

3
√
zi,
√
zi + b

)
, where zi ∈ F∗p4

(0 6 i 6 3) are roots of the polynomial f5. If P generates an Fp2-invariant subgroup (of the
form G = {O, ±P , ±2P}), then obviously 3

√
zi ∈ F∗p4 and P ∈ Eb(Fp8). Using Ferrari’s method

for expressing the roots zi in radicals, it is easy to show that under the condition
√

5 /∈ Fp
(in particular, if 5 | t1, this is true for all BN curves) we have zi /∈ Fp2 . Therefore G is not

Fp-invariant and the norm of zi equals NFp4/Fp(zi) = −28b4/5. As a consequence, 3
√

4b/5 ∈ Fp
and hence 3

√
5 /∈ Fp. The case

√
5 ∈ Fp is expected to be simpler, hence we omit it.

In fact, it is enough to put b = 10. Indeed, since 3
√
b/10 ∈ Fp, the curves Eb, E10 are

isomorphic at most over Fp2 . Therefore the surfaces K ′b, K
′
10 are isomorphic over Fp.

Let E− be the curve Fp-conjugate to E+, that is j(E−) = j(E+)p. Similarly, ϕ− : E− → Eb
is the isogeny Fp-conjugate to ϕ+, that is ϕ− = Fr ◦ ϕ+ ◦ Fr−1, where Fr is the Frobenius
endomorphism. An explicit form of the dual isogenies ϕ̂± : Eb → E± and then isogenies ϕ±
can be easily found, using Velu’s formulas [6, Proposition 38]. Besides, let us clarify Figure
1. We denote by K± (resp. Kb) the Kummer surface of the direct product E+×E− (resp.
Eb×Eb). In addition, ϕ := (ϕ+, ϕ−), the isogeny ψ is defined in §[3, §1], and ρ is the natural
quotient map. Finally, ϕ (resp. ψ) is the restriction of ϕ (resp. ψ) to the Kummer surfaces.

Due to [7, Table 2], by substituting 0 in the modular polynomial [12, Exercise 2.18] of
level 5, we obtain

Φ5(0, j) = HD(j)3, where HD(j) = j2 + 654403829760·j + 5209253090426880

is the Hilbert class polynomial [12, §II.6] of discriminant D = −523. Its roots equal

j± := j(E±) = ±146329141248·
√

5− 327201914880.

Since the ideal class group [6, Proposition 51] of the field Q(
√

5) is trivial, the curves E±,
considered over Q(

√
5), have a global minimal model [13], which, as it turns out, is a short

Weierstrass form, for instance

E± : y2 = x3 + 60(±9
√

5− 25)x− 50(±252
√

5− 521).

Using the computer algebra system Magma, we obtain in [14] a non-trivial map χ : A1 99K
K± invariant under the ”twisted” Frobenius endomorphism from [3, §1]. The arguments given
when finding it are almost the same as those of [3, §3.1]. Thus we have the map

hSWU := ψ ◦ ϕ ◦ χ =
(
x0(t), x1(t), y(t)

)
,

which is also explicitly written out in [14]. Here x0(t), x1(t) are rational Fp-functions of the
variable t of degree 20 and y(t) is that of degree 60. An explanation of why hSWU is defined
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over Fp is given in [3, §1]. Finally, using [3, Theorem 1.1] and [4, §6.1.2], one can easily check
that it is birational with its own image.

Let’s summarize the main result of the article.

Theorem 1. If an ordinary elliptic Fp-curve Eb has an Fp2-isogeny of degree 5, then (except
for a finite number of p) there is a simplified SWU hashing hSWU : A1 99K K ′b. Moreover, the
latter can be found explicitly.

According to [7, Tables 1, 2] there are exactly 5 non-maximal (i.e., ( Z[ω]) orders of the
quadratic field Q(

√
−3), having class number 1 or 2. Their conductors are 2, 3 and 4, 5, 7

respectively. Thus there remains only the case of a vertical Fp2-isogeny of degree 7 to (from)
Eb, for which, apparently, it is possible to construct hSWU in a similar way, carrying out
reasoning regardless of p, that is over a number field.

Finally, we emphasize that all the above arguments remain valid for an elliptic curve
Eb over any finite field Fq of characteristic p such that 2, 3 - logp(q) and p ≡ 1 (mod 3). In
turn, we do not expect significant obstacles to extend Theorem 1 if at least one of the last
restrictions does not hold.

2 Simplified SWU hashing in constant time

We would like to explain how a simplified SWU hashing hSWU : A1 99K K ′b gives a (usual)
hashing h : Fq → Eb(Fq), where b ∈ F∗q . In fact, any elliptic Fq-curve of j 6= 1728 can be next

considered instead of Eb. In practice, one almost always takes q ≡ 3 (mod 4) (i.e.,
√
−1 /∈ Fq).

Let fi := x3i + b and y := y0y1. Then the Kummer surface can be taken in the form K ′b : y2 =
−f0f1 ⊂ A3

(x0,x1,y)
. We denote by U and V respectively the domain of definition and the image

for hSWU . Also, let θ := f
(q+1)/4
0 . Consider the auxiliary map

h′ : V (Fq)→ Eb(Fq), (x0, x1, y) 7→

{(
x0, θ

)
if θ2 = f0,(

x1, y/θ
)

otherwise, i.e., θ2 = −f0.

Since
θ2 = f

(q+1)/2
0 = f

(q−1)/2
0 ·f0 = ±f0,

this map is well defined everywhere on V (Fq). We can thus put

h := h′ ◦ hSWU : U(Fq)→ Eb(Fq).

The set Fq \ U(Fq) containing only Fq-roots of the denominators of the functions x0(t), x1(t),
y(t) has insignificant cardinality (6 deg(x0) + deg(x1) + deg(y) = 100). Therefore, if neces-
sary, the value of h on its elements can be specified manually.

We emphasize that in the definition of h′ the Legendre symbol
( ·
q

)
(in other words, a

quadratic residuosity test) in the field Fq does not appear. In turn, the element θ can be
calculated without the inversion operation in Fq even if the function x0(t) is not polynomial
(see [8, §4.2]). Therefore, by returning the value of h in (weighted) projective coordinates, we
entirely avoid inversions. Thus the hashing h is constant-time, that is the computation time
of its value is independent of an input argument.

4



The latter circumstance is considered a great advantage over the (universal) SWU-hashing
[2, §8.3.4, §8.4.2], which, on the contrary, generally requires the computation of two Legendre
symbols. The point is that time-constant implementations protect cryptographic protocols
against timing attacks [2, §8.2.2, §12.1.1]. And the operations

(
γ
q

)
, γ−1 (for γ ∈ F∗q ) are pos-

sible sources of such attacks.
Note that computing the Legendre symbol in Fq is reduced to the same task in Fp, us-

ing the obvious equality
(
γ
q

)
=
(N(γ)

p

)
, where N(γ) is the norm of γ with respect to the

extension Fq/Fp. There are two common methods for computing the Legendre symbol in
Fp. One uses Euler’s criterion

(
γ
p

)
= γ(p−1)/2 (for γ ∈ F∗p ), but requires the very inefficient

exponentiation operation in Fp. The second is based on Gauss’s quadratic reciprocity law(
γ
δ

)(
δ
γ

)
= (−1)(γ−1)(δ−1)/4 for the Jacobi symbol (with odd γ, δ ∈ Z). This method is much

more efficient, but difficult to implement in constant time. Identical conclusions are also made
in [2, §2.2.9, §8.4.2].

In fact, the hashing h : Fq → Ea(Fq), proposed in [3, §4], to an elliptic Fq-curve Ea :
y2 = x3 − ax (where

√
a /∈ Fq) of j-invariant 1728 can also be made constant-time. Let q ≡

1 (mod 4) (or, equivalently, i :=
√
−1 ∈ Fq) and q 6≡ 1 (mod 8). In other words, q ≡ 5 (mod 8).

The first condition is necessary for the curve Ea to be ordinary. And second is sufficient to
implement the square root extraction in Fq by means of one exponentiation in Fq. As it is
easy to see, under the given conditions we have

√
i /∈ Fq.

Let hSWU : A1 99K K ′a be the simplified SWU hashing built in [3, §3.1]. We will assume
that the Kummer surface is given in the form K ′a : y2 = if0f1 ⊂ A3

(x0,x1,y)
, where fi = x3i − axi.

As above, U and V are respectively the domain of definition and the image for hSWU . Also,
let θ := f

(q+3)/8
0 . Consider the auxiliary map

h′ : V (Fq)→ Ea(Fq), (x0, x1, y) 7→


(
x0, θ

)
if θ2 = f0,(

x0, iθ
)

if θ2 = −f0,(
x1, y/θ

)
if θ2 = if0,(

x1, y/(iθ)
)

otherwise, i.e., θ2 = −if0.

Since
θ2 = f

(q+3)/4
0 = f

(q−1)/4
0 ·f0 ∈ {±f0,±if0},

this map is well defined everywhere on V (Fq). Thus

h = h′ ◦ hSWU : U(Fq)→ Ea(Fq).

As before, the set Fq \ U(Fq) can be processed separately.
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