Efficient constant-time hashing to some elliptic curves of *j*-invariant 0

Dmitrii Koshelev¹

Versailles Laboratory of Mathematics, Versailles Saint-Quentin-en-Yvelines University Center for Research and Advanced Development, Infotecs Algebra and Number Theory Laboratory, Institute for Information Transmission Problems

Abstract. Let \mathbb{F}_p be a prime finite field (p > 5) and $E_b: y_0^2 = x_0^3 + b$ be an elliptic \mathbb{F}_p curve of *j*-invariant 0. In this article we produce the simplified SWU hashing to curves E_b having an \mathbb{F}_{p^2} -isogeny of degree 5. This condition is fulfilled for some Barreto–Naehrig curves, including BN512 from the standard ISO/IEC 15946-5. Moreover, we show how to implement the simplified SWU hashing in constant time (for any *j*-invariant), namely without quadratic residuosity tests and inversions in \mathbb{F}_p . Thus in addition to the protection against timing attacks, the new hashing $h: \mathbb{F}_p \to E_b(\mathbb{F}_p)$ turns out to be much more efficient than the (universal) SWU hashing, which generally requires to perform 2 quadratic residuosity tests.

Key words: constant-time implementation, hashing to elliptic curves, Kummer surfaces, pairing-based cryptography, rational curves and their parametrization, vertical isogenies.

Contents

Introduction		1
1	Main result	2
2	Simplified SWU hashing in constant time	4
References		5

Introduction

For definiteness, we will suppose that E_b is an ordinary curve. According to [1, Example V.4.4] this condition means that $p \equiv 1 \pmod{3}$, i.e., $\omega := \sqrt[3]{1} \in \mathbb{F}_p$, where $\omega \neq 1$. Many protocols of *pairing-based cryptography* [2] use a mapping $h: \mathbb{F}_p \to E_b(\mathbb{F}_p)$ called *hashing* [2, §8] such that the cardinality of its image equals $\Theta(p) = \Theta(|E_b(\mathbb{F}_p)|)$. In this type of cryptography the priority is given to the curves E_b , because the pairing computation on them is the most efficient (see [2, §4]).

¹web page: https://www.researchgate.net/profile/Dimitri_Koshelev email: dishport@yandex.ru

This work was supported in part by the RFBR under grant no. 19-31-90029\19.

For $c \in \mathbb{F}_p^*$ (such that $\sqrt{c} \notin \mathbb{F}_p$) let $E'_b : y_1^2 = c(x_1^3 + b)$ be the (unique) quadratic \mathbb{F}_p -twist of E_b and

$$K'_b := (E_b \times E'_b) / [-1] \qquad \qquad K'_b : y^2 = c(x_0^3 + b)(x_1^3 + b) \quad \subset \quad \mathbb{A}^3_{(x_0, x_1, y)} = c(x_0^3 + b)(x_1^3 + b) \quad \subset \quad \mathbb{A}^3_{(x_0, x_1, y)} = c(x_0^3 + b)(x_1^3 + b) \quad \subset \quad \mathbb{A}^3_{(x_0, x_1, y)} = c(x_0^3 + b)(x_1^3 + b) \quad \subset \quad \mathbb{A}^3_{(x_0, x_1, y)} = c(x_0^3 + b)(x_1^3 + b) \quad \subset \quad \mathbb{A}^3_{(x_0, x_1, y)} = c(x_0^3 + b)(x_1^3 + b) \quad \subset \quad \mathbb{A}^3_{(x_0, x_1, y)} = c(x_0^3 + b)(x_1^3 + b)$$

where $y := y_0 y_1$, be the Kummer surface (see, e.g., [3, §2]) of the direct product $E_b \times E'_b$.

Let us give a strict mathematical definition so that the article is equally interesting to algebraic geometers, and not just to cryptographers. Simplified SWU hashing is any nonconstant rational \mathbb{F}_p -map h_{SWU} : $\mathbb{A}^1 \to K'_b$, that is an \mathbb{F}_p -parametrization of any rational (possibly singular) \mathbb{F}_p -curve [4] on K'_b . It is known that h_{SWU} induces a (usual) hashing h(a constant-time implementation is represented in §2). We know from [5] that finding h_{SWU} is generally considered a difficult task only if $\sqrt[3]{b} \notin \mathbb{F}_p$, that is $2 \nmid |E_b(\mathbb{F}_p)|$. Therefore for definiteness, it is further assumed that this condition is met.

The quotient by the point $(0, \sqrt{b}) \in E_b(\mathbb{F}_{p^2})$ always gives the (unique) \mathbb{F}_p -endomorphism of degree 3 on E_b . If $\sqrt[3]{4b} \in \mathbb{F}_p$, then the curve E_b also has a vertical \mathbb{F}_p -isogeny (see its definition in [6, Proposition 36]) of degree 3 onto the curve of $j = -2^{15}5^{33}$ [7, Table 1], since the 3-division polynomial of E_b equals $\psi_3(x) = 3x(x^3 + 4b)$. In this case, the problem of constructing h_{SWU} is obviously reduced to the analogous problem already solved for $j \neq 0$ (see, e.g, [8]). In particular, this reduction applies to the curve BN256 from [9] early very popular in the industry. Thus we will assume that $\sqrt[3]{4b} \notin \mathbb{F}_p$.

In fact, in order to construct h_{SWU} , it is sufficient that the curve E_b has a vertical \mathbb{F}_{p^2} isogeny. Moreover, if its degree is lower, then the computation of h_{SWU} (and hence h) is more
efficient in practice. This fact was realized in [3], where we use a vertical \mathbb{F}_{p^2} -isogeny of degree
2, which exists for any curve of *j*-invariant 1728. This article is devoted to the case of degree
5 (and j = 0).

Let t_1 be the \mathbb{F}_p -trace and $D_1 = t_1^2 - 4p$ be the \mathbb{F}_p -discriminant of E_b . Since the \mathbb{F}_{p^2} -trace $t_2 = t_1^2 - 2p$, then the \mathbb{F}_{p^2} -discriminant $D_2 = t_2^2 - 4p^2 = t_1^2D_1$. According to [6, Proposition 37] the curve E_b has a vertical \mathbb{F}_{p^2} -isogeny of degree 5, undefined over \mathbb{F}_p , (we denote it by $\phi_+: E_+ \to E_b$) if and only if $5 \mid t_1$. Moreover, in this case E_b does not have \mathbb{F}_p -isogenies of degree 5, because 5 cannot simultaneously divide t_1 and D_1 . By the way, E_b never has horizontal isogenies (or, equivalently for j = 0, endomorphisms) of degree 5. Finally, it is easy to check that quite popular *Barreto–Naehrig (BN) curves* [2, Example 4.2] cannot have \mathbb{F}_p -isogenies of degree 5 at all.

In particular, the desired condition is fulfilled for the \mathbb{F}_p -curves BN512 and BN638 from [10, §4.1] (the first is also from [11, Part 5]), where the numbers in the notation are equal to $\lceil \log_2(p) \rceil$. Such bit lengths will become actual for pairing-based cryptography in the future, hence these curves are potentially useful. Factorizing D_1 , we see that the smallest degree of a vertical \mathbb{F}_p -isogeny for BN512 (resp. BN638) is 1291 (resp. 1523). Therefore the idea of [8, §4.3] does not work here.

1 Main result

The 5-division polynomial of the curve E_b equals

$$\psi_5(x) = f_5(x^3),$$
 where $f_5(z) := 5z^4 + 380bz^3 - 240b^2z^2 - 1600b^3z - 256b^4.$

$$E_{+} \times E_{-} \xrightarrow{\varphi} E_{b} \times E_{b} \xrightarrow{\psi} E_{b} \times E_{b}'$$

$$\rho \downarrow \qquad \rho \downarrow \qquad \downarrow \rho$$

$$K_{\pm} \xrightarrow{\overline{\varphi}} K_{b} \xrightarrow{\overline{\psi}} K_{b}'$$
Figure 1

We get that any point of order 5 on E_b has the form $P = (\sqrt[3]{z_i}, \sqrt{z_i + b})$, where $z_i \in \mathbb{F}_{p^4}^*$ $(0 \leq i \leq 3)$ are roots of the polynomial f_5 . If P generates an \mathbb{F}_{p^2} -invariant subgroup (of the form $G = \{\mathcal{O}, \pm P, \pm 2P\}$), then obviously $\sqrt[3]{z_i} \in \mathbb{F}_{p^4}^*$ and $P \in E_b(\mathbb{F}_{p^8})$. Using Ferrari's method for expressing the roots z_i in radicals, it is easy to show that under the condition $\sqrt{5} \notin \mathbb{F}_p$ (in particular, if $5 \mid t_1$, this is true for all BN curves) we have $z_i \notin \mathbb{F}_{p^2}$. Therefore G is not \mathbb{F}_p -invariant and the norm of z_i equals $N_{\mathbb{F}_{p^4}/\mathbb{F}_p}(z_i) = -2^8 b^4/5$. As a consequence, $\sqrt[3]{4b/5} \in \mathbb{F}_p$ and hence $\sqrt[3]{5} \notin \mathbb{F}_p$. The case $\sqrt{5} \in \mathbb{F}_p$ is expected to be simpler, hence we omit it.

In fact, it is enough to put b = 10. Indeed, since $\sqrt[3]{b/10} \in \mathbb{F}_p$, the curves E_b , E_{10} are isomorphic at most over \mathbb{F}_{p^2} . Therefore the surfaces K'_b , K'_{10} are isomorphic over \mathbb{F}_p .

Let E_- be the curve \mathbb{F}_p -conjugate to E_+ , that is $j(E_-) = j(E_+)^p$. Similarly, $\varphi_-: E_- \to E_b$ is the isogeny \mathbb{F}_p -conjugate to φ_+ , that is $\varphi_- = \operatorname{Fr} \circ \varphi_+ \circ \operatorname{Fr}^{-1}$, where Fr is the Frobenius endomorphism. An explicit form of the dual isogenies $\widehat{\varphi_{\pm}}: E_b \to E_{\pm}$ and then isogenies φ_{\pm} can be easily found, using *Velu's formulas* [6, Proposition 38]. Besides, let us clarify Figure 1. We denote by K_{\pm} (resp. K_b) the Kummer surface of the direct product $E_+ \times E_-$ (resp. $E_b \times E_b$). In addition, $\varphi := (\varphi_+, \varphi_-)$, the isogeny ψ is defined in §[3, §1], and ρ is the natural quotient map. Finally, $\overline{\varphi}$ (resp. $\overline{\psi}$) is the restriction of φ (resp. ψ) to the Kummer surfaces.

Due to [7, Table 2], by substituting 0 in the *modular polynomial* [12, Exercise 2.18] of level 5, we obtain

$$\Phi_5(0,j) = H_D(j)^3$$
, where $H_D(j) = j^2 + 654403829760 \cdot j + 5209253090426880$

is the Hilbert class polynomial [12, §II.6] of discriminant $D = -5^23$. Its roots equal

$$j_{\pm} := j(E_{\pm}) = \pm 146329141248 \cdot \sqrt{5} - 327201914880.$$

Since the ideal class group [6, Proposition 51] of the field $\mathbb{Q}(\sqrt{5})$ is trivial, the curves E_{\pm} , considered over $\mathbb{Q}(\sqrt{5})$, have a global minimal model [13], which, as it turns out, is a short Weierstrass form, for instance

$$E_{\pm}: y^2 = x^3 + 60(\pm 9\sqrt{5} - 25)x - 50(\pm 252\sqrt{5} - 521).$$

Using the computer algebra system Magma, we obtain in [14] a non-trivial map $\chi: \mathbb{A}^1 \to K_{\pm}$ invariant under the "twisted" Frobenius endomorphism from [3, §1]. The arguments given when finding it are almost the same as those of [3, §3.1]. Thus we have the map

$$h_{SWU} := \psi \circ \overline{\varphi} \circ \chi = \left(x_0(t), x_1(t), y(t) \right),$$

which is also explicitly written out in [14]. Here $x_0(t), x_1(t)$ are rational \mathbb{F}_p -functions of the variable t of degree 20 and y(t) is that of degree 60. An explanation of why h_{SWU} is defined

over \mathbb{F}_p is given in [3, §1]. Finally, using [3, Theorem 1.1] and [4, §6.1.2], one can easily check that it is birational with its own image.

Let's summarize the main result of the article.

Theorem 1. If an ordinary elliptic \mathbb{F}_p -curve E_b has an \mathbb{F}_{p^2} -isogeny of degree 5, then (except for a finite number of p) there is a simplified SWU hashing h_{SWU} : $\mathbb{A}^1 \dashrightarrow K'_b$. Moreover, the latter can be found explicitly.

According to [7, Tables 1, 2] there are exactly 5 non-maximal (i.e., $\subseteq \mathbb{Z}[\omega]$) orders of the quadratic field $\mathbb{Q}(\sqrt{-3})$, having class number 1 or 2. Their conductors are 2, 3 and 4, 5, 7 respectively. Thus there remains only the case of a vertical \mathbb{F}_{p^2} -isogeny of degree 7 to (from) E_b , for which, apparently, it is possible to construct h_{SWU} in a similar way, carrying out reasoning regardless of p, that is over a number field.

Finally, we emphasize that all the above arguments remain valid for an elliptic curve E_b over any finite field \mathbb{F}_q of characteristic p such that $2,3 \nmid \log_p(q)$ and $p \equiv 1 \pmod{3}$. In turn, we do not expect significant obstacles to extend Theorem 1 if at least one of the last restrictions does not hold.

2 Simplified SWU hashing in constant time

We would like to explain how a simplified SWU hashing $h_{SWU}: \mathbb{A}^1 \to K'_b$ gives a (usual) hashing $h: \mathbb{F}_q \to E_b(\mathbb{F}_q)$, where $b \in \mathbb{F}_q^*$. In fact, any elliptic \mathbb{F}_q -curve of $j \neq 1728$ can be next considered instead of E_b . In practice, one almost always takes $q \equiv 3 \pmod{4}$ (i.e., $\sqrt{-1} \notin \mathbb{F}_q$). Let $f_i := x_i^3 + b$ and $y := y_0 y_1$. Then the Kummer surface can be taken in the form $K'_b: y^2 = -f_0 f_1 \subset \mathbb{A}^3_{(x_0,x_1,y)}$. We denote by U and V respectively the domain of definition and the image for h_{SWU} . Also, let $\theta := f_0^{(q+1)/4}$. Consider the auxiliary map

$$h': V(\mathbb{F}_q) \to E_b(\mathbb{F}_q), \qquad (x_0, x_1, y) \mapsto \begin{cases} (x_0, \theta) & \text{if} \qquad \theta^2 = f_0, \\ (x_1, y/\theta) & \text{otherwise, i.e.,} \quad \theta^2 = -f_0. \end{cases}$$

Since

$$\theta^2 = f_0^{(q+1)/2} = f_0^{(q-1)/2} \cdot f_0 = \pm f_0,$$

this map is well defined everywhere on $V(\mathbb{F}_q)$. We can thus put

$$h := h' \circ h_{SWU} \colon U(\mathbb{F}_q) \to E_b(\mathbb{F}_q).$$

The set $\mathbb{F}_q \setminus U(\mathbb{F}_q)$ containing only \mathbb{F}_q -roots of the denominators of the functions $x_0(t)$, $x_1(t)$, y(t) has insignificant cardinality ($\leq \deg(x_0) + \deg(x_1) + \deg(y) = 100$). Therefore, if necessary, the value of h on its elements can be specified manually.

We emphasize that in the definition of h' the Legendre symbol $\left(\frac{\cdot}{q}\right)$ (in other words, a quadratic residuosity test) in the field \mathbb{F}_q does not appear. In turn, the element θ can be calculated without the inversion operation in \mathbb{F}_q even if the function $x_0(t)$ is not polynomial (see [8, §4.2]). Therefore, by returning the value of h in (weighted) projective coordinates, we entirely avoid inversions. Thus the hashing h is *constant-time*, that is the computation time of its value is independent of an input argument.

The latter circumstance is considered a great advantage over the (universal) *SWU*-hashing [2, §8.3.4, §8.4.2], which, on the contrary, generally requires the computation of two Legendre symbols. The point is that time-constant implementations protect cryptographic protocols against timing attacks [2, §8.2.2, §12.1.1]. And the operations $\binom{\gamma}{q}$, γ^{-1} (for $\gamma \in \mathbb{F}_q^*$) are possible sources of such attacks.

Note that computing the Legendre symbol in \mathbb{F}_q is reduced to the same task in \mathbb{F}_p , using the obvious equality $\left(\frac{\gamma}{q}\right) = \left(\frac{N(\gamma)}{p}\right)$, where $N(\gamma)$ is the norm of γ with respect to the extension $\mathbb{F}_q/\mathbb{F}_p$. There are two common methods for computing the Legendre symbol in \mathbb{F}_p . One uses Euler's criterion $\left(\frac{\gamma}{p}\right) = \gamma^{(p-1)/2}$ (for $\gamma \in \mathbb{F}_p^*$), but requires the very inefficient exponentiation operation in \mathbb{F}_p . The second is based on Gauss's quadratic reciprocity law $\left(\frac{\gamma}{\delta}\right)\left(\frac{\delta}{\gamma}\right) = (-1)^{(\gamma-1)(\delta-1)/4}$ for the Jacobi symbol (with odd $\gamma, \delta \in \mathbb{Z}$). This method is much more efficient, but difficult to implement in constant time. Identical conclusions are also made in [2, §2.2.9, §8.4.2].

In fact, the hashing $h: \mathbb{F}_q \to E_a(\mathbb{F}_q)$, proposed in [3, §4], to an elliptic \mathbb{F}_q -curve $E_a: y^2 = x^3 - ax$ (where $\sqrt{a} \notin \mathbb{F}_q$) of *j*-invariant 1728 can also be made constant-time. Let $q \equiv 1 \pmod{4}$ (or, equivalently, $i := \sqrt{-1} \in \mathbb{F}_q$) and $q \not\equiv 1 \pmod{8}$. In other words, $q \equiv 5 \pmod{8}$. The first condition is necessary for the curve E_a to be ordinary. And second is sufficient to implement the square root extraction in \mathbb{F}_q by means of one exponentiation in \mathbb{F}_q . As it is easy to see, under the given conditions we have $\sqrt{i} \notin \mathbb{F}_q$.

Let $h_{SWU}: \mathbb{A}^1 \to K'_a$ be the simplified SWU hashing built in [3, §3.1]. We will assume that the Kummer surface is given in the form $K'_a: y^2 = if_0f_1 \subset \mathbb{A}^3_{(x_0,x_1,y)}$, where $f_i = x_i^3 - ax_i$. As above, U and V are respectively the domain of definition and the image for h_{SWU} . Also, let $\theta := f_0^{(q+3)/8}$. Consider the auxiliary map

$$h': V(\mathbb{F}_q) \to E_a(\mathbb{F}_q), \qquad (x_0, x_1, y) \mapsto \begin{cases} \begin{pmatrix} x_0, \theta \end{pmatrix} & \text{if} & \theta^2 = f_0, \\ \begin{pmatrix} x_0, i\theta \end{pmatrix} & \text{if} & \theta^2 = -f_0, \\ \begin{pmatrix} x_1, y/\theta \end{pmatrix} & \text{if} & \theta^2 = if_0, \\ \begin{pmatrix} x_1, y/(i\theta) \end{pmatrix} & \text{otherwise, i.e.,} & \theta^2 = -if_0. \end{cases}$$

Since

$$\theta^2 = f_0^{(q+3)/4} = f_0^{(q-1)/4} \cdot f_0 \in \{\pm f_0, \pm i f_0\},$$

this map is well defined everywhere on $V(\mathbb{F}_q)$. Thus

$$h = h' \circ h_{SWU} \colon U(\mathbb{F}_q) \to E_a(\mathbb{F}_q).$$

As before, the set $\mathbb{F}_q \setminus U(\mathbb{F}_q)$ can be processed separately.

Acknowledgements. The author expresses his deep gratitude to his scientific advisor M. Tsfasman.

References

 J. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer, New York, 2009.

- [2] N. El Mrabet, M. Joye, Guide to Pairing-Based Cryptography, Cryptography and Network Security Series, Chapman and Hall/CRC, New York, 2016.
- [3] D. Koshelev, Hashing to elliptic curves of j-invariant 1728, eprint IACR 2019/1294, 2019.
- [4] J. Sendra, F. Winkler, S. Pérez-Díaz, Rational Algebraic Curves: A Computer Algebra Approach, Algorithms and Computation in Mathematics, 22, Springer, Berlin, 2008.
- [5] D. Koshelev, Hashing to elliptic curves of j = 0 and Mordell–Weil groups, arXiv:2005.08336, 2020.
- [6] L. De Feo, Mathematics of isogeny based cryptography, arXiv:1711.04062, 2017.
- [7] Y. Bilu, F. Luca, A. Pizarro-Madariaga, "Rational products of singular moduli", Journal of Number Theory, 158 (2016), 397–410.
- [8] R. Wahby, D. Boneh, "Fast and simple constant-time hashing to the BLS12-381 elliptic curve", *IACR Transactions on Cryptographic Hardware and Embedded Systems*, **2019(4)**, 154–179.
- [9] M. Naehrig, R. Niederhagen, P. Schwabe, "New software speed records for cryptographic pairings", Latincrypt 2010, Security and Cryptology, 6212, ed. M. Abdalla, P. Barreto, Springer, Puebla, Mexico, 2010, 109–123.
- [10] FIDO Alliance, FIDO ECDAA Algorithm, 2018.
- [11] ISO/IEC, Cryptographic techniques based on elliptic curves (ISO/IEC 15946), 2017.
- [12] J. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer, New York, 1994.
- [13] J. Jones, J. Cremona, *Global minimal model*, https://www.lmfdb.org/knowledge/show/ec.global _minimal_model, 2018.
- [14] D. Koshelev, *Magma code*, https://github.com/dishport/Efficient-constant-time-hashing-to-some-elliptic-curves-of-j-invariant-0, 2020.