
Optimized Binary GCD for Modular Inversion

Thomas Pornin

NCC Group, thomas.pornin@nccgroup.com

9 August 2020

Abstract. In this short note, we describe a practical optimization of the well-known

extended binary GCD algorithm, for the purpose of computing modular inverses. The

method is conceptually simple and is applicable to all odd moduli (including non-

prime moduli). When implemented for inversion in the �eld of integers modulo the

prime 2
255 − 19, on a recent x86 CPU (Co�ee Lake core), we compute the inverse in

7490 cycles, with a fully constant-time implementation.

1 Introduction
We study here the following problem: given an odd integer m ≥ 3 and a value y ∈ Zm, com-

pute its modular inverse x which is such that xy = 1 mod m. This is a notoriously expensive

operation, compared with addition and multiplication inZm. Its cost is the main reason why,

for instance, operations on elliptic curves are often done with projective coordinates or other

similar systems where coordinates are handled as fractions, so that all costly inversions can be

mutualized into a �nal inversion, once the whole computation is �nished.

There are some applications of modular inversion where the value to invert and/or the

modulus is secret. In elliptic curve cryptography, the modulus m is normally prime and pub-

licly known, but the value to invert is private. In RSA key pair generation, modular inversion

is needed to compute the private exponent, and the CRT reconstruction factor; in these cases,

the value to invert and the modulus are both secret, and when computing the private expo-

nent from the public exponent, the modulus is not even prime. In all situations where secret

values are handled, a constant-time implementation is needed (i.e. one with an execution time

and a memory access pattern that do not vary depending on secret data).

When m is prime, a simple method is to use Fermat’s little theorem:

1/y = ym−2
mod m

This method requiresO(logm)multiplications modulom, hence it usually has a cost cubic in

the size ofm (assuming a quadratic cost for multiplication, which is the usual case for moduli

used in cryptographic applications). When m = 2
255 − 19, and implementing on a recent

64-bit x86 CPU, modular multiplications are quite fast, and this is favourable to Fermat’s

little theorem; our implementation of this inversion method, on an Intel Core i5-8259U at

2.30 GHz (Co�ee Lake core), can perform a constant-time inversion in 9175 cycles. The goal

is to �nd something faster.

Apart from Fermat’s little theorem, the main method to compute modular inverses is the

Extended Euclidean Algorithm for GCD. While Euclid’s algorithm was presented by Euclid

himself[7], the extension to compute values u and v such that au+ bv = GCD(a, b) was �rst

described by
¯
Aryabhat.a[1]. The binary GCD is a variant of Euclid’s algorithm that performs

only comparisons, subtractions and divisions by 2 (i.e. right shifts), and is therefore more

amenable to fast and constant-time implementations than the general divisions in Euclid’s

algorithm; that algorithm was �rst presented, albeit a bit cryptically, in the Nine Chapters on

the Mathematical Art[5]. A more accessible description was published by Stein in 1967[14].

A variant called the plus-minus algorithm was presented by Brent and Kung in 1983[4]. More

recently, a new (and quite complex) algorithm was described by Bernstein and Yang[3]. See

also [12] for extensive benchmarks for inversions modulo primes with the 2
n − r format (for

a small r). Asymptotically fast but not constant-time GCD algorithms are presented in [11].

Bernstein and Yang claim to hold the current speed record for computing inverses modulo

2
255−19 on recent 64-bit x86 CPUs (Skylake cores and similar variants). The �eld of integers

modulo the prime p = 2
255 − 19 is used by some well-known elliptic curves, Curve25519

and Edwards25519, thus highlighting the relevance of this particular modulus. Bernstein and

Yang obtain a performance of 8520 cycles on a Co�ee Lake core
1
. With the method presented

here, we do better: 7490 cycles.

Our algorithm was added to the BearSSL library[2] in 2018; it was also deployed as part of

the implementation of key pair generation in the reference code for the Falcon post-quantum

signature scheme[8]. This note formally describes the algorithm and proves its correctness.

2 Optimizing the Extended Binary GCD
Algorithm 1 describes the classic extended binary GCD.

Algorithm 1 Extended Binary GCD (classic algorithm)

Require: Odd modulus m (m ≥ 3, m mod 2 = 1) and value to invert y (0 ≤ y < m)

Ensure: 1/y mod m (if GCD(y, m) = 1), or zero

1: a← y, u← 1, b← m, v← 0

2: while a ≠ 0 do
3: if a = 0 mod 2 then
4: a← a/2 ⊲ a is even, so this division is exact.

5: u← u/2 mod m
6: else
7: if a < b then
8: (a, u, b, v) ← (b, v, a, u) ⊲ Conditional swap to ensure a ≥ b.

9: a← (a − b)/2 ⊲ a and b are odd, so this division is exact.

10: u← (u − v)/2 mod m
11: if b ≠ 1 then
12: return 0 (value y is not invertible) ⊲ b contains GCD(y, m) at this point.

13: return v

1
I am deeply grateful to Bo-Yin Yang, who sent me a copy of their code so that I may benchmark

it on the same test system as the one used for the algorithm described in this note. This speed is almost

identical to the 8543 cycles on a Kaby Lake core, as reported in the published article; this makes sense,

since Co�ee Lake and Kaby Lake use the same internal scheduler and execution units, and di�er only in

external pieces that should not matter much for a compact, L1-cache only computational piece of code.

2

In this algorithm, values a and b are nonnegative integers, while u and v are integers mod-

ulo m. It is not hard to see that:

– b is always an odd integer;

– GCD(a, b) is constant throughout the algorithm;

– when a = 0 (exit condition), b contains the GCD of y and m;

– divisions by 2 to compute the new value of a are exact;

– each iteration maintains the invariants a = uy mod m and b = vy mod m;

– the sum of the lengths, in bits, of a and b is decremented by at least one at each iteration.

Therefore, if m is a n-bit integer, then at most 2n − 1 iterations are needed to reach the exit

condition. In order to have a constant-time implementation, we need to always perform 2n−1

iterations; ifa = 0, the extra iterations will not modify bor v, so they won’t modify the result
2

.

A constant-time implementation will also need to perform each iteration in a constant-time

way, replacing all conditions with bitwise combinations of values.

The extended binary GCD is quadratic in the length of the modulus: it has O(n) itera-

tions, and each iteration involves a �xed number of operations which can be computed in time

O(n) (comparisons, subtractions, halvings). If implemented as is, its performance is compa-

rable to Fermat’s little theorem form = 2
255−19, but somewhat worse for platforms with fast

large multiplications; for larger moduli, it becomes better. It also properly handles non-prime

moduli.

We will now present two complementary optimization methods that apply to this algo-

rithm and substantially improve performance in practice.

Optimization 1: mutualize updates to u and v: In the description above, u and v
record the modi�cations applied to a and b, but no decision is taken based on their values.

We can thus delay and group the updates to u and v:

– Initialize the update factors: f0 ← 1, g0 ← 0, f1 ← 0, g1 ← 1

The update factors are such that the new value of (u, v) should be:

(u, v) ← (f0u + g0v, f1u + g1v)

We update f0, f1, g0 and g1 instead of u and v in the algorithm. Once every k iterations,

while the update factors are still small (e.g. they �t in a single register each), we apply

them to u and v using multiplication opcodes, which is much faster than making k linear

updates. After each such update, the update factors are reinitialized.

– When swapping a with b (in case a and b are both odd, and a < b), exchange f0 with f1

and g0 with g1.

– When subtracting b from a, subtract f1 from f0 and g1 from g0.

– At each iteration, we should divide f0 and g0 by 2 (corresponding to the division of a by

2), but this would entail making them non-integral. Instead, we multiply f1 and g1 by 2.

The e�ect of the last item is that the update factors, after t iterations, are in fact themselves

wrong by a factor of exactly 2
t
. This is not much of a problem; we can perform a division of

2
As will be explained later on, the last iteration needs not be done if the input y is known to be

invertible.

3

the �nal result v by 2
2n−1

, after the 2n − 1 iterations (if m is known in advance, this division

is merely a multiplication by a precomputed constant; even in the general case, this division

is the same thing as a pair of Montgomery reductions, and has a cost no higher than that of a

couple of modular multiplications).

The update factors are signed integers; after k iterations, the maximum (absolute) value

of any of them is 2
k
. It can also be seen that−2

k
is not possible, only+2

k
, and only for f1 or g1.

Thus, one can set k to be up to one less than the size of the registers on the implementation

architecture.

Optimization 2: use approximations of a and b: While the update factors allow

grouping the updates of u and v, and performing them e�ciently with the help of integer

multiplication opcodes, the values of a and b are still large. However, the update factors record
the operations which have been performed on a and b, to be mimicked by u and v; thus, if we

could compute the update factors first, we may also apply them to a and b, thereby grouping

and optimizing the updates to a and b too.

The issue here is that all update decisions depend on the values of a and b; speci�cally,

whether a is even or odd (thus using the low bit of a), and whether a is greater than b (which

requires mostly looking at the high bits ofa and b). It can easily be seen that fork iterations, the

value of the low bit of awill only depend on the initial k low bits of a and b. The optimization

idea is to make approximations of a and b that will �t in a single register each, and can tell us

in a mostly correct way whether a is greater than b or not.

Suppose that the local architecture o�ers 2k-bit registers. Let n = max(len(a), len(b)),
where len(x) is the length of x in bits (the smallest integer i such that x < 2

i
). Thus, n is the

current length of the largest of a and b. If n ≤ 2k, then the values a and b already �t into a

single register each, and we can use the classic extended GCD algorithm to compute the exact

update factors. Otherwise, extract the k low bits and the k top bits of a and b, and assemble

them into ā and
¯b:

ā = (a mod 2
k) + 2

kba/2n−kc
¯b = (b mod 2

k) + 2
kbb/2n−kc

Then, apply the extended binary GCD on ā and
¯b for k iterations, yielding update factors f0,

g0, f1 and g1. Finally, apply these factors to update a, b, u and v:

(a, b) ← (f0a + g0b, f1a + g1b)
(u, v) ← (f0u + g0v, f1u + g1v)

Note that the computed update factors are then approximations; they may be slightly

wrong, and thus fail to shrink a and b as much as expected. They may also lead to a negative

value for a or b; in case a negative a is obtained, it su�ces to negate it, and also to negate u
(this time modulo m), and similarly for b. In practice, it is convenient to:

1. update a with the update factors f0 and g0;

2. if the new value is negative, negate it, and also negate f0 and g0;

3. apply the (possibly negated) update factors f0 and g0 to compute the new value of u.

4

The tricky point is computing how many iterations are needed in the worst case; for a

constant-time implementation, we need an absolute bound. Appendix A is dedicated to prov-

ing that each sequence of k iterations ensures that len(a) + len(b) is reduced by at least k;

therefore, 2len(m) − 1 iterations are su�cient (just like the classic binary GCD algorithm).

This bound is optimal: if y = 2
len(m)−1

, then all 2len(m) − 1 iterations are needed.

It may be convenient, for implementation purposes, to slightly raise the total number of

iterations so that it is a multiple of k. Alternatively, the last iterations may be specialized away,

which may allow for some extra optimizations, especially when the modulus m is prime; this

will be detailed later on.

The optimized algorithm is described below (algorithm 2).

Algorithm 2 Extended Binary GCD (optimized algorithm)

Require: Odd modulus m (m ≥ 3, m mod 2 = 1), value y (0 ≤ y < m), and k > 1

Ensure: 1/y mod m (if GCD(y, m) = 1)

1: a← y, u← 1, b← m, v← 0

2: for 1 ≤ i ≤ d(2len(m) − 1)/ke do
3: n← max(len(a), len(b), 2k)
4: ā← (a mod 2

k) + 2
k ba/2n−kc ⊲ ā < 2

2k

5:
¯b← (b mod 2

k) + 2
k bb/2n−kc ⊲ ¯b < 2

2k

6: f0 ← 1, g0 ← 0, f1 ← 0, g1 ← 1

7: for 1 ≤ j ≤ k do
8: if ā = 0 mod 2 then
9: ā← ā/2

10: else
11: if ā < ¯b then
12: (ā, ¯b) ← (¯b, ā)
13: (f0, g0, f1, g1) ← (f1, g1, f0, g0)
14: ā← (ā − ¯b)/2
15: (f0, g0) ← (f0 − f1, g0 − g1)
16: (f1, g1) ← (2f1, 2g1)
17: a← af0 + bg0

18: if a < 0 then
19: (a, f0, g0) ← (−a,−f0,−g0)
20: u← uf0 + vg0 mod m
21: b← af1 + bg1

22: if b < 0 then
23: (b, f1, g1) ← (−b,−f1,−g1)
24: v← uf1 + vg1 mod m
25: v← v/2k d(2len(m)−1)/ke

mod m
26: if b ≠ 1 then
27: return 0 (value y is not invertible)

28: return v

5

When y is known in advance to be either 0 or an invertible number modulo m (this is

always the case when m is prime), then the last two outer iterations can be specialized and

simpli�ed, because, at that point:

– If y = 0, then the update factors after k inner iterations will be f0 = 1, g0 = 0, f1 = 0 and

g1 = 2
k
, regardless of the value of

¯b.

– Otherwise, it is known that len(a) + len(b) < 2k, which means that ā = a and
¯b = b;

the computed update factors will then be exact, and will remain exact even if more than

k iterations are performed. Depending on the implementation of the routines that apply

the update factors, it may be possible to merge the last two outer iterations.

– At the end of the �nal iteration, it is not necessary to compute the new values of a, b and

u, only v (since the update factors are exact at that point, they cannot lead to a negative

b).

– The last inner loop iteration can be omitted because when the GCD is 1, the last iteration

that starts with a non-zero amust have a = 1 and b = 1, and v already contains the correct

result. This reduces the total number of required iterations to 2len(m) − 2, i.e. 508 for

a 255-bit modulus.

In the general case, when the modulus m is not necessarily prime, and a non-invertible

but distinct from zero input y is possible, these optimizations on the �nal steps can still be

applied, but an extra veri�cation step is required. It su�ces to verify that the computed value,

when multiplied with the original operand, yields the value 1. The cost of this extra check is

small (typically less than 2% of the overall cost, for a modulus of about 256 bits).

3 Implementation and Benchmarks
We implemented our method in the case of the prime modulus p = 2

255 − 19. Our code is

available at:

https://github.com/pornin/bingcd

Implementation is in C, with some inline assembly, as well as calls to intrinsic functions. It

should compile and run on any Linux or similar system, using GCC or Clang, and an x86

CPU with BMI2 extensions (in the Intel line, this means using a Haswell core or newer).

Extraction of the approximated words ā and
¯b is done with constant-time selection prim-

itives to obtain the highest non-zero limbs in a or b (bitwise Boolean or), then the lzcnt
opcode to count the number of leading zeros. This opcode is available on all x86 CPUs that

also feature the BMI2 opcodes. This extraction is constant-time under the assumption that

bitwise shifts execute in time independent of the shift count, an assumption that is valid on

all relevant x86 CPUs to date
3

.

Updates to a, b, u and v use 64 × 64 → 128 multiplication opcodes, accessed through

the non-standard unsigned __int128 type. Large integers are represented over 256 bits

as four 64-bit limbs; carry propagation uses the adc and sbb opcodes, accessed through the

_addcarry_u64() and _subborrow_u64() intrinsic functions.

3
The last Intel CPU on which shifts were not constant-time with regard to the shift count was the

Pentium IV, in the early 2000s, but that CPU does not o�er lzcnt.

6

https://github.com/pornin/bingcd

The whole point of the optimization described in this note is to make the core of the inner

loop as simple and fast as possible. In our implementation, it boils down to the following

routine, implemented using inline assembly:

Copy f0, g0, f1, g1, xa and xb into r10..r15
movq %rax, %r10
movq %rbx, %r11
movq %rcx, %r12
movq %rdx, %r13
movq %rsi, %r14
movq %rdi, %r15

Conditional swap if xa < xb
cmpq %rdi, %rsi
cmovb %r15, %rsi
cmovb %r14, %rdi
cmovb %r12, %rax
cmovb %r10, %rcx
cmovb %r13, %rbx
cmovb %r11, %rdx

Subtract xb from xa
subq %rdi, %rsi
subq %rcx, %rax
subq %rdx, %rbx

If xa was even, override the operations above
testl $1, %r14d
cmovz %r10, %rax
cmovz %r11, %rbx
cmovz %r12, %rcx
cmovz %r13, %rdx
cmovz %r14, %rsi
cmovz %r15, %rdi

Now xa is even; apply shift.
shrq $1, %rsi
addq %rcx, %rcx
addq %rdx, %rdx

Only simple instructions that can be executed in several distinct CPU ports, thus amenable

to parallelism, are used. Conditional swaps and selection are performed with cmov; this in-

struction is constant-time, has a 1-cycle latency, and two of them can be executed in a single

cycle on a Co�ee Lake core, thus each sequence of six cmov conceptually needs only 3 cy-

cles to execute. The non-conditional mov are even more amenable to parallelism (four ports

are eligible, leading to up to four mov executing in the same cycle) and some may be in fact

eliminated by the register renaming unit. The sub and add opcodes can similarly execute on

7

four ports. Note that multiplications by 2 of f1 and g1 (rcx and rdx in the code above) are

performed with add instead of shl, because the latter may execute on only two ports and

was measured to slightly decrease performance.

Counting each cmov at 0.5 cycle, sub, add, cmp and test at 0.25 cycle each, and shr
at 0.5 cycle (using the reported reciprocal throughputs from Agner Fog’s comprehensive

tables[10]), the sequence above requires a minimum of 8.25 cycles, not counting the mov op-

codes. Simple measurements show that this sequence, when used in a loop, requires 9 cycles

per iteration (on our test system), which means that some of the mov opcodes are eliminated

and replaced with internal free data routing. In total, the 508 iterations represent 4572 cycles

by themselves; all the other operations (extraction of the properly shifted words, updates to

a, b, u and v, �nal multiplication by 2
−508

) use slightly less than 3000 cycles. This highlights

the importance of optimizing that inner loop as much as possible.

Measures are made on an Intel Core i5-8295U CPU, clocked at 2.3 GHz. Host system

is Linux (Ubuntu 20.04, kernel 5.4.0-42). C compiler is Clang-10.0.0 and compilation uses

optimization �ags -O3 -march=native. TurboBoost is disabled (in the BIOS), so there is

no frequency scaling above 2.3 GHz. SMT (HyperThreading) is disabled. Clock cycles are

obtained with the rdtsc opcode before and after a sequence of 100 dependent inversions

(i.e. each inversion works over the output of the previous one); a serializing lfence opcode

is also used to ensure that the CPU scheduler will run rdtsc at the right place in the sequence

of instructions. The bench program �rst runs some extensive unit tests, to verify correction of

the computations, and also act as a “warm-up” to make sure the CPU has gone out of energy-

saving mode and has reached its nominal frequency. 2000 measures are then performed; the

�rst 1000 are discarded (they are used to make sure caches are populated and branch predic-

tion is properly trained), then the median of the remaining 1000 is reported
4

.

On this system, our inversion routine runs in 7490 cycles. This is better than the pre-

viously published record[3], which runs in 8520 cycles on the same system. For compari-

son purposes, we also implemented the usual inversion method with Fermat’s little theorem

(FLT); for this, we use handwritten assembly routines for multiplications, squarings, and se-

quences of squarings modulo 2
255 − 19. These routines are inspired from, and very similar

to, the ones described in [13] and [12], though our FLT inversion routine ends up running

in 9175 cycles, which is marginally faster than the previous record (9301 cycles, in [12]): ap-

parently, our multiple squaring routine is faster by about half a cycle per iteration. We don’t

really know why. In any case, the extended binary GCD is still faster.

A noteworthy feature of our code is that it can work with other moduli, with the same

performance; supported moduli have the format 2
255 − r for any odd r between 1 and 2

31 − 1

(this limit is imposed by the way we perform modular reduction after a multiplication). If the

modulus is not prime, the FLT inversion method no longer works, but the extended binary

4
The deactivation of TurboBoost and the warm-up steps ensure that the CPU runs at exactly

the frequency used by the TSC counter. We also tried to use the performance counters, namely the

CPU_CLK.UNHALTED counter which is supposed to count “true” cycles, and can be read with

rdpmc at index 0x40000001; this does not yield di�erent results. Our test program uses rdtsc be-

cause it is readable by non-root userland processes by default. Regardless, some measurement variance

remains, of unclear provenance. It does not seem to be correlated with the value being inverted (since we

observe that variance even when using the same values again and again), and thus should not contradict

our claim of constant-time behaviour. It is known that modern complex CPUs are full of accumulated

heuristics, many of them undocumented.

8

GCD still returns the correct result (in that case, our code includes the extra veri�cation step,

to also cover non-invertible inputs; that extra veri�cation step costs about 100 cycles).

4 Conclusion
We described a simple and practical optimization to the classic extended binary GCD algo-

rithm. In the speci�c case of inversion modulo 2
255 − r (for a small r), this optimization

happens to lead to a routine which is faster than the usual method based on Fermat’s little

theorem, and also slightly faster than the previously best reported inversion routine for that

class of moduli, the recent (and more complicated) algorithm from Bernstein and Yang. This

does not mean that our optimization makes binary GCD the best algorithm in all cases; it

depends on many parameters, such as modulus size and format and target implementation

architecture. We also did not try to apply it to polynomial GCDs, though a similar optimiza-

tion might also provide practical bene�ts there. One can view our method as an improvement

in data locality, thereby reducing data routing cost (in our primary example, by keeping val-

ues in single registers, thereby avoiding RAM tra�c in the innermost loop).

The same optimization technique should, conceptually, apply to the computation of the

Jacobi symbol[6]. The Jacobi symbol is useful to test the quadratic residue status of a �nite

�eld element, which in turn is part of the operations used for constant-time hashing into

elliptic curves[9].

Acknowledgements:We thank Eric Schorn and Paul Bottinelli, who reviewed this article.

References
1. aAy
BV, Āryabhat. ı̄ya, 499.

2. BearSSL, a smaller SSL/TLS library,

https://www.bearssl.org/
3. D. Bernstein and B.-Y. Yang, Fast constant-time gcd computation and modular inversion,

https://gcd.cr.yp.to/papers.html#safegcd
4. R. Brent and H. Kung, Systolic VLSI arrays for linear-time GCD computation, VLSI 1983, pp. 145-

154, 1983.

5. 九章算术, chapter 1, section 6, 1st century AD.

6. H. Cohen, A Course in Computational Algebraic Number Theory, Springer, pp. 29-31, 1993.

7. Euclid, Elements, book 7, propositions 1 and 2, c. 300 BC.

8. Falcon: Fast-Fourier Lattice-based Compact Signatures over NTRU,

https://falcon-sign.info/
9. A. Faz-Hernandez, S. Scott, N. Sullivan, R. Wahby and C. Wood, Hashing to Elliptic Curves,

https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-09
10. A. Fog, Instruction tables: Lists of instruction latencies, throughputs and micro-operation breakdowns

for Intel, AMD and VIA CPUs,
https://www.agner.org/optimize/instruction_tables.pdf

11. N. Möller, On Schönhage’s algorithm and subquadratic integer GCD computation, Mathematics of

Computation, vol. 77, pp. 589-607, 2008.

12. K. Nath and P. Sarkar, Efficient Arithmetic In (Pseudo-)Mersenne Prime Order Fields,
https://eprint.iacr.org/2018/985

9

https://www.bearssl.org/
https://gcd.cr.yp.to/papers.html#safegcd
https://falcon-sign.info/
https://tools.ietf.org/html/draft-irtf-cfrg-hash-to-curve-09
https://www.agner.org/optimize/instruction_tables.pdf
https://eprint.iacr.org/2018/985

13. T. Oliveira, J. López, H. Hisil, A. Faz-Hernández and F. Rodríguez-Henríquez,

How to (pre-)compute a ladder – improving the performance of X25519 and X448, SAC 2017, Lec-

ture Notes in Computer Science, vol. 10719, pp. 172-191.

14. J. Stein, Computational problems associated with Racah algebra, Journal of Computational Physics,

vol. 1, issue 3, pp. 397–405, 1967.

A Bounding the Number of Iterations
In this section, we prove that the inner loop of algorithm 2 ensures that the k iterations always

reduce len(a) + len(b) by at least k bits.

Each excution of the inner loop consists of k iterations. We number iterations from 0 to

k − 1; this means that iteration t happens just after t iterations have completed. We will note

xt the value of the quantity x (for any of the quantities we manipulate, namely a, b, ā and
¯b)

when exiting iteration t − 1 and entering iteration t.

A.1 Maximum Error Bound
We �rst need to show that ā and

¯b remain “good approximations” of a and b over the k iter-

ations, i.e., that the upper bits of ā and
¯b still match or are close to the upper bits of a and

b.

First, notice that after t iterations of the inner loop (0 ≤ t ≤ k), the following inequalities

hold:

|f0 | + |g0 | ≤ 2
t

|f1 | + |g1 | ≤ 2
t

They are obviously correct at the start (t = 0) since, at that point, f0 = g1 = 1 and f1 = g0 = 0.

Then, at each successive iteration:

– If ā is even, then:

|f0 | + |g0 | ≤ 2
t < 2

t+1

|2f1 | + |2g1 | = 2(|f1 | + |g1 |) ≤ 2
t+1

– If ā is odd, then the conditional swap preserves the inequalities, and the subtraction im-

plies that:

|f0 − f1 | + |g0 − g1 | ≤ |f0 | + |f1 | + |g0 | + |g1 |
≤ |f0 | + |g0 | + |f1 | + |g1 |
≤ 2

t+1

Suppose that the inner loop started with a and b, approximated into ā and
¯b. We have

n = max(len(a), len(b)). If n ≤ 2k, then ā = a and
¯b = b, and there is no approximation;

the algorithm then proceeds exactly as the classic algorithm (algorithm 1) and ensures a gain

of at least 1 bit per iteration. We thus consider thereafter that n > 2k.

10

Considering the situation after t iterations of the inner loop (0 ≤ t ≤ k), we de�ne:

āt = (āf0 + ¯bg0)/2t
¯bt = (āf1 + ¯bg1)/2t

at = (af0 + bg0)/2t

bt = (af1 + bg1)/2t

These are, respectively, the values of ā and
¯b after t iterations, and the corresponding values

of a and b, should the update factors be applied at that point. Note that, by construction, the

divisions by 2
t

are exact.

Note that ā and
¯b are approximations of a and b in the sense that bits k to 2k − 1 of ā

(respectively
¯b) are exactly the same as bits n − k to n − 1 of a (respectively b). This can be

expressed with the following inequalities:

|a − 2
n−2kā| < 2

n−k

|b − 2
n−2k ¯b| < 2

n−k

Consider now the following:

at − 2
n−2kāt =

(af0 + bg0) − 2
n−2k (āf0 + ¯bg0)

2
t

=
(a − 2

n−2kā)f0 + (b − 2
n−2k ¯b)g0

2
t

Therefore, applying the triangular inequality:

|at − 2
n−2kāt | ≤ 2

−t (|2n−k | |f0 | + |2n−k | |g0 |)
≤ 2

n−k−t (|f0 | + |g0 |)

Since |f0 | + |g0 | ≤ 2
t
, we then get that:

|at − 2
n−2kāt | ≤ 2

n−k

and similary for b:

|bt − 2
n−2k ¯bt | ≤ 2

n−k

This means that, throughout the k iterations, the upper bits (k to 2k−1) of ā and
¯b remain

a close approximation of the upper bits (n−k ton−1) of the valuesa and b that they represent,

i.e. the values we would get by applying the update factors right away.

A.2 Length Reduction at Divergence Point
As in the previous section, consider the values a and b at the start of an inner loop. The k
iterations of the inner loop will perform halvings, swaps and subtractions based on the bits

in ā and
¯b, used as representations of a and b. The halvings and subtractions rely on the k

low bits of ā and
¯b, which are always exact; only the conditional swaps may di�er between

11

the classic and optimized algorithms, since, in the latter case, the relative ordering of ā and
¯b

might not match that of a and b.

If, throughout thek iterations, the inner loop makes the exact same decisions that it would

take with the actual updated values of a and b, then it follows the same steps as the classic

algorithm (algorithm 1) on the same inputs, and thus obtains the same reduction in length

of a and b, i.e. at least k bits in total. Otherwise, we call the divergence point the iteration d
(0 ≤ d < k) at which the inner loop of algorithm 2 takes a di�erent decision from that would

have been taken by the classic algorithm. Let us observe the situation at that point, using the

notations from section A.1:

– The algorithm has ād and
¯bd, which are both odd. Without loss of generality, we can

assume that ād ≥ ¯bd. The inner loop of algorithm 2 decides to subtract
¯bd from ād.

– However, the actual values ad and bd (updated values of a and b) would be such that

ad < bd. The subtraction will then yield a negative value.

As we saw in section A.1, ād and
¯bd are good approximations of ad and bd, respectively.

Write that:

2
n−2k (ād − ¯bd) − (ad − bd) = (2n−2kād − ad) + (bd − 2

n−2k ¯bd)

and thus:

|2n−2k (ād − ¯bd) − (ad − bd) | ≤ |2n−2kād − ad | + |bd − 2
n−2k ¯bd | ≤ 2

n−k+1

Since 2
n−2k (ād − ¯bd) ≥ 0 and ad − bd < 0, and their di�erence is no greater in absolute value

than 2
n−k+1

, it follows that:

0 ≤ ād − ¯bd < 2
k+1

Therefore, at the divergence point d, the inner loop will compute a new value ād+1 = (ād −
¯bd)/2 which will be strictly lower than 2

k
, hence such that all its upper bits will be zero. Sim-

ilarly:

0 > ad − bd ≥ −2
n−k+1

which implies that |ad+1 | ≤ 2
n−k

. Note that |ad+1 | may be equal to 2
n−k

only if ād = ¯bd, in

which case ād+1 = 0 and all subsequent iterations of the inner loop will decide to divide āt
(and thus at) by 2, without any further subtraction.

A.3 Minimal Length Reduction
We again consider a situation at the start of an inner loop, such that:

– One of a and b (or both) has length at least 2k + 1 bits.

– The inner loop execution includes a divergence point at iteration d.

In all other inner loop cases, the execution follows the steps of the classic binary GCD algo-

rithm, thereby ensuring a total length reduction of (a, b) by at least k bits.

After the divergence point, the following properties apply:

– Dividing at by 2 does not change the sign of at .

12

– If at > 0 and bt < 0, then at − bt > 0.

– If at < 0 and bt > 0, then at − bt < 0.

Therefore, in all subsequent steps, one of the values will be negative, and the other one will

be positive. It cannot happen that two strictly negative values, or two nonnegative values are

obtained, unless a reaches zero (in which case the algorithm has converged).

Moreover, if |at | ≥ 2
n−k

and |bt | < 2
n−k

, then:����at − bt
2

���� ≤ |at | + |bt |
2

< |at |

and if |at | < 2
n−k

and |bt | < 2
n−k

, then:����at − bt
2

���� ≤ |at | + |bt |
2

< 2
n−k

As remarked in section A.1, if the divergence point yields ad+1 = −2
n−k

, then all subsequent

iterations will use āt = 0 and none of them will try to perform a subtraction (or a swap);

otherwise, |ad+1 | < 2
n−k

. It follows that, after the point of divergence, even if an iteration

fails to reduce the sum of the lengths of at and bt , it will not allow any value a or b above 2
n−k

to grow, or any value below 2
n−k

to regrow beyond n − k bits.

Using these properties, we analyze the possible cases, depending on the initial lengths of

the values.

Case 1: len(a) = n and len(b) ≤ n − k
This situation means that, when starting the inner loop, b was shorter than a by at least

k bits.

In that case,
¯b < 2

k
and ā ≥ 2

2k−1
; thus, after t successive steps, the minimal value of āt

is āt − (2t − 1) ¯bt (if bt was subtracted from at at each iteration). For t ≤ k − 1, we have:

āt − (2t − 1) ¯bt > 2
2k−1 − (2t − 1) (2k − 1)

> 2
2k−1 − (2k−1 − 1) (2k − 1)

> 2
2k−1 − (22k−1 − 2

k−1 − 2
k + 1)

> 2
k−1 + 2

k − 1

> ¯bt

Thus, up to and including the last iteration, at > bt and the inner loop will not perform a

swap. It follows that, after k iterations, the reduction factors are such that f0 = 1, 0 ≥ g0 ≥
−(2k − 1), f1 = 0, and g1 = 2

k
. Since a > 2

k−1b, similar inequalities imply that if there is

a divergence point, then it may only happen at the last iteration; that last iteration will then

compute a negative ak, but such that |ak | < 2
n−k

(since it will be the result of subtracting

bk−1, still equal to b at that point, from a nonnegative ak−1). The conditional negation will

make the next a positive, and of length at most n − k bits. In total, a has been reduced by at

least k bits, while b was unchanged.

Case 2: len(a) ≤ n − k and len(b) = n

13

This case is similar to the previous case. It may start with some divisions of a by 2; if s such

steps happen before reaching an odd ā, then we can apply the analysis of the previous case,

replacing kwith k− s: a swap occurs at iteration s, and after the swap, the new a (previously b)

has lengthnbits while the new b (previouslya) has length at mostn−k−sbits. The subsequent

k − s iterations will each reduce a by at least one bit each, but may reach a divergence point

only on the last iteration, and only if s = 0; the total reduction will still be at least k bits.

Case 3: len(a) = n and len(b) ≥ n − k + 1, or len(a) ≥ n − k + 1 and len(a) = n
Suppose that when the divergence point (d) is reached, bd < 2

n−k
. Since the divergence

point is such that ad < bd, this implies that ad < 2
n−k

as well. Therefore, the two values have

already been reduced by at least k + 1 bits in total at this point. Since operations beyond the

divergence point won’t allow values to regrow beyond 2
n−k

in absolute value, it follows that

the total reduction will be at least k + 1 bits.

We now assume that when the divergence point is reached, len(bd) = n − k + j for some

j ≥ 0. Since ad < bd (this is a divergence point), it implies that len(ad) ≤ n − k + j as

well. Since one of the starting values had length n bits, this means that at least k − j bits of

reduction have been achieved at that point. Then, the new value of a is ad+1 which is such that

0 > ad+1 ≥ −2
n−k

. If ad+1 ≠ −2
n−k

, then this represents an extra reduction of at least j bits

in length, hence k− j + j = k bits at least in total. As remarked above, subsequent steps won’t

allow any value of more than k bits to grow, so this reduction level cannot be compromised;

after the k iterations, total reduction will still be at least k bits.

The remaining case is when ad+1 = −2
n−k

, exactly. At that point, we have a reduction of

at least k−1 bits. Moreover, since ād+1 = 0, subsequent steps, if any, will divide aby 2. Thus, if

d < k− 1, then there will be at least one such extra step, and, again, at least k bits of reduction

will be achieved. We thus now assume that the divergence step happens at the last iteration

of the inner loop (d = k − 1). Since ad+1 = −2
n−k = (ad − bd)/2, then ad = bd − 2

n−k+1
;

however, ād = ¯bd, and we know (see section A.1) that:

|ad − 2
n−2kād | ≤ 2

n−k

|bd − 2
n−2k ¯bd | ≤ 2

n−k

This implies that, in that case, ad and bd are apart from each other by exactly 2
n−k+1

, but

cannot be apart from the common value 2
n−2kād by more than 2

n−k
. It then follows that

ad = 2
n−2kād − 2

n−k
and bd = 2

n−2kād + 2
n−k

. This is not possible, since, by construction,

ad and bd are both odd at this point.

Conclusion: In all cases, we saw that a reduction of at least k bits is achieved, which com-

pletes the proof.

Commentary: It may be surprising that even using approximations, we do not need more

iterations than the classic binary GCD, for which the worst case bound 2len(m) −1 is already

optimal. Intuitively, the reason is that we have some extra “hidden” iterations: the conditional

negation of a and b (after their respective updates every k iterations) is the point where the

approximation is resolved. In that sense, the optimized algorithm really needs k + 1 iterations

in the worst case to achieve a k-bit reduction; the last of these k + 1 iterations masquerades as

a pair of conditional subtractions.

14

	Optimized Binary GCD for Modular Inversion

