
Single-Trace Attacks on the Message Encoding
of Lattice-Based KEMs?

Bo-Yeon Sim1[0000−0002−6446−1020], Jihoon Kwon3, Joohee Lee3, Ij-Ju Kim2,
Taeho Lee2, Jaeseung Han2, Hyojin Yoon3, Jihoon Cho3, and Dong-Guk Han1,2

1 Department of Mathematics, Kookmin University, Seoul, Republic of Korea
{qjdusls,christa}@kookmin.ac.kr

2 Department of Financial Information Security, Kookmin University, Seoul,
Republic of Korea {kimij2905,20141932,jae1115}@kookmin.ac.kr

3 Security Research Center, Samsung SDS, Inc., Seoul, Republic of Korea
{jihoon.kwon,joohee1.lee,hj1230.yoon,jihoon1.cho}@samsung.com

Abstract. We propose single-trace side-channel attacks against lattice-
based KEMs, the current candidates of the NIST’s standardization project.
More specifically, we analyze the message encoding in the encapsulation
of lattice-based KEMs to obtain the ephemeral session keys, conclud-
ing that a single trace leakage implies a whole key recovery: our im-
plementation on a ChipWhisperer UFO STM32F3 target board shows
100% success rates for Crystals-Kyber and Saber regardless of optimiza-
tion level, and more than a 79% success rate for FrodoKEM. We further
show that our attack methodologies are not restricted to the above algo-
rithms but widely applicable to other NIST PQC candidates, including
LAC, NewHope, NTRU Prime, and NTRU.

Keywords: Side-channel attack · Lattice-based cryptography · Key en-
capsulation mechanism · Message encoding · Single-trace attack.

1 Introduction

The key encapsulation mechanism (KEM) is a public-key cryptosystem that aims
key sharing between two parties and widely adopted in Internet protocols for se-
cure communications. In 1994, Shor [46] proposed an algorithm that effectively
defeats the underlying hard problems of all the widely adopted public-key cryp-
tosystems such as RSA, Diffie-Hellman, and ECC using a quantum computer.
Hence, the KEMs become vulnerable once a large-scaled quantum computation
is available, and experts estimated that RSA with 2000-bit of public-key size
becomes insecure by 2030 [13,34,35].

National institute of standards and technology (NIST) thus launched a project
to standardize post-quantum cryptography (PQC). We have 26 candidates in the
2nd round of NIST PQC project, and 17 of them are KEMs [36]. Lattice-based

? We submitted the paper to Asiacrypt 2020 and received the final notification 16 Aug
2020.

2 B.-Y. Sim et al.

KEMs [1,6,8,9,10,14,15,29] have attracted a great amount of attention due to
the balanced performance in terms of sizes and speed. Lattice-based KEMs can
be categorized into two classes: the schemes of which security is based on the
hardness of some variant of the learning with errors (LWE) problem [41], and
the schemes using NTRU problem [22] as their underlying hard problems. The
first class includes FrodoKEM, NewHope, Crystals-Kyber, LAC, Saber, Round5,
and Three Bears, which have its security reduction to the respective variants of
LWE, and the second class consists of NTRU and NTRU Prime which has its
strength in sizes. Both classes adopted optimization techniques such as number
theoretic transform (NTT) and advanced vector extensions (AVX), achieving
relatively low computational costs among the second round PQC candidates.

Side-channel attacks (SCAs) [27] allow to extract cryptographic keys using
side-channel information such as power consumption, electromagnetic radiation,
and execution time when cryptographic devices are in operation. Power analysis
is a well known category of SCAs, including simple power analysis (SPA), dif-
ferential power analysis (DPA), and template attack [12,27,28,33]. SPA recovers
secret keys using only one or a few traces obtained from running cryptographic
algorithms. DPA analyzes multiple power consumption traces using statistical
methods, for example, evaluating the correlation between actual and hypotheti-
cal power models. Template attack is a type of profiling attack (PA) that builds
a profile of a programmable device, which is identical to a target device, and
exploits this profile to obtain a secret key. Machine learning techniques such as
k-means clustering and support vector machine are also adopted to improve the
performance of SCAs [7,21,24,31].

Related Works. Lattice-based cryptography is believed to have quantum re-
sistance, but their practical implementations still have vulnerabilities against
SCAs. Silverman and Whyte [47] presented a timing attack against NTRUEn-
crypt, which is based on variation in the number of hash calls in decryption. The
timing leakage information of error-correcting codes in the decoding algorithm
allows to extract the entire secret key of LAC [16]. Park and Han [38] reported
an SPA attack against the decryption of the ring-LWE encryption scheme per-
formed on an AVR processor.

DPA attacks on NTRU implementation are also discussed [4,30]. Aysu et al.
[5] mounted horizontal DPA attacks on hardware implementations of NewHope
and FrodoKEM, extracting secret keys with over 99% success rates using a single
trace. Bos et al. [11] extended this attack considering ring-less LWE-based con-
structions by utilizing a single-trace template attack and reported experimental
results for Frodo key exchange protocol, which is later updated to FrodoKEM.
More DPA attacks targeting the multiplications of decryption phase in lattice-
based PKE can be found in [37,42,43].

Primas et al. [40] proposed a single-trace template attack on the NTT of
the ring-LWE decryption phase, extracting the entire secret key. Pessl and Pri-
mas [39] presented an improved single-trace attack on the NTT targeting an
optimized constant-time implementation of Crystals-Kyber. Various power anal-
ysis attacks are applied to NTRU Prime [25], which includes vertical correlation

Single-Trace Attacks on the Message Encoding of Lattice-Based KEMs 3

power analysis, horizontal in-depth correlation power analysis, online template
attack, and chosen-input SPA. Amiet et al. [2] recently proposed a single-trace
attack against NewHope, targeting the message encoding of the encapsulation
phase.

If an adversary obtains a shared ephemeral session key by exploiting vul-
nerabilities of KEM, it could eavesdrop all the communications encrypted using
the key. When attacking the encapsulation phase of KEM, however, it would
be only possible to use a single trace since it encrypts a random secret message
every time. Several types of research exist to recover the random secret message
using a single trace [2,5,11], but studies based on vulnerabilities in the message
encoding of the encapsulation phase are sparse [2].

Our Contributions. In this work, we give a comprehensive analysis of several
state-of-the-art lattice-based KEMs by targeting the message encoding opera-
tion of the encapsulation phase. The main contributions of this paper can be
summarized as below.

1. Novel single-trace attacks on Crystals-Kyber, Saber, and FrodoKEM

We propose single-trace attacks on the message encoding of the encapsula-
tion phase. We target lattice-based KEMs of the second round candidates of
the NIST PQC standardization project and divide attack methodologies into
three types based on the computational characteristics of each algorithm. We
present the attack methodologies and experimental results of Crystals-Kyber,
Saber, and FrodoKEM as respective representatives for these three types. We
demonstrate that our proposed attacks on Crystals-Kyber and Saber can re-
cover the entire secret message with 100% success rates using only a single
trace. Neither of them is affected by the optimization level. Hence, we can
generate the shared ephemeral session key using the recovered secret mes-
sage and public values. As for FrodoKEM, it is possible to recover the secret
message with a success rate of more than 79%.

2. Application to other 2nd round lattice-based KEMs

We show how the three types of single-trace attacks can be applied to other
lattice-based KEMs of NIST PQC standardization. Since there are similar
vulnerabilities in LAC, NewHope, Streamlined NTRU Prime, NTRU LPRime,
and NTRU as in Crystals-Kyber, the proposed single-trace attack on Crystals-
Kyber thus can be applied to them. As for Streamlined NTRU Prime and
NTRU, they also have similar vulnerabilities with Saber, and it is thus pos-
sible to further extract the secret message by combining the attack method-
ologies which are applied to Crystals-Kyber and Saber.

3. Countermeasures

We recommend countermeasures that increase the attack complexity. The
countermeasure proposed by Amiet et al. [2], combining masking and shuf-
fling schemes, can be applied not only to NewHope but also to Crystals-Kyber.

4 B.-Y. Sim et al.

We present modifications of the existing countermeasure [2] to be applied to
the computational structure of Saber and FrodoKEM.

Technical Overview. Our attack strategy depends on the existence of an inter-
mediate value in the targeted reference C implementation, which is determined
by a sensitive bit value. We name this intermediate value as determiner. It follows
that the number of cases of the determiner is 2. In particular, the determiner is
defined in a context that the difference between the Hamming weights of two
determiner values is greater than or equal to 2, where the Hamming weight is
the number of 1-bit of the intermediate value stored in a register.

Definition 1. The determiner is the intermediate value that is determined by
a sensitive bit value, and the difference between the Hamming weights of the
elements of the determiner domain is greater than or equal to 2. The cardinal
number of the determiner domain is 2.

We present three types of attack methodologies and provides experimental
results on Crystals-Kyber, Saber, and FrodoKEM, respectively. The first type of
attack makes use of the determiner and can be applied to Crystals-Kyber. In this
case, the clustering-based attack is used because of the significant differences
in the side-channel leakage. The second type of attack is targeting algorithms
that scan one sensitive bit at a time during encoding operations, and it thus can
be applied to Saber. The third type of attack is targeting algorithms that scan
multiple sensitive bits at a time during encoding operations, and it thus can
be applied to FrodoKEM. For the second and third types of attacks, we apply
the machine learning-based profiling attack (ML-based PA) since there does not
exist the determiner.

Organization. The rest of the paper is organized as follows. In Section 2, we
briefly describe the basics of lattice theory. We describe our proposed single-
trace attack methodologies and experiment results on three lattice-based KEMs
in Section 3, Section 4, and Section 5. In Section 6, we discuss the applicability
of our proposed attacks to other lattice-based KEMs and recommend counter-
measures. We finally give a conclusion in Section 7.

2 Preliminaries

2.1 Notation

– All logarithms are base 2 unless otherwise indicated.
– For a positive integer q, we use Z ∩ (−q/2, q/2] as a representative of Zq.
– We use x ← D to denote sampling x according to the distribution D. It

denotes the uniform sampling when D is a finite set.
– For two bitstrings v and w, (v ‖ w) denotes their concatenation.
– For an `-bit bitstring b of which the i-th most significant bit is bi for all

1 ≤ i ≤ `, we denote b = (b`, · · · , b1)2.

Single-Trace Attacks on the Message Encoding of Lattice-Based KEMs 5

2.2 Lattice-Based Key Encapsulation Mechanism

KEM can be constructed by applying the Fujisaki-Okamoto generic transforma-
tion [18,23,45] on a CPA-secure public key encryption to have a CCA-security in
(quantum) random oracle model. Most of lattice-based KEMs in the NIST PQC
standardization are following this approach, especially using the PKE scheme
LPR [32] proposed by Lyubashevsky, Peikert, and Regev as their core algorithms.
We briefly discuss the LPR encryption and the message encoding algorithms as
follows.

Let n and q be positive integers. Let R be a base ring that can be represented
as {

n−1∑
i=0

aix
i : ai ∈ Z, 0 ≤ i ≤ n− 1

}
,

andRq := R/qR. For example,R can be set as Z[x]/〈xn+1〉 or Z[x]/〈xn−x−1〉.
Let χs, χr, χe, and χe′ be certain distributions over R such that an element
sampled from any of the distributions has small coefficients as a polynomial,
respectively. Let the message space of PKE scheme be Σn of n components.

The message encoder encode : Σn → Rq and decoder decode : Rq → Σn

are functions satisfying decode(encode(µ) + e mod q) = µ for any ‘small enough’
e ∈ R.

– KeyGen: Choose a uniformly random a ← Rq. Let s ← χs, and e ← χe.
Compute b← −a ·s+e mod q. Output the public key pk = (a, b), and secret
key sk = (s, 1).

– Enc(pk, µ ∈ Σn): Let r ← χr, and e0, e1 ← χe′ . Compute c0 ← r·a+e0 mod q
and c1 ← r · b+ encode(µ) + e1 mod q. Output the ciphertext ct = (c0, c1).

– Dec(sk, ct): Compute and output µ′ = decode(〈sk, ct〉 mod q).

In the LPR encryption, errors e, e0, and e1 are sampled from discrete Gaus-
sian distributions to be secure under the ring-LWE assumption. Moreover, a
public key pk is of the form of ring-LWE sample with a secret s and an error
e. Likewise, since pk = (a, b) is close to uniform random (under the ring-LWE
assumption), an encryption of zero forms two ring-LWE samples with secret r.
The ring-LWE samples in both key generation and encryption can be altered
with that of other security assumptions such as standard LWE, learning with
rounding (LWR), module-LWE, etc.

The lattice-based KEMs which are the current NIST PQC candidates and
use the LPR encryption as their core algorithms can be classified based on
the security assumptions of LWE, ring-LWE, module-LWE, LWR, ring-LWR,
module-LWR, and integer module-LWR as in Table 1. They use encoders that
send the message bits to the most significant bits of the modulo q space to derive
cryptographically negligible decryption failure rates.

6 B.-Y. Sim et al.

Table 1: The LPR-like second round submissions to the NIST’s PQC standard-
ization process. In the fourth column, “Encoder” denotes the output of the al-
gorithm encode for given µ in the respective plaintext spaces. q is the ciphertext
modulus before applying any compression techniques and B, b, t, εp are integers
such that 0 < εp, B < log q and 0 < b, t < q. ECC denotes an encoding of
error-correcting code.

Scheme Security assumption Base polynomial ring Encoder

Crystals-Kyber Module-LWE Z[x]/〈x256 + 1〉 b(q/2) · µe

FrodoKEM LWE - (q/2B) · µ

LAC Ring-LWE Z[x]/〈xn + 1〉 bq/2e · ECC(µ)

NewHope Ring-LWE Z[x]/〈xn + 1〉 bq/2c · µ

NTRU LPRime NTRU Z[x]/〈xn − x− 1〉 ((q − 1)/2) · µ

Round5 LWR, Ring-LWR -, Z[x]/〈
∑n
i=0 x

i〉 (t/b) · µ

Saber Module-LWR Z[x]/〈x256 + 1〉 2εp−1 · µ

Three Bears Integer Module-LWR - 8 · µ

3 Proposed Single-Trace Attack on Crystals-Kyber

We describe the message encoding operation of Crystals-Kyber and a single-trace
attack methodology on it. Besides, we show experimental results when the algo-
rithm is operating on ARM Cortex-M4 processors.

3.1 Message Encoding of Crystals-Kyber

Crystals-Kyber is based on a polynomial ring Rq = Zq[x]/ 〈xn + 1〉 of the dimen-
sion n = 256 and modulus q = 213−29+1 = 3329. For NIST security level 1, the
first component of the ciphertext is of rank 2 over Rq, i.e., k = 2 in the Algo-
rithm 1, and p and t for compress are 210 and 23, respectively. The bit length ` of
a message µ and shared key K is 256. Hash1 and Hash2 are SHA3-256 and SHA3-
512, respectively. KDF is implemented using SHAKE-256. Compressq,log p(x) and
Compressq,log t(x) take an element x ∈ Zq and output log p- and log t-bit integers,
respectively. The Algorithm 1 and Listing 3.1 show the message encapsulation
and message encoding of Crystals-Kyber, respectively. In the Listing 3.1, byte
array msg is the secret message µ.

Attack Methodology. As shown in steps 11 to 12 of the Listing 3.1, the mask
value is determined based on the sensitive bit µi value, where the message µ =
(µ`−1, · · · , µ1, µ0)2. The mask value is whether 0x0000 or 0xffff; thus, the
number of cases of the mask value is 2. Moreover, the difference of the Hamming
weight between 0x0000 and 0xffff is 16. Therefore, based on the Definition 1,

Single-Trace Attacks on the Message Encoding of Lattice-Based KEMs 7

Algorithm 1 Message Encapsulation of Crystals-Kyber (refer to [10])

Input : Public key pk = (a ∈ Rk×kq , b ∈ Rkq)
Output : Ciphertext c ∈ Rkp ×Rt, shared key K ∈ {0, 1}`

1: /*Generate random message*/
2: µ← {0, 1}`
3: µ← Hash1(µ)
4: (K̄, seed) = Hash2(µ ‖ Hash1(pk))
5: /*Encryption*/
6: Sampling r, e1 ∈ Rk×1

q , and e2 ∈ Rq using seed
7: c1 = Compressq,log p(ar + e1 mod q)
8: c2 = Compressq,log t(b

ᵀr + e2 + encode(µ) mod q)
9: c = (c1 ‖ c2)

10: /*Shared key derivation*/
11: K = KDF(K̄ ‖ Hash1(c))
12: Return c,K

1 // Conver t 32=byte message to po l ynom i a l

2 vo id po ly f rommsg (po l y * r , const uns igned char msg [KYBER SYMBYTES])

3 {
4 i n t i , j ;

5 u i n t 1 6 t mask ;

6

7 f o r (i = 1 ; i < KYBER SYMBYTES; i++)

8 {
9 f o r (j = 0 ; j < 8 ; j++)

10 {
11 mask = =((msg [i] � j) & 1) ;

12 r → c o e f f s [8 * i + j] = mask & ((KYBER Q + 1) / 2) ;

13 }
14 }
15 }

Listing 3.1: Message Encoding encode(µ) of Crystals-Kyber (in C code)

the mask value is a sensitive bit-dependent determiner. Traditionally, in software
implementations, the power consumption model is based on the Hamming weight
of the intermediate value. The power consumption traces can be classified into
two sets depending on the Hamming weight of the mask value, because the
number of cases of the mask value is 2. Accordingly, the power consumption
property in steps 11 to 12 of the Listing 3.1 can be categorized as follows.

Property 1. In a software implementation, the power consumption is affected
by the Hamming weight of the intermediate value. The mask value is a 16-bit
integer −µi; therefore, when µi = 0 it is 0x0000, and the power consumption is
proportional to 0. Contrariwise, when µi = 1, the mask value is 0xffff, and the
power consumption is proportional to 16, which is the Hamming weight of the
mask value.

8 B.-Y. Sim et al.

Algorithm 2 Single-Trace Attack on the Message Encoding of Crystals-Kyber

Input : A trace T
Output : message µ

1: for i = `− 1 down to 0 do
2: Select points of interest pi associated with µi
3: end for
4: Classify pi into two groups, G1 and G2, using the clustering algorithm
5: Calculate the average values E(G1) and E(G2), respectively, of G1 and G2

6: for i = `− 1 down to 0 do
7: if pi ∈ G1 then I assume that E(G1) > E(G2)
8: µi ← 0 I µi = 0 when it follows the Property 1
9: else

10: µi ← 1 I µi = 1 when it follows the Property 1
11: end if
12: end for
13: Return (µ`−1, · · · , µ1, µ0)2

There are significant differences in performances of analyses depending on the
position of the attack. Hence, it is important to find specific points of interest
(PoIs). For each µi, we select the points where the mask value is calculated,
stored, and loaded (0 ≤ i < `). We define those points as the PoIs. After selecting
the PoIs, classify the PoIs into two groups using clustering algorithms. The
clustering algorithms aim to partition ` elements, i.e., the ` power consumption
traces, into k classes of similar elements. There are several clustering algorithms,
such as k-means, fuzzy k-means, mean-shift, density-based spatial clustering
of applications with noise (DBSCAN), expectation-maximization (EM) using
Gaussian mixture models (GMM), and hierarchical [3,17,19,44]. Using one of
the clustering algorithms, it is possible to classify the power consumption traces
which are proportional to the Hamming weight of the mask value, i.e., the PoIs,
into two groups, G1 and G2. Here, G1 and G2 denote each clustered group.

Because the power consumption is affected by the Hamming weight of the
intermediate value, each average value of these groups G1 and G2 are different.
Therefore, if we assume that the larger the Hamming weight, the lower the
power consumption, we can distinguish which µi value each group corresponds
to based on the average value of two groups. This assumption is based on the
design of ChipWhisperer-Lite mainboard, which uses for measuring the power
consumption of the target board [25]. Thus, for example, the µi belonging to
G1 is 0 and that belonging to G2 is 1 when E(G1) is bigger than E(G2), where
E(G1) and E(G2) are the average values of G1 and G2, respectively. As a results,
we can recover the message µ = (µ`−1, · · · , µ1, µ0)2 and generate secret shared
key K. The Algorithm 2 describes the single-trace attack flow.

3.2 Experiment Results

Our experimental results demonstrate that the message µ = (µ`−1, · · · , µ1, µ0)2
can be extracted just using a single trace. We measured 500 power consumption

Single-Trace Attacks on the Message Encoding of Lattice-Based KEMs 9

Table 2: Compiler option: optimization level

Optimization Level Description

-O0 Turn off optimization

-O1 Optimize for speed (Low)

-O2 Optimize for speed (Medium)

-O3 Optimize for speed (High)

-Os Optimize for size

(a) Optimization level 0 (b) Optimization level 1 (c) Optimization level 2

(d) Optimization level 3 (e) Optimization level s

Fig. 1: Distributions of the PoIs of the message encoding of Crystals-Kyber (set
0 and set 1 are G1 and G2, respectively)

traces for different messages at 29.54 MS/s sampling rate when the Listing 3.1
is operating on the ChipWhisperer UFO STM32F3 target board [26]. Imple-
mentations are compiled with gcc-arm-none-eabi-6-2017-q2-update, and we use
compiler options in Table 2.

To identify the PoIs, we calculate the sum of squared pairwise t-differences
(SOST) [20] of the power consumption traces

SOST =

k∑
i,j=1

 E(Gi)− E(Gj)√√√√σ(Gi)
2

#Gi
+
σ(Gj)

2

#Gj

2

for i ≥ j,

E(·), σ(·), #, and k denote the mean, standard deviation, number of elements,
and number of groups, respectively. We select points with high SOST values as
the PoIs. The reader may refer to Appendix A.1 for a more detailed explanation.

10 B.-Y. Sim et al.

Table 3: The averages and differences between two sets of Figure 1

Optimization Level E(G1) E(G2) |E(G1)−E(G2)| SOST value

-O0 1.264143e-01 7.105207e-02 5.237223e-02 237970

-O1 6.408548e-02 3.397242e-02 3.011306e-02 70684

-O2 1.764538e-01 1.541080e-01 2.234580e-02 29467

-O3 8.828891e-02 4.946987e-02 3.881904e-02 56015

-Os 1.188696e-01 8.322993e-02 3.563967e-02 38600

Figure 1 shows the distributions of the PoIs of 500 power consumption traces
when the most significant bit µ`−1 is encoded. The distributions are distinctly
separated irrespective of the optimization level. As shown in Table 3, when
the optimization level is 0, i.e., turn off optimization, the difference between
E(G1) and E(G2) is the biggest. There is no error rate because the distributions
of the PoIs are clearly distinguished, that is, we can recover the message µ =
(µ`−1, · · · , µ1, µ0)2 with a 100% success rate using the Algorithm 2. In this paper,
we apply k-means clustering algorithm which is the most commonly used. As a
result, we can generate the secret shared key K using the recovered µ, public
key pk, and ciphertext c, as shown in the Algorithm 1.

4 Proposed Single-Trace Attack on Saber

We describe the message encoding operation of Saber and a single-trace attack
methodology on it. Besides, we show experimental results when the algorithm is
operating on ARM Cortex-M4 processors.

4.1 Message Encoding of Saber

Saber is based on a polynomial ring Rq = Zq[x]/ 〈xn + 1〉 of the dimension
n = 256 and modulus q = 213. For NIST security level 1, the first component
of the ciphertext is of rank 2 over Rq, i.e., k = 2 in the Algorithm 3, and
the moduli p and t for rounding are 210 and 23, respectively. The bit length `
of a message µ and shared key K is 256. Hash1 and Hash2 are SHA3-256 and
SHA3-512, respectively. KDF is implemented using SHA3-256. Roundingq,p(x) is
rounding from a modulus q to modulus p. Roundingp,t(x) is similarly defined.
The Algorithm 3 and Listing 4.1 show the message encapsulation and message
encoding of Saber, respectively. In the Listing 4.1, byte array message received
is the secret message µ.

Attack Methodology. As shown in steps 6 to 12 of the Listing 4.1, there is a sen-
sitive bit µi identification phase to encode the message µ = (µ`−1, · · · , µ1, µ0)2.
Notably, Saber scans one sensitive bit at a time during the message encoding.

Single-Trace Attacks on the Message Encoding of Lattice-Based KEMs 11

Algorithm 3 Message Encapsulation of Saber (refer to [15])

Input : Public key pk = (a ∈ Rk×kq , b ∈ Rkp)
Output : Ciphertext c ∈ Rkp ×Rt, shared key K ∈ {0, 1}`

1: /*Generate random message*/
2: µ← {0, 1}`
3: µ← Hash1(µ)
4: (K̄, seed) = Hash2(µ ‖ Hash1(pk))
5: /*Encryption*/
6: Sampling r ∈ Rk×1

q using seed
7: c1 = Roundingq,p(ar mod q)
8: c2 = Roundingp,t(b

ᵀ(r mod p)− encode(µ) mod p)
9: c = (c1 ‖ c2)

10: /*Shared key derivation*/
11: K = KDF(K̄ ‖ c)
12: Return c,K

1 vo id i ndcpa kem enc (uns igned char *mes sage r e c e i v ed , uns igned char *

no i s e s e ed , const uns igned char *pk , uns igned char * c i p h e r t e x t)

2 {
3 u i n t 1 6 t message [SABER KEYBYTES* 8] ;

4 // (omit)

5 // unpack message r e c e i v e d

6 f o r (j = 0 ; j < SABER KEYBYTES ; j++)

7 {
8 f o r (i = 0 ; i < 8 ; i++)

9 {
10 message [8 * j + i] = ((me s s a g e r e c e i v e d [j] � i) & 0x01) ;

11 }
12 }
13

14 // message encod ing

15 f o r (i = 0 ; i < SABER N ; i++)

16 {
17 message [i] = (message [i] � (SABER EP = 1)) ;

18 }
19 // (omit)

20 }

Listing 4.1: Message Encoding encode(µ) of Saber (in C code)

Therefore, message[i] = µ`−1−i after steps 6 to 12 of the Listing 4.1, where
0 ≤ i ≤ `−1. In other words, each message[i] is 0 or 1. Since the moduli of Saber
are the power of 2, steps 15 to 18 of the Listing 4.1 are the operation that shifts
each sensitive bit µi by p−1 to the left. As a result, message[i] is whether 0x0000
or 0x0200 after steps 15 to 18 of the Listing 4.1. The number of cases of each
message[i] is 2, however, the difference of the Hamming weight between cases of
each message[i] is 1. Accordingly, the determiner does not exist, and the power

12 B.-Y. Sim et al.

consumption property in steps 8 to 14 of the Listing 4.1 can be categorized as
follows.

Property 2. The sensitive bit µi is 0 or 1. Thus, if µi = 0, the power consumption
is proportional to 0 when extracting or manipulating the µi value. Likewise, if
µi = 1, then the power consumption is proportional to 1.

The power consumption property in steps 15 to 18 of the Listing 4.1 is the
same as steps 6 to 12 of the Listing 4.1. Unlike Crystals-Kyber, the difference
between cases of each message[i] is just 1; thus, we apply the ML-based PA. That
is, we construct a template for each µi value in the profiling phase and calculate
the probability that the power consumption trace belongs to each template in the
extraction phase. After that, we find the µi value by selecting a template that has
the highest probability to belong to. The ML-based PA automatically finds and
combines specific PoIs by repeating the learning. Therefore, we divide the attack
range into two areas, rather than selecting specific points; the computational
range where µi is extracted, defined as first PoIs; the computational range where
µi is shifted by p − 1 to the left, defined as second PoIs. As a results, we can
recover the message µ = (µ`−1, · · · , µ1, µ0)2 and generate secret shared key K.

4.2 Experiment Results

Our experiment shows that the message µ = (µ`−1, · · · , µ1, µ0)2 can be extracted
only using a single trace. We measured 10,000 power consumption traces for
different messages at 29.54 MS/s sampling rate when the Listing 4.1 is operating
on the ChipWhisperer UFO STM32F3 target board [26]. Implementations are
compiled with gcc-arm-none-eabi-6-2017-q2-update, and we use compiler options
in Table 2.

To identify the existence of the leakage based on the sensitive bit µi value,
we calculate the SOST value of the power consumption traces. We divide the
power consumption traces into two groups, G1 and G2, associated with µi = 0
and µi = 1, respectively. The reader may refer to Appendix A.2 for a more
detailed explanation. Figure 2 and Figure 3 show the distributions of the PoIs
of 500 power consumption traces when the most significant bit µ`−1 is encoded.
Unlike Figure 1, the distributions are overlapped. On average, the SOST values
in Table 5 and Table 6 are respectively 110 times and 40 times smaller than
in Table 3. Accordingly, it is hard to perfectly divide into two groups by the
clustering algorithms.

We construct network architecture as shown in Table 4 to apply the ML-based
PA. x is the number of points of the PoIs and y is the number of classification
labels. The power consumption based on the Property 2 occurs and information
from multiple points is automatically combined while training. Therefore, we use
three types of labels for training: 1-bit, 2-bit, and 8-bit values. In other words,
we analyze in units of µi, (µi, µi−1)2, and (µi, · · · , µi−7)2 at once for each type.
Accordingly, y is 2, 4, and 256 for each label. We evaluate each ML model with
9-fold cross-validation; dividing a train and validation set into 8,000 and 1,000
traces, respectively. After each profiling, we carry out 1,000 single-trace attacks.

Single-Trace Attacks on the Message Encoding of Lattice-Based KEMs 13

Table 4: ML-based PA

Layer node (in, out) kernel initializer

InputLayer (x, x) -

Batch Normalization (x, x) -

Dense (x, 32) he uniform

Batch Normalization (32, 32) -

ReLU (32, 32) -

Dense (32, y) he uniform

Softmax (y, y) -

* Input Normalization: all values are within the range of -1 and 1
* Loss function: categorical crossentropy
* Optimizer: Nadam (lr=0.0001, epsilon=1e-08)
* Label encoding: one-hot encoding
* Batch size and epochs: 10 and maximum 200, respectively
* 9-fold cross-validation (training: 8000, validation: 1000)

In other words, the number of traces we attack is 1,000, and we show the average
values of success rates of 9 profiled models in Table 4. Besides, the experiment
results are the average values of the success rates of the attack for the first eight
most significant bits (µ`−1, · · · , µ`−8)2.

(a) Optimization level 0 (b) Optimization level 1 (c) Optimization level 2

(d) Optimization level 3 (e) Optimization level s

Fig. 2: Distributions of first PoIs of the message encoding of Saber (set 0 and set
1 are G1 and G2, respectively)

14 B.-Y. Sim et al.

Table 5: The averages and differences between two sets of Figure 2

Optimization Level E(G1) E(G2) E(G1)− E(G2)| SOST value

-O0 6.359049e-02 6.123422e-02 2.356270e-03 344

-O1 -6.598499e-03 -9.693878e-03 3.095379e-03 347

-O2 -5.644457e-02 -5.830823e-02 1.863660e-03 134

-O3 3.662884e-02 3.462072e-02 2.008120e-03 163

-Os 2.574050e-02 2.299686e-02 2.743640e-03 326

(a) Optimization level 0 (b) Optimization level 1 (c) Optimization level 2

(d) Optimization level 3 (e) Optimization level s

Fig. 3: Distributions of second PoIs of the message encoding of Saber (set 0 and
set 1 are G1 and G2, respectively)

Table 6: The averages and differences between two sets of Figure 3

Optimization Level E(G1) E(G2) |E(G1)−E(G2)| SOST value

-O0 5.484788e-02 5.288561e-02 1.962270e-03 490

-O1 2.096737e-02 1.885364e-02 2.113730e-03 396

-O2 -4.135224e-02 -4.503360e-02 3.681360e-03 664

-O3 -9.629991e-03 -1.309303e-02 3.463039e-03 1025

-Os 1.176719e-01 1.145635e-01 3.108400e-03 865

On average, the SOST values in Table 6 are 2.6 times larger than that in
Table 5. The cause is that more information is generated at the second PoIs

Single-Trace Attacks on the Message Encoding of Lattice-Based KEMs 15

Table 7: The success rates of the single-trace attacks on Saber

Optimization First PoIs Second PoIs

Level 1-bit value 2-bit value 8-bit value Combined 1-bit value

-O0 100% - - - 100%

-O1 99.97% 99.89% 99.83% 99.97% 100%

-O2 99.90% 99.56% 99.53% 99.87% 100%

-O3 95.87% 83.12% 86.96% 96.71% 100%

-Os 99.99% 99.96% 99.96% 99.98% 100%

because the operation that shifts each sensitive bit µi by p − 1 to the left.
Therefore, in the case of using second PoIs, it is possible to extract each 1-
bit value of µ = (µ`−1, · · · , µ1, µ0)2 with a 100% success rate regardless of the
optimization level (refer to Figure 9(b) and Figure 10(b) in Appendix A.2).
Hence, we can generate secret shared key K using the recovered µ, public key
pk, and ciphertext c, as shown in the Algorithm 3. Whereas, in the case of using
first PoIs, it is hard to recover each 1-bit value of µ with a 100% success rate (refer
to Figure 9(a) and Figure 10(a) in Appendix A.2). Accordingly, to find the 1-bit
value µi, we combine the results of the 1-bit, 2-bit, and 8-bit value analysis, and
apply the majority rule. Consequently, we can discover each 1-bit value µi with
over a 96.71% success rate, and then apply an exhaustive search of candidates to
recover the secret shared key K with a complexity 211 (`∗0.04 = 256∗0.04 ≈ 11).

5 Proposed Single-Trace Attack on FrodoKEM

We describe the message encoding operation of FrodoKEM and a single-trace
attack methodology on it. Besides, we show experimental results when the algo-
rithm is operating on ARM Cortex-M4 processors.

5.1 Message Encoding of FrodoKEM

FrodoKEM is based on lattices over Zq. For NIST security level 1, the modulus
q = 215 and the dimension n = 640. The secret key is consisted of n̄ = 8 vectors
and the parameter m̄ = 8. The bit length ` of a message µ and shared key K
is 128. Hash1 and KDF are SHAKE-128. The Algorithm 4 and Listing 5.1 show
the message encapsulation and message encoding of FrodoKEM, respectively. In
the Listing 5.1, in that is 16-bit integer array is the secret message µ.

Attack Methodology. As shown in steps 15 to 20 of the Listing 5.1, there
is sensitive bits (µi, µi−1)2 identification phase to encode the message µ =
(µ`−1, · · · , µ1, µ0)2. We denotes (µi, µi−1)2 as the wvalue. Notably, FrodoKEM

16 B.-Y. Sim et al.

Algorithm 4 Message Encapsulation of FrodoKEM (refer to [9])

Input : Public key pk = (a ∈ Zn×nq , b ∈ Zn×n̄q)
Output : Ciphertext c ∈ Zm̄×n

q × Zm̄×n̄
q , shared key K ∈ {0, 1}`

1: /*Generate random message*/
2: µ← {0, 1}`
3: (seed, K̄) = Hash1(Hash1(pk) ‖ µ)
4: /*Encryption*/
5: Sampling r, e1 ∈ Zm̄×n and e2 ∈ Zm̄×n̄ using seed
6: c1 = ra+ e1 mod q
7: c2 = rb+ e2 + encode(µ) mod q
8: c = (c1 ‖ c2)
9: /*Shared key derivation*/

10: K = KDF(c ‖ K̄)
11: Return c,K

1 vo id f r o do k e y en c od e (u i n t 1 6 t *out , const u i n t 1 6 t * i n)

2 {
3 // Encoding

4 uns igned i n t i , j , n p i e c e s wo rd = 8 ;

5 uns igned i n t nwords = (PARAMS NBAR * PARAMS NBAR) / 8 ;

6 u i n t 6 4 t temp , mask = ((u i n t 6 4 t) 1 � PARAMS EXTRACTED BITS) = 1 ;

7 u i n t 1 6 t *pos = out ;

8

9 f o r (i = 0 ; i < nwords i++)

10 {
11 temp = 0 ;

12 f o r (j = 0 ; j < PARAMS EXTRACTED BITS ; j++)

13 temp |=((u i n t 6 4 t) ((u i n t 8 t *) i n) [i *PARAMS EXTRACTED BITS+j])�(8* j) ;

14

15 f o r (j = 0 ; j < np i e c e s wo rd ; j++)

16 {
17 *pos=(u i n t 1 6 t) ((temp & mask)�(PARAMS LOGQ=PARAMS EXTRACTED BITS)) ;

18 temp �= PARAMS EXTRACTED BITS ;

19 pos++;

20 }
21 }
22 }

Listing 5.1: Message Encoding encode(µ) of FrodoKEM (in C code)

scans two sensitive bits at a time during the message encoding. Thus, the num-
ber of cases of the extracted sensitive bits wvalue is 4. Accordingly, the power
consumption property in steps 15 to 20 of the Listing 5.1 can be categorized as
follows.

Property 3. The wvalue is in {(00)2, (01)2, (10)2, (11)2}. Thus, if wvalue =
(00)2, the power consumption related to 0 occurs when extracting or saving the

Single-Trace Attacks on the Message Encoding of Lattice-Based KEMs 17

wvalue value. Likewise, if wvalue is non-zero, then the power consumption is
proportional to the Hamming weight of wvalue.

Similar to Saber, we apply the ML-based PA and select the computational
range, where the wvalue is extracted, as the PoIs. As a results, we can extract
the message µ = (µ`−1, · · · , µ1, µ0)2 and generate secret shared key K.

5.2 Experiment Results

Our experiment shows that the message µ = (µ`−1, · · · , µ1, µ0)2 can be recovered
using a single trace. We measured 10,000 power consumption traces for differ-
ent messages at 29.54 MS/s sampling rate when the Listing 5.1 is operating on
the ChipWhisperer UFO STM32F3 target board [26]. Implementations are com-
piled with gcc-arm-none-eabi-6-2017-q2-update, and we use compiler options in
Table 2.

To identify the existence of the leakage based on the sensitive bits wvalue,
we calculate the SOST value of the power consumption traces. We divide the
power consumption traces into four groups, G1, G2, G3, and G4, associated with
wvalue = (00)2, wvalue = (01)2, wvalue = (10)2, and wvalue = (11)2, respec-
tively. The reader may refer to Appendix A.3 for a more detailed explanation.
Figure 4 shows the distributions of the PoIs of 500 power consumption traces
when the most significant consecutive two bits (µ`−1, µ`−2)2 are encoded. The
four distributions according to the wvalue are overlapped, especially the distri-
bution of G2 and G3 with the Hamming weight of 1 is almost the same. In case
the optimization level is 0, i.e., turn off the optimization, the SOST value is the
largest because the distribution of G2 and G3 is distinguishable comparing to
other optimization levels.

On average, the SOST values in Table 8 are 90 times smaller than in Table 3
in Section 3. Thus, we apply the ML-based PA which is the same analysis method
used in Section 4, and labels for training are 2-bit, 4-bit, and 8-bit values. In other
words, we analyze in units of (µi, µi−1)2, (µi, · · · , µi−3)2, and (µi, · · · , µi−7)2 at
once for each type. Accordingly, y is 4, 16, and 256 for each label. Similar to
the case using the first PoIs of Saber, it is hard to recover each wvalue with
a 100% success rate (refer to Figure 12 in Appendix A.3). Hence, we combine
the results of the 2-bit, 4-bit, 8-bit value analysis, and apply the majority rule.

Table 8: The averages and differences between two sets of Figure 4

Optimization Level E(G1) E(G2) E(G3) E(G4) SOST value

-O0 1.269287e-01 1.241036e-01 1.248361e-01 1.223927e-01 2635

-O1 -1.329385e-02 -1.557993e-02 -1.593018e-02 -1.867858e-02 395

-O2 -4.104393e-03 -6.006634e-03 -6.859564e-03 -8.867536e-03 281

-O3 8.939756e-02 8.808445e-02 8.822609e-02 8.636975e-02 481

-Os -2.748210e-02 -3.013717e-02 -3.013611e-02 -3.290936e-02 353

18 B.-Y. Sim et al.

Table 9: The success rates of the single-trace attacks on FrodoKEM

Optimization Level 2-bit value 4-bit value 8-bit value 2-bit HW

-O0 99.98% 99.93% 99.70% 99.96%

-O1 97.64% 95.50% 86.45% 99.66%

-O2 97.58% 99.84% 86.06% 94.88%

-O3 79.17% 73.60% 49.15% 85.75%

-Os 98.56% 96.95% 91.16% 99.90%

Optimization Level Combined 1 (value) Combined 2 (HW)

-O0 99.77% 99.95%

-O1 97.72% 99.75%

-O2 97.55% 99.80%

-O3 79.15% 90.57%

-Os 98.50% 99.85%

Consequently, we can discover the wvalue with a success rate over 79.15%. If
the optimization level is 0, the success rate is increased to more than 99.77%.
In the case of analyzing the Hamming weight value of wvalue, the success rate
is over 90.57%. Thus, the secret shared key K can be recovered by applying an
exhaustive search of candidates.

(a) Optimization level 0 (b) Optimization level 1 (c) Optimization level 2

(d) Optimization level 3 (e) Optimization level s

Fig. 4: Distributions of the PoIs of the message encoding of FrodoKEM (set 0,
set 1, set2, and set3 are G1, G2, G3, and G4, respectively)

Single-Trace Attacks on the Message Encoding of Lattice-Based KEMs 19

6 Discussion

6.1 Application to Other 2nd Round Lattice-Based KEMs

In this section, we discuss applicability of our proposed single-trace attacks
against LAC, NewHope, NTRU, and NTRU Prime. We show how the three types
of attacks described in Section 3, Section 4, and Section 5 can be applied to each
scheme. Target operations for the message encoding of the encapsulation phase
are described in Appendix B. There exist determiner in the operations of LAC,
NewHope, NTRU, and NTRU LPRime. The determiner in the Listing B.1 of LAC,
Listing B.2 of NewHope, and Listing B.5 of NTRU LPRime are message, mask,
and r[i]*q12, respectively. Hence, it is possible to cluster the power consumption
traces into two groups using the single-trace attack methodology which is ap-
plied to Crystals-Kyber. The clustered group G1 and G2 represent the sensitive
bit µi value. Accordingly, we can recover the message µ using the Algorithm 2,
and can generate secret shared key K using the recovered µ and public values.

message =

{
0x00 , if µi = 0;
0x7d , if µi = 1.

mask =

{
0x00000000 , if µi = 0;
0xffffffff , if µi = 1.

r[i]*q12 =

{
0x0000 , if µi = 0;
0x0906 , if µi = 1.

In the case of NTRU, µi is the sensitive coefficient belonging to the set
{0, 1, 2}, and there are determiner in the Listing B.3 of NTRU as follows.

(−(r→ coeffs[i]� 1)) =

{
0x0000 , if µi = 0, 1;
0xffff , if µi = 2.

Thus, the power consumption traces can be classified into two groups, G1 and
G2. However, unlikely to the previous schemes, in the case of NTRU, G1 includes
both µi = 0 and µi = 1. Therefore, G1 should be divided into two groups, which
requires additional attack methodology. The results of step 6 in the Listing B.3,

r→ coeffs[i] | ((−(r→ coeffs[i]� 1))&(NTRU Q− 1)) =

0x0000 , if µi = 0;
0x0001 , if µi = 1;
0x03ff , if µi = 2;

can be divided into three groups. Thus, it is possible to cluster each µi into three
groups by combining the attack methodologies which are applied to Crystals-Kyber
and Saber.

In the Listing B.4 of Streamlined NTRU Prime, the secret message µ is f and
f [i] is belonging to the set {0, 1,−1}. Because f is an 8-bit integer array, f [i] is
as below.

f [i] =

0x00 , if µi = 0;
0x01 , if µi = 1;
0xff , if µi = −1.

Hence, similar to NTRU, combining the attack methodologies which are ap-
plied to Crystals-Kyber and Saber is needed. Figure 5 shows the proposed attack
flowchart.

20 B.-Y. Sim et al.

Start

determiner?
single bit-

dependent?

Crystals-Kyber
LAC

NewHope
NTRU LPRime

Streamlined NTRU Prime
NTRU

Saber
Streamlined NTRU Prime

NTRU
FrodoKEM

no

yes yes

no

Fig. 5: Flowchart of our proposed attack

Remark. In this paper, Round5 and Three Bears are excluded from the attack
target. In the case of Round5, there is an operation that is adding µ to a random
variable before extracting µi from the string µ. Therefore, there is no operation
to extract µi from the string µ and store it in the register. It does not satisfy
our attacking assumptions. In the case of Three Bears, there is an operation that
concatenates 8-bit characters to a 64-bit string before hashing. Thus, 8-bit value-
dependent leakage occurs and it can be extracted by ML-based PA which is a
more deep network than the network shown in Table 4. It is not covered in this
paper and we leave it as further work.

6.2 Countermeasures

We here recommend countermeasure that increases the attack complexity, i.e.,
makes the attack more difficult. The masking scheme, which splits secret message
µ into two random messages µ′ and µ′′ [37], is not a perfectly secure counter-
measure. Since it is possible to recover µ′ and µ′′ by applying the proposed
single-trace attack twice, thus, we can calculate µ = µ′ ⊕ µ′′. On the other
hand, the shuffling scheme can properly counteract against the proposed attack.
The Listing 6.1 proposed by Amiet et al. [2] is for NewHope, but it can also be
applied to Crystals-Kyber. By modifying the Listing 6.1, we can construct the
Listing 6.2 and Listing 6.3 for Saber and FrodoKEM, respectively. Similarly, the
shuffling scheme can be applied to LAC, NTRU, Streamlined NTRU Prime, and
NTRU LPRime.

1 b = (f y L i s t [i] � 3) ; s = (f y L i s t [i] & 7) ;

2 mask = =((msg [b] � s) & 0x01) ;

Listing 6.1: Message Encoding with Fisher-Yates Shuffle for NewHope [2]

Single-Trace Attacks on the Message Encoding of Lattice-Based KEMs 21

1 b = (f y L i s t [i] � 3) ; s = (f y L i s t [i] & 7) ;

2 // unpack message r e c e i v e d

3 message [8 * b + s] = ((me s s a g e r e c e i v e d [b] � s) & 0x01) ;

4 // message encod ing

5 message [b] = (message [b] � (SABER EP = 1)) ;

Listing 6.2: Message Encoding with Fisher-Yates Shuffle for Saber

1 b = (f y L i s t [i] � 4) ;

2 temp |= ((u i n t 6 4 t) ((u i n t 8 t *) i n) [b*PARAMS EXTRACTED BITS + j])�(8* j) ;

Listing 6.3: Message Encoding with Fisher-Yates Shuffle for FrodoKEM

Even though the proposed single-trace attacks can still be applied, however,
it is impossible to determine the location of the extracted bits because bits
are encoded in random order. Additional attacks on the shuffling scheme are
required. Thus, as mentioned in [2], if you combine the shuffling with masking,
it can increase the attack complexity.

7 Conclusion

We proposed three types of single-trace attacks against Crystals-Kyber, Saber,
and FrodoKEM, targeting the message encoding of the encapsulation phase. Ex-
periment results show that it is possible to recover entire secret messages with
100% success rates for Crystals-Kyber and Saber regardless of the optimization
level. The message recovery success rate of FrodoKEM is over 79%. When the
optimization level is 0, the success rate increases to more than 99.77%. We also
showed that our attack methodologies are applicable to others including LAC,
NewHope, Streamlined NTRU Prime, NTRU LPRime, and NTRU. Lastly, we rec-
ommended countermeasure which is combining shuffling and masking schemes
to increase the attack complexity.

References

1. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- A new hope. In: 25th USENIX Security Symposium, USENIX Security 16. pp.
327–343. USENIX Association (2016)

2. Amiet, D., Curiger, A., Leuenberger, L., Zbinden, P.: Defeating newhope with
a single trace. In: International Conference on Post-Quantum Cryptography. pp.
189–205. Springer (2020)

3. Anzai, Y.: Pattern Recognition & Machine Learning. Elsevier (1992), https://

doi.org/10.1016/c2009-0-22409-3

4. Atici, A., Batina, L., Gierlichs, B., Verbauwhede, I.: Power analysis on ntru imple-
mentations for rfids: First results. RFIDSec 2008 pp. 128–139 (2008)

https://doi.org/10.1016/c2009-0-22409-3
https://doi.org/10.1016/c2009-0-22409-3

22 B.-Y. Sim et al.

5. Aysu, A., Tobah, Y., Tiwari, M., Gerstlauer, A., Orshansky, M.: Horizontal side-
channel vulnerabilities of post-quantum key exchange protocols. In: IEEE Inter-
national Symposium on Hardware Oriented Security and Trust. pp. 81–88. IEEE
Computer Society (2018)

6. Baan, H., Bhattacharya, S., Fluhrer, S.R., Garćıa-Morchón, Ó., Laarhoven, T.,
Rietman, R., Saarinen, M.O., Tolhuizen, L., Zhang, Z.: Round5: Compact and
fast post-quantum public-key encryption. In: International Conference on Post-
Quantum Cryptography. pp. 83–102. Springer (2019)

7. Bartkewitz, T., Lemke-Rust, K.: Efficient template attacks based on probabilistic
multi-class support vector machines. In: International Conference on Smart Card
Research and Advanced Applications. pp. 263–276. Springer (2012)

8. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime:
Reducing attack surface at low cost. In: International Conference on Selected Areas
in Cryptography. pp. 235–260. Springer (2017)

9. Bos, J.W., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghu-
nathan, A., Stebila, D.: Frodo: Take off the ring! practical, quantum-secure key
exchange from LWE. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. pp. 1006–1018. ACM (2016)

10. Bos, J.W., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS - kyber: A cca-secure module-
lattice-based KEM. In: IEEE European Symposium on Security and Privacy. pp.
353–367. IEEE (2018)

11. Bos, J.W., Friedberger, S., Martinoli, M., Oswald, E., Stam, M.: Assessing the
feasibility of single trace power analysis of frodo. In: International Conference on
Selected Areas in Cryptography. pp. 216–234. Springer (2018)

12. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: International Workshop on
Cryptographic Hardware and Embedded Systems. pp. 13–28. Springer (2002)

13. Chen, L., Jordan, S., Liu, Y.K., Moody, D., Peralta, R., Perlner, R., Smith-
Tone, D.: Report on Post-Quantum Cryptography. https://nvlpubs.nist.gov/
nistpubs/ir/2016/NIST.IR.8105.pdf (2016)

14. Cheon, J.H., Kim, D., Lee, J., Song, Y.: Lizard: Cut off the tail! A practical post-
quantum public-key encryption from LWE and LWR. In: International Conference
on Security and Cryptography for Networks. pp. 160–177. Springer (2018)

15. D’Anvers, J., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber: Module-lwr based
key exchange, cpa-secure encryption and cca-secure KEM. In: International Con-
ference on Cryptology in Africa. pp. 282–305. Springer (2018)

16. D’Anvers, J., Tiepelt, M., Vercauteren, F., Verbauwhede, I.: Timing attacks on
error correcting codes in post-quantum schemes. In: Proceedings of ACM Workshop
on Theory of Implementation Security Workshop. pp. 2–9. ACM (2019)

17. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining. pp. 226–231.
AAAI Press (1996)

18. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric en-
cryption schemes. In: Annual International Cryptology Conference. pp. 537–554.
Springer (1999)

19. Fukunaga, K., Hostetler, L.D.: The estimation of the gradient of a density function,
with applications in pattern recognition. IEEE Trans. Inf. Theory 21(1), 32–40
(1975)

https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.8105.pdf

Single-Trace Attacks on the Message Encoding of Lattice-Based KEMs 23

20. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In:
International Workshop on Cryptographic Hardware and Embedded Systems. pp.
15–29. Springer (2006)

21. Heyszl, J., Ibing, A., Mangard, S., Santis, F.D., Sigl, G.: Clustering algorithms for
non-profiled single-execution attacks on exponentiations. In: International Confer-
ence on Smart Card Research and Advanced Applications. pp. 79–93. Springer
(2013)

22. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryp-
tosystem. In: International Algorithmic Number Theory Symposium. pp. 267–288.
Springer (1998)

23. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the fujisaki-okamoto
transformation. In: Theory of Cryptography Conference. pp. 341–371. Springer
(2017)

24. Hospodar, G., Gierlichs, B., Mulder, E.D., Verbauwhede, I., Vandewalle, J.: Ma-
chine learning in side-channel analysis: a first study. J. Cryptographic Engineering
1(4), 293–302 (2011)

25. Huang, W., Chen, J., Yang, B.: Power analysis on NTRU prime. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2020(1), 123–151 (2020)

26. Inc, N.T.: ChipWhisperer UFO. https://wiki.newae.com/CW308T-STM32F
27. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss, and

other systems. In: Annual International Cryptology Conference. pp. 104–113.
Springer (1996)

28. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Annual Interna-
tional Cryptology Conference. pp. 388–397. Springer (1999)

29. Lee, J., Kim, D., Lee, H., Lee, Y., Cheon, J.H.: Rlizard: Post-quantum key encap-
sulation mechanism for iot devices. IEEE Access 7, 2080–2091 (2019)

30. Lee, M., Song, J.E., Choi, D., Han, D.: Countermeasures against power analysis
attacks for the NTRU public key cryptosystem. IEICE Trans. Fundam. Electron.
Commun. Comput. Sci. 93-A(1), 153–163 (2010)

31. Lerman, L., Bontempi, G., Markowitch, O.: Side channel attack: an approach based
on machine learning. In: International Workshop on Constructive Side-Channel
Analysis and Secure Design. pp. 29–41. Springer (2011)

32. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 1–23. Springer (2010)

33. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks - revealing the secrets
of smart cards. Springer (2007)

34. Mariantoni, M.: Building a superconducting quantum computer (2014), https:

//www.youtube.com/watch?v=wWHAs--HA1c

35. Mosca, M.: Cybersecurity in an era with quantum computers: Will we be ready?
IEEE Secur. Priv. 16(5), 38–41 (2018)

36. NIST: Post-Quantum Cryptography, Round 2 Submissions, NIST Computer
Security Resource Center. https://csrc.nist.gov/Projects/Post-Quantum-

Cryptography/Round-2-Submissions (2019)
37. Oder, T., Schneider, T., Pöppelmann, T., Güneysu, T.: Practical cca2-secure and

masked ring-lwe implementation. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018(1), 142–174 (2018)

38. Park, A., Han, D.: Chosen ciphertext simple power analysis on software 8-bit im-
plementation of ring-lwe encryption. In: IEEE Asian Hardware-Oriented Security
and Trust. pp. 1–6. IEEE Computer Society (2016)

https://wiki.newae.com/CW308T-STM32F
https://www.youtube.com/watch?v=wWHAs--HA1c
https://www.youtube.com/watch?v=wWHAs--HA1c
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions

24 B.-Y. Sim et al.

39. Pessl, P., Primas, R.: More practical single-trace attacks on the number theoretic
transform. In: International Conference on Cryptology and Information Security
in Latin America. pp. 130–149. Springer (2019)

40. Primas, R., Pessl, P., Mangard, S.: Single-trace side-channel attacks on masked
lattice-based encryption. In: International Conference on Cryptographic Hardware
and Embedded Systems. pp. 513–533. Springer (2017)

41. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the 37th Annual ACM Symposium on Theory of Comput-
ing. pp. 84–93. ACM (2005)

42. Reparaz, O., de Clercq, R., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Additively
homomorphic ring-lwe masking. In: International Conference on Post-Quantum
Cryptography. pp. 233–244. Springer (2016)

43. Reparaz, O., Roy, S.S., de Clercq, R., Vercauteren, F., Verbauwhede, I.: Masking
ring-lwe. J. Cryptographic Engineering 6(2), 139–153 (2016)

44. Rokach, L., Maimon, O.: Clustering methods. In: The Data Mining and Knowledge
Discovery Handbook, pp. 321–352. Springer (2005)

45. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism
in the quantum random oracle model. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques. pp. 520–551. Springer
(2018)

46. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-
ing. In: 35th Annual Symposium on Foundations of Computer Science. pp. 124–134.
IEEE Computer Society (1994)

47. Silverman, J.H., Whyte, W.: Timing attacks on ntruencrypt via variation in the
number of hash calls. In: The Cryptographers’ Track at the RSA Conference. pp.
208–224. Springer (2007)

Single-Trace Attacks on the Message Encoding of Lattice-Based KEMs 25

A Experiment Results

A.1 Crystals-Kyber

Figure 6(a) and Figure 6(b) show the SOST value between two groups, G1 and
G2, of each µi, when the optimization level is 3 and s, respectively. They also
show that the PoIs are regularly distributed.

(a) Optimization level 3 (b) Optimization level s

Fig. 6: The power consumption trace of the message encoding of Crystals-Kyber
(top) and the SOST value between two groups, G1 and G2, of each µi (bottom)

A.2 Saber

To identity the existence of the leakage based on the sensitive bit µi value,
we calculate the SOST value of the power consumption traces. Figure 7 and
Figure 8 show the SOST value between two groups, G1 and G2, of each µi, when
the optimization level is 3 and s, respectively. As shown in Figure 7(a), there is
no regularity at the first PoIs when the optimization level is 3. However, when
the optimization level is not 3, points with high SOST values in the first PoIs
are regularly distributed as shown in Figure 8(a).

(a) First PoI (b) Second PoI

Fig. 7: The power consumption trace of the message encoding of Saber when
optimization level is 3 (top) and the SOST value between two groups, G1 and
G2, of each µi (bottom)

26 B.-Y. Sim et al.

(a) First PoI (b) Second PoI

Fig. 8: The power consumption trace of the message encoding of Saber when
optimization level is s (top) and the SOST value between two groups, G1 and
G2, of each µi (bottom)

(a) First PoIs (b) Second PoIs

Fig. 9: Loss (left) and accuracy (right) over the epochs for training and validation
(Optimization level 3, Saber, 1-bit µ`−1 value)

(a) First PoIs (b) Second PoIs

Fig. 10: Loss (left) and accuracy (right) over the epochs for training and valida-
tion (Optimization level s, Saber, 1-bit µ`−1 value)

Figure 9 and Figure 10 show the ML-based PA results. In the case of using
the second PoIs for profiling 1-bit value, the validation accuracy is 1 in all the
optimization level. Hence, 1-bit values of µ = (µ`−1, · · · , µ1, µ0)2 are recovered
with a 100% success rate as shown in Table 7. Whereas, in the case of using the
first PoIs for profiling 1-bit value, the validation accuracy is over 0.95. Thus,
1-bit values of µ = (µ`−1, · · · , µ1, µ0)2 are recovered with over a 95% success
rate as shown in Table 7.

Single-Trace Attacks on the Message Encoding of Lattice-Based KEMs 27

A.3 FrodoKEM

To identify the existence of the leakage based on the sensitive wvalue, we calcu-
late the SOST value of the power consumption traces. Figure 11 shows the SOST
value between four groups when the optimization level is 3 and s. As shown in
Figure 11(a), there is no regularity when the optimization level is 3. However,
when the optimization level is not 3, points with high SOST values are regularly
distributed as shown in Figure 11(b).

(a) Optimization level 3 (b) Optimization level s

Fig. 11: The power consumption trace of the message encoding of FrodoKEM
(top) and the SOST value between four groups, G1, G2, G3, and G4, of each
wvalue (bottom)

(a) Optimization level 3 (b) Optimization level s

Fig. 12: Loss (left) and accuracy (right) over the epochs for training and valida-
tion (Optimization level 3 and s, FrodoKEM, 2-bit value)

Figure 12 shows the ML-based PA results. For profiling 2-bit value, the val-
idation accuracy is higher than 0.78 and 0.97, when the optimization level is 3
and s, respectively. Hence, 2-bit values of µ = (µ`−1, · · · , µ1, µ0)2 are recovered
with over 78% and 97% success rates, respectively, as shown in Table 9.

B Message Encoding

The secret message µ in Listing B.1, Listing B.2, Listing B.3, Listing B.4, and
Listing B.5 are p code, msg, r→coeffs, f, and r, respectively.

28 B.-Y. Sim et al.

1 i n t pke en c s e ed (const uns igned char *pk , const uns igned char *m, uns igned

long long mlen , uns igned char *c , uns igned long long * c l en , uns igned

char * seed)

2 {
3 // (omit)

4 // compute the l e n g t h o f c2

5 c 2 l e n = (mlen + ECC LEN) * 8 * 2 ;

6 // gen e r a t e e r r o r v e c t o r e2

7 g e n p s i s t d (e2 , c 2 l en , s e ed s + 2 * SEED LEN) ;

8

9 i n t vec bound = c 2 l e n / 2 ;

10 i n t 8 t message ;

11 // compute code * q/2 + e2

12 f o r (i = 0 ; i < vec bound ; i++)

13 {
14 // RATIO = q/2 , add code * q/2 to e2

15 message = RATIO * ((p code [i / 8] � (i % 8)) & 1) ;

16 e2 [i] = e2 [i] + message ;

17 // D2 encode , r e p e a t at i + vec bound

18 e2 [i + vec bound] = e2 [i + vec bound] + message ;

19 }
20 // (omit)

21 }

Listing B.1: Message Encoding encode(µ) of LAC

1 vo id po ly f rommsg (po l y * r , const uns igned char *msg)

2 {
3 uns igned i n t i , j , mask ;

4 f o r (i = 0 ; i < 32 ; i++) // XXX: MACRO f o r 32

5 {
6 f o r (j = 0 ; j < 8 ; j++)

7 {
8 mask = =((msg [i] >> j) & 1) ;

9 r→ c o e f f s [8* i+j+ 0] = mask & (NEWHOPE Q/2) ;

10 r→ c o e f f s [8* i+j +256] = mask & (NEWHOPE Q/2) ;

11 #i f (NEWHOPE N == 1024)

12 r→ c o e f f s [8* i+j +512] = mask & (NEWHOPE Q/2) ;

13 r→ c o e f f s [8* i+j +768] = mask & (NEWHOPE Q/2) ;

14 #end i f

15 }
16 }
17 }

Listing B.2: Message Encoding encode(µ) of NewHope

1 // Map {0 , 1 , 2} => {0 , 1 , q=1} i n p l a c e

2 vo id po l y Z3 to Zq (po l y * r)

3 {
4 i n t i ;

5 f o r (i = 0 ; i < NTRU N; i++)

6 r→ c o e f f s [i] = r→ c o e f f s [i] | (=(r→ c o e f f s [i] � 1) & (NTRU Q = 1)) ;

Single-Trace Attacks on the Message Encoding of Lattice-Based KEMs 29

7 }

Listing B.3: Message Encoding encode(µ) of NTRU

1 s t a t i c vo id Sma l l encode (uns igned char *s , const sma l l * f)

2 {
3 sma l l x ;

4 i n t i ;

5

6 f o r (i = 0 ; i < p /4 ; ++i)

7 {
8 x = * f++ + 1 ;

9 x += (* f++ + 1) << 2 ;

10 x += (* f++ + 1) << 4 ;

11 x += (* f++ + 1) << 6 ;

12 * s++ = x ;

13 }
14 x = * f++ + 1 ;

15 * s++ = x ;

16 }

Listing B.4: Message Encoding encode(µ) of Streamlined NTRU Prime

1 #de f i n e q12 ((q=1)/2)

2 s t a t i c vo id Encrypt (Fq *B, i n t 8 *T, const i n t * r , const Fq *G, const Fq *A

, const sma l l *b)

3 {
4 Fq bG [p] ;

5 Fq bA [p] ;

6 i n t i ;

7

8 Rq mu l t sma l l (bG , G, b) ;

9 Round (B, bG) ;

10 Rq mu l t sma l l (bA , A, b) ;

11 f o r (i = 0 ; i < I ; ++i)

12 T[i] = Top(Fq f r e e z e (bA [i] + r [i] * q12)) ;

13 }

Listing B.5: Message Encoding encode(µ) of NTRU LPRime

	Single-Trace Attacks on the Message Encoding of Lattice-Based KEMs

