
Can Lattice Signature be as Efficient as Lattice

Encryption?

Dingfeng Ye

State Key Laboratory of Information Security, Institute of Information Engineering,

Chinese Academy of Sciences, Beijing 100093, China

yedingfeng@iie.ac.cn

Abstract. Existing lattice signature schemes are much less efficient

than encryption schemes due to the rejection sampling paradigm. We

give a construction of comparable efficiency with lattice encryption that

avoids sampling using structured secrets together with temporary keys.

Structured secrets (and randoms) also improve existing lattice encryp-

tion schemes to nearly the same extreme efficiency. Our signature scheme

allows the same parameters of any encryption schemes (a variation of

the basic form is needed when the modulus is as small as 1-byte) and

has comparable efficiency with our extreme encryption efficiency. For

lightweight implementation, our techniques allow integrating of public-

key encryption and signature in a simple circuit which only needs to do

small integer additions as the main part of the computation.

Keywords: Lattice Signature · Lattice Encryption.

1 Introduction

Lattice encryption and signature are two kinds of public key cryptography sup-

posed to stand with or even replace RSA and ECC, in light of its resistance

to quantum computing attacks, and also for its low computational cost and

speed advantage over the later two. Some problems with this technology trend

may arise, here are two: (1) Quantum computing remains a pure mathemat-

ical notion whose physical feasibility might be excluded in future, the phrase

“post-quantum” may lose its power in supporting prevailing of lattice cryptog-

raphy. (2) At present, lattice signature is not compatible with lattice encryption

in efficiency: the former is much slower (even slower than ECC) and bigger in

size than the latter; this is another disadvantage besides the size issue compared

with RSA and ECC. To make lattice cryptography more widely applicable, it

is desirable to have a more efficient and light-weighted lattice signature scheme,

2 Dingfeng Ye

and to make extreme use of the speed and lightweight advantages of lattices in

parameter choices of both encryption and signature.

There are two main approaches to obtain lattice signatures: one is trapdoor

sampling a short integer solution (SIS) to a hard SIS problem; the other is a Fiar-

Shamir heuristic in proving knowledge of secrets associated with the public key.

The main efficiency obstacle with both approaches is that the plain treatment is

insecure: signing leaks secret information and enough signatures may recover the

secret key statistically. To remedy this, the existing approach introduces a large

uniform noise or a smaller Gaussian noise together with a computation-intensive

rejection sampling to get a distribution independent of the secret, which makes

the signature schemes much less efficient compared with the lattice encryption

schemes at the same security level. Our first objective is a lattice signature

scheme without the requirement of large noise and/or complex sampling.

Since the trapdoor sampling approach can not be improved at speed to the

extent of our objective, we follow the second approach, and we worked in a

RLWE context: all objects are elements of a ring R = Z[T]/(Tn + 1) or Rq =

Zq[T]/(Tn+1), n is a power of 2 or a prime, q is the modulus. LetX = x1a+x2 be

a public key with private key x1, x2, we can view a signature as a proof of knowing

x1, x2 given X. Typically such a proof has the form (Y = y1a+y2, z1, z2), where

z1 = y1 + cx1, z2 = y2 + cx2, c is the challenge determined by Y,X. For ease

of presentation we omit the index i = 1, 2, and simply put it for one copy of

variables x, y, z. We call such a scheme plain if y is drawn from uniform or

Gaussian distribution. It is well known that plain scheme is not secure, and

can be attacked as follows: let ∗ denote the automorphism of R : T 7→ T−1,

then c∗c ≈ |c|2, and c∗z ≈ |c|2x + c∗y, where the secret x becomes a constant

translation of a known balanced distribution, which can be easily recovered given

a few samples. To stop such attack, known methods make distribution of z

independent of x by sampling y depending on cx (so-called ”reject sampling”),

which needs y have a much larger size (for example Tesla [2]) than cx and/or

needs intensive floating-point operations (Bliss [4]).

We observe that using a temporary public key may make things different:

each temporary key only signs a restricted number (r) of times to invalidate the

above linear statistical attack, and then a new temporary key is certificated; this

certification is easier to secure. Let W = w1X+w2 be a temporary public key, the

certificate of W by X is of the form (Y = y1a+y2, z1, z2), where zi = yi+cw1xi,

i = 1, 2 (In the following, i will be omitted). Now the above linear statistical

attack does not work, since the translation wx seems wild because of w. The

only known attack is the quadratic statistical attack introduced in [10, 7]. The

Can Lattice Signature be as Efficient as Lattice Encryption? 3

basic observation of this attack is that any quadratic function of z has a mean

value (called quadratic statistical deviation) which equals a quadratic function

of x, if y is balanced sampled independently of w, x, and knowing the quadratic

functions of x can recover x. There are two obvious ways to invalidate this attack:

the first is balancing the quadratic functions of z by sampling techniques (there

are ways more efficient than reject sampling); the second is our approach in this

paper: structured y. We make

y =
∑

1≤j≤t

yjsj ,

where sj are secret but constant, the number t is a small integer, say t = 10.

Now the quadratic statistical deviation of z is a function of x and sjs, we can

expect this large number ((t + 1)n) of unknowns can hardly be recovered from

far few (n/2) equations. In this basic form of our construction: the requirement

of large y in conventional lattice signatures vanishes which allows the signature

and encryption to share the same parameters.

The security of our scheme mainly relies on the difficulty to recover the secret

from the certificates of an arbitrary number, a new problem introduced in this

work. The main attack we can figure out is as follows: guess a part x′ of the

secret x, and using statistical methods to verify the guess. Note that

c∗x′∗z = c∗x′∗x′w + c∗x′∗ = |c|2|x′|2w + ot,

where ot is the other part of the observable c∗x′∗z. The ratio

ρ = |c|2|x′|2/|ot| ≈ (|c||x′|n1/2)/|z|

is an indicator of the hardness of the new problem. At present we don’t know

what is the best statistic attack, so we don’t know the exact requirement about

ρ. A simple attack establishes the upper bound ρ0 of ρ for the new problem to

be hard. To get smaller ρ, we use a variation of the Σ-protocol and let z have

the form xw+ c1y1 + c2y2, which leads to ρ = (|x′|n1/2)/|z|. In our examples we

have ρ < 0.1ρ0, which we think is enough to stop any statistical attack.

Next, we consider integrating both encryption and signature in a simple

computing module. We could simply add a signature scheme to the existing

lattice encryption schemes with the temporary W working as the encryption

public key. We can do much better. In fact, using structured secret (and/or

noise) in an encryption scheme will greatly improve its efficiency. Typically the

4 Dingfeng Ye

public Enc() needs to compute rW (and rX), where the random r has the

same distribution with the secret key w. If this distribution is Gaussian, the

multiplication by r is treated as the multiplication of general elements in the

ring R, which is costly. If we replace the distribution with a semi-Gaussian given

by an algebraic expression of some very small and simple elements, then the

multiplication by r would just cost tens of shift-additions in R, which makes all

lattice encryption scheme achieve nearly the same level of extreme efficiency.

We say a distribution semi-Gaussian with parameter σ, if it is balanced (with

mean value 0) and has mean square value σ2, and not too far away from the

Gaussian distribution Dσ. A distribution of vector is called semi-Gaussian if its

components all are semi-Gaussian with the same parameter, such a distribution

will be denoted as [σ]. Algebraic operation of semi-Gaussian distributions in R

results in semi-Gaussian distribution:

[σ1] + [σ2] = [(σ2
1 + σ2

2)1/2]

[σ1] · [σ2] = [(nσ2
1σ

2
2)1/2]

Let Sd denote ring elements with exactly d non-zero entries of {−1, 1}. Multi-

plication by an element in Sd costs d shift-additions(the unit of computational

cost in this work) in the ring, we also say element has cost d. We may treat the

uniform distribution of Sd as semi-Gaussian (d/n)1/2, and we could approximate

any Gaussian parameter with some algebraic expression of very small Sds. such

an element costs no more than the sum of these ds. For the extreme example,

let S(2k) denote the product of k independent copy of S2, then it achieves the

Gaussian parameter (2k/n)1/2 and only has cost k + 1. Of course, we should

choose an algebraic expression such that the resulted RLWE problem can not

be attacked simply by birthday type exhausting(No other attack is known to

exploit this secret structure). It is not hard to see that the cost of structured

secret w and random r can always be reduced to tens.

The long term secret key x is chosen in Sd for a d big enough to ensure

the hardness of the RLWE instance. Any existing lattice encryption scheme can

be transformed into a PKC module(doing both encryption and signature) as

above, and in the signing algorithm, we can make the sum of the cost of the

yjs as small as 7. So the signature scheme is at the same efficiency level as the

most optimized encryption algorithm. This makes the efficiency of our lattice

PKC depend only on the parameter n and q. For lightweight implementation,

small q is favorable, it seems that 1-byte q ≈ 256 is the extreme lower bound of

modulus size for security level no less than 128 bits. We give explicit parameters

Can Lattice Signature be as Efficient as Lattice Encryption? 5

the examples according to known attacks: lattice reductions [6, 8, 3], brute force

attacks at scarce secrets [9], statistical tests in this work. Another issue related

to both security and efficiency is how many times a temporary signing key can

be used. We also gives computations to decide this according to the best attack

we know.

Note that integer multiplication is not mentioned. In fact, the signing algo-

rithm should ensure the Euclidian norm of z lies in the expected scope, com-

puting the Euclidian norm needs multiplication. This task can be assigned to

the supporting software if we wish the hardware extremely light weighted. The

verification of the signature (and certificate) involves multiplication of general

elements in the ring, which would be delegated to the environment. Such del-

egation needs to be carried out even when the environment is not trusted. We

give a simple protocol for this task.

To summarize, our signature scheme allows the same key used both for en-

cryption and signing, and both are extremely efficient. It is best suited to be

exploited in a PKI context, where transporting and verification of the tempo-

rary key may be delegated to the PKI service provider. The basic form of our

signature is also in leading size efficiency, but the variation seems better suited

for 1-byte q. We also give a simple protocol for delegating the main workload

for signature verification, which means we can integrate the whole public key

functions in a simple device that need not do integer multiplication. This would

allow extremely lightweight hardware implementation of PKC for the first time.

2 Preliminary

Let R = Z[T]/(Tn + 1), and Rq = R/(qR), where n is a power of 2 or a prime,

q is a positive integer called the modulus. Elements of R or Rq are also viewed

as vectors of length n: a =
∑
i aiT

i = (a0, a1, · · · an−1). < a, b > denotes the

inner product of a, b, and |a| =< a, a >1/2 denotes the euclidian norm. We also

use capital letters X,Y,A,B · · · to denote elements of R or Rq. Let ∗ denote

the automorphism of R : T 7→ T−1, then a∗a ≈ |a|2 for any (considered in this

work) random variable a in the ring, where ‘≈’ means the difference of the two

sides has zero mean value.

For any distribution χ, x← χ means sampling x according to χ. When S is

a set, x← S refers to the uniform distribution of S. Sd denotes vectors of length

n with exactly d non-zero entries of {−1, 1}.

6 Dingfeng Ye

Gaussian distributions χσ over Z:

Pr[x] = e−x
2/2σ2

/
∑
i∈Z

e−i
2/2σ2

It is well known that (E(·) means mean value)

E(|x|2 : x← χσ) = σ2

erf(k) := Pr[|x| > kσ : x← χσ] = (2/π)1/2
∫ ∞
k

e−x
2

/2dx

We say a distribution semi-gaussian with parameter σ, if it is balanced(with

mean value 0) and has mean square value σ2, and not too far away from χσ.

A distribution of vector is called semi-Gaussian if its components all are semi-

Gaussian with the same parameter σ, such a distribution will be denoted as [σ].

Algebraic operation of semi-Gaussian distributions in R results in semi-Gaussian

distribution:

[σ1] + [σ2] = [(σ2
1 + σ2

2)1/2]

[σ1] · [σ2] = [(nσ2
1σ

2
2)1/2]

Algebraic combinations of Sds will be abreviated as follows: S(a × b + c ×
d+ · · ·) will denote Sa × Sb + Sc × Sd + · · · , and it has the Gaussian parameter

((a× b+ c× d+ · · ·)/n)1/2.

RLWE: given a ← Rq, b = as + e, where s, e ← K for some distribution K,

to find s, e.

RSIS: given a, b, c← Rq, to find u, v ∈ R, such that au+bv = c and |u|2 < D,

|v|2 < D for some bound D.

We are not concerning the hardness of RLWE (RSIS) asymptotically, instead,

we would like to evaluate the concrete security level (in bits) of the problem at

specific parameters according to known attacks, e.g. using the model of [1]. We

regard the security level is equally good as long as it exceeds the claimed number

of bits. For n > 500, 1-byte q, and 128-bit security, we set D = n∗402 in the

SIS problem which is associated with the problem to forge a lattice signature;

we think any semi-gaussian distribution K with k ≥ 64 non-zero entries is ok

for the RLWE problem which is associated with the basic security assumption

of both encryption and signature. For q = 1024, we set D = n∗802, k ≥ 80; For

q = 3× 212 + 1, we set D = n∗2202, k ≥ 256.

Σ protocols: a Σ protocol (may not be secure in this work) means the process

to prove knowledge of a witness w satisfying a relation R(x,w) which works

Can Lattice Signature be as Efficient as Lattice Encryption? 7

as follows: the prover first computes a commitment u = COM(x,w, r); the

verifier gives a random challenge c; the prover then computes a respond a =

RES(x,w, r, c); and the verifier computes V erify(u, c, a, x). A Σ protocol is

called zero knowledge (ZK) if (u, c, a) is statistically independent of w; witness

indistinguishable (WI) if (u, c, a) is computationally independent of w; witness

hiding if it is hard to recover w given unbounded samples of (u, c, a). Any ZK

Σ protocol can be transferred to a signature scheme by the FS (Fiat-Shamir)

heuristic: c = h(u,m), whose security can be proved if the cryptographic hash

function h is modeled as a random oracle. We assume FS heuristic also works

for any witness hiding Σ protocol.

When w, r is in a ring, and R is a linear relation over the ring, then the

basic form of RES(x,w, r, c) is r − wc. Variations of the basic form might be

w − cr,c1w + c2r, w + c1r1 + c2r2 · · · etc.

By public-key cryptography (PKC) we refer to two main functions: encryp-

tion and signature. In both cases, there is a key generating algorithm:

KeyGen(para)→ (sk, pk)

where para is the system parameter, sk, pk are the private and public key respec-

tively. With public-key, anyone can encrypt a message m or verify a signature τ

on m:

Enc(pk,m)→ c

V erify(pk,m, τ) = 0 or 1

The security requirement is that only with the secret key, one can get any infor-

mation about m from the ciphertext c, or produce a signature τ on m accepted

by the verification process. Formal definitions are referred to [5].

In lattice PKC, the main attacks are concerned with the RLWE problem

instances appearing in the key pair, ciphertext, and signature; and the SIS prob-

lem in forging a signature. We don’t give formal assumptions to prove attacking

our scheme can be reduced to these problems. We follow the “design and attack”

paradigm, we are mainly concerned with known attacks on concrete problems or

constructions. The formal proof may go straightforwardly as the suitable defini-

tion is given, but it would be irrelevant to our claims of security level λ.

3 The new lattice signature scheme

Our signature consists of two parts: a plain signature with a temporary key and

a certificate of the temporary key; both are transformed from Σ-protocols via

8 Dingfeng Ye

standard Fiat-Shamir heuristic, so we just describe the underlying Σ-protocols

to specify our signature scheme. For the certificate part, we need the Σ-protocol

to be secure (witness hiding) to allow 264 times of use of long term key. For each

temporary key, we need to decide the number of times a temporary key can be

used. We give the rationale for our design in this section.

We only consider only the following key generation:

Keyen(a) := {x1, x2 ← K; sk = (x1, x2); pk = X = ax1 + x2; }

where a← Rq is the system parameter, K is a distribution defined by scheme.

Let X = x1a + x2 be a public key with private key x1, x2. In a typical

Σ-protocol for proving knowledge of x1, x2 given X, the proof is of the form

(Y = y1a + y2, z1, z2), where z1 = y1 + cx1, z2 = y2 + cx2, c is the challenge

determined by Y,X and message m:

c0 = h(X,Y,m)

c = f(c0)

where h is a cryptographic hash function modeled as a random oracle, f is a

map whose image is the uniform distribution of some Sdc with |Sdc | > 2λ. Since

the treatment of the two copies z1, z2 is the same, we will omit the subscript 1, 2

and simply say x, y, z etc. We call such a protocol plain if y are drawn from a

uniform or (semi-)Gaussian distribution.

It is well known that a plain protocol is not secure, and can be attacked as

follows. Let (·)∗ be the ring homomorphism defined by T 7→ T−1, then

c∗z ≈ |c|2x+ c∗y,

the right hand is a translation proportional to x from a known distribution, so x

can be easily determined given a few samples: assume y has gaussian parameter

σ, then the sum of k samples of c∗z is the sum S of k|c|2x and a semi-gaussian

with parameter k1/2|c|σ, as long as k|c|2 >> k1/2|c|σ or k >> σ2/|c|2, we get

x ≈ S/(k|c|2). We call this attack the linear statistic attack.

To stop such attack, known methods make distribution of z independent of

x by sampling y depending on cx, which needs y have a much larger size (for

example Tesla) than cx and/or needs intensive floating-point operations (Bliss).

We circum this attack by introducing temporary keys and structured y.

Can Lattice Signature be as Efficient as Lattice Encryption? 9

A temporary key pair (tsk, tpk) is generated taking X as system parameter:

Keyen(X) := {w1, w2 ← K; tsk = (w1, w2); tpk = W = w1X + w2; }

Our signature consists of two parts: the first is the plain signature with respect

to the temporary key pair and system parameter X; the second is a certification

of W by X using secrete key sk. Now the certification of W is of form (Y =

y1a+ y2, z1, z2), where z1 = y1 + cw1x1, z2 = y2 + c(w1x2 + w2), and

c0 = h(X,Y,W)

c = f(c0).

The actual certificate is (W, c0, z1, z2), since Y can be recovered from the later. In

the following, the subscripts 1, 2 will be omitted. The verification of the signature

is the “and” result of verification of both the plain signature and the certificate,

which in addition to verifying the relations formulated above, also verifying

|z|2 ≤ Bz for all the four z elements and some bound Bz.

Now the above linear statistical attack does not work, since the translation

wx seems wild because of w. The only known attack is the quadratic statistical

attack introduced in [10, 7]. This attack can be formulated as follows: consider

the following random variable

z∗z = (c∗cx∗x)(w∗w) + y∗(cxw) + y(cxw)∗ + y∗y

where w, y are variables. The later sounds have zero mean value (or |y|2)) for

typical choices of w, y distribution, so the constant x∗x is exposed, which can be

exploited to recover x.

To deal with this attack we simply use structured y, so that the mean value

of z∗z depends on secrets implied in y. We make

y =
∑

1≤j≤t

yjsj ,

where sj are secret but fixed; the number t is a small integer, say t = 10. Now

the mean value of z∗z (or any the quadratic function of z) is a function of x

and sjs, we can expect this large number ((t+ 1)n) of unknowns can hardly be

recovered from far few (n/2, by symmetry z∗z only has n/2 different components)

equations; we can not handle it even for t = 1. In our construction, bigger t does

not mean more computation (we can choose simpler yj , sj to balance), it only

10 Dingfeng Ye

adds up a secret key size. So it is not expensive to have a bigger t when further

analysis suggests. This is the basic form of our constructions: the requirement

of large y in conventional lattice signatures disappears.

The security of our scheme mainly relies on the difficulty to recover the

secret key from certificates of arbitrary number, which is the main new problem

introduced in this work. The main attack we can figure out would follow the

approach: guess a part x′ of the secret x, and using statistical methods to verify

the guess. Note that

c∗x′∗z = c∗x′∗x′w + c∗x′∗ = |c|2|x′|2w + ot,

where ot denotes the other part of the observable c∗x′∗z, if |c|2|x′|2 is too big

relative to the size of ot, this may be statistically identified. A simple such test is

just to record the biggest absolute value of components of c∗x′∗z for a big sample

pool of size L ≤ 264. Assume ot and c∗r∗z is semi-gaussian with parameter σ for

all wrong guesses r (with total number K), and let

ρ = |c|2|x′|2/σ = |z|/(|c||x′|n1/2)

where σ = |z|/n1/2, then the condition for the test to to distinguish a correct

guess from wrong guesses is

erf−1((n∗K∗L)−1) < erf−1(k∗L)−1) + |w|1ρ

where L is the expected number of guesses to hit a correct guess, |.|1 denotes

the 1-norm,i.e. the maxim of absolute value of the components; k is the rate to

hit this maxim. Let

ρ0 = min
K∗L≤2λ

(erf−1((n∗K∗L)−1)− erf−1(k∗L)−1))/|w|1

then a necessary condition for the test to succeed is that ρ < ρ0.

The problem in the actual case is much harder than the above modeling:

the gaussian parameter of c∗r∗z depends on r and is secret; those r close to

x′ can not be distinguished with x′. So the test could at best return a set of

candidates close to the correct guess, even though ρ < ρ0 is satisfied. For very

sparse x(which is the case in our examples), such information might be enough to

recover x, so we should let ρ << ρ0, for example ρ < 0.1ρ0. For x with gaussian

parameter ≥ 1, such information could only reduce the gaussian parameter of

the related RLWE problem. So we think the new problem should not be weaker

Can Lattice Signature be as Efficient as Lattice Encryption? 11

when a larger gaussian parameter of x is used: though it results in smaller ρ0,

and larger ρ.

At present we don’t know what is the best statistic test for such a task, so we

don’t know recommend the requirement about ρ for sparse x. we just minimize ρ

as allowed by other requirements. A simple way to reduce ρ is using the following

variation of the basic form: let the z has the form xw+ c1y1 + c2y2, which leads

to

ρ ≈ (|x′|n1/2)/|z|

the factor |c| = dc
1/2 is get rid of. The commitments Y 1, Y 2 need to appear in

the certificate in this case. Note that the form z = xw + cy is not secure since

c∗z/|c|2 is an approximation of y.

The following are data in our examples: For q = 3∗212 + 1, we may guess a

part x′ ∈ Sd of x with d < 20; and with restriction in sampling we get |w|1 = 3,

k < 1 in definition of ρ0; with the bound L < 264, and assume the bound of

|z|/n1/2 = σ can be chosen as 220, the basic form has ρ < 0.04ρ0. For q = 1024,

with |w|1 = 2, k = 4.5,σ = 80 while the other parameters remain the same, the

basic form has ρ < 0.08ρ0 and the variation has ρ < 0.02ρ0. For 1-byte modulus

(say q = 256), |w|1 = 2, k = 1.5, σ = 40 while the other parameters remain the

same, the variation has ρ < 0.04ρ0.

Next we discuss how to decide the number k of times a temporary key can

be used. For the basic form, we may regard the sum of k samples of c∗z as

k|c|2w + [k1/2|c|σ], where σ is the gaussian parameter of z. The information it

leaks abut w is characterized by the ratio

θ = k|c|2/(k1/2|c|σ)

The smallest θ that can be exploited to harm security by our known attacks) is

θ0 ≈ 0.2, where it reduce the effort to guess a half of zero components of w ∈ S75

to ≈ 264 which resulted in a 2128 complexity attack. So we should have θ < 0.2,

or k < 0.04σ2/c2. For the variation, the |c| factor is gone, and we get k < 0.04σ2.

4 Structured secrets and random numbers

Next, we consider more structures of secrets (x,w, sj) and random numbers (yj)

to improve efficiency, and for integrating both encryption and signature in a

simple computing module.

Note that the most computation-intensive operation in lattice PKC is poly-

nomial multiplication if our signature scheme is used. In fact, using structured

12 Dingfeng Ye

secret (and/or noise) will avoid multiplication of general elements in the ring

in the whole encryption scheme and the signing algorithm(only verification of

signatures need such operation). multiplication by a structured element will be

done by tens of shift-additions in R: a shift-addition is of the form a + T ib,

where the shift T i is cheap in software and free in hardware. We will count the

computation cost in number of shift-additions, and say the cost of an element

(denoted as c()) meaning the cost of multiplication by it.

Note that elements in Sd have cost d, and c(a+ b) = c(ab) = c(a) + c(b). The

structure we pose on the secrets and random numbers is that they are algebraic

expressions of some Sds. We have the following observation:

In RLWE problem in PKC: (a, as + e) the distribution K can be replaced

with a structure S(K) of cost in tens (< 2dc).

The fact is that no known attacks on RLWE can make uses of this structure

except: the birthday exhausting of s (or e).

To see this, note first that the gaussian parameter of K(< 10 in lattice PKC)

can be approximated by a structure of extremely low cost(consider the product

of (S2s and S3s) which is weak for the birthday attack. We can lower the alge-

braic degree and use the sum of products and using other small Sds to adjust

the birthday attack cost to the security level. Usually, we can get the desired

structure of cost < 2dc. Example: the structure S(2 × 12 + 3 × 10 + 3 × 9 has

the same gaussian parameter as S81, and has cost 35, and birthday complex-

ity |S2|S5||S3||S9| > 2128. For any distribution K, the distribution S(K) means

a structure of such low cost but high enough birthday complexity, and with

approximate gaussian parameter as K.

This observation will make encryption schemes with different gaussian pa-

rameters all achieves the same level of extreme efficiency. Any RLWE-based

encryption scheme can be transformed in to a PKC module to realize both en-

cryption and signature as follows: The system parameter is a; each user has a

long term key pair ((x1, x2), X), X = x1a+x2, where xi ∈ Sd for suitable d; and

additional sjs, asjs and Xsjs as needed by the signing algorithm; the temporary

secrets w1, w2 are drawn from S(K), and the key pair ((w1, w2),W = ax1+x2) is

used as the key pair of both the encryption scheme and the plain signing scheme

with respect to the system parameter X. If the original encryption algorithm

needs to compute rX + r1, rW + r2, where rs are drawn from K′, we also re-

place K′ with S(k′). It is clear that each encryption costs < 4dc, and decryption

costs < 2dc. The condition for K (of gaussian parameter σ) is that the expected

norm square of cxw is considerably smaller(say <0.05 times) than that of z, i.e.

Can Lattice Signature be as Efficient as Lattice Encryption? 13

2dcn < 0.05Bz for the basic form; and dσ2n < 0.05Bz for the variation; and the

later holds for all existing lattice encryption schemes.

To see the efficiency of the signing algorithm, we need to get into more details

of the signing algorithm defined by the following sub-algorithms : the algorithm

sGen() to generate sj ,Aj = sja, and Xj = sja; yGen() to generate ys; wGen()

to generate the temporary key pair return the certificate; Sign(m) to produce a

signature given message m. In the description of these algorithms, all variables

are global and static.

In basic form of the scheme, these algorithms are defined as follows:

sGen() :=


for (1 ≤ j ≤ t)

sj ← S1;Aj = sja;Xj = sjX;Bs = 1;

repeat k times R(2);

repeat l times R(3);

 ,

where k, l makes 2k3l approximate the expect value, and R(), r() is defined

as

R(i) :=



for (1 ≤ j ≤ t)
repeat s′j = r(i) until 0.95iBs ≤ |s′j |2 ≤ 1.05iBs;

A′j =
∑

1≤m≤t ymAm;

X ′j =
∑

1≤m≤t ymXm;

for (1 ≤ j ≤ t)
sj = s′j ;Aj = A′j ;Xj = X ′j ;Bs = i∗Bs;


,

r(i) :=


sample random integers dj ≥ 0 for 1 ≤ j ≤ t,

such that
∑
j dj = i;

sample yj ∈ Sdj for 1 ≤ j ≤ t;
return (y =

∑
j yjsj)

 .

r(i) has cost i.

14 Dingfeng Ye

Sign(m) :=



repeat y1 = r(dy); until ρ1By ≤ |y1|2 ≤ ρ2By;

Y 0 =
∑
j yjXj ;

repeat y2 = r(dy); until ρ1By ≤ |y2|2 ≤ ρ2By;

Y = Y 0 + y2;

c0 = h(Y,m);

c = f(c0);

z1 = y1 + cw1, z2 = y2 + cw2;

return (z1, z2, c0);


.

wGen() :=



w1 ← S(K);w2 ← S(K);

W1 = w1x1;W2 = w1x2 + w2;

W = w1X + w2;

repeat y1 = r(dy); until ρ1By ≤ |y1|2 ≤ ρ2By;

Y 0 =
∑
j yjAj ;

repeat y2 = r(dy); until ρ1By ≤ |y2|2 ≤ ρ2By;

Y = Y 0 + y2;

c0 = h(Y,m);

c = f(c0);

z1 = y1 + cW1, z2 = y2 + cW2;

return (W, z1, z2, c0);



.

The cost of Sign() is (2k+ 1)dy + 2dc, and the cost of wGen() is < (2k+ 1)dy +

2dc + 3 × 2dc, where k is the expected number of repeat to get a desired norm

(usually k < 1.1).

What is required about dy? We should guarantee all the commitments Y s in

the lifetime of X remains secure. Each single Y = y1X+y2 is an RLWE instance

with quite large gaussian parameter. A safe way is to let y1s and y2s never repeat,

which can be achieved if the space of y is large enough, i.e. |{y}| > (264)22λ(264

is the bound for signing times). But it seems that repeat of y is not so harmful:

repeat y1 k times just reduces the gaussian parameter by a factor of k1/2, and

no more bad effect is known. If we let k < 10, then the resulted RLWE instance

is still much harder than the instance for the key pair; which can be satisfied if

|{y}| > (270) for t = 10, n > 500; which means dy = 7 is enough. This make the

signing algorithm at the same level of efficiency as the encryption.

Can Lattice Signature be as Efficient as Lattice Encryption? 15

The description of the variation is almost the same except: two copies of Y ,

repeat of two copies of c to get z having the desired norm. We just give the

Sign() algorithm.

Sign(m) :=



repeat y11 = r(dy); until ρ1By ≤ |y11|2 ≤ ρ2By;

Y 0 =
∑
j yjXj ;

repeat y11 = r(dy); until ρ1By ≤ |y12|2 ≤ ρ2By;

Y 1 = Y 0 + y12;

repeat y21 = r(dy); until ρ1By ≤ |y21|2 ≤ ρ2By;

Y 0 =
∑
j yjXj ;

repeat y22 = r(dy); until ρ1By ≤ |y22|2 ≤ ρ2By;

Y 2 = Y 0 + y22;

i = 0;

repeat

(c1i, c2i) = hi(Y 1, Y 2,m);

c1 = f(c1i); c2 = f(c2i);

z1 = c1y11 + c2y12 + w1; z2 = c1y21 + c2y22 + w2;

i+ +;

until

|z1|2 < Bz&|z2|2 < Bz;

return (z1, z2, Y 1, Y 2, i);



.

where hi(Y 1, Y 2,m) can be consecutive output of a stream cipher initialized

using Y 1, Y 2,m. The expected number k of repeat times can be made < 1.1. It

is clear that this algorithm cost k(6dy + 4dc).

5 Examples

We assume n ≈ 512, λ = 128, thus dc = 19; and assume dy = 7. In the examples

we set Bz = n×D2 where D varies with q; for the basic form By = Bz−d2dc; for

the variation By = (Bz − d2dc)/(2dc); the integer k, l is such that Bs = 2k3l ≈
By/dy.

For q = 3 × 212 + 1, n = 512, we set D = 220, d = 256, k = 4, l = 11, ρ1 =

0.65, ρ2 = 1; S(Sd) = S(4× 5× 5 + 4× 4× 5 + 4× 4× 5); experimental costs of

sGen(), wGen(), Sign(), Enc() for the basic form are 1280,129,60,68 respectively,

and each temporary key can be used 100 times.

For parameters q = 1024, n = 509, we set D = 80, d = 81, ρ1 = 0.65, ρ2 = 1;

S(Sd) = S(5× 6 + 5× 6 + 5× 6). For the basic form k = 17, l = 1, experimental

16 Dingfeng Ye

costs of sGen(), wGen(), Sign(), Enc() are 1115,121,60,60 respectively, and each

temporary key can be used 10 times. For the variation,k = 7, l = 4, experimental

costs of sGen(), wGen(), Sign(), Enc() are 756,188,128,60 respectively, and each

temporary key can be used 200 times.

The 1-byte q case: q = 256, n = 509, or q = 257, n = 512. We set D =

40, d = 75, k = 7, l = 4, ρ1 = 0.65, ρ2 = 0.93, S(Sd) = S(2 × 12 + 3 × 10 +

3×9), experimental costs of sGen(), wGen(), Sign(), Enc() for the variation are

625,198,128,70 respectively, and each temporary key can be used 50 times.

6 Applications

Our constructions allow the same key pair is used both for encryption and sign-

ing, and both are extremely efficient. Note that transporting and verification of

the temporary keys may be implemented using a public directory which func-

tions as in common PKI , this makes the signer only need to send signatures to

the verifier, and the verifier only need to verify the signature if the public service

is trusted(its misbehavior is easy to detect). This greatly reduces the workload

both for signer and verifier. If the verifier is resource-limited, the main workload

in verification, computing zX, can also be delegated efficiently. Pick v, v′ ← S(K)

and send the helper (z,X, vX+ v′), who returns (u = zX, u′ = z(vX+ v′)), and

now u′ = vu+ v′z means u is the right answer: any success cheating means the

helper can recover v, v′, contradicting the RLWE hardness.

Now that the whole public key functions are realized using only very limited

computations, so can integrate into a simple circuit implementation. Together

with construction of integrated symmetric key functionalities similar as [11], we

could get a small but full-fledged crypto circuit (co-chip).

References

1. Albrecht, M.R., Curtis, B.R., Deo, A., Davidson, A., Player, R., Postleth-

waite, E.W., Virdia, F., Wunderer, T.: Estimate all the {LWE, NTRU}
schemes! In: Catalano, D., Prisco, R.D. (eds.) Security and Cryptogra-

phy for Networks - 11th International Conference, SCN 2018, Amalfi, Italy,

September 5-7, 2018, Proceedings. Lecture Notes in Computer Science, vol.

11035, pp. 351–367. Springer (2018). https://doi.org/10.1007/978-3-319-98113-

0 19, https://doi.org/10.1007/978-3-319-98113-0 19

2. Alkim, E., Bindel, N., Buchmann, J., Dagdelen, Ö.: TESLA: tightly-secure efficient

signatures from standard lattices. IACR Cryptol. ePrint Arch. 2015, 755 (2015),

http://eprint.iacr.org/2015/755

Can Lattice Signature be as Efficient as Lattice Encryption? 17

3. Chen, Y., Nguyen, P.Q.: Bkz 2.0: Better lattice security estimates. In: Lee, D.H.,

Wang, X. (eds.) Advances in Cryptology – ASIACRYPT 2011. pp. 1–20. Springer

Berlin Heidelberg, Berlin, Heidelberg (2011)

4. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bi-

modal gaussians. In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology -

CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,

August 18-22, 2013. Proceedings, Part I. Lecture Notes in Computer Science,

vol. 8042, pp. 40–56. Springer (2013), https://doi.org/10.1007/978-3-642-40041-

4 3

5. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge

University Press (2012), https://www.math.auckland.ac.nz/%7Esgal018/crypto-

book/crypto-book.html

6. Lenstra, A.K., Lenstra, H.W., Lovasz, L.: Factoring polynomials with rational co-

efficients. MATH. ANN 261, 515–534 (1982)

7. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: Cryptanalysis

of GGH and NTRU signatures. J. Cryptol. 22(2), 139–160 (2009),

https://doi.org/10.1007/s00145-008-9031-0

8. Schnorr, C., Euchner, M.: Lattice basis reduction: Improved practical algo-

rithms and solving subset sum problems. Math. Program. 66, 181–199 (1994).

https://doi.org/10.1007/BF01581144, https://doi.org/10.1007/BF01581144

9. Son, Y., Cheon, J.H.: Revisiting the hybrid attack on sparse and

ternary secret lwe. Cryptology ePrint Archive, Report 2019/1019 (2019),

https://eprint.iacr.org/2019/1019

10. Szydlo, M.: Hypercubic lattice reduction and analysis of GGH and NTRU signa-

tures. In: Biham, E. (ed.) Advances in Cryptology - EUROCRYPT 2003, Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques,

Warsaw, Poland, May 4-8, 2003, Proceedings. Lecture Notes in Computer Science,

vol. 2656, pp. 433–448. Springer (2003), https://doi.org/10.1007/3-540-39200-9 27

11. Ye, D., Shi, D., Wang, P.: Lightweight ae and hash in a single round function. Cryp-

tology ePrint Archive, Report 2018/1126 (2018), https://eprint.iacr.org/2018/1126

