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Abstract. Zhang et al. recently proposed a lattice-based proxy-oriented identity-based encryption with
keyword search (PO-IBEKS) at Information Sciences in 2019. They claimed that their scheme can resist
insider keyword guessing attacks by preventing cloud server from generating ciphertext. In this note, we pro-
vide a cryptanalysis of their PO-IBEKS and demonstrate that their scheme cannot resist outsider/insider
keyword guessing attacks, even though they satisfy unforgeability requirement. Furthermore, we uncover
the root cause of the attack and provide a possible solution for Zhang et al.’s scheme to aid future designs
of secure PO-IBEKS schemes.
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1 Introduction

Public-key encryption with keyword search (PEKS), which was first proposed by Boneh et al. [3], lets us use
ciphertext with more flexibility. In PEKS, a data sender can generate a ciphertext for a specific keyword, while
a data receiver can produce a valid trapdoor. Then, a cloud server can perform tests to check whether the
ciphertext and the trapdoor are associate with the same keyword. A basic security requirement of PEKS is to
ensure that adversaries cannot obtain any information of the keyword from ciphertext (i.e., chosen keyword
attacks) and trapdoor (i.e., keyword guessing attacks (KGA)). In the beginning, scholars only considered the
adversaries who perform KGA were outsiders (i.e., the adversaries can only eavesdrop the trapdoor from the
communicate channel). In 2006, Byun [4] further considered that a malicious insider (e.g., cloud server) might
offline guess the keyword from the trapdoor, which was referred to as insider keyword guessing attacks (IKGA).
Because the malicious server can adaptively generate ciphertext for any keywords he/she chooses and receive
the trapdoor sent from the data receiver, he/she can test the ciphertext and the trapdoor. If the test passes,
the malicious insider can obtain the keyword selected by the data receiver. As described by Byun [4], since the
keywords are low-entropy and their space is usually small, the probability to obtain the information of keyword
by performing IKGA is high.

Recently, Zhang et al. proposed a lattice-based proxy-oriented identity-based encryption with keyword search
(PO-IBEKS) [9], to realize the advantages of identity-based cryptosystem (i.e., eliminate the need of public-key
infrastructure) and resist IKGA at the same time. Unfortunately, we found that there are some flaws which
make their scheme unable to withstand IKGA. More preciously, the cloud server cannot forge any ciphertext
since the unforgeability is held, but the adversary can directly obtain the information about keyword from the
trapdoor. In the note, we demonstrate the attack steps and discuss the root cause of the attack. Furthermore,
we provide a possible solution to this scheme.

The remainder of this note is organized as follows. Section 2 provides some preliminaries. Section 3 introduces
the definition and security model of PO-IBEKS. Section 4 presents a summary of PO-IBEKS proposed by Zhang
et al. Section 5 demonstrates that Zhang et al.’s scheme is susceptible to IKGA. Section 6 discusses the root
cause of the attack and provides a possible solution. Finally, Section 7 concludes this note.

2 Preliminaries

2.1 Notations

Let Z denotes a set of integer. For prime q, Zq denotes a finite field (or Galois field) with order q. For an element
e and finite set S, e ← S indicates that e is selected uniformly at random from S. Moreover, for a ∈ R, bac is
rounded down to the closest integer of a. Finally, ‖A‖ represents the l2 norm of A.
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2.2 Lattice

Here, we briefly summarize the lattice concept.

Given n,m, q ∈ Z and A ∈ Zn×mq , we can define two lattices as follows:

– Λq(A) = {y ∈ Zmq |∃z ∈ Znq , y = A>z mod q};
– Λ⊥q (A) = {e ∈ Zmq |Ae = 0 mod q}.

In addition, let u ∈ Znq , we can further define a coset Λuq (A) = {e ∈ Zm|Ae = u mod q}.

Discrete Gaussian Let σ be a positive real number and x ∈ Zm. Here, we define the Gaussian distribution
of Dσ with parameter σ by the probability distribution function ρσ(x) = exp(−π · ‖x‖2/σ2). Furthermore, for
any set L ⊂ Zm, we define ρσ(L) =

∑
x∈L ρσ. Then, the discrete Gaussian distribution over L with parameter

σ is defined as:

For all x ∈ L, DL,σ = ρσ(x)/ρσ(L).

Lattice with Trapdoors Here, we introduce the algorithms related to the lattice trapdoor [1,2,7] used in
Zhang et al.’s scheme [9].

1. TrapGen(1n, 1m, q) → (A, TA): For input n,m, q ∈ Z, this algorithm outputs matrix A ∈ Zn×mq with its
corresponding trapdoor TA ∈ Zm×mq , and the following property holds:

{A : (A, TA)← TrapGen(1n, 1m, q)} ≈ {A : A← Zn×mq }.

2. SamplePre(A, TA, µ, σ)→ t: For an input matrix A ∈ Zn×mq and its trapdoor TA ∈ Zm×mq , a vector µ ∈ Znq ,
and parameter σ ∈ R, this algorithm outputs sample t ∈ Zmq such that At = µ and t is distributed in DZm,σ.

3. NewBasisDel(A,R, TA, δ)→ TB : For an input matrix A ∈ Zn×mq , Zq-invertible matrix R← Dm×m, trapdoor

TA, and parameter δ ∈ R, this algorithm outputs random matrix TB ∈ Λ⊥q (B), where B = AR−1.

3 Definition and security model of PO-IBEKS

This section provides a summary of PO-IBEKS modeled in [9]. A PO-IBEKS consists of five entities (key
generation center (KGC), cloud server, proxy, original data owner, and data receiver) and six polynomial-time
algorithms (Setup, KeyExtract, Proxy-oriented key generation, IBEKS, Trapdoor, Test), described as follows:

– Setup(κ)→ (PP,MSK): This probabilistic polynomial time (PPT) algorithm takes a security parameter κ
as its input and outputs system public parameters PP , and the master secret key MSK of KGC.

– KeyExtract(PP,MSK, id)→ SKid: This PPT algorithm is performed by KGC that takes the system public
parameters PP , the master secret key MSK of KGC, and an identity id as its inputs and outputs a secret
key SKid of identity id.

– Proxy-oriented key generation〈id0(PP, SKid0 ,W ), idp(PP, SKidp , sig,W )〉 → (PKpro, SKpro): This PPT al-
gorithm is an interacted algorithm performed between original data owner id0 and proxy idp. The original
data owner first generates a signature sig of the warrant W by using his/her private key SKid0 , and sends
it to the proxy. If the signature passes the validation, then proxy generates a proxy-oriented public/private
key pair (PKpro, SKpro) using his/her private key SKidp , the signature, and the warrant W .

– IBKES(PP,w, idr, PKpro, SKpro)→ C: This PPT algorithm is performed by the proxy that takes the system
public parameters PP , a keyword w, a data receiver’s identity idr, and the proxy-oriented public/private
key pair (PKpro, SKpro) as its inputs and outputs a searchable ciphertext C associated with the keyword
w.

– Trapdoor(PP, SKidr , w)→ dw: This PPT algorithm is performed by the data receiver that takes the system
public parameters PP , the private key SKidr of the data receiver idr, and a keyword w as its inputs and
outputs a trapdoor dw associated with the keyword w.

– Test(PP,Apro, dw, C)→ 1/0: This deterministic polynomial-time algorithm is performed by the cloud sever
that takes the system public parameters PP , the proxy-oriented public key PKpro, a trapdoor dw, and
a searchable ciphertext C as its inputs and outputs 1 if C and dw contain the same keyword w, and 0
otherwise.

Definition 1 (Correctness consistency of PO-IBEKS). A PO-IBEKS meets correctness consistency re-
quirement if for any honestly generated system public parameters PP , master secret key MSK, proxy-oriented
public/private key pair (PKpro, SKpro) of the proxy idp, the private key SKidr of idr, and for any keywords w,
Test(PP,Apro, dw, C) = 1 holds, where C ← IBEKS(PP,w, idr, PKpro, SKpro) and dw ← Trapdoor(PP, SKidr , w).
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In [9], the authors define three threat models: ciphertext indistinguishability, existential unforgeability, and
delegation security. They also state that since their PO-IBEKS achieves existential unforgeability, so that
a misbehaved cloud server cannot forge a valid searchable ciphertext to perform the IKGA. Therefore, the
following we only recall the security model of existential unforgeability. The existential unforgeability is defined
by the following interactive game between an adversary A and a challenger C.

– Setup: By inputting a security parameter κ, the challenger C first generates system public parameters PP
and the master secret key MSK of KGC, and then returns PP to A. A submits a target identity id∗p to C.

– Query: A is allowed to adaptively query the following oracles:
• KeyExtract oracle: Once receiving a query on an identity id 6= id∗p, C generates corresponding private key
SKid and returns it to A.

• Trapdoor oracle: Once receiving a query on a keyword w, C generates corresponding trapdoor dw and
returns it to A.

• Authenticated searchable ciphertext oracle: Once receiving a query on a pair of a keyword w under the
identities (idp, idr), C generates corresponding authenticated searchable ciphertext C with the restriction
that idp 6= id∗p, and returns it to A.

– Forgery: Finally, A outputs a forged authenticated searchable ciphertext of C∗ associated with (w∗, id∗p, idr).
If the ciphertext can pass the test process, we say that A wins the game.

4 Zhang et al.’s PO-IBEKS

In this section, we revisit the PO-IBEKS proposed by Zhang et al. [9].

– Setup. In this algorithm, given a security parameter κ, the KGC executes the following steps to generate
the system public parameters:
1. chooses a discrete Gaussian distribution χ and security Gaussian parameters σ, δ.
2. generates a matrix A ∈ Zn×mq together with the master secret key MSK = TA ∈ Zm×mq by using

TrapGen(q, n).
3. selects a uniform random vector v ← Znq .

4. selects five secure cryptographic hash functions:H1 : {0, 1}`1 → Zm×mq ,H2 : {0, 1}`1×{0, 1}`1×{0, 1}`2×
Znq → Znq , H3 : {0, 1}`1 × {0, 1}`1 × {0, 1}`2 × Zmq → Zm×mq , H4 : {0, 1}`1 × {0, 1}`1 × {0, 1}`3 → Zm×mq ,

and H5 : {0, 1}` × Zm×`q → Znq , where the outputs of H1, H3, and H4 are distribution in Dm×m.
5. outputs the system public parameters PP = (A, v,H1, H2, H3, H4, H5, σ, δ), the KGC secretly keeps the

master secret key MSK.
– KeyExtract. In this algorithm, given the system public parameters PP = (A, v,H1, H2, H3, H4, H5, σ, δ),

the master secret key MSK = TA, and an identity id ∈ {0, 1}`1 , the KGC executes the following steps to
generate a secret key SKid for id:

1. computes Rid = H1(id) and Aid = A(Rid)
−1 ∈ Zn×mq .

2. generates a random short lattice basis Tid ∈ Zm×mq of Λ⊥q (Aid) by running NewBasisDel(A,Rid, TA, σ).
3. sets the secret key SKid = Tid, and sends it to identity id.

– Proxy-oriented key generation. In this interactive PPT algorithm, an data original data owner id0 and proxy
idp cooperatively generate the proxy-oriented public/private key pair as follows:
1. id0 first generates a warrant W ∈ {0, 1}` according to its requirements. Here, the explicit description of

the relative rights and information of an original data owner and a proxy are included in the warrant
W . Additionally, the warrant W also includes the information of the intended data receiver.

2. id0 then picks a uniform random vector r ← Znq , and computes µ = H2(id0‖idp‖W‖r). id0 also runs
βW ← SamplePre(Aid0 , Tid0 , µ, δ) ∈ Zmq . Finally, id0 sends (W, r, βW ) directly to idp.

3. After receiving (W, r, βW ) from id0, idp first verifies W by computing Aid0βW = H2(id0‖idp‖W‖r),
where βW is distributed in DΛµq (Aid0 ),δ. If the equation is not satisfied, idp rejects it. Otherwise, idp
computes RW = H3(id0‖idp‖W‖βW ) and Tpro ← NewBasisDel(Aidp , RW , Tidp , σ), and set (Apro, Tpro)
as the proxy-oriented public/private key pair, where Apro = Aidp(RW )−1 ∈ Zn×mq .

– IBEKS. In this algorithm, given the system public parameters PP = (A, v,H1, H2, H3, H4, H5, σ, δ), a key-
word w ∈ {0, 1}`3 , a data receiver’s identity idr, the proxy-oriented public/private key pair (Apro, Tpro), idp
executes the following steps to generate a ciphertext C:
1. randomly chooses a uniform matrix F ∈ Zn×`q , and a random binary string τ = (τ1, τ2, · · · , τ`) ∈ {0, 1}`.
2. samples a random noise vector η = (η1, η2, · · · , η`)← χ.
3. samples ` random noise vectors s1, s2, · · · , s` ← χm, and sets the noise matrix S = (s1, s2, · · · , s`) ∈

Zm×`q .
4. computes γ = H4(idp‖idr‖w) ∈ Zm×mq

5. computes ξ = (Aidrγ
−1)>F + S and ζ = v>F + η + (τ1, τ2, · · · , τ`)bq/2c.
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6. computes h = H5(τ‖ξ), and θ ← SamplePre(Apro, Tpro, h, δ) ∈ Zmq .
7. outputs a searchable ciphertext C = (ξ, ζ, θ) to the cloud server.

– Trapdoor. In this algorithm, given the system public parameters PP = (A, v,H1, H2, H3, H4, H5, σ, δ), a
private key SKidr = Tidr of the data receiver idr, and a keyword w ∈ {0, 1}`3 , idr executes the following
steps to generate a trapdoor dw:
1. computes γ = H4(idp‖idr‖w) ∈ Zm×mq , and Dd ← NewBasisDel(Aidr , γ, Tidr , σ) ∈ Zm×mq , where Dw is

a short lattice basis of Λ⊥q (Aidrγ
−1).

2. generates dw ← SamplePre(Aidγ
−1, Dw, v, δ) ∈ Zmq , where Aidrγ

−1dw = v is satisfied and dw is dis-
tributed in DΛvq (Aidrγ−1),δ.

3. outputs a trapdoor dw.
– Test. In this algorithm, given system public parameters PP = (A, v,H1, H2, H3, H4, H5, σ, δ), a proxy-

oriented public key PKpro = Apro, a trapdoor dw, and a searchable ciphertext C = (ξ, ζ, θ), the cloud
server executes the following steps:
1. computes τ ← ζ−d>wξ ∈ Z`q. For j = 1, · · · , `, if |τj −bq/2c| < bq/4c, sets τj = 1; otherwise, sets τj = 0,

then outputs τ = (τ1, · · · , τ`) ∈ {0, 1}`.
2. computes h = H5(τ‖ξ), and checks whether the equation Aproθ

?
= h holds. If the equation holds, the

cloud server returns 1; otherwise, it returns 0.

5 Cryptanalysis of Zhang et al.’s PO-IBEKS

At a high level, the current solution to the IKGA attack (such as public-key authenticated encryption with
keyword search (PAEKS) [8] and dual-server PEKS [6,5]) is to prevent malicious cloud server from performing
tests and generating ciphertext simultaneously. Zhang et al. [9] also follows this idea; more precisely, they use
proxy to prevent the cloud server from adaptively performing encryption for any keywords. Unfortunately, any
adversaries can adaptively choose keyword to guess the information of keyword hiding in the trapdoor. In other
words, Zhang et al.’s scheme cannot resist outsider keyword guessing attack if there is no secure channel between
the cloud server and the data receiver.

Although Zhang et al. claim that in their scheme, IKGA cannot be executed because the malicious cloud
server cannot forge valid searchable ciphertext, we show below that any adversaries (whether outsider or insider)
can execute IKGA, even if they do not forge any ciphertext.

Let idp and idr be the identity of the proxy and data receiver, respectively. After receiving a trapdoor dw
by normal process (insider adversary) or by eavesdropping (outsider adversary), the adversary performs the
following steps:

1. randomly chooses a command keyword w ∈ 0, 1`3 .
2. computes γ = H4(idp‖idr‖w) ∈ Zm×mq .
3. computes Aidr = A(Ridr )

−1 = A(H1(idr))
−1, where A is a system public parameter.

4. checks whether Aidrγ
−1dw

?
= v, where v is a system public parameter.

5. if the equation is satisfied, the adversary outputs a guessed keyword w. Otherwise, he/she goes to step 1.

As described in Section 1, since the keywords are low-entropy and their space is usually small, there is a
high possibility that the adversary can obtain the correct keyword associated with the trapdoor.

6 Discussion and Possible Solution

In this section, we first discuss the root cause of the attack and then provide possible solution.
In Zhang et al.’s scheme [9], they follow the concept of Huang et al.’s PAEKS [8] (i.e., ciphertext is not only

encrypted, but also authenticated) to prevent IKGA. The main difference lies in that in Zhang et al.’s scheme
[9], it is the proxy, instead of original data sender, that performs encryption and authentication. Specifically,
only proxy can generate an authenticated ciphertext that is valid for the trapdoor, thus, the cloud server cannot
generate ciphertext adaptively for any keywords and perform IKGA.

While Zhang et al.’s scheme seems reasonable, the way they generate and use trapdoor is flawed. More
accurately, in their scheme, a cloud server use a valid trapdoor dw to decrypt a ciphertext to obtain τ , and
further check whether the ciphertext is authenticated by proxy. However, as cryptanalysis in Section 5, anyone
can retrieve information of keyword from trapdoor dw directly without the need to generate an authenticated
ciphertext, but only need to re-produce γ = H4(idp‖idr‖w) for different keyword w.

A trivial solution is to let the data receiver and the proxy share a session key k, and set γ = H4(idp‖idr‖w‖k).
Since k is secret, any adversaries cannot perform IKGA. However, if future research follows this direction, further
consideration should be given to attack from proxy as the system model gradually shifts to a dual-server model.



Notes on a lattice-based proxy-oriented identity-based encryption with keyword search 5

7 Conclusion

In this note, we present cryptanalysis of the PO-IBEKS proposed by Zhang et al. [9]. We show that whether
the adversary is outsider or insider, their scheme cannot withstand KGA.
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