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Abstract. Post-quantum cryptography (PQC) is a trend that has a deserved NIST 

status, and which aims to be resistant to quantum computer attacks like Shor and 

Grover algorithms. NIST is currently leading the third-round search of a viable set of 

standards, all based on traditional approaches as code-based, lattice-based, multi 

quadratic-based, or hash-based cryptographic protocols [1]. We choose to follow an 

alternative way of replacing all numeric field arithmetic with GF(28) field 

operations [2]. By doing so, it is easy to implement R-propped asymmetric systems 

as the present paper shows [3,4]. Here R stands for Rijndael as we work over the 

AES field. This approach yields secure post-quantum protocols since the resulting 

multiplicative monoid is immune against quantum algorithms and resist classical 

linearization attacks like Tsaban’s Algebraic Span [5] or Roman’kov linearization 

attacks [6]. The Burmester-Desmedt (B-D) conference key distribution protocol [7] 

has been proved to be secure against passive adversaries if the computational Diffie-

Hellman problem remains hard. The authors refer that the proposed scheme could 

also be secure against active adversaries under the same assumptions as before if an 

authentication step is included to foil attacks like MITM (man in the middle). Also, 

this protocol proved to be semantical secure against adaptative IND-CPA2 [8, 9] if 

the discrete log problem is intractable. We discuss the features of our present work 

and a practical way to include an authentication step. Classical and quantum security 

levels are also discussed. Finally, we present a numerical example of the proposed R-

Propped protocol.  
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1 Introduction 
 

1.1 PKC Proposals Based on Combinatorial Group Theory 

The theoretical foundations for the current generation of cryptosystems lie in the 
intractability of problems close to number theory [10] and therefore prone to quantum 

attacks. This was the main reason to develop PQC. It is noteworthy that besides a couple of 

described solutions [1], there remain overlooked solutions belonging to non-commutative 

(NCC) and non-associative (NAC) algebraic cryptography [10]. The general structure of 

these solutions relies on protocols defining one-way trapdoor functions (OWTF) extracted 

from the combinatorial group theory [11].  

 

1.2 The motivation of the present work 

In this paper, we apply our algebraic patch [2]to the well-known Burmester-Desmedt 
(B-D) conference key distribution [7]. In essence, it is a generalization of Diffie-Hellman two 

parties protocol [12] to an undefined number of entities while maintaining the number of 

interchanges constant. That protocol has the virtue of presenting a proved semantic secure 



systems attaining IND-CPA2 level as long computational Diffie-Hellman and discrete log 
problems hold. The main target is to make that protocol quantum resistant. 

Essentially R-propping consists of replacing all numerical field operations (arithmetic 

sum and multiplication), a typical scalar proposal, by algebraic operations using the AES 

field, a vectorial proposal [2]. This scales up operations complexity foiling classical 
linearization attacks, like AES [13] does and at the same time quantum ones. This is a solid 

way to achieve the best of two worlds, both pointing to cryptographic security. As side 

benefits, we get rid of big number libraries and step away from the critical dependency of 
pseudo-random generators. 

The R-propping solution is described as an Algebraic Extension Ring (AER) [2]. For 
background knowledge about algebraic solutions, we refer to the Myasnikov NCC treatise 

[11]   which contributes to exhaustive knowledge of the cryptographic application of the 

combinatorial field theory. 

 

2 Preliminaries 
 

Definition 1 (Security levels). Currently, there are several types of attack models for 

public-key encryption, namely the chosen-plaintext attack (CPA), non-adaptive chosen-

ciphertext attacks (CCA1), and adaptive chosen-ciphertext attacks (CPA2, CCA2). Security 

levels are usually defined by pairing each goal (2: adaptative version, OW: one-way, IND: 

indistinguishability, NM: non-malleability) with an attack model (CPA, CCA1 or CPA2, 

CCA2); i.e., OW-CPA, OW-CCA1, OW-CCA2; IND-CPA, IND-CPA2, IND-CCA1 and IND-CCA2 [8, 

9]. 

Definition 2 (Algebraic Extension Ring - AER). The Algebraic Extension Ring 
(AER) framework includes the following structures: 

���� :  a.k.a. GF[28], the AES field [6] 

Primitive polynomial: 1+x+x3+x4+x8 with <1+x> as the multiplicative subgroup 

(����
∗ ) generator:  

M[���� d] d-dimensional square matrix of field elements. (bytes). Therefore, a d-

dimensional square matrix is equivalent to a rank-3 Boolean tensor.  

The AER platform has two substructures: 

(M[���� , d], ⨁, O)   Abelian group using field sum as operation and null matrix 

(tensor) as the identity element. 

 (M[����
∗ , d], ⨀, I)   Non-commutative monoid using field product as operation and 

identity matrix (tensor) as the identity element.  

From here on, when referring to field elements (bytes) we call them simply as 

elements, and when we refer to any d-dimensional matrix of the AER we will use the 

term d-dim tensor. 

Detailed information on AER could be read at [2]. 

Definition 3 (One-Way Trapdoor Functions – OWTF):  these are the core of the 
canonical protocols for asymmetric cryptography based on the combinatorial group theory. 
They are based on hard problems, traditionally using commutative numeric fields, but the 
same problem definitions could be applied to non-commutative monoids (as in AER) : 

 

– Computational Diffie-Hellman Problem (CDHP): Given (z1, z2) e Z2  and  x e 

AER, compute xz1z2= xz2z1 for  given  x,  xz1, and  xz2. 



– Discrete Logarithm Problem (DLP): Given z e Z  and x e AER, compute z for given 

x and xz. 

For general non-commutative structure like the multiplicative monoid of AER, the 

above problems are difficult enough to be cryptographic assumptions, meaning that there 

does not exist a probabilistic polynomial-time algorithm that can solve all instances of them 

with non-negligible accuracy concerning the problem scale, i.e., the number of input bits of 

the problem). 

 

3 Burmester-Desmedt (B-D) distributed the conference key. 

Burmester and Desmedt protocol is carried out by composing n-participants in a ring 

structure.  An example of four entities is performed through the stages of Table 1. 

 

ALICE BOB CHARLIE DAVID 
Public prime p, generator <g>  

Private a,  

  ga to D, to B 

Private b,  

  gb to A, to C 

Private c,  

  gc to B, to D 

Private d,   

  gd to C, to A 

Public Xa = 

 (gb/gd)a 

Private Za=gad 

Public Xb = 

 (gc/ga)b 

Private Zb=gab 

Public Xc = 

 (gd/gb)c 

Private Zc=gbc 

Public Xd = 

 (ga/gc)d 

Private Zd=gcd 

Private Ka= 

Za4Xa3Xb2Xc 

Private Kb= 

Zb4Xb3Xc2Xd 

Private Kc= 

Zc4Xc3Xd2Xa 

Private Kd= 

Zd4Xd3Xa2Xb 

Ka=Kb=Kc=Kd 

Table 1. A schematic view of the original Burmester-Desmedt conference key distribution 

protocol for a small ring of n=4 entities. This protocol involves a double pass exchange. The session 

key is a cyclic but not symmetric function of degree two.  

 

4 R-Propped B-D distributed conference key. 

The differences between the original and the R-Propped version are: 

1. Instead of a cyclic (commutative) multiplicative group structure Z*p in a numeric 

field, we work over the non-commutative multiplicative monoid of the algebraic 

extension ring (AER) defined at point 2. Preliminaries. 

2. The elements of AER are d-dimensional square matrices (referred to as tensors) of 
F256 field elements. Sums and products of tensors are field operations. 

3. The generator <G> is a predefined non-singular tensor G. The period |<G>| of the 

cyclic subgroup is empirically obtained through computational simulation. 

4. Inverses of tensors are obtained through exponentiation using the period |<G>| 

minus one. The |<G>| power of each generator is the identity matrix. 

 

5 The cryptographic security of R-propped B-D protocol 

The security of the protocol relies on the intractability of CDHP and DLP problems. 

Using R-Propping we design private keys (exponents) of certain public tensors for which 

this approach is unfeasible. 

 

 

 

 



The proposed public generators are: 

 

Table 2. Predefined tensors <G> and corresponding multiplicative orders to be used for the B-D 

protocol. 

 



Classical and quantum security levels are as follows: 
 

 

Tensor 
dimension 

 

<G>  

proposed 

generator 

 

Period |<G>| Classical 
Security (bits) 

[Grover] 

Quantum 
Security 

(bits) 

3 G3 224=16777216 24 12 

4 G4 232 = 4294967296 32 16 

7 G7 296 = 7.92 x 1028 96 48 

10 G10 2112 = 5.19 x 1033 112 56 

12 G12 2160= 1.46 x 1048 160 80 

Table 3. Expected security of increasing size of private keys subject to classical and quantum attacks. 

Depending on the particular situation, it should be chosen security parameters like G7 or above. 

The IND-CPA2 semantic security is assured as members of the <G> set are 

indistinguishable from random tensors of the same size. Statistic evidence of tensor 
structures is provided at [4]. As this protocol is susceptible to a MITM attack, it is 

convenient to include an authentication step including public key certificates or HMAC of 

session keys with public ID values. 

6 Step-By-Step Example 

To follow procedures, we show a dim=3 toy program written for Mathematica 12 

interpreted language. Detailed code with the newly defined functions is available upon 
request to the author. Running as-is on an Intel®Core™i5-5200U CPU 2.20 GHz the 

registered mean session time was 4.40 s.  

(v.3) Errata> at the below-printed program, variable “period” was undefined and should be set as period 

= 2^24 – 1, instead of the mentioned 2^24. The same error appears at the output, but it has not affected 

further operations since the correct value was retained as an environmental memory value.
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And the corresponding output is:  

 

 

 

 



7 Conclusions 

We present a PQC class solution to the distributed conference key necessity. Practical 

parameters are presented, and they solve the central question with different security levels.  

Other works of the author covering this field can be found at [14]. 
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