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Abstract

We give secure parameter suggestions to use sparse secret vectors in
LWE based encryption schemes. This should replace existing security pa-
rameters, because homomorphic encryption(HE) schemes use quite dif-
ferent variables from the existing parameters. In particular HE schemes
using sparse secrets should be supported by experimental analysis, here
we summarize existing attacks to be considered and security levels for
each attacks. Based on the analysis and experiments, we compute opti-
mal scaling factors for CKKS.

1 Introduction

Homomorphic encryption(HE) is a cryptosystem that allows computations on
encrypted data without decryptions. HE has advantage in data science with
privacy preserving. For example, data outsourcing services often handle con-
fidential data so that they need a data securing scheme which enables opera-
tions in secure states [IH+20,LLH+18,ZDJ+15]. Since the use cases are public
services, a standardization for HE is required. HomomorphicEncryption.org is
a consortium motivated by the needs, they summarize the reason for HE re-
quirements [ACC+17] and make efforts for standard suggestions for API, secure
parameters, etc [BDH+17,CCD+17].

To ensure the security, HE uses computationally hard math problems. One of
such problems is LWE, which is roughly a distinguishing problem asking whether
a pair of a matrix and a vector is randomly given or is given by an approximately
linear relation. An important assumption for LWE is that the distinguishing
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problem is computationally hard to solve [Reg09]. RLWE, a special version of
LWE using algebraic integers instead of a matrix and a vector, is also used but
has not been proved yet as a hard problem.

As far as the authors know, currently major HE libraries are constructed
based on LWE and RLWE, for example, HEaaN, HElib, SEAL, Paradise, and so
on. Thus the security analysis are also based on the analysis for LWE and RLWE.
LWE-estimator1 is used for experiments on parameters, and the above white
papers [ACC+17,BDH+17,CCD+17] issued by HomomorphicEncryption.org are
written based on the experiments. Unfortunately, the analysis is not enough
because real schemes use different distributions for secret vectors.

Small secrets and bootstrappings In original LWE and above standard sug-
gestions, secret vectors are chosen by the uniform random distribution on a
modulus vector space. On the other hands, the mentioned HE schemes often
choose secret vectors in sparse distribution. It is naturally expected that the
security will be harmed due to the reduction of possible choice of secret vectors.
There are two reasons why FHE choose sparse secrets despite being possibly
threatened. The first reason is to enable encrypted multiplications. If secret
polynomial is large with respect to L2-norm of its coefficient vector, then mul-
tiplication errors in a cipher-text derived from encrypted multiplications is too
large to preserve its plain-text. The second resaon is bootstrapping procedure.
In asymptotic analysis of bootstrapping costs for each schemes, bootstrapping
cost functions are given in increasing functions. The expected costs are given
according to the degree of the polynomials for uniform ternary secret distribu-
tion and according to the hamming weight of the coefficients vectors for sparse
secret distribution [CHK+18,CCS19,CH18].

1.1 Our Contributions

We aim to suggest secure parameter choices for lattice based FHE against
known attacks. For each attacks, their complexities are analyzed by reductions
to SIS(shortest integer solution) problem and we estimate them by experiments
using BKZ algorithm. These new suggestions has to replace existing sugges-
tions [ACC+18] which are vulnerable to new attacks. 2 In particular, sparsity
of secret keys causes new kinds of attacks so that existing parameters are not
secure any more. Based on the our experiments, we suggest secure parameters
for RLWE against all known attacks.

In addition to the suggestions, we analyze how sparsity affects a maximal
depth of circuits for CKKS scheme before bootstrapping. And then we compute
avaiable depth for given parameters. The computations consider 2 cases for
reasonable error increase at each homomorphic operations.

1https://bitbucket.org/malb/lwe-estimator/src/master/
2The existing parameters do not reflect usual distribution for secret keys, called sparse

distribution.
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Methodology. To measure attack complexity, it is not effective to run the at-
tack algorithms directly for huge parameters. For example, if one try in brute
force to check a parameter satisfying 128-bit security against an attack algo-
rithm, it needs 2128 trials in average. This is not realistic. Instead, we combine
two method - brute checks for small parameters and asymptotic estimation for
large parameters. Each attack is already given with its asymptotic complexity,
so we take experiments for small parameters and compute real complexity for
huge parameters according to the asymptotic complexity analysis.

In this paper, we mainly use BKZ algorithm as the method. The major factor
determining complexity is the dimension of given vector spaces (or the rank of
given rings of integers). BKZ algorithm is a strategy that seperates spaces into
small dimensional subspaces (called blocks) and search certain kind of vectors 3

in each blocks. Then using the vectors, it runs LLL algorithm more effectively.
There are various application of BKZ algorithm, we mainly refer [CN11] for
using BKZ.

1.2 Related works

We mainly refer [LP11, Alb17, AGVW17] for analysis of hard lattice problems
and [CHHS19, CS19] for most recent attacks on LWE samples. The works are
purposed to analyze attack algorithms against given LWE samples those be-
comes basis for secure parameter selections.

In addition to the references, we know two papers in similar purpose of ours.
Curtis and Player have reported security analysis on sparse secret distribution
with maximum lattice dimension 217 [CP19]. Recently an analysis on binary
LWE is uploaded on e-print [EJK20], which is effective for non-sparse secret
distribution case.

Acknowledgement. This work is done before the second author is employed
by Samsung SDS. The first and third authors are supported by the National
Research Foundation of Korea(NRF) Grant funded by the Korean Govern-
ment(MSIT)(No.2017R1A5A1015626).

2 Background

At first, notions should be set-up. A bold lower case letter will denote a column
vector and a bold upper case letter will be a matrix.

Definition 1 ( Sparse Secret Distributions) Let h be a positive integer.
An n-dimensional vector is said to follow a sparse secret distribution of ham-

ming weight h if exactly h components are nonzero. If the nonzero components
are chosen in {−1, 1} and −1 and 1 are equally chosen, it is said to follow a
ternary sparse secret distribution.

3In our cases, the algorithm seeks after short vectors.
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Definition 2 ( Distinguishing LWE problem) Let φ be a non-uniform distribu-
tion on Zq. Let (A,b) ∈ Z`×nq × Z`q be given with b = As + e for some s ∈ Znq
and e

φ`

←− Z`q or b ∈ Z`q uniformly random. A distinguishing LWE problem is a
question whether b is. A search LWE problem is to find s ∈ Znq .

In Regev’s paper, Distinguishing LWE problem is given with uniform ran-
domly chosen s, while we consider sparse s in this paper.

Definition 3 ( RLWE) Let Rq := Zq[x]/〈Φ(x)〉 be a polynomial ring with a
modulus q and an irreducible polynomial Φ(x) of degree n. Let φ be a non-
uniform distribution on Rq. Let (a(x), b(x)) ∈ Rq × Rq be given with b(x) =

a(x)s(x) + e(x) for some s(x) ∈ Rq and e(x)
φ←− Rq or b(x) ∈ Rq uniformly

random. A distinguishing RLWE problem is a question whether b(x) is. A search
LWE problem is to find s(x) ∈ Rq.

2.1 Homomorphic Encryption

Homomorphic encryption is a form of an encryption system which enables com-
putations on encrypted data without decrypting them. We briefly review notions
for homomorphic encryption to be used in this paper.

Definition 4 ( Leveled homomorphic encryption) For given parameters, a lev-
eled homomorphic encryption scheme consists of 4 algorithms ;

• Enc, which turns a plaintext into a ciphertext of a given level L

• Dec, which turns a ciphertext of any level into a plaintext so that

Dec(Enc(m)) = m

for any plaintext m.

• Add, which turns two ciphertexts of same level into a ciphertext of the
level so that

Dec(Add(Enc(m1),Enc(m2))) = m1 +m2

• Mult, which turns two ciphertexts of same level L′ into a ciphertext of level
L′ − 1 so that

Dec(Mult(Enc(m1),Enc(m2))) = m1m2

where 0 < L′ ≤ L

Definition 5 ( Bootstrapping) Bootstrapping is an algorithm that refreshes the
level of given ciphertext.
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2.2 Dual lattice attack

This attack strategy solves LWE by converting it to a short integer solution (SIS)
problem [Ajt96,Gen09]. Our purpose is, given (A,b) ∈ Zm×nq ×Zmq , distinguish
whether(A,b) follows an LWE distribution or uniformly random distribution
[Alb17,MR09].

For the attack, one finds a short vector ~y in a dual lattice defined by

L⊥q := {x ∈ Zm : xTA ≡ 0 mod q}.

If (A,~b) is sampled from LWE distribution, it holds that 〈y,b〉 ≡q 〈y, e〉 and
hence is likely to be small. Otherwise, 〈y,b〉 is uniformly distributed over Zq,
so the value of the pairing reflects in high probability whether b follows LWE
or not.

2.3 Primal uSVP attack

This attack strategy aims to directly find the secret vector ~s from given sample
(A,~b). For that, search version of LWE can be solved by finding a unique shortest
vector in a lattice generated by column vectors of

B =

 qIm A b
0 qIn 0
0 0 1


If the samples are given by an LWE distribution, then the lattice contains a

vector v ; vT = (eT, sT,−1) ∈ Zm×Zn×Z. BKZ algorithm with some blocksize
β experimentally succeed to find such v [AGVW17], though it is not guaranteed
in general.

3 Security level according to hamming weights

In this section, we suggest new parameters for the rank N of base ring and
ciphertext modulus q. The parameters are chosen against new attacks that use
the sparsity of secret keys.

During a multiplication using RLWE-based HE schemes, noises in cipher-
texts are amplified by the secret polynomial. As the secret polynomial has larger
coefficients, after fewer multiplication the noise overflows the ciphertext modu-
lus [BGV14,CKKS17] or spoil messages [CKKS17,FV12]. The increase of noises
give a reason to use only small coefficients for a secret polynomial.

All known FHE schemes are realized with bootstrapping technique. In gen-
eral, bootstrapping is the most time-consuming part in FHE. Since the run-
ning time of bootstrapping is highly sensitive to the size of the secret poly-
nomial [CCS19, CHK+18], in addition to a bound of coefficients, almost all
coefficients of a secret polynomial are chosen to be 0.

These two reasons - multiplication in encrypted state and bootstrapping
- justify the use of a small and sparse distribution on coefficients of a secret
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polynomial. However, the narrow distribution on secret polynomials may give
an advantage to adversarial attackers because the secret polynomial is easier to
be found than a uniformly chosen polynomial.

3.1 An attack against sparsity : Hybrid method

Hybrid method is a combination of a deterministic attack and meet-in-the-
middle attack(MITM) to LWE samples. MITM is a guessing strategy that seper-
ates a secret s ∈ Znq into two part (sg, s

′) ∈ Zgq × Zn−gq . The cost of this attack
is proportional to the square root of the number of candidate secret vector. The
method it is less sensitive to the absolute size of error when the ratio of error
and modulus is sufficiently small. The strategy is a reduction not of lattices but
of dimension, so primal attack and dual attack can be combined with.

We briefly describe hybrid algorithm of MITM and primal attack [BGPW16,
Wun16,CS19] and of MITM and dual attack [CHHS19].

Hybrid Primal Attack The strategy is finding a short vector

v =

(
v′

vg

)
= B

(
x
vg

)

for some g and vg ∈ Zgq . B is written in a form

(
T C
0 Ig

)
and v′ = Tx + Cvg.

Then finding short vg is as same as finding near point in the space generated
by T to a point Cvg. A lower dimensional vector vg is now in guessing, say
vg= v1 + v2. Since Cv1 = Cvg−Cv2 = v′ −Tx−Cv2 so that finding a near-
est point in T to Cv1 is as hard as that finding one to v′ −Cv2.

Assuming that T is well-reduced so that v′ is turned out to be the closest
point to 0 in v′ + T by the Babai’s nearest plane algorithms , it is expected

Cv1 − [Cv1]T = −Cv2 − [−Cv2]T + v′ ≈ −Cv2 + [Cv2]T

where [·]T denotes the closest point in T to the given point. The hybrid strategy
is trying to detect a collision between Cv1 and Cv2.

Hybrid Dual Attack This strategy begins with parsing A = (A1|A2) into two
matrices with A2 ∈ Zm×kq , where k is a choice for MITM. s is also considered

as a joint of two vectors (v1,v2) ∈ Zn−k
q × Zk

q. And then for a short

y = (y1,y2) ∈ {(v1,v2) ∈ Zm
q × c−1Zn−k

q | vT
1 A1 ≡ cv2 mod q},

(yT
1 A2, 〈y,b〉) is a kind of LWE sample with a new secret vector s2 ∈ Zkq . In

other words, given samples are reduced into LWE samples of lower dimension
with secret s2.
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3.2 Attack complexity estimations

Our estimator4 uses BKZ.sieve [BDGL16] in Sage for lattice reductions. The
estimator returns feasible logQ value which is chosen to achieve security λ
against attacks above. In our experiments, logQ is almost determined by the
attack complexity of Hybrid-Primal attack which is written in bold style. There
is one exception at h = 64, λ = 256, logN = 14 which logQ is chosen against
hybrid-dual attack.

Given two inputs logN,λ, our experiment code searches the maximal logQ
that yields attack complexities less than 2λ. It starts from a proper initial value
of logQ (e.g. the twice of logQ for logN − 1), and perform a sort of binary
search. The beginning logQ can be chosen before running the estimator. In
particular, we set an initial step value (e.g. quarter of the initial value), and if
the initial logQ gives the minimal attack complexity larger (smaller, resp) than
2λ, then we add (subtract, resp) the step value to logQ until the minimal attack
complexity becomes smaller (larger, resp) than 2λ, and we continue this while
halving the step value until the step value becomes 1.

Following tables are upper bounds for logQ and attack complexity of 4
algorithms. The experiments are established by algorithms given in a previous
paper [CHHS19]. The columns of tables are given logN , recommending logQ
according to {λ, logN,h}, and attack complexities.

Example. Security level λ means that attack complexity of all (known) attack
must be at least 2λ. This is often said λ bit complexity. If we choose logN = 17
and logQ = 2022, then the attack complexity of primal attack, dual lattice
attack, hybrid-primal attack, and hybrid-dual attack are 173.0 bit, 147.6 bit,
128.9 bit, and 129.6 bit, respectively. In other words, logQ below 2022 is a
secure parameter against the hybrid attacks for logN = 17 and λ = 128.

3.3 Comparison to existing parameters

Only non-hybrid attacks are considered in the white paper of homomorphic
encryption standardization consotium [ACC+18]. For small hamming weight,
the modulus Q should be chosen smaller than that of in the white paper.

As table 1 and 2 shows, hybrid method give an advantage to find a use-
ful short vector in previous attacks. The advantage grows as smaller hamming
weight is applied to the secret distribution.

In the other hands, for non-sparse distribution cases, the new attack doesn’t
work in fact. Since the new attack is initiated by sparsity of secrets, they have
no advantage to uniformly chosen secrets. If one use small uniform distribu-
tion, for example a binary uniform distribution as TFHE [CGGI] or a ternary

4It can be accessed at https://github.com/Yongyongha/SparseLWE-estimator
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Table 1: An upper bound of logQ and attack complexity for h = 64
λ logN logQ Primal Dual Hybrid-Primal Hybrid-dual

128

11 25 192.0 201.3 132.1 169.6
12 52 186.8 199.6 128.7 147.6
13 99 191.5 208.4 132.5 144.0
14 219 183.0 180.6 128.5 133.7
15 431 185.6 163.8 132.8 136.7
16 930 179.6 152.8 131.5 133.4
17 2022 173.0 147.6 128.9 129.6

192

12 20 278.5 395.8 192.4 259.7
13 38 280.8 354.4 192.8 220.2
14 79 276.5 384.9 197.8 209.9
15 166 272.4 302.8 192.0 209.3
16 352 268.2 247.5 192.2 207.6
17 721 266.9 368.2 201.7 205.6

256

13 14 379.5 371.0 256.9 -
14 47 325.9 623.7 284.3 278.5
15 64 361.0 333.3 258.8 328.4
16 122 366.9 338.7 260.4 314.5
17 296 347.7 346.1 256.7 271.8

Table 2: An upper bound of logQ and attack complexity for h = 128
λ logN logQ Primal Dual Hybrid-Primal Hybrid-dual

128

11 42 163.3 153.8 129.1 160.8
12 82 170.2 154.2 129.2 149.6
13 165 171.4 150.7 129.6 139.3
14 337 169.3 146.5 129.0 134.5
15 700 164.0 142.9 128.1 131.8
16 1450 159.0 140.9 128.0 128.5
17 2900 160.2 141.8 129.9 130.4

192

12 44 285.1 259.0 195.7 242.7
13 89 284.6 293.5 195.0 215.2
14 178 286.3 245.3 198.7 209.8
15 387 272.4 225.1 194.6 197.4
16 804 266.8 222.1 192.5 196.1
17 1650 263.4 220.2 192.4 194.0

256

13 43 419.1 464.9 281.3 347.3
14 106 381.2 376.8 258.2 277.7
15 209 385.2 369.4 265.3 282.8
16 418 386.6 390.2 271.1 280.0
17 942 366.0 311.2 261.5 265.9
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logN λ white paper ours(h = 128) ours(h = 64)

13
128 218 165 99
192 152 89 38
256 118 43 14

14
128 438 337 219
192 305 178 80
256 237 106 47

15
128 881 700 431
192 611 387 166
256 476 209 64

Table 3: This table lists comparisons of logQ suggested by the white paper
[ACC+18] and ours along overlapped logN and λ.

uniform distribution as SEAL [LP16], it is enough to follow existing parame-
ters [ACC+18]. For example, our estimator with h = N

2 and 2N
3 , respectively, re-

turns same parameter suggestion to binary uniform distribution case and ternary
uniform distribution case, respectively.

4 Available depth for CKKS

Based on experimental observations and theoretical estimations, we will consider
a more efficient set of parameters for CKKS scheme.

We give three tables according to certain assumptions on accumulation of
errors. First assumption is assuming that errors are accumulated as large as
possible, which may occur in squaring, i.e. a multiplication of same ciphtertext.
This can be applied to any circuit. Second assumption is an expectation that
errors grow in average, i.e. each HE operations take different input ciphertexts
so that errors are not amplified so much. This is in fact an assumption on
circuits using HE. Third assumption is considered in a special case that errors
cancel each others in HE operations. In other words, error growth is bounded
by a constant so that the number of operations is completely propotional to the
modulus of ciphertexts.

Remark 1 The third assumption is an extreme one and it could be an un-
subtential assumption for CKKS. In other hands, however, if the errors are
seperated from plaintexts, then the assumption is realistic. In HElib a library
using sparse secret distributions, the third assumption admits and the parameter
choice can be applied to HElib.
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4.1 CKKS Overview

In CKKS scheme, a fresh ciphertext is given in modulus q which is said to be
top level. To multiply ciphertexts, CKKS scheme publishes evaluation key in
modulus Pq. The total security depends on Pq so that Pq is chosen as Q in
previous section.

Scaling factor Since a ciphertext space is discrete, a real valued data should
be quantized before being encrypted. The unit of quantization is called scaling
factor ∆. In a plaintext, a numerical data r is converted into a form dr×∆c where
rounding denotes the nearest integer. In other words, plaintexts or ciphertexts
remember a scaled data r ×∆, not the plain data r.

Hamming weight and bootstrapping We review why sparse secrets enables
bootstrapping of CKKS scheme and an implement HEaaN.

Instead of uniform choice of a secret polynomial, sparse secret has an advan-
tage to enable bootstrapping process. The sparsity is given with ternary coeffi-
cients and is measured as hamming weight. Under the condition that security
level is satisfied, larger hamming weight implies heavier time-cost in bootstrap-
ping and more bit length log q of the modulus of cipher-texts. Since large mod-
ulus reduces the number of required bootstrappings, varying hamming weights
is in fact a trade-off between the required number and running time of total
bootstrappings in one circuit.

Briefly, we review bootstrapping for CKKS [CHK+18, CCS19]. The boot-
strapping procedure of CKKS scheme consists of 4 steps, saying ModRaising,
CoeffToSlot, SinEval, SlotToCoeff. q denotes the modulus of input ciphertext.

1. ct→ ct′ so that Dec(ct′) = m(x) + qI(x) where m(x) = Dec(ct).
ct′ has larger modulus than q.

2. Enc(m(x) + qI(x))→ Enc({m(ζ5j

) +QI(ζ5j

)}j)

3. Enc({m(ζ5j

) +QI(ζ5j

)}j)
encrypted mod q−−−−−−−−−−−→ Enc({m(ζ5j

)}j)

4. Enc({m(ζ5j

)}j)→ Enc(m(x))

Among them, SinEval is the most sensitive step to a variation of h. SinEval
is in fact an alternative of an encrypted ‘modulus q’ - function, which is not
implemented exactly yet. Instead of exact implementation of an encryption of
modulus q function, we use an encryption of a polynomial which approximately
become ‘mod q’ over certain region of CN/2. In particular, the range of I(x)
directly determines how high degree polynomial approximation is needed to
preserve a certain precision of messages (section 3 in [CHK+18]). Heuristically,
the size ||I||∞ is bounded as O(

√
h) (e.g. section 5.3 in [CHK+18]).
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4.2 Efficient scaling for depth of CKKS scheme.

We are assuming that the size of plaintext ||m(x)||∞ ≈ ∆, i.e. it is an encoding
of scaling data which belongs to 1

∆Z before scaling. Given n and hamming
weight, upper bound of log q is determined. The bits length log q is the sum of
the length of ModUp and the length of ciphertexts. The bits of the ciphertexts
is again a sum of margin bits for rescaling, the precision size and the length
of floating errors. In practical, we assume the length for ModUp is a quarter
of the length of ciphertexts, i.e. we replace log q by 4

5 log q. In previous section,
estimated log q is now replaced by logPq with ratio logP : log q = 1 : 4. The
ratio 4 is the number of modulus switching keys.

We give table 4 listing lower bound of log ∆ to ensure maximal level for
three precision sizes log p = 10, 20, 30. In the following table, small N is not
listed because they don’t admit enough large log q for a single multiplication
preserving MSB at least log p. Computations for the table refers appendix A.

logPq is increased as h increases. In addition, maximum depth of multipli-
cations without bootstrapping also increases.

Example. Let h = 64 be chosen and assume log p ≥ 30 is required. If logN =
17, then available modulus q is about 1618 ≈ 2022

5/4 bits. If log ∆ = 66 is chosen,

then after 21 steps of multiplications, 30 bits of MSB is ensured in the data.
If log ∆ < 66 and 21 levels are all consumed, then the MSB could be less then
30 bits in worst case. If log ∆ is too large, there is not enough modulus to be
consumed 21 times. The bound is determined by logD × (L+ 1) < log q.

4.3 Under an assumption on error behavior

The worst case can occurs when, for example, all the level is consumed for
squarings of a ciphertext. It is the case that errors in each ciphertexts are same
and each multiplication amplifies the error twice. In the other hands, circuits
could be constructed to avoid such worst case as possible.

If homomorphic circuits are assumed that the error amplification is con-
trolled, then more multiplications are available. This is exactly a question on cir-
cuit optimizations. The following table 5 is a choice under an assumption that all
errors are independent. In the case, m1e2 and m2e1 follow a random distribution
independently and are bounded by ∆Benc, so that ||m1e2 +m2e1|| <

√
2∆Benc.

All the remaining computations are similar as the worst case, except that L is
replaced by L/2 at the quadratic inequality (1) in Appendix A.
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Table 4: Maximum level of multiplications (worst case)
λ = 128, 4 keys for ModUp.

h log p logN logPq log ∆ max. level

64

10

14 219 29 5
15 431 33 9
16 930 42 17
17 2022 54 29

20
15 431 41 7
16 930 49 14
17 2022 60 25

30
16 930 57 12
17 2022 67 22

128

10

14 337 31 7
15 700 38 13
16 1450 48 23
17 2900 62 36

20

14 337 39 5
15 700 46 11
16 1450 55 20
17 2900 68 32

30
15 700 54 9
16 1450 62 17
17 2900 75 29

256

10

13 195 28 4
14 393 33 8
15 821 40 15
16 1623 50 24
17 3300 65 39

20

14 393 41 6
15 821 47 12
16 1623 57 21
17 3300 71 35

30

14 393 50 5
15 821 55 10
16 1623 65 19
17 3300 78 32
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Table 5: Maximum level of multiplications (average case)
λ = 128, 4 keys for ModUp.

h log p logN logPq log ∆ max. level

64

10

14 219 26 5
15 431 29 10
16 930 35 20
17 2000 43 36

20
15 431 38 8
16 930 43 16
17 2000 51 31

30
15 431 48 6
16 930 51 13
17 2000 58 26

128

10

13 165 26 4
14 337 28 8
15 700 33 16
16 1450 39 28
17 2900 49 46

20

14 337 37 6
15 700 41 12
16 1450 47 23
17 2900 56 40

30
15 700 50 10
16 1450 55 20
17 2900 63 35

256

10

13 195 26 4
14 393 29 9
15 821 34 18
16 1623 41 30
17 3300 51 50

20

14 393 38 7
15 821 42 14
16 1623 48 25
17 3300 58 44

30

14 393 47 5
15 821 51 11
16 1623 57 22
17 3300 66 39
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A CKKS parameter estimating

As operations works in a circuit, in particular as multiplications runs, the null
bits are consumed by scale factor ∆ so that the possible number L of mul-

tiplication is limited by
log q

log ∆
− 1. In particular, the length log q consists of
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log q = log q0 + L log ∆ where log ∆ is the length consumed at each rescaling
procedure and ∆ < q0 < ∆2.

In CKKS, at each multiplication, error is estimated as follows :

1. For two ciphertexts ct1, ct2 of level ` such that 〈cti, sk〉 = mi + ei, ctmult

is a ciphertext of level ` such that

〈ctmult, sk〉 = m1m2 + (m1e2 +m2e1 + e1e2 + emult),

where the latter term is new error. emult is the error occuring due to key-
swiching procedure.

2. By rescaling ctmult, new ciphertext ct′ of level `− 1 is obtained and

〈ct′, sk〉 =
1

∆
(m1m2 + (m1e2 +m2e1 + e1e2 + emult)) + escale

The scaling error escale arises due to a rounding operation in the rescaling.

In particular, as e1e2 + eks < ∆, the scaling error contains those two terms.
The total error of a multiplication of two ciphertexts in a same level is

bounded by

||e1||+ ||e2||+ escale ≤ 2×Benc + (1 +
1

∆
)Bscale

and this bound becomes new Benc for the output ciphertext ct′.
Note that (1 + 1

∆ )Bscale is independent to the level of ciphertexts. Let B`
be an error bound for level ` ciphertexts. The final modulus q0 is of bit length
log q0 where the bit-length log ∆ is at least sum of the length of most significant
bits(MSB) and the bit length of errors B0. The MSB is in fact the precision
digits of data.

Let log p be the length of MSB and Benc be the error bound for fresh ci-
phertexts. Benc = 8

√
2σN + 6σ

√
N + 16σ

√
hN is determined by the dimension

N of ciphertexts, hamming weight h, and the standard deviation σ of discrete
Gaussian distribution used for LWE error (lemma 1, [CKKS17]).

We have an equation B`−1 = 2B` + (1 + 1
∆ )Bscale, where B0 should be

bounded by B0 + N
2 < ∆

2p+1 to be correctly decoded (lemma 1, [CKKS17]).
Therefore, ∆ is chosen to be

∆ > 2p+1B0 + 2pN = 2L+p+1Benc + (2L+p+1 − 2p+1)(1 +
1

∆
)Bscale + 2pN

or

∆2− (2L+p+1Benc +2pN +(2L+p+1−2p+1)Bscale)∆− (2L+p+1−2p+1)Bscale > 0.

The latter quadratic inequality is equivalent to

∆ > (2L+pBenc + 2p−1N + (2L+p − 2p)Bscale)

+
√

(2L+pBenc + 2p−1N + (2L+p − 2p)Bscale)2 + (2L+p+1 − 2p+1)Bscale

(1)

due to ∆ > 0.
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