Aloha: Metadata-private voice communication over fully untrusted infrastructure

Ishtiyaque Ahmad Yuntian Yang Divyakant Agrawal Amr El Abbadi Trinabh Gupta

University of California, Santa Barbara

Abstract

Metadata from voice calls, such as the knowledge of who is
communicating with whom, contains rich information about
people’s lives. Indeed, it is a prime target for powerful ad-
versaries such as nation states. Existing systems that hide
voice call metadata either require trusted intermediaries in the
network or scale to only tens of users. This paper describes
the design, implementation, and evaluation of Aloha, the first
system for voice communication that hides metadata over
fully untrusted infrastructure and scales to tens of thousands
of users. At a high level, Aloha follows a template in which
callers and callees deposit and retrieve messages from private
mailboxes hosted at an untrusted server. However, Aloha im-
proves message latency in this architecture, which is a key
performance metric for voice calls. First, it enables a caller
to push a message to a callee in two hops, using a new way
of assigning mailboxes to users that resembles how a post
office assigns PO boxes to its customers. Second, it innovates
on the underlying cryptographic machinery and constructs a
new private information retrieval (PIR) scheme, QuickPIR,
that reduces the time to process oblivious access requests
for mailboxes. An evaluation of Aloha on a cluster of eighty
machines on AWS demonstrates that it can serve 32K users
with a 99-th percentile message latency of 726 ms—a 7x
improvement over prior work in the same threat model.

1 Introduction

Voice call metadata—the parties involved in the call, the
duration of the call, and the time of the call—can be incredi-
bly revealing. The former General Counsel of NSA, Stewart
Baker, has said, “metadata absolutely tells you everything
about somebody’s life. If you have enough metadata, you
don’t really need content” [19, 20, 62]. Several academic
studies [25, 50, 51] have confirmed the power of metadata.
As an example, Mayer et al. [50] used telephone metadata
to infer that a study participant “received a long phone call
from the cardiology group at a regional medical center, talked
briefly with a medical laboratory, ... and made brief calls
to a self-reporting hotline for a cardiac arrhythmia monitor-
ing device.” The authors confirmed that the participant had a
cardiac arrhythmia. A study of whistle-blowers also revealed
that metadata can identify a journalist’s sources [37].

Given the information contained in metadata, a signif-
icant question is: how can one make a voice call with-
out revealing to anyone the metadata associated with the
call? Fortunately, several systems have tackled this prob-
lem [11, 32, 45, 47, 66, 68] (§7). Although these systems

hide metadata and keep message latency low, they either
restrict scalability to only tens of users [32, 66], or are vul-
nerable to attacks by requiring trusted intermediaries in the
communication infrastructure [11, 45, 47, 68]. An example of
a trust assumption is that the system guarantees security only
if an adversary can compromise at most a fraction (20%) of
the servers that route user calls [45]. Trusting intermediaries
can be risky as powerful adversaries like nation states are the
ones that try to collect metadata. Such adversaries have been
known to wield their vast political, technical, and financial
power to gain access to metadata [10, 49, 55, 63].

A system that can withstand strong adversaries while serv-
ing more than tens of users is Pung [6, 8]. Pung makes no
assumptions about the communication infrastructure—the
adversary may compromise a part or all of the infrastructure.
However, Pung targets applications such as email and chat
with long-lived messages that are retrieved asynchronously.
Indeed, a Pung client makes [log,(n + 1)] round trips to a
remote server to obliviously search and retrieve a message
(n is the number of users), thereby incurring several seconds
of message latency (§6.1). In contrast, voice calls have a
strict time budget. If a caller sends a voice packet every few
hundred milliseconds, then the communication infrastructure
must process and forward the packet within that time budget
before the next packet arrives.

We present Aloha, the first system that provably hides
metadata for voice calls, makes no assumptions about the
underlying infrastructure, and scales to tens of thousands of
users. In terms of privacy guarantees, Aloha provides relation-
ship unobservability—an adversary cannot detect whether a
relationship (voice call) exists between any two users of the
system [59] (§2.1). These privacy guarantees are achieved
with practical latency performance of under 750 ms, and for
low-bandwidth voice synthesis at a rate of 1.6 Kbit/s as in
Mozilla LPCNet voice codec [53, 70, 71].

Aloha, like Pung, relies on a set of mailboxes hosted at an
untrusted server. Callers deposit messages and callees retrieve
messages from these mailboxes using a private information
retrieval (PIR) cryptographic protocol [17, 18, 39] (§3.2).
This protocol ensures that the untrusted server does not learn
which mailbox the callee is accessing, thereby unlinking the
callee from the caller. However, Aloha must address two
challenges in this architecture to support low-latency voice
calls (§2.3). First, it must reduce the number of round trips
a caller or callee makes to the server to transfer or retrieve a
voice packet. Second, Aloha must reduce the time the server
takes to process caller and callee requests, particularly, the
PIR requests.

Aloha addresses the first challenge through a new, and
remarkably simple, use of mailboxes (§3). When someone
rents a conventional post office box, or PO box, at a post
office, they get a mailbox with a unique and fixed address into
which the mailman deposits incoming mail. Aloha inverts
this architecture. In Aloha, a caller (rather than a recipient
or callee) gets a dedicated mailbox with a fixed address or
“phone number”. The caller deposits its outgoing messages
into the mailbox tied to its phone number—independent of
who the caller is calling. (Thus, an adversary cannot tell whom
the caller is calling.) Meanwhile, a callee retrieves a message
from the mailbox tied to the caller’s phone number using a
PIR protocol. Crucially, to transmit a message, a caller makes
one push request to the server, and the server makes one push
request to the callee—a hop count of two.

Aloha addresses the second challenge mentioned above, of
reducing server-side processing time for PIR, by two means.
First, it parallelizes PIR processing across multiple server
machines and multiple CPU cores on a machine. The fact
that PIR is parallelizable is known and studied [27, 35]. Sec-
ond, and more saliently, Aloha constructs a new PIR scheme,
QuickPIR, that fundamentally reduces the server-side PIR pro-
cessing time relative to prior state-of-the-art schemes [4, 6]
(§4). Even though QuickPIR was motivated by Aloha, it can
be used for other applications of PIR [12, 28, 34, 52]. We
plan to release QuickPIR as an open source library.

QuickPIR builds on the homomorphic encryption scheme
of Brakerski/Fan-Vercauteren (BFV) [13, 31] (§4.1) and lever-
ages two of its features. First, it uses the single instruction,
multiple data (SIMD or batching, as it is sometimes called in
the literature) capability of BFV ciphertexts to compute on
compressed PIR requests. Keeping requests compressed im-
proves memory utilization, CPU caching, and eliminates the
time to uncompress them (§4.2). However, working over com-
pressed requests naively increases PIR response size. Second,
QuickPIR uses homomorphic rotation operations in BFV to
combine multiple pieces of a PIR response. QuickPIR reduces
both the CPU time per rotation operation and the number of
calls to the rotation operation (§4.3, §4.4).

For completeness, Aloha includes a dialing protocol that
allows a callee to detect that a caller is calling and learn the
caller’s phone number (mailbox address). For this purpose,
Aloha uses the dialing protocol from Pung (§5).

We have implemented (§5) and evaluated (§6) a proto-
type of Aloha. Our prototype runs on Amazon EC2 where
the server runs in US East region, and the clients (callers and
callees) run geographically apart in the US West region. When
the server uses 80 machines, Aloha supports 32K clients com-
municating with each other with a 99-th percentile message
latency of 726 ms. In contrast, Pung (the only other system
that works at scale over completely untrusted infrastructure)
transmits messages for the same number of users with a mes-
sage latency of 5.2 seconds. Aloha’s CPU consumption, net-
work uploads, and downloads are also lower than Pung’s—by

3.45, 291, and 4.5 times, respectively.

Although Aloha achieves low message latency for a few
tens of thousands of users, it does not currently scale to hun-
dreds of thousands or a few million users. Furthermore, it
does not currently support group voice calls. Nevertheless,
Aloha demonstrates, for the first time, that even over com-
pletely untrusted infrastructure, metadata for voice calls can
be hidden for tens of thousands of users.

2 Goals, threat model, and challenges

Aloha’s goal, at a high level, is to enable its users to make peer-
to-peer voice calls while hiding metadata from a powerful
adversary that may compromise the entire communication
infrastructure.

2.1 Goals

Performance and scalability. Voice calls require the com-
munication infrastructure to transmit messages with low la-
tency. Aloha targets a sub-second message latency: if Alice
sends a voice packet to Bob, then Bob should receive it within
a second. A component of this latency is the time the com-
munication infrastructure takes to process the packet. The
infrastructure must not queue up the packets. For instance,
if Alice samples voice every 500 ms, then a hop in the in-
frastructure, for example, a server, cannot spend more than
500 ms to process the packet before sending it forward to Bob.
Aloha must also provide sufficient throughput so that the
transmitted voice is understandable. Aloha targets the LPC-
Net voice codec [70, 71], which specializes in low-bandwidth
voice synthesis at a rate of 1.6 Kbit/s. Finally, Aloha should
scale to support a large number of users (for example, tens of
thousands on a cluster of hundred machines).

Content privacy. Aloha must ensure that only the caller and
callee of a voice call can comprehend the content of the voice
packets they send to each other.

Metadata privacy. Aloha, similar to Pung [8], targets the
guarantee of relationship unobservability as defined by Pfitz-
mann and Hansen [59]. Relationship unobservability states
that it is undetectable whether a relationship (voice call) exists
between a sender (caller) and a recipient (callee), unless the
sender or the recipient are compromised. If either the caller or
the callee is compromised, then offering privacy guarantees
has little value, as the compromised party can trivially reveal
the existence of communication (or lack thereof).

2.2 Threat model and assumptions

As motivated in the introduction (§1), Aloha assumes an
adversary who can compromise the entire communication
infrastructure, including routers, switches, and middleboxes.
The adversary can observe network traffic, perform traffic
analysis, and manipulate traffic: reorder, replay, change, and
inject network packets.

Callers and callees trust their own devices. More generally,
the adversary can compromise a subset of end user devices.
In this case, Aloha must provide content and metadata privacy
to the users of non-compromised devices.

The adversary may not break standard cryptographic prim-
itives such as public-key and symmetric-key encryption.

The adversary may mount a denial-of-service attack: bring
down the entire communication infrastructure or selectively
drop traffic. In such cases, our system cannot guarantee voice
communication but must continue to guarantee privacy.

2.3 Challenges

Meeting the performance and privacy goals stated above un-
der the threat model is challenging. Indeed, prior work either
relaxes the threat model or does not meet the performance
goals. For instance, Yodel [45] is a metadata-private voice
communication system that scales to several million users but
assumes that a server in the communication infrastructure is
compromised with only a 20% chance. On the other hand,
Pung [6, 8] works in the stronger threat model. However,
it cannot push frequent messages from a caller to a callee.
As mentioned earlier (§2.1), if a caller samples voice every
500 ms, then each hop of the communication infrastructure
must process a voice packet within 500 ms before the ar-
rival of the next packet to avoid packet build up. This time
budget entails that a caller or a callee cannot make multiple
round trips to a server in the communication infrastructure
to send or receive a single packet. Besides, the server cannot
spend more than the time budget to process a voice packet
while simultaneously unlinking a caller from a callee. Aloha
addresses these challenges and meets the performance re-
quirements for tens of thousands of users without making any
trust assumptions.

3 Architecture and overview of design
3.1 Architecture

Figure 1 shows Aloha’s architecture. Aloha consists of a
server and user (participant) devices. The server runs over
untrusted infrastructure. It is logically centralized but phys-
ically distributed over multiple machines. The server’s role
is to facilitate communication among the user devices in a
privacy-preserving manner.

The server exposes mailboxes. Specifically, it exposes n
mailboxes, where n is the number of user devices using the
system. Each mailbox has an ID and space to store a message;
the ID is a number between (and inclusive of) O and n — 1.
As we will describe later (§4), it is helpful to view the n
mailboxes as a matrix with n» rows and m columns, where
each row is an individual mailbox, and the m pieces of a
message are m elements of a row.

The user devices run logic to enable users to initiate, pick
up, and participate in calls. Each device gets assigned a mail-
box ID, which acts as its phone number. Each device also

devices server (on AWS)

(owns mailbox M;) 0
phone book CPIR 1
2

(owns mailbox M)

PR mailboxes

L AN

Y \
|Bob | 9733 | pkBob| n-1
a phone book entry

Figure 1—High-level architecture of Aloha. The server runs over
untrusted infrastructure and exposes mailboxes that user devices
read from or write into. The mailbox identifiers (integers O to n — 1)
play the role of “phone numbers”. A device stores phone numbers
of the device owner’s contacts in a local phone book.

contains a phone book, which stores information about the
device owner’s contacts. Each phone book entry is a tuple
of a phone number of the contact, a cryptographic public
key belonging to the contact, and other standard information
such as the contact’s name, work place, and photograph. We
assume that a device owner either knows this information or
can obtain it privately through out-of-band means such as
in-person meetings or personal websites.

3.2 Protocol

Aloha relies on a cryptographic protocol called private in-
formation retrieval or PIR [17, 39]. We begin with a short
background on PIR; §4 describes a PIR protocol in detail.

A primer on PIR. A PIR protocol [17, 39] runs between
a user device and the server in Aloha, where the device is
interested in retrieving the message in the idx-th mailbox at
the server without revealing the value of idx.

A PIR protocol has three procedures: QUERY, ANSWER, and
DECODE. QUERY is run by a device. It takes as input the index
idx between 0 and n — 1 and returns a query, g. Typically,
q is an encryption of a suitable encoding of idx. ANSWER is
run by the server; it takes as input the query g and the set of
n mailboxes, and returns an encoding of the message in the
idx-th mailbox (without learning the value of idx). Finally,
DECODE is run by the device; it takes the output of ANSWER
and returns the idx-th mailbox message.

Aloha’s protocol. User devices in Aloha participate in a
round-based protocol consisting of a one-time registration
step followed by synchronous rounds, each consisting of a
dialing phase followed by a communication phase consisting
of multiple subrounds of communication. In slightly more
detail, initially a device performs a one-time registration step
to register itself with the server and obtain its phone number
(mailbox ID). This is followed by a sequence of rounds. Each
round starts with a dialing phase, where the device initiates
a call to another device or picks up an incoming call. This is

1: function RECV(key key, resp resp)

2 /I resp is the output of ANSWER PIR procedure

3 ¢ < DECODE(resp) // DECODE is a PIR procedure
4 msg < AES.DEC(key,)

5: play msg to user
6
7
8

: function SEND(mailbox M, token ¢, message msg, key key)
¢ < AES.ENC(key, msg)
send (M, 1, ¢) to server

9: function MAIN()

10: // Register device and obtain a mailbox ID and unique token
11: (Mge, thn,n) < REGISTERDEVICE()

12: while True do

13: // Run dialing phase. k.. is for encrypting content

14: (Mpeer, kenc) < DIAL/PICKUP()

15: q < QUERY (Mpeer,n) // QUERY is a PIR procedure
16: send ¢ to server

17: /! Asynchronously listen for server responses

18: register callback RECV (keyc, . . .) for server responses
19: // Run communication phase consisting of ¢ subrounds
20: forr=0totr—1do

21: wait for message generation interval

22: call SEND (M, thn, msgy, kenc)

Figure 2—Pseudocode for a user device in Aloha. n is the number of
mailboxes at the server. QUERY, ANSWER, DECODE are procedures
of a PIR scheme (§3.2, §4).

followed by the communication phase, consisting of multiple
subrounds, where each device sends exactly one message to
the server and receives one message from the server. Notably,
a device always writes a message to its assigned mailbox,
while it receives a message from its peer’s mailbox.

We now describe Aloha’s protocol in more detail. Figure 2
shows the pseudocode for a user device. A device starts exe-
cuting the MAIN function (line 9 in Figure 2).

One-time registration step. When a user device joins
Aloha, it registers itself with the server and obtains three
pieces of information: a mailbox ID, a unique authentication
token tkn, and the number n of mailboxes (line 11 in Figure 2).
As mentioned above, the mailbox ID acts as the phone number
assigned to the device. Meanwhile, the authentication token
is a 128-bit uniformly generated string that enables the server
to verify that a device has written a message to its assigned
mailbox. The value n changes as devices join the system; the
server broadcasts this value as it changes.

Aloha’s server is untrusted and may assign mailbox IDs or
authentication tokens incorrectly; for instance, it may reassign
a previously assigned mailbox ID. Besides, it may distribute
different values of n to different devices. The privacy guaran-
tees of Aloha’s protocol do not depend on the server assigning
correct values for these items. However, a malicious server
can deny service to system participants, which is not pre-
vented by our threat model (§2.2). A service provider who
runs the server will likely be incentivized to provide a contin-
uous service to keep its customer base.

Dialing phase. Once registered, a user device, who we refer
to using its phone number, M., executes the round-based
protocol. At the beginning of each round, My, initiates a
call or picks up an incoming call (line 14 in Figure 2). If
the device initiates a call, it selects the phone number of the
peer device it is calling, M., and an encryption key, ke,
to hide the content of the messages it will send. On the other
hand, if the device picks up an incoming call then it learns
the phone number of the caller and its content encryption
key. For now, we leave out the details of how a device picks
up a call till later (§5). After initiating or picking up a call,
M.y generates a PIR query g <— QUERY(Mer, n) for the
peer’s mailbox, and sends g to the server (lines 15 and 16
in Figure 2). The PIR query indicates, without revealing the
value of M., that My is interested in receiving messages
deposited into M),.,’s mailbox. The device My, then registers
an asynchronous callback to process PIR responses from the
server (line 18 in Figure 2). Meanwhile, the server stores
the PIR queries from all devices and uses them across all
subrounds of the round’s communication phase.

Communication phase. In each subround of the communi-
cation phase, (1) a device deposits an encrypted message into
its assigned mailbox at the server, (2) the server processes
PIR queries from all devices and pushes the results to the
corresponding devices, and finally (3) each device decodes its
PIR response from the server. In more detail, at the beginning
of a subround, a device encrypts the message it wants to send
to its peer with the key k., to create a ciphertext c. It sends the
tuple (M, thn, c) to the server (line 22 in Figure 2), where
tkn is the device’s assigned authentication token obtained dur-
ing the registration step. The server uses the token to validate
that the messages being written to mailboxes indeed come
from devices that own the mailboxes. After performing these
checks, the server runs the ANSWER PIR procedure for all PIR
queries. Specifically, for a query g sent by a device during the
dialing phase, the server runs resp <— ANSWER (mailboxes, q)
and pushes the PIR response resp to the device. On receiving
a response, a device invokes the callback it registered during
the dialing phase. This callback decodes the PIR response
using the DECODE PIR procedure, decrypts the underlying
message sent by the device’s peer M., and delivers the
message to the user (line 1 in Figure 2).

Dummy participation and messages. The protocol de-
scribed so far does not address the case when a device owner
does not participate in a call. During such idle periods, like
prior systems for strong metadata privacy (e.g., [8, 45]), a
device adds cover traffic (also called chaff). In particular, if
a device does not initiate or pick up a call in a round’s dial-
ing phase, it calls itself: inputs M. into QUERY (line 15 in
Figure 2). Besides, if a device does not have a message to
send during a subround, it writes an encryption of a random
message into its mailbox. Sending cover traffic is necessary;
otherwise an adversary can learn connections between users

by monitoring if they join/leave at similar times.

Security analysis. Aloha’s protocol satisfies relationship un-
observability, meaning that an adversary cannot detect the
existence of relationships between system users (§2.1). We
provide a proof in Appendix A. Briefly, Aloha’s protocol
meets the property for the following reasons. First, a user
device only sends encrypted messages using a content en-
cryption key known only to its peer. Besides, a device always
writes an outgoing message to its own mailbox. Thus, the
message sending pattern is independent of whether the device
is engaged in a call or the identity of its peer. Second, the
security property of the PIR protocol ensures that an adver-
sary cannot tell the IDs of the mailboxes from which devices
are retrieving messages. Thus, the adversary cannot detect
whether a user Alice is communicating with Bob or Charlie
or someone else, or even communicating at all (i.e., retrieving
messages from its own mailbox).

Performance characteristics. Aloha’s protocol exhibits two
key characteristics that set it on the path to meeting its perfor-
mance goals (§2.1). First, the protocol pushes messages from
senders to recipients in two hops—independent of the number
of users in the system. Specifically, in each subround, a sender
pushes a message to the server, who then processes the PIR
query provided beforehand by the recipient, and pushes the
PIR response to the recipient. This two-hop communication
pattern is crucial for voice calls which require low latency.
Second, the protocol amortizes the cost of generating and
transferring a PIR query across subrounds of a round (our
prototype runs a round every five minutes, and a subround
every 480 ms; §6). Thus, the server does not have to deal with
PIR query management (and certain preprocessing of query)
during the time-sensitive subrounds. Nevertheless, the server
must complete computing ANSWER for all PIR queries in a
time smaller than the voice packet generation interval (that
is, duration of a subround) to avoid packet build up. Besides,
the network transfers from server to devices are dictated by
the size of the output of ANSWER. Thus, a low cost of the
ANSWER PIR procedure is key for Aloha’s performance.

4 QuickPIR: A new CPIR scheme

As described above (§3.2), a critical component of Aloha’s
protocol is the ANSWER PIR procedure. It not only dictates
Aloha’s message latency but also the resource consumption
(both cPU and network) imposed by Aloha.

PIR schemes are of two types: computational PIR
(CPIR) [39] and information-theoretic PIR (IT-PIR) [17, 18].
CPIR schemes assume a single (untrusted) server and rely
only on cryptographic assumptions; in contrast, IT-PIR
schemes are more efficient but require two or more non-
colluding servers. In Aloha, we use CPIR as its deployment
model is in line with Aloha’s single-server design, and the
goal of not trusting the communication infrastructure (§2.2).

One can plug in an existing CPIR scheme, either XPIR [4]

or SealPIR [6], which are the state-of-the-art CPIR schemes,
into Aloha’s protocol (§3.2). However, these schemes exhibit
a tension between the CPU time to run ANSWER (and thus the
wall-clock time for ANSWER) and the output size of ANSWER.

Suppose a CPIR client wants to privately retrieve the idx-th
message from a library L of n messages (mailboxes) held at
a server. In prior work, a typical way to construct a CPIR
query (§3.2) is to treat the library as a matrix with n rows and
generate a ciphertext for every row of L. The ciphertext for
the idx-th row encrypts the value 1, and the ciphertexts for
the other rows encrypt 0. However, this strategy creates large
queries with as many ciphertexts as n (e.g., XPIR’s query size
is 795 MiB for n=21, and ~3 GiB for n=2%°; §6.4). When
the server processes larger queries, it consumes more memory
and more CPU cycles to read them into CPU caches, which
slows down query processing. (SealPIR compresses query on
the wire, but expands it to the larger query at the server).

A popular way to address the query-size issue is a tech-
nique called recursion due to Stern [67]. This technique is
parameterized by a depth parameter d. A value of d = 2
or higher, shrinks the query—it contains d+/n ciphertexts in-
stead of n—by rearranging the library as a d-dimensional
hypercube. However, this rearrangement increases the CPIR
ANSWER output size exponentially with d. Thus, if we plug in
existing CPIR schemes (XPIR or SealPIR), then Aloha would
compromise on either server CPU time or network bandwidth.

Our CPIR scheme, QuickPIR, works without recursion by
default and thus keeps the smaller CPIR answer size. How-
ever, it optimizes the computation time for ANSWER. In fact,
QuickPIR takes less time than both XPIR and SealPIR (with
or without recursion) to run ANSWER (§6.4), and thus im-
proves the scalability and message latency of Aloha. Quick-
PIR may be a good fit for other applications of CPIR where
costs are dominated by those of the CPIR ANSWER procedure.

QuickPIR, like SealPIR [6], builds on the lattice-based ho-
momorphic encryption scheme of Brakerski/Fan-Vercauteren
(BFV) [13, 31]. BFV has superior efficiency than a traditional
number-theoretic homomorphic encryption scheme such as
Paillier [57], resists attacks by quantum computers, is imple-
mented in mature and actively maintained codebases [2, 65],
and is in the preliminary stages of being standardized (e.g.,
with ISO/IEC) [5]. We start with a necessary background on
BFV (§4.1), and then delve into QuickPIR (§4.2—§4.4).

4.1 Background: The BFV cryptosystem

We focus here on describing the more efficient vectorized
variant of BFV in which a single homomorphic operation
operates over multiple plaintext inputs (single instruction,
multiple data or SIMD; also called batching in the literature).

In this BFV variant, a plaintext is a vector of dimension
N; N equals a power of two and is at least 2'° [5]. Each
component of the plaintext is an integer in Z, = {0, ...,p —
1}, the set of integers modulo p. Sometimes, we will view a
BFV plaintext as a matrix with two rows and N/2 columns

rather than a vector with a dimension of N.

A BFV ciphertext is also a vector but of dimension 2 - N.
Each ciphertext component is an element of Z,, where g >> p.

The BFV encryption procedure, BFV.ENC, adds noise when
it converts a plaintext vector into a ciphertext vector. This
noise grows as homomorphic operations are performed on
the ciphertext. If the noise grows beyond a threshold, then the
ciphertext decryption does not produce the correct plaintext
(hence g > p for enough noise budget).

The size of the plaintext vector, N, the size of the domain
of each component of the plaintext, p, and the size of the
domain of each component of the ciphertext, g, are all tunable
parameters. Typically, one picks a combination of p,gq, N
depending on the application, the required noise budget, and
the desired security level; we discuss concrete values for these
parameters for Aloha in §5.

BFV supports the following homomorphic operations that
are used in QuickPIR:

* BFV.ADD(cy, ¢1) takes as input encryptions ¢ and ¢; of
plaintext vectors vy and v, and outputs an encryption of
vo + v1 (component-wise vector addition).

* BFV.SCMULT(vy, ¢;) takes as input a plaintext vector v
and an encryption c; of a plaintext vector v, and produces
an encryption of the product vo©v;. The operator © denotes
component-wise multiplication (this is an instance of single
instruction, multiple data).

* BFV.ROWROTATE(cy,) takes as input an encryption ¢(of
a plaintext vy and an integer 0 < i < N/2—1, and produces
an encryption of v rotated by i positions cyclically row-
wise. For instance, if plaintext dimension is N = 8 and
vo is ((a,b,c,d), (e,f, g, h)) in its matrix representation,
then a right rotation by i = 1 produces an encryption of
((d.a.bic). (h.e.f.g)):

* BFV.COLROTATE(cy) takes as input an encryption ¢ of a
plaintext vy and returns an encryption of a plaintext pro-
duced by swapping the two rows of vy. For the example
above, the result is an encryption of ((e,f, g, h), (a, b, c,d)).

These BFV operations require public keys generated by a

key generation procedure. Notably, the rotation procedures

require a set of rotation keys. BFV.COLROTATE requires one
key; however, the size of the set of keys for BFV.ROWROTATE
can vary. On the one extreme, this set can be configured
to contain one key that rotates the plaintext vector by one
position. Then, to perform a rotation by i > 1 positions,

BFV.ROWROTATE calls itself i times, incurring i times the cost

of one BFV.ROWROTATE operation. On the other extreme, the

set can contain N /2 — 1 keys for all possible values of 0 < i <
N/2. This extreme reduces CPU time for BFV.ROWROTATE
but increases the key size. For the BFV parameters we choose

(85), each rotation key is 128 KiB, and the set of all possible

rotation keys is 256 MiB. Thus, in practice, one generates

log,(N/2) keys for all powers-of-two between 0 and N /2 — 1.

4.2 The QuickPIR scheme

Recall the CPIR scenario (§3.2): a server holds a library L of
n messages where each message has m components, while a
client holds an integer 0 < idx < n — 1 and wants to retrieve
the idx-th library message without revealing idx to the server.

To build intuition for QuickPIR, suppose that Lisa N x 1
matrix consisting of as many messages as the plaintext vector
dimension N in BFV. Then, the client constructs the CPIR
query, g, for the idx-th message as follows. It one-hot en-
codes idx in a plaintext vector. For instance, if N = 4 and
idx = 1, the client encrypts (0, 1, 0,0). The server multiplies
g with L by computing BFV.SCMULT(L, ¢) to obtain an en-
cryption of the idx-th entry of L. For the example above, if L
is (ag, ay, az, az), then BFV.ScMULT produces an encryption
of (0,ay,0,0) as multiplication is component-wise. The client
receives the output and decrypts it to get a;.

The advantage of this strategy is that a query consumes
only a component of a ciphertext for each of the n rows
of L (instead of an entire ciphertext for each row). How-
ever, a challenge is that the strategy would generates one
output ciphertext for each of the m columns of L. Quick-
PIR addresses this challenge by combining ciphertexts for
m columns into a single ciphertext using the BFV rotation
operations (BFV.ROWROTATE and BFV.COLROTATE), thereby
reducing CPIR answer sizes.

Figure 3 shows the QuickPIR scheme. It assumes that n is
a multiple of N, i.e.,n = k- N for some k > 1, and m < N.
If these constraints do not hold, then the server pads L with
empty rows and splits L into sets of N columns.

The QUERY procedure and the top half of ANSWER follow
the intuition above. QUERY creates a one-hot encoding of idx
(line 4 in Figure 3), splits the encoding into multiple BFV
plaintexts, and encrypts each plaintext separately (line 7 in
Figure 3). The top half of ANSWER (until line 17), multiplies
the k = n/N plaintext column vectors of each column of L
with the corresponding ciphertexts in the query (line 16 in Fig-
ure 3), and adds the k output ciphertexts to get one ciphertext
per column of L (line 17 in Figure 3). For instance, if n = 8,
N =4, idx = 1, and a column of L is (ag, a1, .. .,a7), then
ANSWER computes encryptions of (0,al,0,0) and (0,0, 0,0),
and adds them to get an encryption of (0,al,0,0).

The bottom half of ANSWER packs together outputs from
each column into a single ciphertext (lines 19-27 in Fig-
ure 3). Suppose the number of columns is m = 4 and the
outputs corresponding to them are encryptions of (0,a;,0,0),
(0,51,0,0), (0,¢;,0,0), and (0,d;,0,0), or equivalently en-
cryptions of ((0,ay),(0,0)), ((0,b1),(0,0)), ((0,c¢1), (0,0)),
and ((0,d,),(0,0)), when the underlying plaintexts are
viewed in their matrix form. Then, ANSWER uses the
BFV.ROWROTATE and BFV.ADD operations to produce en-
cryptions of ((b1,a1),(0,0)) and ((d;,¢1),0,0)) (lines 20—
26 in Figure 3), before column rotating the second ciphertext,
and adding the result to the first ciphertext to obtain an en-

1: function QUERY (index idx, n)

2 // Create a one-hot encoding of idx

3 fori=0ton—1do

4 fi— (i==idx)?1:0

5: // Split and encrypt the one-hot vector
6 for i = 0to (n/N) — 1 do // N is BFV plaintext dimension
7
8

qi —BFVENC(pk (fN,--- (1+1)N 1))
return g = (qo, . .., q(n/N)—1)

9: function ANSWER(library L, query ¢ = (qo, - - ., §(u/n)—1))
10: // Represent L as a matrix of elements in Z,: L € Z;*"
11: /] g is an output of QUERY
12: forj=0tom — 1do
13: sum; = BFV.ENC(pk, 0)

14: fori =0to (n/N) — 1 do

15: pij < SUBMAT(L,i-N,(i+1)-N — 1,j,j)
16: tij = BFV.SCMULT(]J,‘J, q,-)

17: sum; = BEV.ADD (sum; + t;;)

18: // Combine outputs from all columns

19: Initialize s;0p, Spor to encryptions of zero vectors

20: forj=0tom —1do

21: if j < N/2 then

22: sum; < BFV.ROWROTATE (sumj, j)

23: Stop <— BEFV.ADD((s1p, sum;)

24: else

25: sum; < BFV.ROWROTATE (sum;,j — N /2)
26: Sbor <— BFV.ADD(Spor, sum;)

27: return BFV.ADD(s1,,, BEV.COLROTATE (sp0r))

28: function DECODE(answer ans, index idx)

29: // ans is an output of ANSWER
30: if idx mod N > N/2 then
31 ans < BFV.COLROTATE (ans)

32: ans < BFV.ROWROTATE (ans, N /2 —
33: return BFV.DEC(sk, ans)

(idx mod N/2))

Figure 3— QUERY, ANSWER, and DECODE procedures for a basic
version of QuickPIR. (pk, sk) are a (public, private) key pair for the
BFV scheme (§4.1). SUBMAT extracts a sub-matrix of a matrix.

cryption of ((by,a1), (dy, c1)) (line 27 in Figure 3). Packing
outputs from multiple columns in a single ciphertext is crucial
as otherwise a CPIR answer size becomes larger.

DECODE is straightforward; it rotates the output of ANSWER
depending on the value of the requested index and decrypts
it. For the example above, DECODE performs a rotation on
((bl,al), (d], C])) by idx = 1 to obtain ((Cll,bl), (Cl,dl)).

A key point about the scheme is that it keeps CPIR queries
compressed using BFV’s vectorized operations (query does
not have one ciphertext per row of library)—this reduces CPU
time. The next two subsections present two further optimiza-
tions to improve the performance of this basic scheme.

4.3 Reducing the CPU cost of rotations

Recall that one goal of QuickPIR is to optimize the CPU time
of ANSWER procedure (§3.2). A source of inefficiency in what
is described above is the cost of BFV.ROWROTATE (lines 22
and 25 in Figure 3), as the CPU time taken by it depends on the

Straw man: Optimized
add scheme:
[olofalo] [olofofb] |c|0|0|0| |0|d|0|0| [olofafb|

I rot(z) rot(3) /\rot(l)
i""'e" ﬁ‘)'b (olofolo] [ofolco] [ololdlo] | [ofolafo] [ofofbio] [ololclo] [ololdlo]

Figure 4—Illustration of optimized rotations in QuickPIR. The straw
man (left) performs a mix of slow rotations (with rotations amounts
that are not powers of two) and fast rotations (with rotation amounts
that are powers of two) to combine multiple vectors. QuickPIR’s
optimized scheme combines vectors using fast rotations only.

value of i—the positions by which the underlying plaintext is
rotated. When i is a power of two, then BFV.ROWROTATE is
fast. When i is a not a power of two, BFV.ROWROTATE calls
itself up to log, (i + 1) times (§4.1). For example, a rotation
by seven positions translates to rotations by one, two, and
four positions.

QuickPIR eliminates the calls to expensive rotations whose
input rotation amount is not a power-of-two. As intuition,
suppose that the ANSWER procedure (Figure 3) needs to make
two calls to BFV.ROwWROTATE—one for rotating a vector by
two positions and the other for rotating another vector by
three positions. Then, the straw man design presented in the
previous subsection treats each rotation separately (see the
left half of Figure 4). Particularly, it breaks down the rotation
by three positions into a rotation by one position followed by
a rotation by two positions. Instead, QuickPIR first rotates
the second vector by one position and adds the result to the
first vector. Then, it rotates the combined vector once by two
positions, thereby rotating only by powers-of-two amounts.

Figure 4 (the right half) illustrates the idea. QuickPIR ar-
ranges the vectors to be combined as leaf nodes of a tree;
it then builds up to the root of the tree. When producing a
parent at a given height /4 of the tree, QuickPIR rotates the
right child by 2#~! positions and adds the rotated vector to the
left child. The effect is that QuickPIR combines m ciphertexts
in lines 22 and 25 in Figure 3 using m fast rotations.

4.4 Reducing the number of rotations

This optimization reduces the number of calls to
BFV.ROWROTATE by a factor of two, and eliminates the call
to BFV.COLROTATE, thereby further reducing the CPU cost of
ANSWER. The trade-off is a 2 x increase in CPIR query size.

The key idea is to exploit the matrix representation of
a BFV plaintext (§4.1) and retrieve two elements of a row
(instead of one) at a time.

As motivation, suppose that the matrix L is of dimension
N/2 x 2, and the client wants the idx-th row. Then, the client
sends an encryption of a vector whose idx-th and idx + N/2-
th entries are one (and the rest are zeros). For instance, if
N = 4 and idx = 1, then the client sends an encryption of
(0,1,0, 1), or equivalently, ((0, 1), (0,1)). The server multi-
plies this query with L to get an encryption of a vector whose
idx-th and idx + N /2-th entries are the desired elements from

1: function QUERY (index idx, n)
2 fori=0ton—1do

3: fi (i==idx)?1:0 /I one-hot encoding
4: fori=0ton/(N/2) — 1do
5.
6
7

v (finyzs - fir1)yny2—1)
qi = BFV.ENC(pk, v

return g = (qo, - . -, Gn/(v/2)—1)

[v) //]| denotes concatenation

8: function ANSWER(library L, query ¢ = (qo, . . -, Gn/(v/2)—1))
9: / Represent L as a matrix of elements in Z,: L € Z,*"

10: forj =0to (m/2) — 1 do

11: sum; = BFV.ENC(pk, 0)

12: fori =0ton/(N/2) — 1do

13: pij < SUBMAT(L,i-N/2, (i+1)-N/2—1,2j,2j+1)
14: tij = BFV.SCMULT(]J,‘J, q,-)

15: sum; = BFEV.ADD (sum; + t;;)

16: // Combine outputs from all pairs of columns

17: return ROTATEANDCOMBINE(surno, . . . , SUity, /21)

18: function DECODE(answer ans, index idx)

19: // ans is an output of ANSWER

20: ans < BFV.ROWROTATE (ans, N /2 — (idx mod N/2))
21: return BFV.DEC(sk, ans)

Figure 5— QUERY, ANSWER, and DECODE procedures for Quick-
PIR. (pk, sk) is a (public, private) key pair for the BFV scheme (§4.1).
SUBMAT extracts a sub-matrix of a matrix. ROTATEANDCOMBINE
is the optimized procedure to combine ciphertexts (§4.3).

the two columns of L. For the example above with idx = 1,
say L is ((ao,a1), (bo, b1)), then the multiplication operation
produces an encryption of ((0,a;), (0,b1)).

Figure 5 shows the procedures of QuickPIR with this opti-
mization. The procedures assume that 7 is a multiple of N /2,
i.e.,n=k-(N/2) for some k > 1, and m is even and < N. As
before (§4.2), if these constraints do not hold, then the server
appropriately pads and splits L.

The QUERY procedure encrypts a set of vectors that in total
contain two non-zero entries (line 6 in Figure 5). The ANSWER
procedure multiplies k parts of every pair of columns of L
with the k ciphertexts in the query, and adds the results to
get one ciphertext for every pair of columns. Then, ANSWER
packs these outputs using the optimized scheme to combine
ciphertexts described previously (§4.3). Notably, at the im-
plementation level, ANSWER stores at most [log(m/2)] ci-
phertexts in memory at a time by using a subtle divide and
conquer strategy. The DECODE procedure performs a rotation
on the output of ANSWER and decrypts the result.

Security analysis. The security of a CPIR scheme requires
the output of QUERY to not reveal any information about the
requested index [18, 39]. QuickPIR meets this property be-
cause its QUERY procedure (i) produces semantically-secure
BFV ciphertexts, and (ii) outputs the same number of cipher-
texts independent of the value of index.

S Implementation details

QuickPIR. We implemented QuickPIR in ~1,500 lines of
C++ code. We used the Microsoft SEAL library v3.5 [65] for
the underlying cryptographic operations of the BFV scheme.
Recall that QuickPIR configures BFV so that it supports
vectorized operations (§4.1). For vectorization, the plain-
text modulus p has to be a prime number congruent to 1
(mod 2N), where N is the size of a BFV plaintext and equals
219 or a higher power of two (§4.1). Moreover, one needs
to choose p < g to ensure correct decryption. For Aloha,
we choose N = 2!2, p a 19 bit prime 270337, and ¢ a 109
bits composite number that is the product of a 54 bit prime
number (18014398509309953) and a 55 bit prime number
(36028797018652673). These parameters provide a 128-bit
security level as guided by the homomorphic encryption stan-
dard [5]. (One may choose different parameters for QuickPIR
based on application requirements.)

Master-worker architecture for Aloha. We implemented
Aloha server using a master-worker architecture with many
worker machines to distribute the PIR workload. Specifically,
during the dialing phase of a round in Aloha’s protocol (§3.2),
the master receives CPIR queries from all devices and shards
them across the workers (a worker gets a subset of the queries).
Then, during the communication phase, master initiates a
subround periodically with a pre-defined time interval. During
each subround, the master receives messages from the clients
and broadcasts the entire message library to the workers. Each
worker uses QuickPIR to compute ANSWER for each CPIR
query in its assigned subset of queries and pushes the CPIR
responses to the corresponding client devices.

Dialing protocol. Aloha uses Pung’s protocol to initiate con-
nections [9, Chapter 4.5.3] (which in turn is based on Alpen-
horn [46]). Briefly, a caller sends “hello” messages encrypted
with the callee’s public key to the server, who then broad-
casts the set of “hello” messages from all callers to all user
devices. A callee decrypts the ciphertexts using private key
and learns the content encryption key and the caller’s phone
number (which are inside the hello message). This protocol
is not efficient as the server broadcasts the ciphertexts to the
participants (although the server could use a CDN or mul-
ticast protocols), and a callee decrypts ciphertexts from all
users. Thus, Aloha runs this protocol infrequently (every five
minutes; §6.3). A more efficient dialing protocol in Aloha’s
threat model is still an open problem.

Options for which call to pick. A device may receive mul-
tiple incoming calls, or may make an outgoing call at the
same time a call comes in. In such scenarios, Aloha exposes
all options to the device owner and lets them pick the call
they want to be a part of. However, depending on which op-
tion the user chooses, they could leak some information to
the users involved in the non-chosen options. For instance,
if Alice receives a call from both Bob and Charlie, and de-

cides to pick Bob’s call, then Charlie may infer that Alice
is busy. This leakage is not specific to Aloha but applies to
any metadata-private system [7]. As efficient solutions to this
problem become available, one could enhance the options-
based approach currently implemented in Aloha.

Other libraries and lines of code. Our prototype of Aloha
is ~2,000 lines of C++ on top of existing libraries (includ-
ing QuickPIR). Our implementation of dialing protocol uses
the libscapi [1] library for public-key encryption using the
Cramer-Shoup scheme [24] with a key size of 3072 bits. We
use AES-CBC implementation from OpenSSL with a 128-bit
key for end-to-end content encryption. We implement the mes-
sage library broadcasting mechanism from master to workers
using rpclib [3]. We use the open source implementation of
LPCNet [53] for voice encoding/decoding.

6 Evaluation

Our evaluation answers the following questions:

1. What is Aloha’s message latency, and how does it vary
with the number of users and server machines?

2. How much resource overhead (CPU, network upload and
download) does Aloha impose on the server and users?

3. How does Aloha compare to Pung [6, 8, 9], which is the
state-of-the-art prior system for metadata-private commu-
nication over completely untrusted infrastructure?

4. How does QuickPIR compare to the state-of-the-art CPIR
implementations, XPIR [4] and SealPIR [6]?

A highlight of our evaluation results is as follows:

* Aloha’s 99-th percentile message latency is 726 ms for
32,768 users and 80 server machines. For the same con-
figuration, Pung’s message latency is 5.2 seconds.

* Aloha’s server consumes 22.3 minutes of CPU time for
a subround for 32,768 users. A subround corresponds to
480 ms of voice call. Pung consumes 3.45x more CPU.

¢ An Aloha user downloads and uploads 55.1 and 1.08 MiB
of data for each round when 32,768 users use Aloha. A
round corresponds to five minutes of voice call. A Pung
client downloads and uploads 250 MiB and 313 MiB for
five minutes of voice call data.

¢ QuickPIR has a small server-side CPU time and a small
response size, while XPIR and SealPIR must sacrifice on
one of the two metrics.

Setup and method. We compare Aloha to two variants of
Pung: Pung-XPIR (P-XPIR) and Pung-SealPIR (P-SPIR).
The former is the original Pung system from OSDI *16 [8]
that uses the XPIR scheme for CPIR [4]. The second variant
replaces the XPIR scheme with the SealPIR CPIR scheme [6].
We include both variants as there is no clear winner between
them across all performance metrics. Further, we evaluate
these variants with (d = 2) and without recursion (d = 1) for
the CPIR scheme (recursion is described in §4).

We configure Aloha and Pung to provide a security level

of 128-bits. Also, we configure Pung to use its BST retrieval
scheme, in which a message recipient obliviously searches
through a tree while retrieving one message from the Pung
server. This scheme is the most scalable retrieval scheme
for Pung especially as number of system users increases;
we discuss other retrieval schemes Pung supports in the re-
lated work section (§7). For all of the systems, we deploy
the server on a cluster of machines in AWS EC2 US East
region (Ohio). Since the server for both Aloha and Pung
is CPU-bound, we use the compute-optimized worker ma-
chines of type c5.12xlarge (48 vCPU, 96 GB of RAM, and
12 Gbps of network bandwidth). For Aloha, we use a bigger
machine of type c5.24xlarge (96 vCPU, 192 GB of RAM
and 25 Gbps of network bandwidth) for its master, which
broadcasts the message library (the mailboxes) to the workers
and needs additional network bandwidth (§5). To compensate
for this additional resource for Aloha, we assign two more
worker machines to the baselines.

Aloha is required to process queries from all clients in
every subround to meet its security goals. Since we cannot
run tens of thousands of clients in our infrastructure, we em-
ploy a combination of real and simulated clients. We deploy
256 geographically distant real clients in a machine of type
c5.24xlarge in AWS US West (N. California). The mean
network RTT, as measured by Ping, between the server and
these clients is 51 ms. During each round and subround, real
clients send their queries and messages to the server, and
the server inserts the queries and messages of the remaining
simulated clients.

We configure Aloha to run a round every five minutes
and a subround every 480 ms. This configuration results in
a fixed message size of 96 bytes at each subround as the
LPCNet voice codec encodes a 40 ms audio frame into 8
bytes (§2.1) [70, 71]. We vary the number of users (from
4,096 to 65,536) and the number of worker machines (from
20 to 100). We repeat experiments for 10 trials. To account
for tail latency, we process the queries from real clients only
after processing the queries from all simulated clients. Then,
we measure the 99-th percentile latency observed by the real
clients over the 10 trials, the CPU time consumed by the
server and the real clients, and the amount of data uploaded
and downloaded by the real clients.

6.1 Message latency

Variation with the number of users. Figure 6 (left) shows
the 99-th percentile message latency with a varying number
of users when the server has 80 worker machines.

Aloha’s message latency is 254 ms for 4,096 users and
increases to 1678 ms for 65,536 users. The increase is due to
three reasons. First, as the number of users increases, so does
the message library (mailbox) size and the time to broadcast
it from the master to the workers (§5). Second, the number of
CPIR queries the server processes equals the number of users
(number of library rows) (§3.2). Third, the time to process

10000 Aloha —
3 P-XPIR (dzf)1 ——
Z 1000 | pXPIR (d=2) —*
> P-SPIR (d=1) —&—
g 100 P-SPIR (d=2)
3 < e
© 10
on
g "
0.1
512 NE 14 15)16

Number of users

Message latency (sec)

10000 Aloha —=— P-SPIR (d=1) —&—
1000 P_XPIR (dil) —— P-SPIR (d=2)
100
AM —
10¢
1
0.1
20 40 60 80 100

Number of server machines

Figure 6—(Left) Message latency with varying number of users for eighty server worker machines. (Right) Message latency with varying
number of server worker machines for 32,768 users. Messages are 96 bytes in size. The y-axis is log-scaled. d denotes CPIR recursion depth
(described in §4); d = 1 denotes no recursion and d = 2 enables recursion. Aloha does not use recursion (§4).

a CPIR query increases with the number of users, so each
worker takes longer to generate CPIR responses. For 32,768
users, the latency is 726 ms, of which 398 ms is for CPIR
query processing and the rest is for the network; this latency
is under one second, which is our target (§2.1). However, for
65,536 users, the latency is 1,678 ms, of which 1,186 ms is for
CPIR query processing; the latter is higher than the 480 ms
subround time budget and thus voice packets start queuing.

Aloha’s message latency is lower than Pung’s, specifically,
that of Pung-XPIR—by 7.2 for 32,768 users—due to two
reasons. First, a sender in Aloha pushes a message to the
server, who performs CPIR processing and pushes the re-
sponse to the recipient—in total, the message traverses two
hops (§3.2). In contrast, while the sender in Pung pushes a
message to the server in one hop, a recipient has to make
[log,(n + 1)] sequential round-trips to the server to fetch a
message (n is number of users). Second, Aloha uses Quick-
PIR, which has lower server-side CPIR answer generation
time than XPIR or SealPIR used in Pung; we will expand on
this difference shortly (§6.2, §6.4).

Variation with the number of worker machines. Figure 6
(right) shows the 99-th percentile message latency as a func-
tion of the number of worker machines when the number of
users is fixed to 32,768. Latency decreases for all systems,
up to an inflection point, with an increase in the number of
worker machines due to increased parallelization for CPIR an-
swer generation. However, beyond the inflection point, adding
workers does not improve latency as the time to replicate mail-
boxes (message library) from the master to the workers goes
up, while the CPU on worker machines start to become idle.
Distributing the master or extracting more efficiency from
each worker while keeping the number of workers same may
further push out the inflection point (§8).

6.2 Server-side CPU consumption

Figure 7 shows that server-side CPU time increases with the
number of users. This is expected as both the number of
CPIR queries and the time to generate an answer for each
query increases with the number of users (§3.2). Aloha’s CPU
consumption is lower than Pung’s. For instance, for 32,768

10

é 1000 Aloha

£ 300 P-XPIR (d=1)

g P-XPIR (d /

= P-SPIR (d=1) —a&—

2 600 P-SPIR (d= /1

S 400

S

= 200

E 0 L — .
A 2 NE H14 S15 16

Number of users

Figure 7— Server-side CPU time per subround with varying number
of users. A subround corresponds to 480 ms of voice call; in a
subround, each user sends and receives one 96 byte message.

users, Aloha takes 22.3 minutes while Pung (with XPIR and
CPIR recursion depth d = 2) takes 77.1 minutes (3.45x
higher). Even though both the Aloha and Pung server do
the same amount work asymptotically (privately serve one
message per message recipient from a message library of
same size), QuickPIR in Aloha reduces CPU time relative to
XPIR or SealPIR in Pung, due to the former’s more efficient
use of memory and underlying homomorphic operations (§4).

6.3 Client-side resource overheads

Network transfers. Figure 8 shows the amount of data a
client downloads and uploads for one round of communica-
tion (a round corresponds to five minutes of voice call).

An Aloha user downloads ~55.1 MiB in a round when
32,768 users use Aloha. Of this, ~39 MiB is in the commu-
nication phase of the round and independent of the number
of system users (§3.2), while the rest is for the dialing phase.
In contrast, a Pung user downloads more data, by 4.5-45.7 %,
depending on the Pung variant. The increase is due to two rea-
sons. First, Pung, unlike Aloha, makes multiple CPIR queries
between a message recipient and the server to search through
the message library that is organized as a tree. Second, CPIR
answer size increases with a higher CPIR recursion depth
(d = 2 versus d = 1). Aloha’s QuickPIR operates atd = 1 to
keep CPIR answer sizes and thus the downloads smaller (§4).

An Aloha user uploads one CPIR query per round during
its dialing phase. The Aloha server then reuses the query
across subrounds (§3.2). Even though the query size for Ad-

g 100000 Aloha —=— P-SPIR (d=1) —&—
% P-XPIR (d=1) —@— P-SPIR (d=2)
= 10000 P-XPIR (d=2)
g
=
% 1000
=] A :.—__;‘—_:—_6
£ 100 ° .
2
Z 10
2 12 2] 3 214 2 15 2 16

Number of users

Network upload (MB)

1000001/'/?011;1 —s— PSPIR (d=1) —&—
P-XPIR (d=1) —8— P-SPIR (d=2)
10000 P-XPIR (d=2)
1000
100
10
1 E——

0.1

)12 NE N NE 516

Number of users

Figure 8— Data downloaded and uploaded by a user per round with varying number of users. A round corresponds to five minutes of voice call.

n=32,768 n = 1,048,576

Xd=1 Xd=2) Sd=1) Sd=2) Q=1 Xd=1) X@d=2 Sd=1) Sd=2) Q=1
client CPU costs (ms)
QUERY 335.2 124 2.0 14 21.4 10711.3 69.8 56.9 14 678.6
DECODE 0.1 0.38 0.2 1.89 0.38 0.09 0.42 0.2 1.94 0.41
server CPU costs (ms)
SETUP 89.6 88.6 370.6 232.9 68.3 2901.5 2845.5 11829.9 7404.4 2207.5
ANSWER 71.6 91.6 2433.7 161.3 52.4 2296.5 2347.2 76441.8 2554.3 942.1
network costs (KiB)
query size 95,328 3,520 96 64 1,024 3,050,432 19,776 2,752 64 32,768
answer size 32 256 32 320 64 32 288 32 320 64

Figure 9—CPU times and network costs for XPIR (X), SealPIR (S), and QuickPIR (Q) with varying number of items (n) in the server library.
Each item is 256 bytes. d denotes recursion depth (§4). QuickPIR does not use recursion (sets d = 1, which means no recursion).

dra is larger compared to that of Pung in some cases (§6.4),
unlike Pung, this cost is amortized over multiple subrounds of
communication (§3.2). As a result, Aloha’s upload network
transfers are small: ~1.1 MiB per round.

CPU time. An Aloha client consumes ~27.5 seconds of CPU
time per round when the number of users is 32,768. 94%
of this time is from the dialing protocol (§5). For the same
configuration, a Pung client consumes 1.7-63 x higher CPU.

6.4 Comparison of CPIR schemes

A core component of Aloha and the baseline systems is the
CPIR cryptographic primitive. Pung uses either XPIR or
SealPIR, which are also the state-of-the-art schemes. Aloha
uses QuickPIR (§4). This section compares the cost of the
CPIR component of these systems in isolation. Moreover,
since CPIR schemes have a number of other applications
[12, 28, 34, 52], this section sheds light on which scheme
could be better for which application.

We microbenchmarked the XPIR, SealPIR, and Quick-
PIR libraries on a single CPU of an AWS instances of type
c5.12xlarge (48 vCPU, 3.6 GHz, 96 GB RAM). We config-
ured all three libraries for a 128-bit security level. However,
XPIR does not set parameters from the homomorphic en-
cryption standard [5]; these parameters are smaller relative
to those for SealPIR and QuickPIR. We set each message to
be 256 bytes and run experiments for two different message
library sizes n = {215,220}, We select 2'3 since that is the
most number of users we currently support in Aloha. Our ex-

11

periments for 2°° messages is to demonstrate how QuickPIR
scales with the number of messages compared to other CPIR
libraries. We microbenchmark the query generation (QUERY),
answer generation (ANSWER), and answer decode (DECODE)
procedures for 10 trials. Figure 9 tabulates the means.

Given that the CPIR cost in Aloha is dominated by the
cost to run the ANSWER procedure, we describe the results
while focusing on ANSWER. At a high level, QuickPIR keeps
both the CPU cost for ANSWER and the size of ANSWER output
small, while XPIR and SealPIR have to sacrifice one of the
two.

CPU time for ANSWER. QuickPIR consumes the least
amount of CPU time for ANSWER (and also the least amount
of time for a one time SETUP procedure to prepare library for
ANSWER) independent of whether the baselines use recursion
or not (d = 1 is no recursion, and d = 2 enables it). For
instance, when n=2%°, ANSWER in QuickPIR takes 2.5x less
time than XPIR (d = 2) and 2.7 x less time than SealPIR
d=2).

Output size of ANSWER. When the schemes do not use re-
cursion (d = 1), then the answer output sizes are smaller,
although QuickPIR’s is double the output size of XPIR and
SealPIR. However, d = 1 is not a viable solution for either
XPIR or SealPIR. For XPIR, the query size is large ford = 1
(which also increases CPU time for processing of concurrent
queries; Figure 7). For SealPIR, the compressed query is
smaller on the wire, but the expanded query is same size as
in XPIR. Furthermore, the cost to expand adds significant

cpU time for SealPIR d = 1. XPIR and SealPIR with d = 2
do not have the query-size drawback, but they increase an-
swer output size, by 8 to 10 times, relative to d = 1. Overall,
QuickPIR produces smaller responses (answer outputs) with-
out large query sizes or significant addition to computation
time.

Query-related overheads. Query generation time and query
sizes are significantly larger in QuickPIR than SealPIR (espe-
cially when the latter uses recursion). For instance, query size
for 2'5 items in SealPIR with d = 2 is 17 times smaller than
the query size in QuickPIR (with d = 1). However, Quick-
PIR’s query sizes are within a factor of two of XPIR’s even
when XPIR compresses query using recursion.

Summary. If ANSWER is invoked frequently, and both the
server-side CPU time and CPIR response size need to be
smaller, then QuickPIR is a better fit. However, if the applica-
tion cannot be designed such that the costs are dominated by
those of ANSWER, then SealPIR and XPIR may be a better fit.

7 Related work

Onion-routing. Systems such as Tor [68], based on onion-
routing [33, 61], can support anonymous VoIP calls with
low message latency. However, they do not provide strong
guarantees. Indeed, even a network adversary, such as an ISP,
can learn call metadata via traffic analysis [14, 36, 40, 54, 58].

Mix-nets. Chaum introduced a mix-net: a network of nodes
in which each node (called a mix) batches incoming mes-
sages and releases them in a permuted order [16]. A mix-net
based system fundamentally requires at least one mix to be
trusted [41-45, 47, 48, 60, 69, 72]. Yodel [45] is a state-of-the-
art system based on mix-nets that specifically targets voice
calls. Yodel scales to a few million users while providing a
sub-second message latency. However, Yodel assumes that
a fraction of the mixes it uses (80%) are not compromised.
As one relaxes this assumption, say to make the fraction of
trusted mixes to be 70% or lower, Yodel increases the number
of mixes and the latency between a caller and a callee.

DC-nets. Unlike a mix-net, a dining cryptographers network
(DC-net) provides unconditional security using a technique
that requires broadcasting of messages between network par-
ticipants [15]. Due to the broadcasting requirement, earlier
systems based on DC-nets scaled to only tens of partici-
pants [22, 32, 66]. Later systems [23, 73] improved scala-
bility but at the cost of relaxing the threat model. For instance,
Dissent in numbers [73] scales to 5000 clients with 600 ms
latency for 600-client groups, but runs a DC-net among a
(smaller) group of servers while assuming that one of them is
trusted. PriFi [11] is the latest DC-net based system. It targets
a LAN setting of a small organization with a few hundred
users and reduces latency (to 100 ms for 100 users). PriFi
does not scale to thousands or tens of thousands of users, and
also assumes that one of its servers is trusted.

12

Private mailboxes. Systems based on private mailboxes ei-
ther obliviously write to [21, 30] or read from [6, 8, 12, 38, 64]
mailboxes hosted over untrusted servers. The state-of-the-art
system based on this strategy that works over completely
untrusted infrastructure is Pung [6, 8] (rest of the systems
assume non-colluding servers).

We empirically compared Aloha to Pung, particularly to its
scalable tree-based message retrieval scheme called BST (§6).
Pung offers two other retrieval schemes: one called explicit
retrieval and the other based on Bloom filters. The explicit
scheme requires two round trips between a message recipient
and the server, and incurs comparable server-side CPU over-
head as the BST scheme. However, it is not viable in terms
of network overhead as the server has to frequently broadcast
a mapping comparable in size to the entire message library
(especially for low-bandwidth voice calls). For instance, for
32K users, the server will have to push 625 MiB of mapping
data every five minutes to every user. The Bloom filter scheme
lowers the network overhead but works probabilistically: a
message recipient is not guaranteed to download the message
sent by the sender, thus affecting quality of service.

Although Aloha supports low-latency voice calls at scale,
and Pung does not (§6.1), Aloha does not replace Pung, which
is designed for asynchronous applications such as email and
chat. Indeed, Aloha cannot retrieve long-lived messages from
the server, which is a requirement for such applications.

Private information retrieval (PIR). Chor et al. [17, 18]
introduced the problem of PIR over multiple non-colluding
servers, while Kushilevitz and Ostrovsky [39] introduced
CPIR over a single untrusted server. Since these decades old
seminal works, there have been numerous improvements to
concrete constructions of PIR. For instance, some schemes
reduce PIR overheads [4, 6, 26, 27, 67], while others improve
answer recovery against a byzantine server [29, 56]. In this
paper, we introduced QuickPIR, a new CPIR scheme that
reduces the server-side computation time relative to the state-
of-the-art CPIR schemes [4, 6] (§6.4).

8 Summary and future work

Metadata from voice calls contains rich information about
people’s lives, and is a prime target for powerful adversaries
such as nation states. Prior work that hides metadata either
requires trusted intermediaries or does not scale to more than
tens of users for low-latency voice calls. This paper described
Aloha, the first system that hides metadata for voice calls
over completely untrusted infrastructure for tens of thousands
of users. Aloha’s current prototype supports 32,768 users on
a cluster of 80 machines with a message latency of 726 ms
and a voice synthesis rate of 1.6 Kbps. Aloha provides its
performance and privacy properties through a new, simple,
and efficient protocol to access private mailboxes hosted on an
untrusted server (§3), and a new private information retrieval
(PIR) scheme, QuickPIR (§4).

Our future work involves further scaling Aloha from tens of
thousands of users to hundreds of thousands or a few million
users. To accelerate CPIR computation, we plan to explore
more efficient implementations of the master-worker Aloha
server architecture as well as push more work to the workers
using GPUs and FPGAs. For the latter, one would have to
address challenges related to running PIR on a heterogeneous
system. Finally, we would like to expand Aloha’s functionality
from peer-to-peer voice calls to support group calls.

A Security proof

In this appendix, we show that Aloha’s protocol (§3.2) meets
the relationship unobservability property (§2.1). Our proof
follows the proof technique of Pung [9, Appendix C], whose
protocol also works over completely untrusted infrastruc-
ture and meets relationship unobservability (although with
higher message latencies and overheads). We first define an
abstract protocol for metadata private voice communication,
then describe a cryptographic security game that captures
the relationship unobservability property, and finally show
why an adversary cannot win the game with non-negligible
probability when the abstract protocol is instantiated with the
Aloha protocol.

A.1 An abstract protocol

We define an abstract protocol for metadata private voice com-
munication using the following three algorithms: INIT(1?),
RETRABSTRACT(Y,), and SENDABSTRACT(, j, m;_;).
INIT(17) takes as input a security parameter and initializes
the state of the protocol for each participant of the protocol. In
particular, it establishes the content encryption key between
pairs of user devices that communicate via the system.
RETRABSTRACT(,) takes as input a user identifier i for
the caller and a user identifier j for the callee, and generates a
retrieval request for messages sent to i by j.
SENDABSTRACT(i, j, m;_,;) takes as input a user identifier
i for the caller, a recipient identifier j for the callee, and a
message (which may be L if sender is idle) that the caller
wants to send to the callee, and outputs a tuple that is sent to
the server.
The protocol proceeds in rounds, each of which consists of
t > 1 subrounds. At the beginning of a round, each participant
calls the INIT algorithm. Then, each participant calls the
RETRABSTRACT algorithm to generate a request to indicate
that it wants to get messages from its peer. Finally, each
participant calls the SENDABSTRACT algorithm ¢ times to
send ¢ messages to its peer.

A.2 The security game

We define a security game that a challenger and an adver-
sary play that captures the relationship unobservability prop-
erty. We denote this game as G% . (1%), where A is the
adversary, 7 is a round-based protocol consisting of the INIT,
RETRABSTRACT, and SENDABSTRACT algorithms, K is the

13

number of correct users (not controlled by the adversary), is
the number of subrounds (messages exchanged per round of
the protocol), and \ is a security parameter. The game has
three phases: setup, simulation, and guess. At a high level,
during setup the adversary creates two scenarios for the chal-
lenger. The challenger then during the simulation phase runs
the protocol 7 for one of the scenarios selected randomly (that
is, the b-th scenario) and sends the transcript of the protocol
messages due to 7 to the adversary. Finally, the adversary in
the guess phase guesses which scenario the challenger sim-
ulated. The adversary wins the game if the guess is correct.
We expand on these three phases next.

Setup phase. During setup, the adversary supplies two sce-
narios M° and M' to the challenger. Each scenario has
K tuples corresponding to the actions of K correct (non-
compromised) users.

Each tuple has an entry for the send and the retrieve
part of the protocol. For the k-th (k < K) tuple, that is,
for the k-th correct user, the send part of the b-th scenario,
MP[k].send = (i, }", {mibﬁj}t) specifies that the user device

b
i—j

with id j°. The messages could be dummy (). Similarly,
for the k-th tuple, the retrieve part of the b-th scenario
MP[k].retr = (i, () specifies that the user with id i should
retrieve messages from the user with id ¢°.

The adversary constructs the two scenarios M° and M’
and supplies them to the challenger. However, the adversary
has three restrictions on how it can construct the scenarios.
First, both scenarios must have the same number of entries
describing the actions of each user in every round. Second,
both scenarios should describe the send and retrieve actions
of correct users only. This is required because the challenger
can simulate the actions of correct users only. Third, if jb or
% is a compromised user, then that send or retr entry should
be identical across the two scenarios. Recall that relationship
unobservability gives guarantees only for correct pairs of
users, so such a restriction is necessary.

with id i should send the set of t messages {m ..}, to user

Simulation phase. During the simulation phase, the chal-
lenger simulates a protocol on one of the two scenarios that
it picks randomly using a coin flip. The challenger uses the
SIMULATE function described in Figure 10. The challenger
then sends the output of the algorithm to the adversary.

Note that in the simulation algorithm, the challenger calls
the functions exposed by the adversary. For instance, it
calls GETMAILBOXIDS to learn the mailbox IDs the ad-
versary assigns to the users. Similarly, the challenger calls
GETMAILBOXACCESSTOKENS GETNUMMAILBOXES to
learn mailbox access tokens and the total number of mail-
boxes. Finally, the challenger calls the GETRESPONSE func-
tion to learn the output of a subround, if any, for a correct user.
These functions give the adversary an opportunity to set these
untrusted parts of the protocol. For instance, GETRESPONSE
allows adversary to drop requests or reorder them or compute

1: function SIMULATE(A, , K, 7, M*)
2 requests < {}
3 responses < {}
4: // Initialize content encryption key across parties
5 /I I contains the shared secrets (keys)
6: K<« mINIT(1*)
7: // Obtain mailbox IDs, access tokens, number of mailboxes
8: /I M contains the assigned mailbox IDs
9: M <+ A.GETMAILBOXIDS()
10: /I T contains the assigned tokens

11: T + A.GETMAILBOXACCESSTOKENS()
12: /I N contains the number of advertised mailboxes
13: N + A.GETNUMMAILBOXES()

14: // Run retrieve part of protocol
15: fork=0to K — 1 do

16: (i,7) « M°[k].retr
17: req <— m.RETRABSTRACT(i,)
18: requests L req

19: // Run send part of protocol

20: forr=0tor— 1do
21: fork =0to K — 1 do
22: (i,j, {misj}i) < Mb[k].send
23: req <— m.SENDABSTRACT(i, j, {mi—j}+)
insert
24: requests <—— req
25: resp <— A.GETRESPONSE()
insert
26: responses <—— resp
27: return (requests, responses)

Figure 10—Pseudocode for the challenger to simulate a scenario
supplied by the adversary.

the responses to requests incorrectly.

Guess phase. In the guess phase, the adversary A outputs its
guess b’ € {0, 1} whether the challenger simulated the M°
or M' scenario. The adversary wins the game if its guess is
correct, thatis, b = b’.

A.3 Proof

‘We want to show that the adversary’s advantage in winning the
game described above is negligible in the security parameter
A when the abstract protocol is instantiated with the Aloha
protocol. We use a series of hybrid games to calculate the
adversary’s advantage.

Game 0. This game is the original game as described above
with 7 instantiated with the Aloha protocol. That is, the INIT
algorithm establishes a shared secret between pairs of users.
Denote the secret between users with id i and j as key;;.
The RETRABSTRACT abstract algorithm is instantiated with
the generation of the CPIR query in Figure 2. Specifically,
RETRABSTRACT(i,j) calls ¢ +— QUERY(M;, \;), where M;
is a mailbox ID provided by the adversary for user j, and
N is the total number of mailboxes advertised by the ad-
versary to user i. In case, N; < M, then the challenger

14

generates CPIR query for index zero. The SENDABSTRACT
abstract algorithm is instantiated using the SEND function
in Figure 2. Specifically, SENDABSTRACT(Z, j, m;_,;) calls
SEND(M;, T;, m;_,;, key; ;), where M, and 7; are the mailbox
ID and access token provided by the adversary for user i, and
key; ; is the shared secret established between users 7 and j.

Game 1. This game is same as game O except that the
SENDABSTRACT invokes SEND over random messages
rather than the ones specified in the scenario.

Game 2. This game is same as game 1 except that the RETR
procedure generates query for a random mailbox ID. That
is, it outputs a CPIR query for a random index (mailbox id)
rather than M; returned by GETMAILBOXIDS.

Let Sy be the event that b = b’ in game 0, where M, is the
scenario chosen by the challenger, and ' is the guess made
by the adversary. Similarly, let S; be the event that b = b’ in
game 1, and S, be the event that b = b’ in game 2.

Lemma A.1. Pr[S;] = 1/2.

Observe that in game 2 none of the requests or responses
sent to the adversary depend on the information supplied
in a scenario. Specifically, the SENDABSTRACT function
generates encryptions of random messages, and similarly
RETRABSTRACT generates a CPIR request for a random in-
dex. Therefore, an adversary participating in game 2 cannot
distinguish between the two scenarios.

Lemma A.2. |Pr[S,] — Pr[Sy]| < ecpr

The difference between game 1 and game 2 is the input to
the RETRABSTRACT algorithm. Specifically, in game 2, the
index to CPIR query is random while it is the one supplied in
the scenario in game 1. However, given the security of CPIR,
an adversary cannot tell with non-negligible probability the
index encoded in a CPIR query.

Lemma A.3. |Pr[So] — Pr[S1]| < €gne

The difference between game 0 and game 1 is the input to
the SENDABSTRACT algorithm. Particularly, in game 1, the
challenger inputs a random message while in game 0 it inputs
the messages supplied in the scenario. Here, there are two
sub-cases: the recipient is honest or the recipient is under the
control of an adversary. If the recipient is honest, then given
that the adversary does not have content encryption keys, it
cannot distinguish between ciphertexts for the two scenarios
(follows from the indistinguishability of ciphertexts). If the
recipient is compromised, then it has the content encryption
keys, but the recipient is the same across both scenarios and
receives the same messages (see the restriction on scenario
creation above). Again, the adversary cannot distinguish be-
tween the two scenarios.

Combining the three lemmas, we get the proof that |Pr[Sy]—
1/2]| < €gne + €cpir- That is, the adversary does not win the
security game with non-negligible probability.

References

[1] Libscapi - the secure computation API.
github.com/cryptobiu/libscapi.

[2] PALISADE homomorphic encryption software library.
https://palisade-crypto.org/.

[3] rpclib - modern msgpack-rpc for C++.
rpclib.net/.

[4] C. Aguilar-Melchor, J. Barrier, L. Fousse, and M.-O.

Killijian. XPIR: Private information retrieval for ev-

eryone. Privacy Enhancing Technologies Symposium

(PETS), 2016(2):155-174, 2016.

M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser,

S. Gorbunov, S. Halevi, J. Hoffstein, K. Laine, K. Lauter,

S. Lokam, D. Micciancio, D. Moody, T. Morrison, A. Sa-

hai, and V. Vaikuntanathan. Homomorphic encryption

security standard. Technical report, HomomorphicEn-

cryption.org, November 2018.

S. Angel, H. Chen, K. Laine, and S. Setty. PIR with

compressed queries and amortized query processing. In

IEEE Symposium on Security and Privacy (S&P), pages

962-979, 2018.

S. Angel, D. Lazar, and I. Tzialla. What’s a little leak-

age between friends? In Workshop on Privacy in the

Electronic Society (WPES), pages 104—108, 2018.

S. Angel and S. Setty. Unobservable communication

over fully untrusted infrastructure. In USENIX Sympo-

sium on Operating Systems Design and Implementation

(OSDI), pages 551-569, 2016.

S. G. Angel. Unobservable communication over un-

trusted infrastructure. PhD thesis, The University of

Texas at Austin, 2018.

[10] J. Angwin, C. Savage, J. Larson, H. Moltke, L. Poitras,

and J. Risen. AT&T helped US spy on Internet on a vast

scale. The New York Times, 2015.

L. Barman, I. Dacosta, M. Zamani, E. Zhai, A. Pyrge-

lis, B. Ford, J. Feigenbaum, and J.-P. Hubaux. PriFi:

Low-latency anonymity for organizational networks.

Privacy Enhancing Technologies Symposium (PETS),

2020(4):24-47, 2020.

N. Borisov, G. Danezis, and I. Goldberg. DP5: A pri-

vate presence service. Privacy Enhancing Technologies

Symposium (PETS), 2015(2):4-24, 2015.

[13] Z. Brakerski. Fully homomorphic encryption without

modulus switching from classical GapSVP. In Advances

in Cryptology—CRYPTO, pages 868-886, 2012.

X. Cai, X. C. Zhang, B. Joshi, and R. Johnson. Touch-

ing from a distance: Website fingerprinting attacks and

defenses. In ACM Conference on Computer and Com-

munications Security (CCS), pages 605-616, 2012.

D. Chaum. The dining cryptographers problem: Uncon-

ditional sender and recipient untraceability. Journal of

cryptology, 1(1):65-75, 1988.

[16] D. L. Chaum. Untraceable electronic mail, return ad-

https://

http://

(5]

(6]

(71

(8]

(9]

[11]

[12]

[14]

[15]

15

dresses, and digital pseudonyms. Communications of
the ACM, 24(2):84-90, 1981.

[17] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan.
Private information retrieval. In Symposium on Founda-
tions of Computer Science (FOCS), 1995.

[18] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan.
Private information retrieval. Journal of the ACM
(JACM), 45(6):965-981, 1998.

[19] D. Cole. We kill people based on metadata. The New
York Review, May 2014.

[20] D. Cole. Is privacy obsolete? The Nation, Mar. 2015.

[21] H. Corrigan-Gibbs, D. Boneh, and D. Mazieres. Riposte:

An anonymous messaging system handling millions of

users. In IEEE Symposium on Security and Privacy

(S&P), pages 321-338. IEEE, 2015.

H. Corrigan-Gibbs and B. Ford. Dissent: Accountable

anonymous group messaging. In ACM Conference on

Computer and Communications Security (CCS), pages

340-350, 2010.

H. Corrigan-Gibbs, D. 1. Wolinsky, and B. Ford. Proac-

tively accountable anonymous messaging in verdict. In

USENIX Security Symposium, pages 147-162, 2013.

R. Cramer and V. Shoup. Design and analysis of practi-

cal public-key encryption schemes secure against adap-

tive chosen ciphertext attack. SIAM Journal on Comput-

ing, 33(1):167-226, 2003.

Y.-A. De Montjoye, C. A. Hidalgo, M. Verleysen, and

V. D. Blondel. Unique in the crowd: The privacy bounds

of human mobility. Scientific reports, 3:1376, 2013.

D. Demmler, A. Herzberg, and T. Schneider. RAID-PIR:

Practical multi-server PIR. In ACM Workshop on Cloud

Computing Security, pages 45-56, 2014.

C. Devet. Evaluating private information retrieval on the

cloud. Technical report, University of Waterloo, 2013.

C. Devet and I. Goldberg. The best of both worlds: Com-

bining information-theoretic and computational PIR for

communication efficiency. In Privacy Enhancing Tech-
nologies Symposium (PETS), pages 63-82. Springer,

2014.

C. Devet, I. Goldberg, and N. Heninger. Optimally

robust private information retrieval. In USENIX Security

Symposium, pages 269-283, 2012.

S. Eskandarian, H. Corrigan-Gibbs, M. Zaharia, and

D. Boneh. Express: Lowering the cost of metadata-

hiding communication with cryptographic privacy. In

USENIX Security Symposium, 2021.

J. Fan and F. Vercauteren. Somewhat practical fully

homomorphic encryption. Cryptology ePrint Archive,

Report 2012/144, 2012.

[32] S. Goel, M. Robson, M. Polte, and E. Sirer. Herbivore:
A scalable and efficient protocol for anonymous com-
munication. Technical report, Cornell University, 2003.

[33] D. Goldschlag, M. Reed, and P. Syverson. Onion routing.
Communications of the ACM, 42(2):39-41, 1999.

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

https://github.com/cryptobiu/libscapi
https://github.com/cryptobiu/libscapi
https://palisade-crypto.org/
http://rpclib.net/
http://rpclib.net/

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

M. Green, W. Ladd, and I. Miers. A protocol for pri-
vately reporting ad impressions at scale. In ACM Confer-
ence on Computer and Communications Security (CCS),
pages 1591-1601, 2016.

T. Gupta, N. Crooks, W. Mulhern, S. Setty, L. Alvisi, and
M. Walfish. Scalable and private media consumption
with popcorn. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 91—
107, 2016.

N. Hopper, E. Y. Vasserman, and E. Chan-Tin. How
much anonymity does network latency leak? ACM
Transactions on Information and System Security (TIS-
SEC), 13(2):1-28, 2010.

S. Humphreys and M. De Zwart. Data retention, journal-
ist freedoms and whistleblowers. Media International
Australia, 165(1):103-116, 2017.

L. Kissner, A. Oprea, M. K. Reiter, D. Song, and
K. Yang. Private keyword-based push and pull with
applications to anonymous communication. In Interna-
tional Conference on Applied Cryptography and Net-
work Security (ACNS), pages 16-30, 2004.

E. Kushilevitz and R. Ostrovsky. Replication is not
needed: Single database, computationally-private infor-
mation retrieval. In Symposium on Foundations of Com-
puter Science (FOCS), 1997.

A. Kwon, M. AlSabah, D. Lazar, M. Dacier, and
S. Devadas. Circuit fingerprinting attacks: Passive
deanonymization of Tor hidden services. In USENIX
Security Symposium, pages 287-302, 2015.

A. Kwon, H. Corrigan-Gibbs, S. Devadas, and B. Ford.
Atom: Horizontally scaling strong anonymity. In ACM
Symposium on Operating Systems Principles (SOSP),
pages 406422, 2017.

A. Kwon, D. Lazar, S. Devadas, and B. Ford. Riffle: An
efficient communication system with strong anonymity.
Privacy Enhancing Technologies Symposium (PETS),
2016(2):115-134, 2016.

A. Kwon, D. Lu, and S. Devadas. XRD: Scalable mes-
saging system with cryptographic privacy. In USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 759-776, 2020.

D. Lazar, Y. Gilad, and N. Zeldovich. Karaoke: Dis-
tributed private messaging immune to passive traffic
analysis. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 711-725,
2018.

D. Lazar, Y. Gilad, and N. Zeldovich. Yodel: Strong
metadata security for voice calls. In ACM Symposium on
Operating Systems Principles (SOSP), pages 211-224,
2019.

D. Lazar and N. Zeldovich. Alpenhorn: Bootstrapping
secure communication without leaking metadata. In
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 571-586, 2016.

16

[47]

(48]

[49]

(50]

(51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

S. Le Blond, D. Choffnes, W. Caldwell, P. Druschel,
and N. Merritt. Herd: A scalable, traffic analysis re-
sistant anonymity network for VoIP systems. In ACM
SIGCOMM Conference, pages 639-652, 2015.

S. Le Blond, D. Choffnes, W. Zhou, P. Druschel, H. Bal-
lani, and P. Francis. Towards efficient traffic-analysis
resistant anonymity networks. ACM SIGCOMM Com-

puter Communication Review, 43(4):303-314, 2013.

R. Lenzner. ATT, Verizon, Sprint are paid cash by NSA
for your private communications. Forbes, 2013.

J. Mayer, P. Mutchler, and J. C. Mitchell. Evaluating the
privacy properties of telephone metadata. Proceedings
of the National Academy of Sciences, 113(20):5536—
5541, 2016.

A. Mislove, B. Viswanath, K. P. Gummadi, and P. Dr-
uschel. You are who you know: Inferring user profiles
in online social networks. In International conference
on Web search and data mining, pages 251-260, 2010.
P. Mittal, F. G. Olumofin, C. Troncoso, N. Borisov, and
I. Goldberg. PIR-Tor: Scalable anonymous communi-
cation using private information retrieval. In USENIX
Security Symposium, page 31, 2011.

Mozilla. LPCNet: Efficient neural speech synthesis.
https://github.com/mozilla/LPCNet.

S. J. Murdoch and G. Danezis. Low-cost traffic analysis
of Tor. In IEEE Symposium on Security and Privacy
(S&P), pages 183-195, 2005.

Office of the Director of National Intelli-
gence. Statistical transparency report regard-
ing the wuse of national security authorities.

https://www.dni.gov/files/CLPT/documents/
2020_ASTR_for_CY2019_FINAL.pdf, 2020.

F. Olumofin and I. Goldberg. Revisiting the computa-
tional practicality of private information retrieval. In
International Conference on Financial Cryptography
and Data Security (FC), pages 158-172, 2011.

P. Paillier. Public-key cryptosystems based on compos-
ite degree residuosity classes. In Annual International
Conference on the Theory and Applications of Cryp-
tographic Techniques (EUROCRYPT), pages 223-238,
1999.

A. Panchenko, L. Niessen, A. Zinnen, and T. En-
gel. Website fingerprinting in onion routing based
anonymization networks. In Workshop on Privacy in
the Electronic Society (WPES), pages 103—114, 2011.
A. Pfitzmann and M. Hansen. A terminol-
ogy for talking about privacy by data minimiza-
tion: Anonymity, unlinkability, undetectability, un-
observability, pseudonymity, and identity manage-
ment. http://www.maroki.de/pub/dphistory/
2010_Anon_Terminology_v0.34.pdf, 2010.

A. M. Piotrowska, J. Hayes, T. Elahi, S. Meiser, and
G. Danezis. The Loopix anonymity system. In USENIX
Security Symposium, pages 1199—-1216, 2017.

https://github.com/mozilla/LPCNet
https://www.dni.gov/files/CLPT/documents/2020_ASTR_for_CY2019_FINAL.pdf
https://www.dni.gov/files/CLPT/documents/2020_ASTR_for_CY2019_FINAL.pdf
http://www.maroki.de/pub/dphistory/2010_Anon_Terminology_v0.34.pdf
http://www.maroki.de/pub/dphistory/2010_Anon_Terminology_v0.34.pdf

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

M. G. Reed, P. F. Syverson, and D. M. Goldschlag.
Anonymous connections and onion routing. IEEE Jour-
nal on Selected areas in Communications, 16(4):482—
494, 1998.

A. Rusbridger. The Snowden leaks and the public. The
New York Review, Nov. 2013.

D. Rushe. Yahoo $250,000 daily fine over NSA data
refusal was set to double “every week”. The Guardian,
2014.

L. Sassaman, B. Cohen, and N. Mathewson. The Pyn-
chon Gate: A secure method of pseudonymous mail
retrieval. In Workshop on Privacy in the Electronic
Society (WPES), pages 1-9, 2005.

Microsoft SEAL (release 3.5). https://github.com/
Microsoft/SEAL, Apr. 2020. Microsoft Research,
Redmond, WA.

E. G. Sirer, S. Goel, M. Robson, and D. Engin. Elud-
ing carnivores: File sharing with strong anonymity. In
Proceedings of the ACM SIGOPS European workshop,
2004.

J. P. Stern. A new and efficient all-or-nothing disclosure
of secrets protocol. In International Conference on the
Theory and Application of Cryptology and Information
Security (ASIACRYPT), pages 357-371, 1998.

P. Syverson, R. Dingledine, and N. Mathewson. Tor: The
second-generation onion router. In USENIX Security
Symposium, pages 303-320, 2004.

N. Tyagi, Y. Gilad, D. Leung, M. Zaharia, and N. Zel-
dovich. Stadium: A distributed metadata-private messag-
ing system. In ACM Symposium on Operating Systems
Principles (SOSP), pages 423440, 2017.

J.-M. Valin and J. Skoglund. LPCNet: Improving neural
speech synthesis through linear prediction. In /EEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5891-5895, 2019.

J.-M. Valin and J. Skoglund. A real-time wideband
neural vocoder at 1.6 kb/s using LPCNet. arXiv preprint
arXiv:1903.12087, 2019.

J. Van Den Hooff, D. Lazar, M. Zaharia, and N. Zel-
dovich. Vuvuzela: Scalable private messaging resistant
to traffic analysis. In ACM Symposium on Operating
Systems Principles (SOSP), pages 137-152, 2015.

D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. John-
son. Dissent in numbers: Making strong anonymity
scale. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 179-182,
2012.

17

https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

	1 Introduction
	2 Goals, threat model, and challenges
	2.1 Goals
	2.2 Threat model and assumptions
	2.3 Challenges

	3 Architecture and overview of design
	3.1 Architecture
	3.2 Protocol

	4 QuickPIR: A new CPIR scheme
	4.1 Background: The BFV cryptosystem
	4.2 The QuickPIR scheme
	4.3 Reducing the cpu cost of rotations
	4.4 Reducing the number of rotations

	5 Implementation details
	6 Evaluation
	6.1 Message latency
	6.2 Server-side cpu consumption
	6.3 Client-side resource overheads
	6.4 Comparison of CPIR schemes

	7 Related work
	8 Summary and future work
	A Security proof
	A.1 An abstract protocol
	A.2 The security game
	A.3 Proof

