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Abstract. Often times, the ability to distinguish between random data and a
public key can leads to attack against the cryptosystem itself. In this paper, we
will show experimentally a very efficient distinguisher based on the distribu-
tion of ranks of the symmetric matrices associated with the central map in the
multivariate cryptosystem HFE when the degree D of the central map is very
small.

1 Introduction

Ever since Shor [21] introduced his algorithm which can break most modern cryp-
tosystem like RSA efficiently given a sufficiently powerful quantum computer, there
has been a great push to introduce new public key cryptosystems which can both
be efficient to implement as well as secure against quantum attack. Currently, four
of the most promising types of quantum secure cryptosystems are [3] Code-based,
Lattice-based, Hash-based, and Multivariate. In this paper, we present experimen-
tally a distinguisher for the multivariate cryptosystem HFE. For a brief overview of
current multivariate schemes, see the paper [6]. Let us first describe what a multi-
variate cryptosystem is.

A multivariate cryptosystem is based a system of m multivariate polynomials in
n variables

P = (
p(1)(x1, x2, . . . , xn), p(2)(x1, x2, . . . , xn), . . . , p(m)(x1, x2, . . . , xn)

)
over a finite field Fq of size q . When convenient, we will write vectors by underlining
them (x1, x2, . . . , xn) = x. As quadratic systems are easier to store and evaluate, almost
all multivariate cryptosystems use a quadratic system, though there are exceptions
like the hashing scheme [8], and thus rely on the difficulty of the MQ (Multivariate
Quadratic) problem:

MQ Problem For a given quadratic system of m polynomials in n variables P ,
find a vector x ∈ Fn

q such that P
(
x
)= 0.

This problem is believed to be hard in the average case and has been proven to
be NP-hard [12]. Multivariate cryptography can be used both for encryption if m ≥ n
(to be injective) and signature generation if n ≥ m (to be surjective). In both cases,
the public key P is a seemingly random system of quadratic polynomials, and the
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secret key is hidden knowledge that always an efficient method for finding a pre-
image x ∈ Fn

q for a given message y ∈ Fm
q . It is common to write

P −1
(

y
)
= x

to mean that x is such an pre-image (but not necessarily that P is an invertible func-
tion).

The standard bi-polar construction of a multivariate scheme is for the secret key
to be a triple (S ,F ,T ) where S : Fm

q → Fm
q and T : Fn

q → Fn
q are invertible affine

maps, and F : Fn
q → Fm

q is a quadratic map which F−1
(

y
)

is efficient to find for each

y ∈ Fm
q . The public key is the composition

P :=S ◦F ◦T

which serves to hid the structure of F . Depending on the scheme in question, the
map F might be public knowledge like in the Matsumoto-Imai cryptosystem (also
called C∗) [15], or the map S might be redundant and thus not included if S ◦F

has the same structure as F as in the Oil and Vinegar Scheme by Patarin [17]. Given

a secret key (S ,F ,T ), one can efficiently find x =P −1
(

y
)

by computing in turn w =
S −1

(
y
)
, z =F−1

(
w

)
, and x =T −1

(
z
)
. In the case that ((S ,F ,T ),P ) is an encryp-

tion scheme, a message x is encrypted by computing P
(
x
) = y which is decrypted

using the secret key by computing P −1
(

y
)
= x. In the case that ((S ,F ,T ),P ) is sig-

nature scheme, a hash y of a message is signed using the secret key by computing

P −1
(

y
)
= x which is verified by computing P

(
x
)= y .

Multivariate cryptography has proven to be very competitive with the other fields
of cryptography as can be seen with one of the three finalist for signature schemes in
the NIST post-quantum cryptography competition being the multivariate Rainbow
cryptosystem by Ding et al. [7].

2 HFE and HFEv-

2.1 Description of the Private Key

The HFE scheme was originally proposed by Patarin in 1996 [16] as a generaliza-
tion of the Matsumoto-Imai cryptosystem [15]. A further generalization is the 2001
scheme HFEv- [18] which we will now describe. HFEv- uses a parameter set (q,n, v, a,D)
and the standard bi-polar construction where the private key public key pair is given
by ((S ,F ,T ),P ) where T : Fn+v

q → Fn+v
q is an invertible affine map, S : Fn

q → Fn−a
q

is an affine map of rank n − a, and F : Fn
q → Fn

q is an easily inverted map to be de-
scribed shortly. The public key is the composition

P :=S ◦F ◦T .

We note that as the number of equations n − a is less than the number of variables
n+v , HFEv- is only appropiate for a signature scheme. In order to construct F such
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that is it both quadratic and easy to find pre-images for, HFEv- utilizes a vector space
isomorphism between Fn

q and the degree n extension Fqn := Fq [t ]/〈µ(t )〉 for some
degree n irreducible polynomial µ in Fq [t ]. The standard isomorphism φ : Fqn → Fn

q
is defined by

φ(a0 +a1t +·· ·+an−1t n−1) = (a0, a1, . . . , an−1).

We also define the vector space isomorphism ψ : Fn+v
q → Fqn ×Fv

q by

ψ (x1, x2, . . . , xn+v ) =φ−1(x1, x2, . . . , xn)× i dv (xn+1, xn+2, . . . , xn+v )

HFEv- first generates a map F : Fqn ×Fv
q → Fqn which will determine the central

map F . F is defined by

F (X , x) = ∑
i , j∈N0

q i+q j ≤D

αi , j X q i+q j + ∑
i∈N0

q i≤D

βi (x)X q i +γ(x)

where one randomly selects αi , j ,∈ Fqn , βi : Fv
q as random linear maps, and γ : Fv

q as

a random quadratic. The positive integer D limits the degree of F . Notice that for
any fixed ν ∈ Fv

q , the map F (X ,ν) is a univariate polynomial of degree at most D . So,

using Berlekamp’s algorithm [1], F (X ,ν) we will find a pre-image with complexity
[20]

O (D3 +nD2)

if such a pre-image exists for a given element in the range. So this is efficient if D is
sufficiently small.

We define the q-Hamming weight of an integer e as the sum of the coefficients in
the base-q expansion of e. As the q-Hamming weight of the exponents of X in F (X )
is at most two and we are working over a ground field of size q , by using the field
equations xq

i = xi for xi ∈ Fq the composition

F
(
x
)

:= (φ◦F ◦ψ)
(
x
)

is a quadratic system of n polynomials in n + v variables. Notice that F is also easy
to invert by inverting each of the three maps φ, F , and ψ in turn.
So now we have an efficient way to generate signatures for a hash y ∈ F)qn−a .

1. Compute z =S −1(y).

2. Let Z =φ−1(z) to lifted it to the extension field.

3. Repeat guess ν ∈ Fv
q until F (X ,ν) = Z has a solution found by Berlekamp’s algo-

rithm. Call such a solution (W,ν).
4. Let w =ψ−1(W,ν).
5. Finally, x =T −1(w) is the signature for y .

HFEv- is the basis of many cryptosystems such as QUARTZ [18], Gui [19], and the Nist
Round three alternate candidate GeMSS [4]. We note that one recovers the original
HFE scheme when v = a = 0.
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2.2 Attacks on HFEv-

There have been many attacks against HFEv-, with the most damaging being direct
attacks and MinRank attacks [19].

In the direct attack, one attempt to solve the MQ-problem

P (x) = y

directly using algebraic techniques such as Faugére’s F4/F5 algorithm [10, 11]. These
algorithm’s complexities depend on what is called the degree of regularity of the sys-
tem Dr eg . For an HFEv- public key, Dr eg is lower than for a random system making
it easier to solve the system directly [9].

In minrank attacks, one attempts to solve the minrank problem in which one at-
tempts to find a matrix of rank at most a set value r from the span of a finite amou nt
of matrices. These matrices are associated to the public key in various ways so that
the recovery of one of that small rank will allow one to construct an equivalent secret
key to the public key use by HFEv-. Often this is done by examining what is called
the min-Q-rank of the quadratic form of P over the extension field Fqn . Examples
include Kipnis and Shamir’s attack [13] which was improved by Bettale et al’s paper.
[2] Here recently, a very strong attack was made by Tao et al. in [22] which does not
depend at all on the value of a and the value of v creates only a polynomial factor.
This attack has successfully beaten the parameters of GeMSS. This will force future
parameters of HFEv- to more heavily rely on a large D to remain secure.

Another attack on HFEv- is a distinguisher of HFEv- by Ding et al. [5] which can
tell how many vinegar variables there are by examining the step degrees in the be-
fore mentioned F4 algorithm. This is different for different values for v with a HFEv-
system as well when compared with a a random system, so by examining the step
degrees after projecting the variables into subspaces the authors found a way to find
and kill the set of vinegar variables in the public key.

3 The Distinguishing Attack

Here we present a simple and efficient distinguishing attack on HFE when the de-
gree D is small. We may associate to to the component p(k) of P = (

p(1), . . . , p(n)
)

a

symmetric matrix Qk =
(
q (k)

i , j

)
where, if q is odd,

q (k)
i , j =

{
MonomialCoefficient(P (k), xi x j ) if i = j

MonomialCoefficient(P (k), xi x j )/2 if i 6= j
,

and, if q is even,

q (k)
i , j =

{
0 if i = j

MonomialCoefficient(P (k), xi x j ) if i 6= j
.

We note that in the add case the quadratic parts of p(k) correspond exactly to xT Qk x,
but as it is impossible to divide by two in characteristic two we cannot have such a
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close match in this case. The associated the latter associated matrix is often used as
a substitute.

What we noticed experimentally is that when D in a HFE public key is small and
one examines the distribution ranks of the linear combinations of the Qk , there were
less matrices of both full rank than expected and matrices of lower rank than ex-
pected. If these were acting like a random system, we would expect that they would
follow the distribution of the ranks of symmetric matrices over Fq in general (with
zeros in the diagonal for characteristic two). This distribution is well understood,
and in 1969 MacWilliams [14] calculated by elementary methods that if we denote
by N (n,r, q) the number of symmetric matrices of size n ×n with rank r over the fi-
nite field Fq and N0(n,r, q) the number of n ×n symmetric matrices with zeros on
the diagonal of rank r over the finite field Fq with char(q) = 2 then

N (n,r, q) =



r /2∏
i=1

q2i

q2i −1

r−1∏
i=0

(qn−i −1) if r is even,

(r−1)/2∏
i=1

q2i

q2i −1

r−2∏
i=0

(qn−i −1) if r is odd,

and

N0(n,r, q) =


r /2∏
i=1

q2i−2

q2i −1

r−1∏
i=0

(qn−i −1) if r is even,

0 if r is odd.

Using this we can calculate exactly the probability of choosing a symmetric matrix
of rank r that could be associate to a public key when choosing one uniformly from
all such symmetric matrices. We conjectured that is we had a random system, the
distribution of the ranks of the span of this system would follow the true uniform
distribution fairly closely.
To this end we tested the chi-square goodness of fit test on both a randomly gen-
erated sets of polynomials as well as HFEv- public keys. To recall this, in the chi-
squared test one selects a number of r categories from a known probability distri-
bution called the expected outcomes E1,E2, . . .Er after so many trials of the experi-
ment. Then one records the number of observed outcomes there are in each category
O1,O2, . . . ,Or for that number of trials. Then one calculates the test statistic

χ2 =
r∑

i=1

(Oi −Ei )2

Ei

which can be compare to a chi-squared distribution with degree of freedom r − 1.
This later fact we will ignore as we only will examine if the values of χ2 are different
for random polynomials than HFEv- public keys.

As this test works best when each category has many expected observations and
the ranks of most matrices are high, we choose a small number of categories in each
case. For the case that q is odd we had the four categories for rank r : r = n + v ,
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r = n+v−1, r = n+v−2, and r ≤ n+v−3. For the case that both n+v and q are even
we also had four categories for the rank r : r = n + v , r = n + v −2, r = n + v −4, and
r ≤ n + v −6 where we notice we skip matrices of odd rank as none such exists. For
the case that q is even and n+v is odd, there are very few matrices of low rank, so we
choose three categories for the rank r : r = n + v −1, r = n + v −3, and r ≤ n + v −5.

In each case of a parameter set we performed the chi-squared test with five times
sets of systems of polynomials with those parameters. For each system we calculated
the ranks of 216 random linear combinations of the symmetric matrices and recorded
the value of χ2. Then we took the average of the five.

In Table 1 we record our results for a random polynomials with q ∈ {2,3},n ∈
{20,35,50}, v ∈ {0,1,2} and a ∈ {0,1,2}. In Tables 2 and 3 where we record our ob-
servations for HFEv- public keys. We keep the same choices for n, v, a as before and
let Table 2 have q = 2 and D ∈ {5,7,9} and Table 3 have q = 3 and D ∈ {7,9,11}. For
each parameter choice we performed the test five times, recorded the value of χ2,
and then took the average.

Examining these tables shows that when q = 2, D ∈ {5,7}, and v = 0 we can eas-
ily distinguish, as well when q = 3, D ∈ {7,9}, and v = 0. But any vinegar variables
makes the system seem random. The amount of equations a removed had no effect
in either case.
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(q,n, v, a) Recorded χ2 values Average χ2

(2,20,0,0) 4.044,4.153,4.594,5.756,6.344 4.978
(2,20,0,1) 3.939,3.999,4.019,4.762,7.963 4.937
(2,20,0,2) 3.406,3.576,4.449,5.754,7.134 4.864

(2,20,1,0) 1.133,1.913,3.498,6.440,8.384 4.273
(2,20,1,1) 0.1367,0.4006,0.7286,0.9982,3.419 1.137
(2,20,1,2) 0.005187,0.2598,1.926,3.901,7.940 2.806

(2,35,0,0) 0.2332,1.495,3.017,3.420,5.839 2.801
(2,35,0,1) 0.2030,0.6624,2.565,2.956,7.669 2.811
(2,35,0,2) 0.1405,0.2389,0.2639,4.890,5.744 2.255

(2,35,1,0) 2.899,3.308,3.921,4.448,7.226 4.360
(2,35,1,1) 2.901,3.433,4.388,4.962,6.915 4.520
(2,35,1,2) 3.021,3.090,3.137,3.925,9.724 4.579

(2,50,0,0) 2.948,3.360,3.665,3.792,5.551 3.863
(2,50,0,1) 2.986,3.136,3.163,4.101,5.143 3.706
(2,50,0,2) 4.075,4.792,5.069,5.559,6.716 5.242

(2,50,1,0) 0.5572,1.002,1.069,1.651,1.952 1.246
(2,50,1,1) 0.4164,1.956,1.995,2.108,5.470 2.389
(2,50,1,2) 0.02453,0.06370,0.1788,1.731,1.879 0.7753

(3,20,0,0) 0.5995,1.507,1.521,6.139,9.552 3.864
(3,20,0,1) 1.884,3.161,3.403,4.689,5.905 3.809
(3,20,0,2) 0.5038,0.9148,1.397,2.554,4.015 1.877

(3,20,1,0) 0.5208,0.6498,2.750,3.346,3.762 2.206
(3,20,1,1) 2.477,2.765,3.016,3.544,6.625 3.685
(3,20,1,2) 0.5717,0.9815,1.235,1.599,4.697 1.817

(3,35,0,0) 0.07915,0.6830,1.377,6.146,6.366 2.930
(3,35,0,1) 1.247,1.275,2.059,2.461,3.400 2.088
(3,35,0,2) 0.4974,1.544,2.666,4.521,8.579 3.562

(3,35,1,0) 1.137,2.394,2.766,5.928,10.20 4.484
(3,35,1,1) 0.1549,0.5222,2.279,2.897,4.314 2.034
(3,35,1,2) 0.2609,0.2627,0.7047,4.117,6.936 2.456

(3,50,0,0) 0.3723,0.8345,1.064,2.091,2.559 1.384
(3,50,0,1) 0.2228,1.753,3.412,5.190,8.719 3.859
(3,50,0,2) 0.03812,0.9194,1.066,2.459,4.261 1.749

(3,50,1,0) 1.263,2.103,4.288,6.585,7.601 4.368
(3,50,1,1) 0.5659,2.646,2.697,6.408,8.103 4.084
(3,50,1,2) 0.9360,2.987,3.255,5.762,15.16 5.620

Table 1: The χ2 Values of Various Random Systems of n − a quadratics with n + v
Variables
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(q,n, v, a,D) Recorded χ2 values Average χ2

(2,20,0,0,5) 124.5,130.1,132.5,135.7,150.7 134.7
(2,20,0,0,7) 103.3,117.9,124.6,153.7,174.6 134.8
(2,20,0,0,9) 2.875,2.932,3.623,3.917,6.315 3.932

(2,20,0,1,5) 112.6,128.8,133.1,144.4,144.8 132.7
(2,20,0,1,7) 125.2,127.4,130.5,133.4,134.7 130.2
(2,20,0,1,9) 2.955,4.349,4.420,5.344,6.184 4.650

(2,20,0,2,5) 99.71,125.6,129.8,154.1,197.4 141.3
(2,20,0,2,7) 119.9,132.4,138.7,142.2,144.9 135.6
(2,20,0,2,9) 2.889,2.909,3.506,4.769,5.869 3.988

(2,20,1,0,5) 0.1241,8.497,9.300,10.13,13.87 8.385
(2,20,1,0,7) 0.07668,7.989,8.532,10.80,11.51 7.780
(2,20,1,0,9) 0.1465,0.9952,1.161,1.176,3.882 1.472

(2,20,1,1,5) 2.712,3.747,7.054,9.186,11.10 6.759
(2,20,1,1,7) 3.707,5.106,7.612,12.04,18.31 9.355
(2,20,1,1,9) 0.04622,1.340,3.002,3.177,3.679 2.249

(2,20,1,2,5) 5.764,7.391,8.573,13.45,14.75 9.983
(2,20,1,2,7) 0.5318,2.597,5.236,5.612,9.592 4.714
(2,20,1,2,9) 0.1529,1.586,1.620,4.494,6.322 2.835

(2,35,0,0,5) 100.4,102.7,104.8,118.2,122.7 109.8
(2,35,0,0,7) 98.24,108.4,112.0,115.9,135.0 113.9
(2,35,0,0,9) 0.3707,2.005,3.088,4.446,8.229 3.627

(2,35,0,1,5) 104.5,110.6,112.7,117.3,122.9 113.6
(2,35,0,1,7) 103.8,106.9,116.4,131.5,135.7 118.9
(2,35,0,1,9) 1.036,1.104,1.222,2.195,2.410 1.594

(2,35,0,2,5) 96.80,99.69,106.2,109.7,117.7 106.0
(2,35,0,2,7) 105.2,105.3,107.5,108.5,125.7 110.5
(2,35,0,2,9) 0.8652,1.019,1.209,1.967,2.454 1.503

(2,35,1,0,5) 3.187,3.206,7.492,8.940,9.047 6.374
(2,35,1,0,7) 2.988,3.542,4.133,5.781,12.78 5.846
(2,35,1,0,9) 3.072,3.428,3.437,4.248,4.530 3.743

(2,35,1,1,5) 3.657,4.314,7.350,9.971,12.04 7.466
(2,35,1,1,7) 3.468,5.347,5.952,6.499,6.698 5.593
(2,35,1,1,9) 3.246,3.351,3.378,3.513,3.561 3.410

(2,35,1,2,5) 3.125,3.600,4.708,8.538,8.635 5.722
(2,35,1,2,7) 2.891,3.790,4.269,5.347,9.939 5.247
(2,35,1,2,9) 3.411,3.516,3.721,3.883,6.875 4.281

(2,50,0,0,5) 103.1,131.6,135.0,154.4,162.5 137.3
(2,50,0,0,7) 100.8,108.1,132.0,137.3,151.6 126.0
(2,50,0,0,9) 3.454,3.492,3.778,4.202,5.198 4.025

(2,50,0,1,5) 128.7,133.8,144.6,148.5,161.9 143.5
(2,50,0,1,7) 120.4,129.2,133.3,136.9,147.1 133.4
(2,50,0,1,9) 2.928,3.142,3.790,3.950,5.683 3.899

(2,50,0,2,5) 110.4,121.5,141.6,147.8,160.8 136.4
(2,50,0,2,7) 103.2,116.4,122.9,127.9,171.1 128.3
(2,50,0,2,9) 2.909,3.197,3.206,3.310,6.034 3.731

(2,50,1,0,5) 0.5502,3.346,10.29,11.19,11.32 7.341
(2,50,1,0,7) 2.237,3.653,5.679,7.133,14.08 6.556
(2,50,1,0,9) 0.3119,0.9134,0.9244,1.295,2.758 1.240

(2,50,1,1,5) 0.9327,1.391,7.078,8.629,8.961 5.398
(2,50,1,1,7) 6.014,8.750,9.525,9.587,11.44 9.062
(2,50,1,1,9) 1.196,1.453,2.183,2.516,6.641 2.798

(2,50,1,2,5) 2.940,5.216,10.49,11.97,16.51 9.425
(2,50,1,2,7) 1.248,5.008,6.925,6.944,9.300 5.885
(2,50,1,2,9) 0.4251,0.9306,0.9431,4.939,5.110 2.470

Table 2: The χ2 values on various HFEv- Parameters for q = 2
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(q,n, v, a,D) Recorded χ2 values Average χ2

(3,20,0,0,7) 143.0,144.2,162.2,166.6,173.3 157.9
(3,20,0,0,9) 159.9,164.5,170.0,177.6,180.9 170.6
(3,20,0,0,11) 1.766,2.806,3.176,3.471,4.463 3.136

(3,20,0,1,7) 155.6,165.7,171.8,178.8,188.9 172.2
(3,20,0,1,9) 165.4,166.4,176.1,177.1,200.0 177.0
(3,20,0,1,11) 0.1130,0.8573,3.969,5.553,5.603 3.219

(3,20,0,2,7) 157.5,159.9,162.4,181.1,182.3 168.6
(3,20,0,2,9) 156.8,159.5,172.5,175.5,187.4 170.3
(3,20,0,2,11) 1.352,1.374,1.439,4.801,8.654 3.524

(3,20,1,0,7) 1.860,3.046,4.654,5.098,17.90 6.513
(3,20,1,0,9) 0.4120,1.342,1.831,4.080,4.660 2.465
(3,20,1,0,11) 1.787,2.646,3.691,3.935,5.597 3.531

(3,20,1,1,7) 0.3343,1.181,3.559,6.293,11.19 4.512
(3,20,1,1,9) 0.6513,1.190,4.427,6.740,14.60 5.521
(3,20,1,1,11) 0.7447,2.163,2.766,3.817,5.733 3.044

(3,20,1,2,7) 1.107,1.143,1.674,2.824,3.256 2.001
(3,20,1,2,9) 0.9177,1.968,2.959,2.959,4.238 2.608
(3,20,1,2,11) 0.8658,0.9041,0.9318,0.9970,1.835 1.107

(3,35,0,0,7) 141.6,172.2,174.9,178.0,191.4 171.6
(3,35,0,0,9) 151.4,152.8,156.8,157.5,185.1 160.7
(3,35,0,0,11) 0.5800,2.007,3.379,4.221,5.240 3.085

(3,35,0,1,7) 145.9,178.2,181.8,182.4,199.7 177.6
(3,35,0,1,9) 153.4,155.5,164.0,179.2,190.3 168.5
(3,35,0,1,11) 2.150,2.515,3.913,6.792,11.22 5.317

(3,35,0,2,7) 150.6,158.7,172.6,175.9,183.8 168.3
(3,35,0,2,9) 146.9,152.8,155.6,164.9,168.8 157.8
(3,35,0,2,11) 0.4238,3.266,5.331,6.034,8.240 4.659

(3,35,1,0,7) 0.2299,1.176,1.536,1.979,2.306 1.445
(3,35,1,0,9) 0.4943,1.754,2.024,3.612,5.875 2.752
(3,35,1,0,11) 1.814,3.210,3.543,4.537,8.801 4.381

(3,35,1,1,7) 1.671,2.574,7.164,9.162,11.33 6.380
(3,35,1,1,9) 0.9097,1.511,1.660,2.885,7.497 2.892
(3,35,1,1,11) 1.036,1.097,1.448,1.880,9.921 3.077

(3,35,1,2,7) 0.1023,1.868,2.476,2.662,12.42 3.905
(3,35,1,2,9) 0.1321,0.3956,0.6979,2.622,2.799 1.329
(3,35,1,2,11) 0.7589,0.8359,1.351,1.366,4.765 1.815

(3,50,0,0,7) 137.0,168.6,175.0,186.2,196.0 172.6
(3,50,0,0,9) 164.8,169.8,179.6,185.1,185.8 177.0
(3,50,0,0,11) 0.1621,1.873,2.258,6.190,11.56 4.409

(3,50,0,1,7) 162.2,163.6,166.0,169.0,192.8 170.7
(3,50,0,1,9) 151.8,156.2,168.8,170.2,173.4 164.1
(3,50,0,1,11) 0.6886,1.242,1.562,2.755,4.057 2.061

(3,50,0,2,7) 152.6,167.8,169.2,172.5,172.7 167.0
(3,50,0,2,9) 164.2,165.6,175.0,179.6,180.5 173.0
(3,50,0,2,11) 0.7302,0.7725,1.302,3.150,5.671 2.325

(3,50,1,0,7) 0.5854,1.010,1.101,4.272,9.603 3.314
(3,50,1,0,9) 0.03689,0.4790,0.6195,1.076,2.863 1.015
(3,50,1,0,11) 1.109,1.498,2.627,5.803,9.572 4.122

(3,50,1,1,7) 0.2952,0.8565,1.282,2.194,5.468 2.019
(3,50,1,1,9) 0.9932,1.794,1.969,5.085,5.721 3.113
(3,50,1,1,11) 0.4366,2.356,2.464,3.702,9.121 3.616

(3,50,1,2,7) 3.105,4.224,6.753,8.171,8.523 6.155
(3,50,1,2,9) 1.163,1.222,1.430,1.580,3.340 1.747
(3,50,1,2,11) 0.9080,1.078,1.082,1.619,3.536 1.645

Table 3: The χ2 values on various HFEv- Parameters with q = 3
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