
Elementary Attestation of Cryptographically
Useful Composite Moduli

Rémi Géraud-Stewart1,2 and David Naccache2

1 QPSI, Qualcomm Technologies Incorporated, USA
rgerauds@qti.qualcomm.com

2 ÉNS (DI), Information Security Group
CNRS, PSL Research University, 75005, Paris, France

david.naccache@ens.fr

Abstract. This paper describes a non-interactive process allowing a
prover to convince a verifier that a modulus n is the product of two primes
(p, q) of about the same size. A further heuristic argument conjectures
that p−1 and q−1 have sufficiently large prime factors for cryptographic
applications.
The new protocol relies upon elementary number-theoretic properties and
can be implemented efficiently using very few operations. This contrasts
with state-of-the-art zero-knowledge protocols for RSA modulus proper
generation assessment.
The heuristic argument at the end of our construction calls for further
cryptanalysis by the community and is, as such, an interesting research
question in its own right.

1 Introduction

Several cryptographic protocols rely on the assumption that an integer n = pq is
hard to factor. This includes for instance RSA [RSA78], Rabin [Rab79], Paillier
[Pai99] or Fiat–Shamir [FS86]. A user generating their own keys can ensure that
n is indeed such a product; however this becomes a concern when n is provided
by a third-party. This scenario appears e.g. with Fiat–Shamir identification, or in
the context of certificate authentication: carelessly using an externally-provided
n may compromise security if n is incorrectly generated. Naturally, one cannot
ask for the factor(s) p, q to check n.

The state of the art in the matter are the zero-knowledge procotols of Auerbach–
Poettering [AP18] and Camenisch–Michels [CM99], which ascertain that a given n
is the product of safe primes of prescribed size. While correct and very useful, these
protocols are difficult to implement and analyze, and have high computational
costs. This motivates the search for simpler and more efficient solutions.

This paper introduces an alternative protocol that nearly achieves the same
functionality with fewer operations and communication. The new protocol is also
simpler to understand and therefore to implement.

rgerauds@qti.qualcomm.com
david.naccache@ens.fr

2 Preliminaries & Building Blocks

This paper uses the following notations: a|b denotes the concatenation of the
bitstrings a and b. If c is an integer, ‖c‖ = dlog2 ce denotes the size of c, i.e. the
minimal number of bits needed to write c. We denote by 0` the `-bit all-zero
string. For A ∈ N we denote by [A] the set {0, 1, . . . , A− 1}. If X is a finite set,
then x $←− X indicates sampling uniformly at random from X.

2.1 Camenisch–Michels proofs

While this paper does not rely on [CM99] we feel that it is important to recall
Camenisch and Michels’ protocol (hereafter, CM) given that it is currently
considered as the state-of-the-art tool for achieving the functionality that we try
to approach by our construction.

CM provides provable guarantees that an RSA modulus is well-formed. At
its heart is a pseudo-primality proof, combined with zero-knowledge proofs of
knowledge of a discrete logarithm, of a conjunction, and for belonging to a range.
We recall here the protocol for the sake of completeness, using the following
syntax [CS97]:

PK{(w) : P (x,w)}

refers to a proof of knowledge that property P holds, i.e., that the prover (hence-
forth P) knows a witness w that makes P (x,w) true.

Let n = pq be the number of interest, ε > 1 be a security parameter, ` such
that 2` > n, G a cyclic group of prime order Q > 25+2ε`, and g, h ∈ G. There
are two main phases to the protocol [CM99, Sec 5.1]:

1. P computes

cp ← gphrp c′p ← g
p−1
2 hr

′
p

cq ← gqhrq c′q ← g
q−1
2 hr

′
q

where rp, r′p, rq, r′q are random integers. The values (cp, c′p, cq, c′q) are sent to
the verifier (henceforth V).

2. Run the protocol

PK{(x1, . . . , x11) :
c′p = gx1hx2 ∧ c′q = gx3hx4 ∧ cp = gx5hx6 ∧ cq = gx7hx8

∧ cpg−1c′−2p = hx9 ∧ cqg−1c′−2q = hx10 ∧ gnc−1p c−1q = hx11

∧ x1 ∈ [−2`
′
, 2`
′
] ∧ x4 ∈ [−2`

′
, 2`
′
]

∧ x1 ∈ pprimes(t) ∧ x3 ∈ pprimes(t)

∧ x5 ∈ pprimes(t) ∧ x7 ∈ pprimes(t)

}

2

The pprimes(t) sub-algorithm denotes t rounds of the Lehmann primality test
for a committed number [CM99, Sec 4.2] and `′ = ε`+ 2. The above protocol is
a statistical zero-knowledge proof that n = pq is an RSA modulus where p, q are
safe primes.

Remark 1. As noted by [CM99], under some conditions running the protocol
of Gennaro et al. [GMR98] after the first phase we can remove the two last
pseudo-primality tests and reduce the number of rounds to t = 1. However this
assumes that n was not adversarially constructed and we cannot rely on this
hypothesis here.

Remark 2. As discussed in [CM99], the protocol can be extended to ensure
additional properties of p and q, e.g. that (p + 1)/2 is prime, or that p and q
satisfy some lower bound.

The protocol’s cost is dominated by the four pseudo-primality tests, which use
O(t log n) exponentiations and exchange O(t log n) group elements.

2.2 Goldberg–Reyzin–Sagga–Baldimtsi modulus tests

Our first building block is a very elegant protocol published by Goldberg, Reyzin,
Sagga and Baldimtsi (GRSB) [GRSB19]. This protocols allows to verify that n
has exactly two prime factors.

A first GRSB protocol checks that a pair (n, e) defines a permutation over
Z/nZ. For typical parameter settings, this proof consists of nine integers, with
proof generation and verification requiring both about nine modular exponentia-
tions.

A further protocol in [GRSB19] allows V to check that n is the product of
two distinct primes [GRSB19, Sec. 3.4] in a zero-knowledge fashion. We recall
the protocol here:

1. P and V agree on a security level κ, integer m := d32 · κ · ln 2e, and n.
2. V checks that n is a positive odd integer and that n isn’t a prime power,

otherwise the protocol stops with a failure.
3. V chooses m values ρi whose Jacobi symbol (ρi|n) = 1, and sends them to P

as challenge.
4. P checks for each ρi whether it is a quadratic residue modulo n: if it is, P

returns a square root σi of ρi to V; otherwise P returns σi = 0.
5. V checks that there are at least 3m/8 non-zero σi and that they all satisfy
σ2
i = ρi mod n.

As is, this protocol assumes that V is honest. The honest verifier assumption is
removed through a classical derivation of the ρis by hashing. Both protocols are
very efficient for P and V.

3

2.3 Girault–Poupard–Stern signatures

The GPS signature scheme was first proposed by Girault in 1991 [Gir91] without
a security proof; a first analysis was given in 1998 [PS98,PS99] by Poupard and
Stern. This was further refined by all three authors in 2006 [GPS06]. GPS has
been standardized as ISO/IEC 9798-5 in 2004.

Algorithms. GPS consists of four algorithms (Setup,Keygen,Sign,Verify) that we
now describe.

– GPS.Setup(λ) → pp: the public parameters consist of integers A,B and a
hash function h : {0, 1}∗ → [B]. They are chosen so that a security level λ is
achieved.

– GPS.Keygen(pp)→ (sk, pk): The signer chooses two safe primes P = 2p+ 1,
Q = 2q + 1, computes n← PQ, and finds an element g ∈ Z/nZ whose order
is divisible by pq.3 The order of g (and therefore of the subgroup generated
by G) needs not be explicitly known.
The signer’s secret key is sk := n − ϕ(n), while the public key is given by
pk := (n, g).

– GPS.Sign(pp, sk,m)→ σ:

1. r $←− [A]
2. x← gr mod n
3. c← h(m,x)
4. y ← r + c · sk
5. If y ≥ A, restart from step 1 with a new value of r.
The signature is σ ← (x, c, y).

– GPS.Verify(pp, pk,m, σ)→ {valid, invalid}: V checks the ranges:

x > 0 and x ∈ [n] and c ∈ [B] and y ∈ [A]

If either of these checks fails the signature is invalid. Otherwise, V computes :
1. c̃← h(m,x)
2. x̃← gy−nc̃ mod n
3. If c = c̃ and x̃ = x then σ is valid otherwise σ is invalid.

Security of GPS signatures. Under the discrete logarithm with short exponent
assumption (DL-SEA, see below), and if sk ·B/A and 1/B are negligible, GPS
signatures are existentially unforgeable under adaptive chosen message attacks
in the random oracle model [GPS06, Theorem 7].

DL-SEA is an ad-hoc strengthening of the usual discrete logarithm assumption,
which formalizes the notion that it should be hard to recover a discrete logarithm,
knowing that it is smaller than some known bound:
3 This is the case if and only if gcd(g − 1, n) = gcd(g + 1, n) = 1, which happens with
high probability.

4

Definition 1 (DL-SEA, [GPS06]). For every polynomial Q and every PPT
Turing machine A running on a random tape ωM , for sufficiently large λ,

Pr
ωp,ωM

[A(n, g, sk, gx) = x | (n, g, sk)← Setup(ωp, λ) ∧ x ∈ [sk]}] < 1

Q(λ)

where Setup is a randomized algorithm generating public parameters n, g from a
security parameter λ using the random tape ωp, and sk = n− ϕ(n).
In summary, the choice of parameters for GPS to be secure are:

– An integer n which is hard to factor;
– Integers B < A < n such that 2λB/A is negligible;
– A hash function h for which the random oracle model is appropriate.

For instance, at the 128 bit security level, B ∼ 2128, A ∼ 280+128+128 and
n ∼ 23072, with SHA-3 as h.

2.4 RSA moduli with a prescribed pattern

To preserve compatibility with the notations of [Joy08] we will temporarily
rename the modulus N in this section. We will then revert back to the notation
n introduced previously. An RSA modulus generator is a PPT algorithm that
outputs p, q such that N = pq is an RSA modulus. There exist several algorithms
that output N with additional properties; one such family of algorithms gives
prescribed patterns : a bitstring (the “pattern”) is given as input to the generation
algorithm, and will be found in N . We denote n = ‖N‖.

Different methods are known to achieve this, depending on the pattern length
being considered [Len98,LdW05a,Joy08,LdW05b]. To the best of our knowledge,
no polynomial-time algorithm capable of imposing a pattern of more than 2n/3
bits while respecting the constraint ‖q‖ ∼= ‖p‖ has been described. The leading
motivations for such algorithms originates from the desire to compress RSA keys,
so that they can be stored on less bits and the from the intention to speed-up
modular reduction using “computation-friendly” moduli.

Let n > n0 be integers, κ . 2n/3, a predetermined portion NH of length κ.
The following algorithm explicited in [Joy08]4 outputs a pair (p, q) such that
N = pq = NH‖NL along with NL, with p of size n− n0 and q of size n0.

1. Sample p0 uniformly of length n− n0, and let

q0 =

⌊
NH

2n−κ

p0

⌋
.

2. Define recursively the triples (di, ui, vi) as:

(d0, u0, v0) = (p0, 0, 1)

(d−1, u−1, v−1) = (q0, 1, 0)

(di, ui, vi) =

(
di−2 mod di−1, ui−2 −

⌊
di−2
di−1

⌋
ui−1, vi−2 −

⌊
di−2
di−1

⌋
vi−1

)
4 The algorithm itself is attributed to Coppersmith in 2003, see e.g., an early mention
and worked-out example by Bernstein https://cr.yp.to/talks.html#2003.04.24.

5

3. Define recursively the triples (xi, yi, zi) as:

(x0, y0, z0) =
(
0, 0,

(
NH2n−κ mod p0

)
+ 2n−κ−1

)
(xi, yi, zi) =

(
xi−1 +

⌊
zi−1
di

⌋
ui, yi−1 +

⌊
zi−1
di

⌋
vi, zi−1 mod di

)
such that |zi − xiyi| < 2n−κ−1. (This value decreases and then increases, so
once the condition is reached we can break out of the loop.)

4. Sieve the pairs (xi, yi) until both

p = p0 + xi

q = q0 + yi

are prime. If no such pair is prime, start over from Step 1.
5. Output NL ← N mod 2n−κ and p, q.

Note that the generation process can be repeated until (p, q) satisfies any desired
property (e.g., being safe primes).

3 Assembling the puzzle to get an attestation

We decompose our construction into four steps.

Section 3.1
provable

n is the product of exactly two primes p, q

Section 3.2
provable

p, q are of about the same size

Section 3.3
heuristic

p, q cannot be controlled

Section 3.4
trivial even if the adversary controls p, q they face a slow down

Fig. 1. The general outline of the construction proposed in this paper.

3.1 Checking that n has exactly two prime factors

Our first building block is the GRSB protocol that we run, unmodified, between
P and V.

Note that GRSB does not suffice, in itself, to guarantee n is cryptographically
useful. For instance, n = 3p with p > 3 will pass this phase but is clearly a bad
RSA modulus.

6

3.2 Checking for factor sizes

The second building block checks that the two factors of n have the appropriate
size. We achieve this by requesting that P provides a valid GPS signature of
some agreed-upon message (e.g. n) to V.

The key observation here is that GPS signatures have a size that depends on
the factors of n. More precisely, if σ = (x, c, y) is the GPS signature and we are
working modulo n, the size of y essentially reveals the size of n’s factors (up to a
relatively small constant).

The following lemma makes this statement more precise and more general.

Lemma 1. Let p, q be two positive integers. Let u = ‖pq‖, v = ‖p + q‖, and
w = ‖p− q‖. Let ∆ > 0, if v ≥ log2(2

2∆−1 + 2u), then w ≤ ∆.

Proof. Without loss of generality, assume p ≤ q and let δ = q − p. Then

w = ‖δ‖ = 1

2
‖δ2‖ = 1

2
‖(p+ q)2 − 4pq‖

≤ 1

2

∥∥2v+1 − 2u+1
∥∥ =

1

2
[1 + log2 |2v − 2u|]

≤ 1

2
[1 + 2∆− 1] = ∆.

ut

A valid GPS signature comprises y = r+c·sk which is of sizemax(‖A‖, ‖B‖+‖sk‖).
With A, B being a public parameters and sk being p+ q− 1 we see that Lemma 1
can be used to set a threshold so that with typical GPS parameters, pq is large
enough and at most a discrepancy between p and q of about 200 bits is possible.

This is unfortunately not enough: even if we know that n = pq with p and
q of similar size, partial Pohlig–Hellman factorization [vOW96] can exploit the
smoothness of p− 1 or q − 1 to factor n. Thus we need an additional building
block fill that gap.

3.3 Checking that n is a cryptographically useful modulus

What follows is only conjectured to be secure. The intuition is to restrict P to
use only certain moduli, obtained through a verifiable procedure that (hopefully!)
makes it hard to obtain smooth p− 1 and/or q− 1 or otherwise purposely weaken
n. Indeed, from a practical standpoint [vOW96] fails whenever (p − 1)/2 and
(q − 1)/2 have each a large factor: (p− 1)/2 and (q − 1)/2 being primes is ideal
but not strictly necessary to resist this attack. This does not imply that methods
other than [vOW96] would fail to factor n but we know of no such strategies and
encourage the community to further scrutinize our proposal.

For preserving compatibility with Joye’s notations we switch again to the
notation N for the modulus.

We now want to ensure that the factors of N (which we know to be exactly
two primes of comparable sizes), are not easy to factor. A complete but inefficient

7

solution consists in plugging-in the CM sub-protocol for safe-primality testing
[CM99]. Doing so has a sizable cost, so we take an alternative, cheaper route.

To illustrate the difficulty, consider the following procedure which generates
a couple (p, q) of primes whose product features a prescribed bit pattern NH :

1. Form a string N ′ := NH |ρ where ρ is a random bitstring.
2. Generate a prime p and compute q ← bx/pc
3. Increment q until the result is prime.

At the end of this procedure, p and q are prime and their product N = pq features
NH in its MSBs. Informally, because q is constrained we expect q to be hard
to control, and therefore it would be hard to ensure that q − 1 is abnormally
smooth using this procedure. A malicious generator could however manipulate p
freely, so this approach is unsatisfactory. The above algorithm stops to work as
NH grows beyond n/2 bits while keeping the sizes of p and q balanced.

Joye’s protocol described in Section 2.4 [Joy08, 4.1, 4.2] enables us to fix 2
3 of

N ’s bits to a prescribed pattern, with p and q being generated simultaneously.
We conjecture that this causes p− 1 and q − 1 to “essentially” behave like large
random numbers, which are likely to have a large prime factor as expected by
the asymptotic distribution of factors in random integers5. This assumption is
made explicit below.

Note that from V ’s viewpoint, checking that N features the prescribed pattern
is cost-less and that only the LSBs of N need to be transmitted to V. For the
above to work it is crucial to enforce that NH is beyond the control of P. For
instance set NH as equal to the digits of π = 3.14159 . . . or e = 2.71828

One interesting question is whether RSA moduli indistinguishable from those
generated by Joye’s algorithm can be purposely crafted to be more vulnerable
than moduli formed by multiplying two random equal-size primes. The case is
clearly different with moduli generated by other bit prescription methods because,
unlike Joye’s algorithm, alternative methods pick p at random first and only
then generate q as a function of p and NH and. As we have already explained, in
such a scenario p can be chosen to be weak (e.g. p− 1 can be purposely selected
to be smooth). Therefore the conjecture upon which the heuristic part of our
construction relies is:

Conjecture: Given a challenge NH of size 2n
3 , it is hard to generate a

vulnerable N featuring the MSB pattern NH such that N has exactly two
prime factors of roughly equal size.

The above calls for a precise definition of the term “vulnerable”. Evidently, nothing
can be doing against a dishonest P could publish his random tape, use a very
short (i.e. exhaustible) random tape or run the proof with some public test values
for p, q. To capture simply the requirement we construe the term “vulnerable” as
follows:
5 In particular, the Golomb–Dickman constant λ ≈ 0.624 asymptotically governs the
relative size of the largest prime factor of an integer [KP76,Dic30,Gol64]

8

A modulus of size n is vulnerable if its factoring is asymptotically easier
than the factorization of a modulus generated by picking two random
n
2 -bit primes.

3.4 Optional security measures

In this section we describe three optional security measures. All are heuristic and
incur additional computational cost for P and/or V.

The rationale behind these measures is that if a cryptanalysis whose work
factor is ω1 is found, the proposed countermeasures will multiply ω1 by a constant
factor ω2 that may put ω1 × ω2 out of practical reach.

1. The first countermeasure consists in using an n larger than required. This
reinforces the argument of Section 3.3, as larger smooth numbers are scarcer.
We recommend to use moduli whose size is larger by 62% than normal for any
desired security level. This is meant to account for the fact that the largest
prime factor of a random `-bit number is expected to be roughly 0.62`-bits
long [KP76].

2. The second countermeasure will put a burden on generation but leave veri-
fication unchanged: we require from n an additional short redundancy, e.g.
SHA(n) mod 224 = 0. It is reasonable to assume that there is no efficient
algorithm allowing to achieve this property along with a prescribed pattern.
Thus, to obtain n the generation procedure should be run on average 224

times. This places no extra burden on V and because moduli are usually
generated once for all in a device’s lifetime, slowing the modulus generation
process down on one occasion may pay back in case of an attack.

3. The third countermeasure is applicable when V witnesses the generation of n.
It consists in performing a cut-&-choose protocol to ascertain the freshness
and the conformity of the generated moduli:
– P and V generate a common secret key u using e.g. Diffie-Hellman.
– P picks t random wis and computes vi = hash(wi, u) for 0 ≤ i ≤ t− 1.
– P uses vi as a random tape to generate the modulus ni
– V picks a random index j and sends it to P
– P reveals to V:

w0, w1, . . . , wj−1, wj+1, . . . , wt−1

– V re-generates the corresponding t− 1 moduli

n0, n1, . . . , nj−1, nj+1, . . . , nt−1

and checks that all the above t− 1 moduli were properly generated.
– V tests using the first two phases of the protocol proposed in this paper

that nj has two large factors of equal size and if so, he signs nj to certify
it.

We see that this protocol reduces the cheating odds to 1
t where by “cheating”

we mean generating factors so that nj is easy to factor. It has the advantage
of ascertaining, in addition, the freshness of nj . Indeed, even if P would use

9

a fixed random tape then the randomness injected by the V into the protocol
would ascertain that no entities other than P and V would be able to factor
nj .

4 Efficiency

The global computational cost of our protocol is dominated by Section 3.3, as
other phases essentially have the cost of a few full-sized modular multiplications.
While the complexity of Joye’s algorithm does not follow a simple expression,
we can consider that around 1/η2 primality tests are performed, where η is the
probability that an integer of size N is prime — by the prime number theorem η is
of the order of 1/ ln(2N) = 1/N ln 2. Thus, using standard acceleration techniques
for primality testing such as Miller–Rabin [Mil76,Rab80], the overall algorithmic
complexity is essentially O(k log3 n log log n), where n is the modulus and k is
the number of testing rounds. The additional log log n factor is the density of
primes amongst integers of size log n.

If the optional measures of Section 3.4 are implemented, the impact on total
complexity is a slowdown by a factor of about 4.25 ' (1 + λ)3 for the GPS phase
that dominates the slowdown in the other phases.

Note that if n is used to sign a message m, the protocol can made even more
efficient. Instead of just signing n during the GPS phase, use GPS to sign n|m.
This achieves both the goal of attesting the sizes of p, q and signing m. In such a
case, the attestation of n comes at the minimal price of phases 3.1 and 3.3 only.

5 Conclusion

In this paper we introduced a cheap non-interactive process for proving that
n = pq is a product of two equal-size primes. The process is completed with a
heuristic trick conjectured to be sufficient to ascertain that n is cryptographically
useful.

This raises a number of interesting research questions. For instance, speeding-
up or simplifying [CM99] by hybridizing it with the techniques. The same seems
also applicable to [GMR98] although we haven’t investigated this avenue.

More importantly, we invite the community to find attacks on the heuristic
phase of our protocol. A successful attack consists in exhibiting a modulus n
having exactly two equal-size prime factors and featuring 2

3‖n‖ prescribed LSBs6.
This n must be easier to factor than an n = pq where p, q are randomly generated
primes. Running the proposed protocol as is, but with a known7 random tape
is tantamount to just revealing the key and is hence not considered as usefully
“attacking” the proposed construction.

6 e.g. the binary digits of π = 3.14159265 . . .
7 Partially or entirely.

10

Acknowledgements

The authors are grateful to Arjen Lenstra for his pertinent remarks on an earlier
version of this article, and Daniel J. Bernstein for pointing out relevant references.
During the preparation of this paper Rémi became the happy father of the newly
born baby Esther. To mark the event, the authors decided to kindly ask the
community to refer to moduli described in this paper as “Esther moduli”.

References

AP18. Benedikt Auerbach and Bertram Poettering. Hashing solutions instead of
generating problems: On the interactive certification of RSA moduli. In
Michel Abdalla and Ricardo Dahab, editors, Public-Key Cryptography - PKC
2018 - 21st IACR International Conference on Practice and Theory of Public-
Key Cryptography, Rio de Janeiro, Brazil, March 25-29, 2018, Proceedings,
Part II, volume 10770 of Lecture Notes in Computer Science, pages 403–430.
Springer, 2018.

CM99. Jan Camenisch and Markus Michels. Proving in zero-knowledge that a
number is the product of two safe primes. In Jacques Stern, editor, Advances
in Cryptology - EUROCRYPT ’99, International Conference on the Theory
and Application of Cryptographic Techniques, Prague, Czech Republic, May
2-6, 1999, Proceeding, volume 1592 of Lecture Notes in Computer Science,
pages 107–122. Springer, 1999.

CS97. Jan Camenisch and Markus Stadler. Efficient group signature schemes for
large groups (extended abstract). In Burton S. Kaliski Jr., editor, Advances in
Cryptology - CRYPTO ’97, 17th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 1997, Proceedings, volume
1294 of Lecture Notes in Computer Science, pages 410–424. Springer, 1997.

Dic30. Karl Dickman. On the frequency of numbers containing prime factors of a
certain relative magnitude. ArMAF, 22(10):A–10, 1930.

FS86. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
Advances in Cryptology - CRYPTO ’86, Santa Barbara, California, USA,
1986, Proceedings, volume 263 of Lecture Notes in Computer Science, pages
186–194. Springer, 1986.

Gir91. Marc Girault. Self-certified public keys. In Donald W. Davies, editor,
Advances in Cryptology - EUROCRYPT ’91, Workshop on the Theory and
Application of of Cryptographic Techniques, Brighton, UK, April 8-11, 1991,
Proceedings, volume 547 of Lecture Notes in Computer Science, pages 490–497.
Springer, 1991.

GMR98. Rosario Gennaro, Daniele Micciancio, and Tal Rabin. An efficient non-
interactive statistical zero-knowledge proof system for quasi-safe prime prod-
ucts. In Li Gong and Michael K. Reiter, editors, CCS ’98, Proceedings of
the 5th ACM Conference on Computer and Communications Security, San
Francisco, CA, USA, November 3-5, 1998, pages 67–72. ACM, 1998.

Gol64. Solomon W. Golomb. Random permutations. Bull. Amer. Math. Soc, 70:747,
1964.

11

GPS06. Marc Girault, Guillaume Poupard, and Jacques Stern. On the fly authentica-
tion and signature schemes based on groups of unknown order. J. Cryptol.,
19(4):463–487, 2006.

GRSB19. Sharon Goldberg, Leonid Reyzin, Omar Sagga, and Foteini Baldimtsi. Effi-
cient noninteractive certification of RSA moduli and beyond. In Steven D.
Galbraith and Shiho Moriai, editors, Advances in Cryptology - ASIACRYPT
2019 - 25th International Conference on the Theory and Application of
Cryptology and Information Security, Kobe, Japan, December 8-12, 2019,
Proceedings, Part III, volume 11923 of Lecture Notes in Computer Science,
pages 700–727. Springer, 2019.

Joy08. Marc Joye. RSA moduli with a predetermined portion: Techniques and
applications. In Liqun Chen, Yi Mu, and Willy Susilo, editors, Information
Security Practice and Experience, 4th International Conference, ISPEC 2008,
Sydney, Australia, April 21-23, 2008, Proceedings, volume 4991 of Lecture
Notes in Computer Science, pages 116–130. Springer, 2008.

KP76. Donald E. Knuth and Luis Trabb Pardo. Analysis of a simple factorization
algorithm. Theor. Comput. Sci., 3(3):321–348, 1976.

LdW05a. Arjen Lenstra and Benne de Weger. On the possibility of constructing
meaningful hash collisions for public keys. In Colin Boyd and Juan Manuel
González Nieto, editors, Information Security and Privacy, pages 267–279,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

LdW05b. Arjen K. Lenstra and Benjamin M. M. de Weger. Twin RSA. In Ed Daw-
son and Serge Vaudenay, editors, Progress in Cryptology - Mycrypt 2005,
First International Conference on Cryptology in Malaysia, Kuala Lumpur,
Malaysia, September 28-30, 2005, Proceedings, volume 3715 of Lecture Notes
in Computer Science, pages 222–228. Springer, 2005.

Len98. Arjen K. Lenstra. Generating RSA moduli with a predetermined portion. In
Kazuo Ohta and Dingyi Pei, editors, Advances in Cryptology - ASIACRYPT
’98, International Conference on the Theory and Applications of Cryptology
and Information Security, Beijing, China, October 18-22, 1998, Proceedings,
volume 1514 of Lecture Notes in Computer Science, pages 1–10. Springer,
1998.

Mil76. Gary L. Miller. Riemann’s hypothesis and tests for primality. J. Comput.
Syst. Sci., 13(3):300–317, 1976.

Pai99. Pascal Paillier. Public-key cryptosystems based on composite degree residuos-
ity classes. In Jacques Stern, editor, Advances in Cryptology - EUROCRYPT
’99, International Conference on the Theory and Application of Cryptographic
Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding, volume 1592
of Lecture Notes in Computer Science, pages 223–238. Springer, 1999.

PS98. Guillaume Poupard and Jacques Stern. Security analysis of a practical "on
the fly" authentication and signature generation. In Kaisa Nyberg, editor,
Advances in Cryptology - EUROCRYPT ’98, International Conference on the
Theory and Application of Cryptographic Techniques, Espoo, Finland, May
31 - June 4, 1998, Proceeding, volume 1403 of Lecture Notes in Computer
Science, pages 422–436. Springer, 1998.

PS99. Guillaume Poupard and Jacques Stern. On the fly signatures based on
factoring. In Juzar Motiwalla and Gene Tsudik, editors, CCS ’99, Proceedings
of the 6th ACM Conference on Computer and Communications Security,
Singapore, November 1-4, 1999, pages 37–45. ACM, 1999.

12

Rab79. Michael O. Rabin. Digitalized signatures and public key functions as in-
tractable as intractable as factorization. MIT Laboratory of Computer Sci-
ences, 21, 1979.

Rab80. Michael O Rabin. Probabilistic algorithm for testing primality. Journal of
number theory, 12(1):128–138, 1980.

RSA78. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Commun. ACM,
21(2):120–126, 1978.

vOW96. Paul C. van Oorschot and Michael J. Wiener. On diffie-hellman key agreement
with short exponents. In Ueli M. Maurer, editor, Advances in Cryptology -
EUROCRYPT ’96, International Conference on the Theory and Application
of Cryptographic Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding,
volume 1070 of Lecture Notes in Computer Science, pages 332–343. Springer,
1996.

13

	Elementary Attestation of Cryptographically Useful Composite Moduli

