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Abstract

Efficient lattice-based cryptography usually relies on the intractability of problems on lat-
tices with algebraic structure such as ideal-lattices or module-lattices. It is an important open
question to evaluate the hardness of such lattice problems, and their relation to the hardness of
problems on unstructured lattices.

It is a known fact that an unstructured lattice can be cast as an ideal-lattice in some order
of a number field (and thus, in a rather trivial sense, that ideals in orders are as general as
unstructured lattices). However, it is not known whether this connection can be used to imply
useful hardness results for structured lattices, or alternatively new algorithmic techniques for
unstructured lattices.

In this work we show that the Order-LWE problem (a generalization of the well known Ring-
LWE problem) on certain orders is at least as hard as the (unstructured) LWE problem. So in
general one should not hope to solve Order-LWE more efficiently than LWE. However, we only
show that this connection holds in orders that are very “skewed” and in particular irrelevant
for cryptographic applications. We then discuss the ability to embed unstructured lattices in
“friendlier” orders, which requires devising an algorithm for computing the conductor of relevant
orders. One of our technical tools is an improved hardness result for Order-LWE, closing a gap
left in prior work.
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1 Introduction

The Learning with Errors (LWE) problem, as defined by Regev [Reg05], is a convenient way to
construct numerous cryptographic primitives such that their security is based on the hardness of
solving worst-case lattice problems on integer lattices.1 See [Pei16] for an exposition. The worst-
case to average-case hardness reduction and the conjectured post-quantum security are the two
appealing characteristics of the LWE problem.

However, there is a drawback of basing cryptographic primitives on LWE in practice. It induces
relatively high computational complexity and large instance size; an LWE-based encryption scheme,
for instance, has long keys and ciphertexts, along with high encryption complexity.

It was known since the introduction of the NTRU cryptosystems [HPS98] and more rigorously
by the results in [LM06, PR06] that the efficiency of the lattice-based cryptosystems could be sig-
nificantly improved by instead using lattices stemming from algebraic number theory. In [SSTX09],
and then in [LPR10, LPR13], the authors defined the first known algebraic number theoretic analogs
of LWE; Polynomial-LWE (PLWE) and Ring-LWE (RLWE), respectively. Roughly, they replaced
the abelian group Znq appearing in LWE by abelian groups that have an additional ring structure.
For PLWE, it is the ring of polynomials Z[x]/(f(x)), and for RLWE, it is the ring of integers OK
in a number field K. We will explain the properties of these algebraic objects below when needed.
Similar to Regev’s original result, the authors showed that each of these problems, PLWE and
RLWE, is as hard as solving worst-case lattice problems on their respective ideal lattices, a special
class of lattices that stems from embedding the number field into a Euclidean space, so that any
ideal (and in fact any discrete subgroup) corresponds to a lattice.

Naturally, fixing a ring R, not all lattices can be expressed as ideals of R and therefore ideal
lattices constitute a subset of the class of all lattices. Furthermore, these lattices have an additional
algebraic structure which makes ideal-lattice problems potentially easier to solve than their counter-
parts on general lattices. Indeed, recently it has been shown that on some parameter regimes, state
of the art quantum algorithms for ideal lattices asymptotically significantly outperform the best
known (classical or quantum) algorithms for general lattices [CGS14, CDPR16, CDW17, DPW19,
PHS19, BRL20].

Since the introduction of RLWE, various algebraically structured variants of the LWE problem
have been defined, each with their own worst-case to average-case reduction: Module-LWE [LS12],
Middle-Product LWE [RSSS17], and Order-LWE [BBPS19]. The Order-LWE problem, which will
be of interest in this work, is a generalization of the Ring-LWE problem which is obtained by
replacing the ring of integers in RLWE by one of its full-rank subrings, i.e., an order. Improving
and extending the results from [RSW18], the authors in [PP19] proved that all the above mentioned
variants are at least as hard as Ring-LWE (with some order-dependant penalty in the parameters).
On the other hand, by merely forgetting the ring (or module) structure on these structured LWE
problems, one obtains (multiple) LWE samples, thereby proving that all the algebraically structured
LWE problems are not harder than the (unstructured) LWE. In this paper, we prove that every
number field has certain orders such that their corresponding Order-LWE problem is equivalent to
the unstructured LWE problem. Therefore, in a sense, Order-LWE can be viewed as a generalization
of Regev’s LWE, and thus as encompassing all variants of LWE. The result emphasizes how devious
certain algebraic structures can be, and that it would be näıve to assume that algebraic versions

1We prefer to keep the discussion at a high level at this point and not specify the exact lattice problem. In this
context, relevant problems include Discrete Gaussian Problem (DGS), Shortest Independent Vectors Problem (SIVP)
and Bounded distance decoding (BDD). See the preliminaries section for definitions.
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of unstructured problems are necessarily simpler. We note that, as expected, the orders in which
Order-LWE is as hard as LWE do not seem to be useful for improving efficiency in cryptographic
contexts. This is exactly the reason that allows us to prove this equivalence. Namely, the added
noise which is needed for cryptographic applications (i.e. the “error” of LWE) “smudges” the
algebraic structure of the order almost entirely.

There are various algebraic variants of LWE, with respective worst-case hardness reductions.
However, the full set of integer lattices is not captured by the known reductions. To approach this
gap, we would like to better understand the hardness of solving lattice problem on ideal lattices
(where these hardness results apply) and integer lattices.2 To this end, we embed integer lattices
into number fields as ideals in their ring of multipliers and show that solving lattice problems on
these ideal lattices is at most as hard as Order-LWE (regardless of whether they are invertible or
not, contrary to prior works), the order being their respective ring of multipliers. We further exploit
this embedding to analyze the quality of the algebraic structure induced on a (any) fixed integer
lattice. We describe an algorithm to compute the conductor of the ring of multipliers, and consider
an embedding optimal if the conductor is trivial, i.e., equals the ring of integers. We describe our
work in more detail now.

1.1 This Work: General Lattices as Ideals

Making a lattice into an ideal lattice can be done as follows. Given a number field K over Q of
degree n, the elements in K can be considered as formal polynomials of degree (n−1) with rational
coefficients. This induces a correspondence between (rational) n-dimensional vectors and field
elements known as the coefficient embedding (from the field K into Qn ⊆ Rn). Once a number field
K is chosen and fixed, this correspondence allows to present any (rational) lattice as an additive
subgroup of K, but not necessarily as an ideal in the aforementioned ring-of-integers. However,
it is known that any such (discrete) subgroup L that corresponds to a full-rank lattice L in Qn

constitutes an ideal in some full-rank subring of the ring of integers. Such subrings are known as
orders, and the maximal order in which the group L is an ideal is called its ring of multipliers,
denoted as OL.

The coefficient embedding is a way to map between (rational) lattices and elements of the
number field and vice versa. However, in most algorithms and hardness reductions (all except
[LM06, SSTX09]), ideals are mapped into lattices in Rn using a different embedding known as the
canonical embedding (or Minkowski embedding). The canonical embedding allows for a cleaner
transition between elements in number fields and vectors in the Euclidean space. However, it
appears to be less suitable for our goal of mapping arbitrary lattices into ideals. The reason
is that the canonical embedding does not map elements in the number field to rational vectors
(i.e., the image of the number field is not contained in Qn). Therefore, we are forced to consider
both embeddings: we map lattices into ideals using the (inverse) coefficient embedding, and then
consider (for the sake of algorithms and hardness) the lattice that is induced by applying the
canonical embedding on the ideal. This incompatibility of embeddings creates a distortion between
the lattice on which we want to solve the problem (the coefficient embedding of the ideal) and
the lattice on which we actually attempt to solve it (the canonical embedding of the ideal). This
distortion, which depends on the number field, can be quantified and bounded.3 We study this

2Indeed, we show above that in some cases it is possible to relate Order-LWE to LWE directly but the question
about the relation between ideal lattices and general integer lattices remains relevant nonetheless.

3We note that in some special cases this distortion (up to scaling) does not exist. Most notably in power-of-two
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introduction of the algebraic structure and alteration of the geometric structure on L, in fair detail
in Section 3.

Recall that [BBPS19] showed a connection between solving the Order-LWE problem and solving
lattice problems on ideals in that order. We could therefore hope that the above embedding would
imply that for any lattice (respectively distribution over lattices) there exists an order (respectively
distribution over orders) for which Order-LWE is at least as hard as solving short vector problems
on this lattice (or distribution). Alas, [BBPS19] only relates the hardness of Order-LWE with the
hardness of invertible ideal lattices in the order. We recall that an ideal in the ring is invertible if it
has an inverse which is also a (possibly fractional) ideal in the ring. While all ideals in the ring of
integers are invertible, this is not necessarily the case for ideals in orders. Although a naive sounding
restriction, it left the infinite set of non-invertible ideals uncaptured by an important average-case
problem. In particular, the lattice L is not necessarily invertible in its ring of multipliers and
therefore prior to this work the above derivation could not be made.

In Section 4, we improve the existing hardness result for Order-LWE to show that this problem
is as hard as solving lattice problems on all ideal lattices of the order, under a regularity condition on
the Order-LWE modulus. The approximation factor obtained is identical to the one in [BBPS19].
The novelty of this improvement is our generalization of the so-called cancellation lemma that is
in the heart of ideal lattice hardness results such as [LPR10, PRSD17, BBPS19].

The cancellation lemma provides a way to map a lattice point into its coefficient vector with
respect to some basis of the lattice. The coefficient vector will constitute the LWE secret s. In
order to preserve the algebraic structure, this needs to be done via multiplication by a field element.
Prior results used the invertability of the ideal to show that this is possible. In order to obtain
a similar result for non-invertible ideals, we first observe that any non-invertible ideal L can be
viewed as a sublattice of an invertible ideal p. We can thus apply the cancellation lemma using
p and map between elements of L and elements of p using the inclusion relation. This relation is
of course not a homomorphism, however in the context of Order-LWE reduction, what we need is
a homomorphism between the modulo q versions of these ideals (where q is the LWE modulus).
Indeed we show that under a regularity condition (specifically, (q, [OK : OL]) = 1, i.e., q is coprime
to the index of the order inside the ring of integers) the inclusion relation between the ideals implies
an isomorphism modulo q. This suffices to allow the proof to go through. Using similar techniques
we can also show (under the same condition) an equivalence between two variants of Order-LWE
that were defined in [BBPS19] (a primal and dual variant).

Lastly, in Section 4, we also extend the Ring-LWE hardness result. The strengthened result
now includes solving lattice problems (DGS) for lattices that are not necessarily ideals in the ring
of integers, but rather ideals in orders whose index is coprime with the Ring-LWE modulus. This
comes at a cost on the approximation factor (for DGS) if the lattice is not an OK-ideal. The cost
is directly related to the conductor of the ring of multipliers of the lattice.4 This result generalizes
the Order-LWE to RLWE reduction proved in [BBPS19, Cor 5.2]. The above results hold for any
number field K. See Section 4 for full statements and proofs.

In Section 5, we show that every number field has chain(s) of orders beginning from OK such
that their corresponding Order-LWE problems become (not necessarily strictly) harder. We show
that this gradient of hardness terminates at a ‘skewed’ order, say O. That is, we show that O-LWE

cyclotomic number fields.
4The conductor of an order is the maximal ideal which is shared between the order and the ring of integers.

Properties of the conductor are often used to relate the order and the ring of integers.
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(i.e. Order-LWE on the order O) is equivalent to the unstructured LWE problem. More precisely,
we show that for “reasonable” Gaussian noise, the noise in the Order-LWE sample drowns the
last n − 1 coordinates of the Order-LWE instance. Thus only one coefficient survives, which is
distributed like a (standard) LWE sample with a related noise parameter.

In Section 6, we move on to consider the case of p-ary lattices. Such lattices are important
since it is known that general lattice problems reduce to p-ary lattice problems (e.g. LWE). See
[Ajt96, Reg09]. We specifically consider the case where p is prime and zoom-in on the embedding of
such lattices in a number field. Recall that our results from Section 4 imply that order-ideal lattice
problems can be solved using RLWE oracle, but with some loss in the approximation factor. This
loss is related to the conductor of the ring of multipliers and can roughly be related to the index
[OK : O]. We expect this loss to be too great for most p-ary lattices, however it is possible that for
some class of p-ary lattices the loss will be small enough so that relating their hardness to RLWE is
meaningful. To this end we develop an algorithm that, given a p-ary lattice as input, computes the
conductor of its ring of multipliers efficiently (as a product of prime ideals). Such an algorithm may
find other uses in the context of computational aspects of algebraic number theory. Our algorithm
and analysis are specific to so-called monogenic number fields, but we explain its consequences in
the non-monogenic setting as well. Lastly, we show that, as expected, in the case of a power-of-two
cyclotomic field, most p-ary lattices will not have a “favorable” conductor in terms of the effect on
the approximation factor.

1.2 Technical Overview

In this section we provide a somewhat more technical outline of our results in Sections 4, 5, 6.
To keep this overview simple, we present all the algebraic results for the case of a power-of-two
cyclotomic field, i.e., K = Q[x]/(xn+1), where n is a power of two. We will specify when the result
holds in more generality, and urge the enthusiastic reader to seek details in the relevant section.

We begin with a brief description of the LWE problem: a secret vector s is sampled from
Znq , for a modulus q and an adversary gets access to an oracle that outputs pairs of the form

(a, b = 1
q 〈a, s〉+e mod Z), for a uniform a ∈ Znq and a small ‘noise’ e ∈ R/Z, that typically follows

a Gaussian distribution. The goal of the adversary is to distinguish this oracle from the one that
outputs (a, b), with b uniform over R/Z. The Ring-LWE setup is described in a more algebraic
environment, where the sample spaces are algebraic objects isomorphic to Znq . It is well-known that
the ring of integers of K is the ring of integer polynomials OK := Z[x]/(xn + 1). Observe that OK
is a Z-module of rank n, much like an integer lattice. Further, one can also define the dual O∨K of
OK , exactly like the dual of a lattice.5 There is a canonical way of embedding the field K into Rn
(more accurately, a copy of Rn that lies inside Cn), with the so called Minkowski embedding of K.
The R-vector space generated by the image of K is denoted by KR. Under this embedding one can
view ideals in K as lattices in KR. For a modulus q, the Ring-LWE problem is defined as follows:

for a secret polynomial s ∈ O∨K
qO∨K

, the adversary gets access to an oracle that outputs pairs of the

form

(a,
1

q
· a · s+ e) ∈ OK

qOK
× KR
O∨K

5Formally this is done by replacing the Euclidean inner product by its number-theoretic analog, the bilinear
Trace map Tr : K ×K → Q. The trace coincides with the Hermitian inner product on the Minkowski space KR, as
〈σ(x), σ(y)〉 := Tr(xy), where σ(x), σ(y) are the images of x, y in KR, respectively, and σ(y) is the complex conjugate
of σ(y).
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where a is drawn uniformly over OKqOK , and e is drawn from a small Gaussian over KR. Intuitively,
in this case, e can be thought of as a polynomial with very small coefficients. The goal of the
adversary here is to distinguish between the output of this oracle and the output of an oracle that
gives uniform pairs over the same domain.

The Order-LWE problem is a genuine generalization of the Ring-LWE problem. For, once OK
is replaced by an order, a full rank sub-ring of OK , the problem is defined exactly as above. Some
simple examples of orders to keep in mind could be the ring OK itself, or Z+ dOK , for any integer
d, or the ring of integer polynomials modulo f , Z[x]/(f), if the field in discussion is defined as
K = Q[x]/(f).

Extended hardness result of Order-LWE (Section 4). The authors in [BBPS19] defined
the Order-LWE problem and showed that this problem is as hard as solving lattice problems on
the ‘invertible’ ideal (lattices) of the Order. When specialized to the order OK , this is the hardness
result as proved in [LPR10, PRSD17], where there is no mention of invertibility of the ideal lattices
considered, since all OK-ideals are invertible. This distinction only arises when working with ideals
of a proper order O ( 6= OK). As the proof of the O-LWE hardness result given in [BBPS19]
followed the exact same blueprint described for the hardness of Ring-LWE, it needed to convert
BDD (Bounded Distance Decoding) samples on O-ideals to LWE samples. Prior to this work,
this conversion was accomplished by using the so-called Cancellation lemma, which necessarily
required the ideal to be invertible. That was the only reason the O-LWE hardness result needed
to be restricted to this sub-class of O-ideals. In this work, we show that the conclusion of the
cancellation lemma holds even if the ideal is not invertible, as long as we choose the modulus q
to be coprime to the index [OK : O]. We use the generalization of ideal factorization, known as
Jordan-Hölder filtration for a non-invertible ideal I ⊆ O, to show that there exists an invertible
ideal p such that I ⊆ p ⊆ O and the index [p : I] is coprime to q. The coprimality condition implies
an isomorphism I/qI ' p/qp. Composing this isomorphism with the cancellation lemma, for p now
is invertible in O, we get that I/qI ' O/qO.6 This is exactly what was missing in the hardness
proof in [BBPS19], as the rest of the argument is exactly as it is there. Under the coprimality
condition, (q, [OK : O]) = 1, we also show that the dual and the primal O-LWE problems are
equivalent, thereby further strengthening the hardness result for the dual O-LWE problem, as well.

In this section, we also extend the Ring-LWE hardness result. The strengthened result now
includes solving lattice problems (DGS) for lattices that are not necessarily ideals in the ring of
integers, but rather ideals in orders whose index is coprime with the Ring-LWE modulus. However,
this comes with a cost on the approximation factor (for DGS) if the lattice is not an OK-ideal.
The cost is directly related to the conductor of the ring of multipliers of the lattice. This result
generalizes the O-LWE to OK-LWE reduction proved in [BBPS19, Cor 5.2]. The above results hold
for any number field K. See Section 4 for full statements and proofs.

Equivalence of Order-LWE and (unstructured) LWE (Section 5). Let K be the power-
of-two cyclotomic and let p be a prime such that pOK = p1p2 . . . pn, where pi’s are prime ideals in

6A concurrent work, namely an updated version of [PP19], showed that Cancellation Lemma also holds for non-
invertible ideals, but requires instead invertibility modulo an ideal J . In our case, this ideal J is qO and they remark
that all fractional ideals are invertible modulo qO, due to the coprimality condition, (q, [OK : O] = 1). Therefore,
this lemma provides an isomorphism O/qO ' I/qI, for all fractional ideals I and thus, an alternative proof to ours.
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OK . Then, the following chain of orders exists

OK ⊇ Z + p1 ⊇ Z + p1p2 . . . ⊇ Z + p1 · · · pn−1 ⊇ Z + pOK

As proven in [PP19, Thm. 4.3], for orders O′ ⊆ O, there is an error preserving reduction from
O-LWEq to O′-LWEq, as long as the modulus q is coprime to [O : O′]. Therefore we can derive the
following chain of error preserving reductions, as long as (p, q) = 1,

OK-LWEq → Z + p1-LWEq → . . .→ Z + p1 · · · pn−1-LWEq → (Z + pOK)-LWEq

Observe that the Z-basis of the order Z+ pOK is given by the set {1, pζ, . . . pζn−1}, as OK = Z[ζ],
with ζ a primitive root of unity. For a large p, one of these basis elements is much shorter than
the rest. It is in this sense that we call this order ‘skewed’. We show that this Order-LWE
problem, with the error sampled from a spherical Gaussian distribution Dα over KR, is equivalent
to the unstructured LWE problem. We show that if p ≥ 1

α , then this error drowns the last n − 1
coordinates of KR/O∨ and it is only the coefficient corresponding to the basis element 1 that
survives and looks like the second coordinate of an LWE sample. To get an intuitive idea, observe
that the set (Z + pOK)∨, in this special case, looks like

(Z + pζZ + . . . pζn−1Z)∨ =
1

n
Z +

1

pn
ζZ + . . .

1

pn
ζn−1Z

Consider a noise term e drawn from a spherical (in KR) Gaussian Dα.7 Its coefficients in this basis
are Gaussian with a diagonal covariance matrix whose diagonal entries are (α2n, α2p2n, . . . , α2p2n).
In the specified choice of parameters, αp

√
n is greater than the smoothing parameter of Z, thereby

proving that the last n − 1 coefficients of e are indistinguishable from uniform elements in R/Z.
Whereas the first coefficient looks like a part of a LWE-sample with error from Dα

√
n. In Section 5,

we show how to extend these results to any number field K. This requires a more involved analysis
since the covariance matrix of the Gaussian over the basis of the order is no longer diagonal which
makes it much more difficult to analyze.

Finding the conductor of rings of multipliers for p-ary lattices (Section 6). We embed
p-ary integer lattices into number fields to analyze the hardness and the possibility of solving short
vector problems on it. An integer lattice L is said to be p-ary if it is periodic mod p, where p is a
rational integer. Common examples are the lattices that are induced by from the LWE [Reg05] or
SIS [Ajt96] problems. We consider the specific case where p is prime. The aforementioned results
show that solving lattice problems on p-ary lattices imply that they can be solved on arbitrary
lattices, and therefore it is still useful to consider this seemingly restricted class of lattices.

We show that L is always an ideal of the order Z + pOK . Recall that, in the power of two
cyclotomic, the Order-LWE problem for Z+pOK is as hard as the LWE problem, so solving lattice
problems on L is still as hard as solving the unstructured LWE. Therefore, so far, the additional
algebraic structure does not improve the chances of solving lattice problems on L. But this might
not be the full ring of multipliers for L. Let OL denote the ring of multipliers and let CL be its
conductor ideal: it is the set of all elements in OL such that multiplying OK by them embeds OK

7The Order-LWE problem is often considered with noise that is sampled from an elliptical Gaussian, or even a
family of elliptical Gaussians, but we can simply consider the largest spherical Gaussian that is contained in that
distribution.
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into OL. We use the fact that the conductor is the largest OK-ideal contained in OL to conclude
that CL | pOK . This is the starting point for the algorithm described in Section 6, that on input
the HNF basis for L, outputs the prime decomposition CL into prime ideals sitting over pOK in
K. The correctness of the algorithm relies on the interplay between ideal decomposition in OK
and factorization of the polynomial xn + 1 in Fp[x]. The algorithm also reveals information about
the conductor in non-monogenic fields, under a coprimality condition. See the discussion before
Subsection 6.1 for details.

Preservation of the geometry when (coefficient) embedding p-ary integer lattices into the power
of two cyclotomic extension was lucrative enough a reason for us to measure the proportion of the
subset of p-ary lattices whose ring of multipliers equals Z+pOK , to the full set of p-ary lattices. In
Subsection 6.2, we fix an integer k ≤ n and count the number of p-ary lattices, L of determinant
equal to pk such that OL = Z + pOK . We find that this set is significantly large in size.

2 Preliminaries

We describe the well-known results and the standard notations. Given a distribution D, when
writing x ← D, we mean an element x sampled from this distribution. Given a set X, we denote
by U(X), the uniform distribution over this set. For a vector x ∈ Cn, we let ‖x‖ be its Euclidean
norm, defined as ‖x‖ = (

∑
i=1 |xi|2)1/2. We denote by (ei)1≤i≤n the canonical basis of Rn, where

ei is the vector with 1 on the i-th entry and zeros elsewhere. For a prime integer p, we denote by
Fp, the finite field with p elements, which is identified with the ring of residue classes modulo p, Zp.
We use the standard big-O notation for classifying the growth of functions and say f(n) = Õ(g(n))
if f(n) = O(g(n) · logc n), for a constant factor c. We also let f(n) = poly(n), for f(n) = O(nc)
and a constant c.

2.1 The Space H

To be able to speak about the geometric properties of a number field K, we embed it into the
following space,

H = {x ∈ Rs1 × C2s2 |xs1+s2+j = xs1+j , for any 1 ≤ j ≤ s2}.

H is an n-dimensional vector space over R, equipped with the inner product induced on Cn, and
hence isomorphic to (a copy of) Rn. It has a special orthonormal basis (hi)1≤i≤n given by the
columns of the following matrix:

B =

Ids1×s1 0 0
0 1√

2
Ids2×s2

i√
2
Ids2×s2

0 1√
2
Ids2×s2

−i√
2
Ids2×s2


This is the space KR, up to an isomorphism, mentioned in the introduction.

2.2 Lattices

Given a finite dimensional vector space V over R (e.g. Rn or H ⊆ Cn) a Z-lattice L is an (discrete)
additive group generated by a set (basis) B = {v1,v2, . . . ,vk} ⊆ V of elements that are linearly

9



independent over R. In other words,

L := {
k∑
i=1

aivi : ai ∈ Z,vi ∈ B}

The integer k is called the rank of the lattice L and when k = dimRV , the lattice L is said to be
of full rank. The determinant of the lattice, det(L) :=

√
det(〈vi,vj〉)i,j , and is independent of the

choice of the basis. Under the inner product of V , the dual lattice L∗, is of the same rank as L,
and is defined as

L∗ := {v ∈ V : 〈v,x〉,∈ Z ∀x ∈ L}

Let B(0, r) denote the closed Euclidean ball of radius r around 0. The successive minimum of the
lattice L is defined as

λi(L) := inf{r > 0 : rankZ(spanZ(L ∩B(0, r))) > i}

Lemma 2.1 ([Ban93]). 1 ≤ λ1(L) · λn(L∗) ≤ n.

2.2.1 Gaussians and Smoothing Parameter facts

Let V be a real inner product space of dimension n with an orthonormal basis (vi)1≤i≤n, e.g.,
Rn with the canonical basis or H with the basis B. We identify an element x ∈ V in a unique
way with a vector x ∈ Rn, of its coordinates with respect to this basis. Recall that a symmetric
matrix Σ ∈Mn(R) is said to be (semi) positive definite if xTΣx > 0 (or xTΣx ≥ 0, resp.), for any
non-zero x ∈ Rn. This property puts a partial order on the set of symmetric matrices; Σ1 ≥ Σ2 if
xT (Σ1 − Σ2)x ≥ 0, for any non-zero x ∈ Rn.

Definition 2.2. For a positive definite matrix Σ ∈ Mn(R) and a mean vector c ∈ Rn, define the

Gaussian function ρc,
√

Σ : V → (0, 1] as ρc,
√

Σ(x) = e−π(x−c)TΣ−1(x−c). We denote by Dc,
√

Σ, the
normalized continuous Gaussian distribution over V corresponding to ρc,

√
Σ.

When c is the zero vector, it is dropped from the subscript. When Σ = diag(r2
i ), for some

r = (r1, . . . , rn) ∈ Rn, the distribution is called an elliptical Gaussian and is denoted as ρr and Dr.
If all ri’s equal r, it is called a spherical Gaussians and is written as ρr and Dr. We will frequently
use the fact that if x follows a Gaussian distribution of covariance matrix Σ, i.e., x ← D√Σ,
then Tx ← D√TΣT ∗ , where T is a linear transformation on V , and T ∗ is the conjugate-transpose
operator.

Proposition 2.3. [Was04, Thm 2.44] Let X be a Gaussian vector over Rn of covariance matrix
Σ. Suppose X splits as X = (Xa, Xb) and its covariance matrix is written accordingly as:

Σ =

(
Σaa Σab

Σba Σbb

)
.

Then,
i) the marginal distribution of Xa is a Gaussian distribution of covariance matrix Σaa, and
ii) the conditional distribution of Xb, given the value for Xa as xa, is a Gaussian distribution of
covariance matrix Σbb − ΣbaΣ

−1
aa Σab and mean ΣbaΣ

−1
aa xa.

10



When working with elliptical Gaussians over H, we restrict our parameters to belong to the set
G = {r ∈ (R+)n| rs1+s2+j = rs1+j , 1 ≤ j ≤ s2}. We say that r1 ≥ r2 if r1i ≥ r2i, for all 1 ≤ i ≤ n,
and by r ≥ r we mean that ri ≥ r, for all 1 ≤ i ≤ n. Given a lattice L in V and a real positive

definite matrix Σ, we define the discrete Gaussian distribution DL,
√

Σ on L as DL,
√

Σ(x) :=
ρ√Σ(x)

ρ√Σ(L) ,

for any x ∈ L.

Definition 2.4 (Smoothing Condition [Pei10, Def 2.2, 2.3]). For a lattice L in V of rank n and a
parameter ε > 0, we define the smoothing parameter of L, ηε(L), as the smallest r > 0 such that
ρ1/r(L∗\{0}) ≤ ε. For a positive definite matrix Σ, we say that

√
Σ ≥ ηε(L) if ρ√

Σ−1(L∗\{0}) ≤ ε.

Lemma 2.5. If L′ ⊆ L are two full-rank lattices in V , ε ∈ (0, 1) and
√

Σ ≥ ηε(L′), then the
statistical distance between DL,

√
Σ mod L′ and the uniform distribution over L/L′ is at most 2ε.

Proof. Its proof is the same as of [GPV08, Cor. 2.8] but uses [Pei10, Lem. 2.4] instead of [GPV08,
Lem 2.7].

Lemma 2.6. Let L be a full-rank lattice in V . Then the following hold:

(i) [MR07, Lem 3.2, 3.3] ηε(L) ≤
√
n

λ1(L∗) , for ε = 2−Ω(n). Moreover, for any positive ε > 0,

ηε(L) ≤
√

ln(2n(1+1/ε))
π · λn(L).

(ii) [Reg09, Claim 2.13] ηε(L) ≥
√

ln(1/ε)
π · 1

λ1(L∗) , for any ε ∈ (0, 1).

From Lemma 2.6 (i), (ii), we deduce that for ε = e−n, ηε(L) = θ(
√
n)

λ1(L∗) .

2.2.2 Lattice problems

Let L be a full-rank lattice in a n dimensional real space V . We state in the following the standard
lattice problems:

Definition 2.7 (Shortest Independent Vector Problem). For an approximation factor γ = γ(n) ≥
1 and a family of lattices L, the L-SIVPγ problem is: given a lattice L ∈ L, output n linearly
independent lattice vectors of norm at most γ · λn(L).

Definition 2.8 (Discrete Gaussian Sampling). For a family of lattices L and a function γ : L →
G = {r ∈ Rn| rs1+s2+j = rs1+j , 1 ≤ j ≤ s2}, the L-DGSγ problem is: given a lattice L ∈ L and
r ≥ γ(L), output a sample x ∈ L which follows a distribution statistically indistinguishable from
DL,r.

Definition 2.9 (Bounded Distance Decoding). For a family of lattices L and a function δ : L →
R+, the L-BDDδ problem is: given a lattice L ∈ L, a distance bound d ≤ δ(L) and a coset e + L,
where ‖e‖ ≤ d find e.

Definition 2.10 (Gaussian Decoding Problem [PRSD17]). For a lattice L ⊂ H and a Gaussian
parameter g > 0, the L-GDPγ problem is as follows: given as input a coset e + L, where e ∈ H is
drawn from Dg, output e.

We recall here the reduction from SIVP to DGS from [Reg05].

Lemma 2.11 ([Reg05, Lem 3.17]). For ε = ε(n) ≤ 1
10 and γ ≥

√
2ηε(L), there is a reduction from

SIVP2
√
n/λn(L)·γ to DGSγ.

11



2.2.3 p-ary lattices

For an integer p, an integer lattice L ⊂ Zn is said to be a p-ary integer lattice of determinant pk,
with k ≤ n, if pZn ⊆ L ⊆ Zn, and [Zn : L] = pk. For our purpose, we choose p to be a small prime
with O(log k) bits and n = O(k). It is well-known that such a p-ary lattice L can be generated as
AZn−kp + pZn, for a full-rank matrix A ∈ Mn×n−k(Fp), where Fp (or Zp) is the finite field with p
elements.

Lemma 2.12. The HNF basis for L is given by the columns of:(
Idn−k×n−k 0

A2A
−1
1 pIdk×k

)
where At = (At1|At2), with an invertible A1 ∈Mn−k(Fp) and A2 ∈Mk×n−k(Fp).

Proof. Let x ∈ L. Then, x ≡ A · z mod p, for z ∈ Fn−kp . Split x as (x1|x2), for x1 ∈ Zn−k

and x2 ∈ Zk. Then, x1 ≡ A1 · z mod p and x2 ≡ A2 · z mod p. Since A1 is invertible over Fp,
one may write x2 ≡ A2A

−1
1 x1 mod p, thereby showing that any x ∈ L can be represented as

(x1|A2A
−1
1 x1 + p · u), for some u ∈ Zk. Notice that this basis coincides with the HNF basis of the

lattice.

Owing to the results of [Ajt96, Reg05], it is sufficient to solve lattice problems on p-ary lattices,
as solving lattice problems on p-ary lattices is at least as hard as solving lattice problems on general
integer lattices.

2.3 Lattices in number fields: Orders and Ideals

A number field K := Q(θ) of degree n is a Q-vector space obtained by attaching a root θ of a
monic, irreducible polynomial f(x) of degree n. It is well-known that each such K has exactly
n field embeddings σi : K → C, that map θ to each complex root of the minimal polynomial
f . Embeddings whose image lies in R are called real embedding, otherwise it is called a complex
embedding. The canonical (or Minkowski) embedding σ : K → Cn is defined as:

σ(x) = (σ1(x), σ2(x), . . . , σn(x)), for any x ∈ K.

The image σ(K) generates the n-dimensional real vector space KR that is isomorphic to the space
H. We use KR and H interchangeably. By a lattice in K, we mean the image in KR, of a Z-module
in K. The most extensively studied lattice in K is its ring of integers

OK := {β ∈ K : ∃ (monic) g(x) ∈ Z[x] such that g(β) = 0}

This ring is a full-rank lattice in K, i.e., rankZ OK = n. A sub-ring O of OK satisfying rankZ O =
n is said to be an Order. In other words, an order O equals Zg1 ⊕ . . . ⊕ Zgn, for some basis
{g1, g2, . . . , gn} ⊆ O of K/Q. The set of all orders is a partial ordered set with respect to set
containment and has OK as the unique maximal element.

Lemma 2.13. Let O be an order in K. Then, O has a Z-basis containing 1.

12



Proof. Let the notation A
φ→ B

ψ→ C mean that φ(A) ⊆ ker(ψ) := {b ∈ B : ψ(b) = 0}. Then, the
following is a short exact sequence of Z-modules, where the second map is inclusion and the third
map is the projection.

0→ Z→ O → O/Z→ 0

To prove the claim, it suffices to show that O/Z is a torsion free Z-module, and hence a free Z-
module, [DF91, Chapter 12.1, Thm 5], as that would imply that the above sequence splits, i.e.,
O = Z⊕O/Z. See [Chu, Lem. 2]. Then, a Z-basis for O is the union of a Z-basis for O/Z and 1,
a Z-basis for Z.

Finally, in order to see that O/Z is torsion free, assume, to the contrary, that there is a non-zero
x ∈ O/Z, such that mx = 0 mod Z. Then x ∈ 1

mZ ∩ O ⊆ Q ∩ OK = Z, by definition of the ring
of integers OK .

Another important class of full-rank lattices in K that we study are ideals in K. An (integral)
ideal I in O is an additive subgroup that is closed under scalar multiplication by O, i.e. x · a ∈ I
for every x ∈ O and a ∈ I. Every ideal is a Z-module of rank n. Further, ideals in K can be
thought of as integers in Z, since they can be added, mutliplied and (sometimes) divided. The sum
of two ideals I,J ⊆ O is defined by I + J := {x+ y | x ∈ I, y ∈ J }, and their product is defined
by I · J := {

∑
xiyi | xi ∈ I, yi ∈ J }. Their intersection is simply their set theoretic intersection,

and their quotient is defined by (I : J ) := {x ∈ K | xJ ⊆ I}. All of the former sets are ideals in
O.

An integral ideal p ⊂ O is prime if for every pair of elements x, y ∈ O, whenever xy ∈ p, then
either x ∈ p or y ∈ p. Every integral ideal I of O contains a product of prime ideals I ⊇

∏
pi.

Integral ideals I,J of O are coprime, if I + J = O and therefore we also have, IJ = I ∩ J and
(I ∩ J )L = IL ∩ JL, for any ideal L. For an integral ideal I ⊆ O, the set of associated primes of
I is the set of all prime ideals of O that contain I. We state the well-known Chinese Remainder
Theorem.

Theorem 2.14 (Chinese Remainder Theorem). Let I be a fractional ideal over an order O and
J1,J2, . . . ,Jl pairwise coprime O-ideals. Then the canonical map of O-modules

I/
∏
i

IJi →
⊕
i

I/IJi

is an isomorphism.

The norm of an ideal I ⊂ O is its index as a subgroup of O, i.e. N(I) := [O : I] = |O/I|. For
the special case where O = OK is the maximal order, the norm is a multiplicative function, i.e.
N(IJ ) = N(I) ·N(J ) for any integral I,J .

A fractional ideal I ⊂ K of O is a set such that dI ⊂ O for some d ∈ O. We define its norm to
be N(I) := N(dI)/ |N(d)|. Note that for any fractional ideals I,J , their sum, product, quotient
and intersection are again fractional ideals.

Lemma 2.15 ([BBPS19, Lem 2.21]). Let K be a number field of degree n and I an ideal over an
order O. Then √

n ·N(I)1/n ≤ λ1(I) ≤
√
n ·N(I)1/n ·∆1/n

O .

Remark 2.16. Since every order O contains 1, it follows that λ1(O) ≤
√
n. On the other hand,

the first part in the inequality of Lemma 2.15 tells that λ1(O) ≥
√
n, since N(O) = 1. This proves

that λ1(O) is exactly
√
n.
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A fractional ideal I is invertible if there exists a fractional ideal J such that I ·J = O. If there
exists such a J , then it is unique and equal to (O : I), and is denoted by I−1. In general, an ideal
in an order may not be invertible. However, in the special case where O = OK is the maximal
order, every fractional ideal is invertible. Later, we will describe a criterion for an O-ideal to be
invertible when we define the conductor ideal below.

The following lemma, popularly known as the Cancellation Lemma, plays a crucial role in the
hardness result for algebraic LWE’s. Note that it uses the invertibility of the ideal I.

Lemma 2.17 ([BBPS19, Thm 2.35]). Let I and J be integral ideals of an order O and M a
fractional ideal. Assume that I is an invertible ideal. Then, given the associated primes p1, . . . , pr
of J , and an element t ∈ I \

⋃r
i=1 Ipi, the multiplication by t map θt, θt(x) = t · x, induces the

following isomorphism of O-modules

M
JM

∼−→ IM
IJM

.

This map can be efficiently inverted using I, J , M and t can be found using I and p1, . . . , pr.

Remark 2.18. The above result is proved in [BBPS19, Thm 2.35] under a condition weaker than
demanding that I be an invertible O-ideal. The proof only requires the tuple (t, I,J ,M) to satisfy
tM+ IJM = IM.

In the improved hardness result in Section 4.1, we will deal with the scenario of non-invertible
ideals. To circumvent this issue, we use the following result, which shows that under a coprimality
condition, the inclusion induces an isomorphism.

Lemma 2.19 ([PP19, Lemma 4.1]). Let L′ ⊆ L be two lattices in a number field K and q an
integer coprime with [L′ : L]. Then the natural inclusion L′ ⊆ L induces a bijection

f :
L′

qL′
∼
↪→ L

qL
f(x) = x+ qL.

Moreover, this map is efficiently computable given a basis of L′ relative to a basis of L.

We denote by
∼
↪→ the isomorphism induced by the inclusion considered.

2.3.1 Duality

For an element a ∈ K, the trace Tr(a) is the sum
∑n

i=1 σi(a), of images of a under all the
embeddings of K. In other words, it is the sum of all coordinates of σ(a).

Definition 2.20. The dual of the lattice L is defined as

L∨ = {x ∈ K| Tr(x · L) ⊆ Z}.

Recall that H ⊆ Cn inherits the usual Hermitian inner product from Cn. As, for x, y ∈ K,

Tr(xy) =
n∑
i=1

σi(xy) =

n∑
i=1

σi(x)σi(y) = 〈σ(x), σ(y)〉

we have the following relation between the duals; σ(L∨) = σ(L)∗.
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Proposition 2.21 ([Conc, Section 3], [Conb, Section 4]). For any two lattices I and J in a number
field K:
i) (I∨)∨ = I.
ii) if I ⊂ J , then J ∨ ⊂ I∨.
iii) if I is an O ideal, then I · I∨ = {x ∈ K|xI ⊆ I}∨ ⊆ O∨. If O = OK , equality holds.
iv) if I,J are ideals over O and I is invertible, then (IJ )∨ = I−1J ∨.

Proposition 2.22 ([Conc, Thm 3.7]). If O = Z[x]/(f), for a monic polynomial f and some root
θ ∈ K, then O∨ = 1

f ′(θ)O.

2.3.2 The Ring of Multipliers

For any lattice L in a number field K, we define a multiplier of L as an element x ∈ K such that
xL ⊆ L. It turns out that the set of these multipliers has a ring structure, and moreover, form an
order in the field K. For more details, see [Neu99, Chapter 1, Sect.12].

Definition 2.23. For a lattice L ⊂ K, we define its ring of multipliers as

OL = {x ∈ K| xL ⊆ L}.

Both L and L∨ are ideals of OL. In fact, OL is the largest such order. In particular, if the
lattice L is an order itself, then it is its own ring of multipliers. The following is an interesting and
important characterisation of OL.

Proposition 2.24 ([Conb, Rem 4.2]). For any lattice L ⊂ K, O∨L = LL∨.

2.3.3 The Conductor Ideal

The non-maximality of an order O is reflected in a special ideal of O called the conductor ideal.
We describe how this ideal is also closely related to the invertibility and unique factorization of
O-ideals.

Definition 2.25. The conductor of an order O is defined to be the ideal

CO = (OK : O) := {x ∈ K : x · OK ⊆ O}.

It is the maximal OK-ideal contained in O.

We remark that one may define the conductor ideal in a more general scenario: when two orders
O1 and O2 may not be ordered with respect to set containment. In this case, the conductor of
O1 with respect to O2 is the biggest O2-ideal contained in O1 and is defined as CO1,O2 := {x ∈
K| xO2 ⊆ O1}. The proof is exactly the same as in the case when O2 = OK . The following lemma
describes the relation between the conductor and the duals of the orders. It is a generalization of
[BBPS19, Lemma 2.32, Remark 2.33].

Lemma 2.26. Let O1 and O2 be two orders in K and let C := CO1,O2 be as defined above. Then,
O2 · O∨1 = C∨. Further, if C is an invertible O2-ideal, then

CO∨1 = O∨2 .
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Proof. By the definition of the dual of an ideal (Definition 2.20),

(O2 · O∨1 )∨ = {x ∈ K| Tr(xO2 · O∨1 ) ⊆ Z}
= {x ∈ K| x · O2 ⊆ (O∨1 )∨ = O1}
= C.

Therefore, C∨ = O2O∨1 . Using invertibility of C as an O2-ideal, we get that C∨ = C−1O∨2 . Inserting
this in the equality above yields the final claim.

There is a distinction between O-ideals, based on invertibility. This distinction did not exist
when dealing with OK-ideals, since all OK-ideals are invertible. But the picture is not all that bad.

Theorem 2.27. [Conb] The nonzero O-ideals coprime to CO are invertible and also have unique
factorization into prime ideals over O. Further, they are in a multiplicative bijection with the set
of nonzero OK-ideals coprime to CO, via the maps I 7→ IOK and J 7→ J ∩ O.

2.3.4 Localization

We only describe the results used in the next section. To understand the concept of localization
more thoroughly, we refer the reader to [Neu99, Ch. 1].

Definition 2.28. Let p be a prime ideal of an order O. Localization of O at p is defined as the
following set

Op =
{r
s
| r ∈ O, s /∈ p

}
.

It is straightforward to check that Op is a ring. Further, it has a unique maximal ideal, namely
pOp, and therefore is a local ring. The complement of the unique maximal ideal is the group of

units, O∗p :=
{
r
s | r, s /∈ p

}
. The ideals of Op are the sets IOp =

{
r
s | r ∈ I, s /∈ p

}
, for any ideal I

of O. Notice that for ideals I such that I * p, we have 1 ∈ Ip, hence IOp = Op. Localization also
behaves nicely when performing ideal operations. In particular, for any fractional O-ideals I and
J and a prime O-ideal p, (IJ )p = IpJp and (I/J )p ' Ip/Jp. Moreover, we can extend O-module
maps f : I → J to maps fp : Ip → Jp as fp(r/s) := f(r)/s.

We recall that if p is an invertible prime ideal, then Op is a Discrete Valuation Ring, and hence
a Unique Factorization Domain, i.e. any proper ideal of it can be written as a unique product of
prime ideals. ([Ste08, Prop 5.4], [DF91, Chapter 8.3,Thm 12])

2.3.5 Jordan-Hölder filtrations

It is a well-known fact from algebraic number theory that OK is a Dedekind domain, i.e., every ideal
in OK can be uniquely decomposed into prime ideals in OK , much like the unique factorization of
integers into prime number. This property is not true for ideals in a (non-maximal) order. However,
the Jordan-Hölder filtrations may be considered as the analog of unique decomposition into prime
ideals for O-ideals, when O is a non-maximal order. Let m = [OK : O] be the index of O in OK .
As mOK is an OK-ideal contained in O, we have CO|mOK . Define, for an ideal I of a ring R,
SpecR(I) to be the set of prime ideals in R that contain I. This set coincides with the set of
associated primes of I, defined previously in Section 2.3.
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Theorem 2.29 ([Cone, Thm 8.9]). Let O be an order. Then for any integral ideal I there is a
descending chain of ideals

O = I0 ⊃ I1 ⊃ . . . ⊃ Il = I, (2.3.1)

where each quotient Ii/Ii+1 is a simple O-module. Moreover, for any 0 ≤ i ≤ l−1, Ii/Ii+1 ∼ O/pi
for some prime ideal pi of O. These primes are the primes of O that contain I and their number

is independent on the choice of the series. Furthermore, [O : I] =
l−1∏
i=0

[O : pi].

Definition 2.30. A finite chain for an O-ideal I as in Theorem 2.29 is called a Jordan-Hölder
filtration of I.

Lemma 2.31 (Restatement of [Cone, Theorem 8.6]). Let q be a prime ideal in O that does not lie
in SpecO(mO). Then, q is invertible.

Proof. As q + mO, the two ideals are co-maximal, i.e. q + mO = O. Let π + mb = 1, for some
π ∈ q and b ∈ O.

Consider the ideal q̃ := {y ∈ K : yq ⊂ O}. By [Cone, Thm 3.2, Section 8], O ( q̃. Choose
x ∈ q̃ \ O. Then, q ⊆ q + xq ⊆ O. As q is a maximal ideal, we have the following two cases.
Case 1: q + xq = O. Then, q(O + xO) = O and q is invertible.
Case 2: q + xq = q. This implies that xq ⊂ q. Since q is a finitely generated Z-lattice, we get that
x ∈ OK . Then,

x = x · 1 = x · (π +mb) ∈ xq +mOK ⊂ q +O = O

This contradicts the fact that x /∈ O.

Remark 2.32. Observe that if q is a non-invertible prime, then by Lemma 2.31, q ⊇ mO, and the
index [O : q] | [O : mO] = mn. Therefore, SpecZ([O : q]) ⊆ SpecZ(m).

Lemma 2.33. Let I be an integral O-ideal. Then, there exists an invertible ideal q such that
I ⊆ q ⊆ O and SpecZ([q : I]) ⊆ SpecZ(m), where [q : I] denotes the index of I in q.

Proof. Without loss of generality, we assume that I is a non-invertible O-ideal and SpecZ([O :
I]) * SpecZ(m). For if ([O : I],m) = 1, then I is an invertible O-ideal. Further, if SpecZ([O :
I]) ⊆ SpecZ(m), we may choose q = O. By [Cone, Thm 8.9], every integral O-ideal I has a
Jordan-Hölder filteration, i.e, there exist O-ideals I0, I1, . . . , Il such that

O = I0 ⊃ I1 ⊃ I2 · · · ⊃ Il = I

where each quotient Ii/Ii+1 is a simple O-module and hence isomorphic to O/pi, for some prime

ideal pi of O. Further [O : I] =

l−1∏
i=0

[O : pi].

Let p be an invertible ideal that appears as a Jordan-Hölder factor of I, with multiplicity mp.
We claim that I ⊂ pmp .

Consider the localization of O at p, Op, and the following chain:

Op = I0Op ⊃ I1Op ⊃ I2Op · · · ⊃ IlOp = IOp (∗)
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If Ii/Ii+1 ' O/q, for q 6= p, then IiOp = Ii+1Op. This is true, as

Ii/Ii+1 ' O/q =⇒ Ii ⊇ Ii+1 ⊇ qIi
=⇒ IiOp ⊇ Ii+1Op ⊇ qOpIiOp = IiOp,

where the last equality follows from the fact that q 6= p. If Ii/Ii+1 ' O/p, then IiOp/Ii+1Op '
Op/pOp = O/p, as localization behaves nicely with respect to isomorphisms. (Section 2.3.4) There-
fore, the series (∗) is the Jordan-Hölder filteration of IOp as an Op-ideal. Recall that p is invertible
and therefore, the local ring Op is a Discrete Valuation Ring (DVR) ([Ste08, Prop 5.4]), and hence a
Unique Factorization Domain (UFD). ([DF91, Chapter 8, Thm 12]). By uniqueness of the Jordan-
Hölder filteration, we get that IOp = (pOp)

mp . This shows that I ⊂ IOp∩O = (pOp)
mp∩O = pmp .

Let pi (resp, p′j) the invertible (resp, non-invertible) ideals that appear as Jordan-Hölder factors of

I, with multiplicity mi (resp, m′j). We claim that I ⊆ q :=
∏
i

pmii .

Recall that, for each invertible factor pi, the ideal I ⊂ pmii . As the factors pmii ’s are pairwise
prime, we get

I = I(pm1
1 + pm2

2 ) ⊆ pm1
1 pm2

2

Continuing similarly, we get that I ⊆ q.
Finally, for the index discussion, observe that

[q : I] =
[O : I]

[O : q]

=

∏
i

[O : pi]
mi ×

∏
j

[O : p′j ]
m′j

∏
i

[O : pmii ]

=
∏
j

[O : p′j ]
m′j

Since q :=
∏
i

pmii , it follows from the Chinese remainder theorem (Theorem 2.14) that [O : q] =∏
i

[O : pmii ]. Moreover, since each pi is invertible, the quotients pni /p
n+1
i and O/pi are isomorphic

(Lemma 2.17) and hence [O : pmii ] = [O : pi] · [pi : p2
i ] · . . . · [p

mi−1
i : pmii ] = [O : pi]

mi . Moreover,
the non-invertible Jordan-Hölder factors contain mO, by Lemma 2.31. By Remark 2.32, SpecZ([q :
I]) ⊆ SpecZ(m).

2.3.6 The Order LWE problem

There is a line of work in studying algebraic versions of LWE: Ring-LWE [LPR10], Polynomial-LWE
[SSTX09], Order-LWE [BBPS19] and L-LWE [PP19]. In this paper we will focus on Order-LWE.
For setting the stage, let K be a number field, O an order in it, Q an integral ideal of O and
u ∈ (O : Q) = {x ∈ K| xO ⊆ Q}. For fractional O-ideals I and J , we denote by IJ := I/J I. We
consider TO∨ := KR/O∨. The Order-LWE distribution and problem are stated as follows:

Definition 2.34 (O-LWE distribution). For s ∈ O∨Q and ψ an error distribution over TO∨ , we
define a sample of the distribution Os,ψ,u over OQ×TO∨ by generating a← U(OQ), e← ψ and by
outputting the pair (a, b = u · a · s+ e mod O∨).
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Definition 2.35 (O-LWE, Average-Case Decision problem). Let ϕ be a distribution over O∨Q and
Υ a family of error distributions over KR. The average case decision O-LWE problem, denoted as
O − LWE(Q,u),ϕ,Υ, requires to distinguish independent samples from the distribution Os,ψ,u, where
s← ϕ and ψ ← Υ and the same number of samples from the uniform distribution over OQ×TO∨ .

If ϕ is the uniform distribution over O∨Q, we drop it from the subscript. We recall that when
O = OK , Q = qOK and u = 1/q, the Order-LWE problem becomes the Ring-LWE problem.

The proof of the hardness results for algebraic LWE (Ring-LWE [LPR10, PRSD17], Polynomial-
LWE [SSTX09], Module-LWE [LS12], Order-LWE [BBPS19]) follow the same blueprint. For a
detailed proof, we refer the reader to [BBPS19]. Briefly, it iterates the following quantum step:
given discrete Gaussian samples and an oracle for algebraic LWE, the quantum algorithm outputs
narrower discrete Gaussian samples. To do this, it first, transforms an O-LWE oracle, using polyno-
mially many discrete Gaussian samples, into a BDD solver, and then uses the BDD solver to output dis-
crete Gaussian samples of narrower parameter. A sufficient condition required to make BDD-samples
on a dual lattice L∨, along with discrete Gaussian samples over L, into O-LWE samples is that
there must exist (O-module) isomorphisms f : L/QL ∼−→ O/qO, and g : O∨/QO∨ ∼−→ L∨/QL∨,
that satisfy the compatibility condition u · z · x = u · f(z) · g−1(x) mod O∨, for all z ∈ L/QL,
x ∈ L∨/QL∨ with u ∈ (O : Q). For efficiency reasons, we require the isomorphisms f and g to be
both efficiently computable and invertible. The compatibility condition yields well-defined LWE
samples. Formally,

Theorem 2.36. Let K be an arbitrary number field of degree n and let O ⊂ K an order. Let
Q be an integral O-ideal, u ∈ (O : Q) and let α ∈ (0, 1) be such that α/‖u‖∞ ≥ 2 · ω(1). Let
S be a subset of O-ideal lattices such that, for any L ∈ S, there exist (O-module) isomorphisms
f : L/QL ∼→ O/QO and g : O∨/QO∨ ∼→ L∨/QL∨, both efficiently computable and invertible, such
that u · z · x = u · f(z) · g−1(x) mod O∨ for any z ∈ L∨/QL∨ and x ∈ L/QL. Then, there is a
polynomial-time quantum reduction from S-DGSγ to O-LWE(Q,u),Υu,α, where

γ = max

{
η(L) ·

√
2/α · ω(1),

√
2n

λ1(L∨)
.

}

Proof. (Overview) We first prove that the compatibility condition yields well-defined Order-LWE
samples. Recall that the isomorphism f maps the discrete Gaussian sample z to the a part of the
LWE sample, whereas the isomorphism g−1 maps the BDD-secret x to the LWE secret s. Then
the compatibility condition yields u · z · x = u · a · s mod O∨. Under well chosen parameters, as
in Lemma [BBPS19, Lem 3.16], the discrete Gaussian distribution over L mod QL is almost the
uniform distribution over L/QL (Lemma 2.5) and since f is an isomorphism, a is almost uniform
over O/QO. Let y = x + e be the BDD coset and e′, an additional error term. Then the LWE
samples are defined as,

(a, b) =(f(z), u · z · y + e′ mod O∨)

=(f(z), u · z · x+ ẽ mod O∨)

=(f(z), u · a · s+ ẽ mod O∨).

For a detailed analysis of the error term, we refer the reader to the proof of [BBPS19, Lem 2.36].
This shows that the compatibility condition implies the well-defined LWE samples and hence the
algorithm in Lemma [BBPS19, Lem 3.16].
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As described earlier, the hardness proof relies on applying Lemma [BBPS19, Lem 3.15] iter-
atively for transforming discrete Gaussian samples into discrete Gaussian samples of a narrower
parameter. This iterative step uses Lemma [BBPS19, Lem 3.16] and Lemma [PRSD17, Lem 6.7].
As a starting point for the iteration, samples from a discrete Gaussian distribution of a large enough
parameter are efficiently generated using [Reg05, Lem 3.2].

Hardness results for Ring-LWE [LPR10] [PRSD17], Polynomial-LWE [SSTX09] and Order-LWE
[BBPS19] use invertibility of the ideal lattices considered, to derive the compatible maps f and g.

Remark 2.37. Although Theorem 2.36 presents the hardness result for Order-LWE, a similar proof
also derives the hardness result for the dual setting of Order-LWE, as defined in [BBPS19, Def 3.3],
where a ∈ O∨/QO∨ and s ∈ O/QO. The only difference consists in switching the maps f and g
in the BDD-to-O∨-LWE reduction.

2.3.7 Gaussian distributions over KR and KR/O∨

The proofs of the following results follow from basic properties of the Gaussian vector distributions.
However, we include the proof of lemma 2.39 here.

Lemma 2.38. Let K = Q(θ) be a number field of degree n. If e = e0 + e1θ+ . . .+ en−1θ
n−1 drawn

from Dα over KR then (e0, e1, . . . , en−1) satisfies the distribution D
α
√

(V f∗V f)−1 over Rn, where Vf

is the Vandermonde corresponding to the roots of θ. In the special case, when K is the power-of-two
cyclotomic extension, the error distribution simplifies to D

α
√

(V f∗V f)−1 = Dα/
√
n.

For an order O ⊆ K, let PO = (Tr(pi · pj))1≤i,j,≤n, such that {pi}1≤i≤n is the Z-basis of O.

Lemma 2.39 ([PP19, Sect 5.3.]). Let e be drawn according to a Gaussian distribution Dα over
KR. Then the coefficients of e with respect to a Z-basis of O∨ satisfy a Gaussian distribution over
Rn of covariance matrix α2 ·PO. In particular, e mod O∨ follows a Gaussian distribution over Rn
mod Zn of the same covariance matrix.

Proof. First, notice that the coefficients of the error with respect to the Z-basis of O∨, p∨, can be
seen from the following vector Tr(e · ~p) = (Tr(e · pi))1≤i≤n. Indeed, let us write e in terms of the
Z-basis elements of O∨ as e = e1p

∨
1 + . . .+ enp

∨
n . By using the linearity of the trace over R, we get

that Tr(e · pi) =
n∑
j=1

eiTr(p
∨
j · pi) = ei.

Recall from Section 2.2.1 that given an orthonormal R basis ~b = (bi)1≤i≤n of KR, sampling e
according to the Gaussian distribution Dα over KR means sampling a vector of coefficients, e, with
respect to this ~b according to the same distribution over Rn. So e = ~bt · e, where e follows the
distribution Dα. Therefore, by using again the linearity of the trace over R, we get the following:

Tr(~p · e) = Tr(~p ·~bt · e) = Tr(~p ·~bt) · e = P tO,~b · e.

Since e satisfies the Gaussian distribution of covariance matrix α2 · Idn×n, it implies that Tr(~p · e)
follows the Gaussian distribution of covariance matrix α2 · P tO,b · PO,b = α2 · PO. This completes
the proof.
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3 Embedding integer lattices in number fields

In this section, we embed (unstructured) integer lattices into a number field and discuss the prop-
erties this algebraic structure yields. These efforts are an attempt to analyze the hardness and the
possibility of solving short vector problems on integer lattices.

Fix a number field K := Q(θ) of degree n. We describe the (inverse of the) well-known coefficient
embedding. Let ~θ = (1, θ, θ2, . . . , θn−1). Let

L = Za1 + Za2 + · · ·+ Zan ⊆ Zn,

be an integer lattice generated by n linearly independent elements a1, . . . ,an ∈ Zn, with ai =
(a1i, a2i, . . . ani)

t. Embed ai in K as ai = 〈ai, ~θ〉 = a1i + a2iθ + . . . + aniθ
n−1. It follows from

the definition of the Trace function on K that ai’s are Z-linearly independent and hence form an
n-dimensional lattice in K. Denote by

L = Za1 + Za2 + · · ·Zan ⊆ Z[θ],

the embedding of L in K via this coefficient embedding.
Let {σi}ni=1 be the set of real and complex embeddings of K. Define the Minkowski embedding;

σ : K −→ Cn as σ(a) = (σ1(a), σ2(a) . . . σn(a)). The R-vector space generated by σ(K) is known
as the Minkowski space KR. Let Vf = (σi(θ

j−1))1≤i,j≤n denote the Vandermonde matrix corre-
sponding to f . Then, the coefficient and the Minkowski embedding are related as follows; for any
a ∈ K, the image σ(a) = Vf · coef(a), where coef(a) ∈ Qn are the coefficients of a with respect to

the power basis ~θ and Vf is the Vandermonde matrix of f , the minimal polynomial for θ ∈ K. In
other words, the image of L, under the Minkowski map, equals the image of L, under the C-linear
transformation defined by Vf : σ(L) = Vf · L. We would like to clarify that we consider σ(L) as a
lattice in KR, which is isomorphic to Rn. Therefore, these lattices can be viewed as lattices in Rn.

3.1 Geometric properties: Relating lattice parameters of L and L

To discuss the geometric properties, we identify L with σ(L). Let sn(Vf ) ≤ . . . ≤ s1(Vf ) be the
singular values of Vf . Recall that the spectral norm of Vf is given by the maximum singular value,
s1(Vf ), whereas the spectral norm of V −1

f is given by the inverse of the smallest singular value,
sn(Vf ). The following result describes how the embedding distorts the Euclidean norm and volume.

Lemma 3.1. Let L be the image of L in K, under the coefficient embedding, with respect to ~θ.
Then,

(i) sn(Vf ) · ‖coef(a)‖ ≤ ‖σ(a)‖ ≤ s1(Vf ) · ‖coef(a)‖, for any a ∈ K,

(ii) sn(Vf ) · λ1(L) ≤ λ1(L) ≤ s1(Vf ) · λ1(L), and

(iii) det(L) = det(Z[θ]) · det(L).

Proof. The proofs follow from the definition of the singular values, the successive minima and the
Minkowski embedding.
(i) Since σ(a) = Vf · coef(a), the norm

‖a‖ := ‖σ(a)‖ = ‖Vf · coef(a)‖ ≤ ‖Vf‖ · ‖coef(a)‖ = s1(Vf ) · ‖coef(a)‖.
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The converse follows similarly, using coef(a) = V −1
f · σ(a) and ‖V −1

f ‖ = 1/sn(Vf ).
(ii) By definition of the coefficient embedding, x ∈ L if and only if x := coef(x) ∈ L. If ‖x‖ = λ1(L),
then by (i),

λ1(L) ≤ ‖x‖ ≤ ‖x‖/sn(Vf ) = λ1(L)/sn(Vf ).

Conversely, let y ∈ L and let y ∈ L be such that y = coef(y). If ‖y‖ = λ1(L), then

λ1(L) ≤ ‖y‖ ≤ s1(Vf ) · ‖y‖ = s1(Vf ) · λ1(L).

(iii) Recall that ~θ forms a Z-basis for the lattice Z[θ]. Let σ1, σ2, . . . , σn denote the n embeddings
of the number field K. Since σi’s are Q-linear maps,

det(L) := det

σ1(a1) . . . σ1(an)
...

. . .
...

σn(a1) . . . σn(an)


= det

σ1(1) σ1(θ) . . . σ1(θn−1)
...

...
. . .

...
σn(1) σn(θ) . . . σn(θn−1)

 · det

a11 a12 . . . a1n
...

...
. . .

...
an1 an2 . . . ann


= det(Z[θ]) · det(L).

Remark 3.2. As L ⊆ Z[θ], the index [Z[θ] : L] = det(L)/det(Z[θ]) = det(L). In particular, in
a monogenic number field K, i.e. OK = Z[θ], we have [OK : L] = det(L) := [Zn : L]. In fact,
the quotient groups OKL and Zn

L are isomorphic. This follows from the definition of the coeffi-
cient embedding and the fact that OK and L are the images of Zn and L, respectively, under this
embedding.

Since the LWE hardness results solve DGS on (relevant) lattices, we analyze how the coefficient
embedding alters DGS on L from DGS on L. The proof follows from basic properties of the Gaussian
vector distribution.

Proposition 3.3. L-DGSα is equivalent to L-DGS
α·
√

(V ∗f Vf )−1.

Proof. Let x = x0 + x1θ + . . . + xn−1θ
n−1 be sampled from the Gaussian Dα over KR. Then, by

Lemma 2.38, the coefficients, x := (x0, x1, . . . , xn−1) ← D
α·
√

(V ∗f Vf )−1 over Rn. The definition of

the coefficient and the Minkowski embedding implies that Dα(x) = Dα(Vf · x) = D
α
√

(V ∗f Vf )−1(x),

for all x ∈ L. It further implies that
∑

x∈L ρα(x) =
∑

x∈L ρα
√

(V ∗f Vf )−1(x). Therefore, the two

discrete Gaussians coincide:
DL,α ≡ DL,α

√
(V ∗f Vf )−1 .

This observation lies at the heart of the equivalence stated in the proposition. The reduction
from L-DGSα to L-DGS

α·
√
V −1
f (V −1

f )∗
is described by an algorithm that takes as input a lattice L ⊂ K

and outputs discrete Gaussian samples over L, by using a DGS sampler for the lattice L = V −1
f ·σ(L)

in Zn, as follows. Let x← D
L,α

√
(V ∗f Vf )−1 , then x := 〈x, ~θ〉 ∈ L follows the distribution DL,α. The

converse reduction is realized by a similar argument.

22



The next result describes how the basis of the dual of the integer lattice L changes, under the
(inverse) coefficient embedding. The proof essentially follows from the definition of the coefficient
and the Minkowski embedding.

Proposition 3.4. Let L ⊂ Zn be a integer lattice whose basis is given by the columns of a matrix
B. Consider L, its coefficient embedding in a number field K of defining polynomial f . Then, the
field elements whose coefficient representations are the columns of (Vf

tVf )−1 · (Bt)−1 form a basis
for L∨.

Proof. Since σ(L) = Vf · L, the columns of Vf · B form a basis for σ(L). Therefore, its dual,
σ(L)∗ in H endowed with the scalar product on Cn, has as a basis, the columns of ((Vf ·B)t)−1 =

(Vf
t
)−1 · (Bt)−1. Further, as σ(L∨) = σ(L∗), we use the relation between the coefficient and the

Minkowski embedding, to conclude that field elements in K formed by taking inner products of the
columns of the matrix V −1

f · (Vf t)−1 · (Bt)−1 = (Vf
tVf )−1 · (Bt)−1 with the power basis ~θ form a

basis for L∨.

Remark 3.5. By the definition of the Vandermonde matrix Vf (see the discussion at the beginning
of Section 3), the (i, j)-th entry of V t

f Vf is
∑n

k=1 σk(θ
i+j−2) = Tr(θi+j−2). In the special case of a

power of two cyclotomic field,

Tr(θi+j−2) =


n if i+ j − 2 = 0

−n if i+ j − 2 6= 0 and i+ j − 2 = 0 mod n

0 otherwise

See [LPR13, Lem. 2.15]. Therefore, in this case, V t
f Vf = n ·

(
e1 −en . . . −e2

)
, where ei is the

canonical basis vector with 1 in the i-th place and 0’s elsewhere. By Proposition 3.4, a basis of the
dual L∨ can be found by taking inner products of the columns of the matrix 1

n ·
(
e1 −en . . . −e2

)
·

(Bt)−1 with the power basis.

3.2 Algebraic properties: studying the ideal structure of L

The coefficient embedding of Qn into K with respect to ~θ maps Zn to Z[θ] ⊆ OK . When the field
is monogenic, we choose θ ∈ OK such that OK equals Z[θ]. In this section, we assume that K is
any number field. However, we stress that some of the results look specifically appealing when K
is monogenic.

Lemma 3.6. Let O be an order in K and let I be an integral O-ideal. Then, the set Z + I,
contained in O, is an order in K.

Proof. Since I is an ideal and hence, in particular, an additive group of rank n, the set Z+ I is an
additive group of rank n. It is also clear that it is a subgroup of O and contains 1. To see that it
is a ring, let z1 + i1 and z2 + i2 be two elements in Z + I. Then,

(z1 + i1)(z2 + i2) = z1z2 + [i1(z2 + i2) + z1i2] ∈ Z + I,

as I is closed under scalar multiplication by elements (z2 + i2), z1 ∈ O.

The next result proves that given a lattice L in K, one can always construct an order such that
L is an ideal in it. Recall that the exponent e of a group G, is the smallest positive integer such
that e · g = 0, for all g ∈ G.
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Lemma 3.7. Let O be an order in K, and let L ⊆ O be an additive subgroup of O. Then, L is an
ideal of the order Z +mO, where m is the exponent of the (additive) quotient group O/L.

Proof. As mO is an integral ideal of O, by Lemma 3.6, the set Z +mO is an order. We show that
L is closed under scalar multiplication by elements in Z+mO, or equivalently, by elements in mO.
Using the fact that mO ⊆ L and that L ⊆ O, we get that

mO · L ⊆ mO · O ⊆ mO ⊆ L

Applying Lemma 3.7 to the lattice L ⊆ Z[θ] ⊆ OK , we get

Corollary 3.8. Let mK and mθ be exponents of the quotient groups OK/L and Z[θ]/L, respectively.
Then L is an ideal in (both) the orders Z+mKOK and Z+mθZ[θ]. Further, if the index [OK : Z[θ]]
is coprime to mθ, then Z +mKOK ⊆ Z +mθZ[θ].

Proof. The first claim in the statement follows from Lemma 3.7. For the second, consider the
following short exact sequence induced by inclusion,

0 −→ Z[θ]

L
−→ OK

L
−→ OK

Z[θ]
−→ 0

Since the cardinality of the groups, Z[θ]/L and OK/Z[θ] are coprime, by the Schur-Zassenhaus

theorem, the above sequence yields OKL = Z[θ]
L ⊕

OK
Z[θ] . Let e denote the exponent of OK/Z[θ], then

the direct sum and the coprimality condition imply mK = mθ · e. Therefore

Z +mKOK ⊆ Z +mθ · eOK ⊆ Z +mθZ[θ].

Let OL denote the ring of multipliers of L in K, i.e., it is the largest order in K such that L is
an ideal of it. By Corollary 3.8,

Z +mKOK ⊆ OL and Z +mθZ[θ] ⊆ OL (3.2.1)

Recall that CL := {x ∈ K : xOK ⊆ OL}, and Cθ := {x ∈ K : xZ[θ] ⊆ OL} are conductors of OL
with respect to the orders OK and Z[θ], respectively. Then, CL is the largest OK-ideal in OL, and
Cθ is the largest Z[θ]-ideal in OL. Further, by Equation (3.2.1),

mKOK ⊆ CL and mθZ[θ] ⊆ Cθ. (3.2.2)

Note that both CL and Cθ are also OL-ideals. We stress that these well known results hold, and
their proofs remain unchanged, even in our general scenario where Z[θ] and OL may not necessarily
share an order relation with respect to set containment. See Section 2.3.3 for more details. Recall
that under the assumption that mθ be coprime to [OK : Z[θ]], Corollary 3.8 yields a chain of orders,
Z+mKOK ⊆ Z+mθZ[θ] ⊆ Z[θ] ⊆ OK . The assumption that mθ is coprime to [OK : Z[θ]] has
the following effect on the conductor Cθ.

Lemma 3.9. If (mθ, [OK : Z[θ]]) = 1, then Cθ is an invertible Z[θ]-ideal.

Proof. It follows from Equation (3.2.2) that Cθ | mθZ[θ]. Since mθ is coprime to the index [OK :
Z[θ]], the conductor Cθ is coprime to the conductor of Z[θ] in OK . This is a sufficient condition for
invertiblity as a Z[θ]-ideal. See Theorem 2.27.
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4 New Hardness Results for O-LWE

In this section, we extend and enhance the hardness results for Order-LWE from [BBPS19] as
follows:

• We prove extended versions of worst-case hardness results for both O-LWE and O∨-LWE
that follow for all O-ideals, with same approximation factors as in the previous hardness
statements for Order-LWE and Ring-LWE.

• We extend the worst-case hardness result for Ring-LWE that follows not only for OK-ideals,
but also for O-ideals, for any order O of index coprime to the Ring-LWE modulus q. However,
it incurs a penalty in the approximation factor, which depends on the conductor of the order.
This result is complementary to [BBPS19, Thm 3.8 & Cor. 5.2].

4.1 Worst-Case Hardness for All O-ideals

We begin this section with a non-maximal order O in the number field K. Let m = [OK : O] be
the index of O in OK . Recall that for an ideal I of a ring R, SpecR(I) is the set of all prime ideals
in R that contain I. We denote by Id(O) the set of all fractional O-ideals and further remark that
Id(OK) ( Id(O). For simplicity of the notation, we denote by O-LWEq,Υ the Order-LWE problem
with modulus ideal qO, u = 1/q, and a distribution Υ over a family of error distributions over KR.
Our improved hardness results for O-LWE and O∨-LWE are as follows. The definition of O∨-LWE
is as in [BBPS19, Def 3.3].

Theorem 4.1. Let K be an arbitrary number field of degree n. Let α ∈ (0, 1) such that α·q ≥ 2·ω(1).
Choose an integer modulus q, coprime to the index [OK : O]. Then there are polynomial time
quantum reductions

Id(O)-DGSγ −→ O-LWEq,Υα (4.1.1)

Id(O)-DGSγ −→ O∨-LWEq,Υα (4.1.2)

where γ = max
{
η(L) ·

√
2/α · ω(1),

√
2n

λ1(L∨)

}
.

As mentioned in the introduction, the hardness result for Order-LWE, as proved in [BBPS19],
showed that O-LWE is at least as hard as lattice problems on lattices that are invertible O-ideals.
The theorem above extends the result to include non-invertible O-ideals as well, thereby closing
the gap. We, however, restrict to the modulus being coprime to the index [OK : O]. No such
assumption was made on the modulus in [BBPS19, Thm 3.8].

Note that both the hardness results compare the LWE problems with lattice problems on the
same set of number field lattices, the O-ideals. This is because the O-LWE and O∨-LWE problems
are equivalent as long as the modulus q is coprime to the index [OK : O]. This equivalence was
also studied in [BBPS19, Rem. 3.5], but under a stronger assumption of O∨ being an invertible
O-ideal.

Proposition 4.2. Let K be an arbitrary number field of degree n and O be an order. Choose
an integer modulus q, coprime to the index [OK : O], and Υ a distribution over a family of error
distributions over KR. Then, the O-LWEq,Υ and the O∨-LWEq,Υ problems are equivalent.
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Proof. Define a map f : OqO −→
O∨
qO∨ as a composition of the following three isomorphsims

O
qO

∼
↪→ OK

qOK
∼−→

O∨K
qO∨K

∼
↪→ O∨

qO∨

a → a+ qOK → ta+ qO∨K → ta+ qO∨ := f(a)

The first and the last isomorphisms follow from Lemma 2.19, under the coprimality condition on
q. The middle map is an application of the Cancellation Lemma 2.17 and we let t ∈ O∨K be the
element, multiplication by which, yields the isomorphism. Then, for a ∈ O/qO and s ∈ O∨/qO∨,
the cosets a ·s+qO∨ and f(a) ·f−1(s)+qO∨ are equal. To see this, let s′ = f−1(s) ∈ O/qO. Then,

a · s+ qO∨ = a · f(s′) + qO∨

= a · (ts′ + qO∨) + qO∨

= tas′ + qO∨ as q · aO∨ ⊆ qO∨

= (ta+ qO∨) · s′ + qO∨ as q · s′O∨ ⊆ qO∨

= f(a) · f−1(s) + qO∨

Therefore, the O-LWE samples (a, b := 1
q ·a ·s+ e mod O∨), where e← ϕ for some ϕ← Υ, can be

transformed to O∨-LWE samples by considering (f(a), b := 1
q · f(a) · f−1(s) + e mod O∨), where

f(a) ∈ O∨/qO∨ and f−1(s) ∈ O/qO. Conversely, the O∨-LWE samples (a′, b′ := 1
q · a

′ · s′ + e′

mod O∨), where e′ ← ϕ for some ϕ← Υ, can be made into O-LWE samples by taking (f−1(a′), b :=
1
q · f

−1(a′) · f(s′) + e′ mod O∨), where f−1(a′) ∈ O/qO and f(s′) ∈ O∨/qO∨.

Theorem 4.1 coupled with the reduction from SIVP to DGS (see Lemma 2.11) yields the following
generalization of [LPR10, Thm 3.6], [PRSD17, Corollary 6.3].

Corollary 4.3. Let K be an arbitrary number field of degree n. Let α ∈ (0, 1) satisfy αq ≥ 2ω(1)
and q be coprime to [OK : O]. Then there is a polynomial time quantum reduction from

Id(O)− SIV Pγ′ −→ O − LWEq,Υα ,

where γ′ = ω( 1
α).

In order to prove Theorem 4.1, we need the following lemma.

Lemma 4.4. Let q be an integer coprime to m := [OK : O]. Let I be an integral O-ideal. Then,
there exist O-module isomorphisms,

f :
I
qI

∼−→ O
qO

and g :
O∨

qO∨
∼−→ I∨

qI∨

Further, if a ∈ O/qO is the image of z ∈ I/qI and s ∈ O∨/qO∨ is the image of x ∈ I∨/qI∨, then

z · x = a · s mod qO∨.
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Proof. Let p be the invertible ideal that contains I as described in Lemma 2.33. Then, the integer
q is coprime to the index [p : I], as SpecZ([p : I]) ⊆ SpecZ(m). By Lemma 2.19, this yields the
following isomorphisms induced by inclusion,

f1 :
I
qI

∼
↪→ p

qp
and g1 :

p∨

qp∨
∼
↪→ I∨

qI∨
z 7→ f1(z) = z̃ x̃ 7→ g1(x̃) = x

z + qp = z̃ + qp x̃+ qI∨ = x+ qI∨

Invertibility of p and the Cancellation Lemma (Lemma 2.17), yield a t ∈ p such that multiplication
by t−1 induces the following isomorphisms:

f2 :
p

qp

∼−→ O
qO

and g2 :
O∨

qO∨
∼−→ p∨

qp∨

z̃ 7→ f2(z̃) = t−1z̃ := a s 7→ g2(s) = t−1s := x̃

t−1z̃ + qO = a+ qO t−1s+ qp∨ = x̃+ qp∨

The above map uses the fact that p∨ = p−1O∨. See Proposition 2.21(iv). Define f = f2 ◦ f1 :
I/qI → O/qO and g = g1 ◦ g2 : O∨/qO∨ → I∨/qI∨. Since all the maps involved are O-module
isomorphisms, so are f and g.

Finally, we prove that f and g are compatible, i.e., for all z ∈ I/qI and x ∈ I∨/qI∨, z ·x = a ·s
mod qO∨, whenever f(z) = a and g(s) = x. Consider the coset,

z · x+ qO∨ = z · (x+ qI∨) + qO∨ as z · qI∨ ⊂ qII∨ ⊆ qO∨

= z · (x̃+ qI∨) + qO∨

= z · x̃+ qO∨

= (z + qp) · x̃+ qO∨ as qp · x̃ ⊂ qpp∨ ⊆ qO∨

= (z̃ + qp) · x̃+ qO∨

= z̃ · x̃+ qO∨

Therefore, z · x = z̃ · x̃ mod qO∨. According to the notations, a = f2(z̃) and s = g−1
2 (x̃). Using the

definitions of f2 and g2,

z̃ · x̃+ qO∨ = t−1(z̃ + qp) · t(x̃+ qp∨) + qO∨

= (a+ qO) · (s+ qO∨) + qO∨

= a · s+ qO∨,

therefore a · s = z̃ · x̃ mod qO∨. This concludes the proof.

Proof of Theorem 4.1. We use Theorem 2.36 to prove these hardness results. We show that in
this case the set S, as described in Theorem 2.36, equals the set of all O-ideals for both O-LWE
and O∨-LWE. The novelty of this generalization is in the fact that we convert BDD samples on
non-invertible O-ideals into LWE samples. Previously, as in the proof of [BBPS19, Theorem 3.7 &
3.8], this step used the Cancellation Lemma (Lemma 2.17) which unavoidably required the ideal
for the BDD problem (or the dual ideal, which ever is relevant), to be invertible. We overcome this
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by the following two-step argument. Let I be a non-invertible O-ideal. Recall that without loss
of generality, we may assume that I ⊂ O. By Lemma 2.33, there exists an invertible O-ideal p
such that I ⊆ p ⊆ O and all the prime divisors of the index [p : I] divide [OK : O]. Then, for all
moduli q coprime to [OK : O], we obtain the isomophism I/qI ∼−→ O/qO by composing the maps
obtained from Lemma 2.19 & 2.17 for the pairs {I, p} and {p,O}, respectively. An isomorphism
O∨/qO∨ ∼−→ L∨/qL∨ is obtained in a similar manner. Further, Lemma 4.4 shows that these maps
are compatible with respect to the condition mentioned in Theorem 2.36.

Now, let I be an integral O-ideal. Given a BDD sample y = x+ e on I∨ and a discrete Gaussian
sample z from I, we define (a, b) ∈ O/qO×KR/O∨ as a = f(z) and b = u · z ·y+ e′ mod O∨, for a
small error e′. The compatibility of the maps f and g implies that the tuple (a, b) is a well-defined
O-LWE sample, i.e. b = u · f(z) · g−1(x) + ẽ mod O∨, for an error ẽ depending on e and e′.
Eq. (4.1.1) follows from Theorem 2.36 with Q = qO and u = 1/q. Eq. (4.1.2) then follows from the
equivalence of O-LWE and O∨-LWE, Proposition 4.2.

4.2 Ring-LWE Hardness for Some Non OK-ideal Lattices

The authors in [LPR10, PRSD17] showed that solving Ring-LWE is at least as hard as solving short
vector problems on the set of all ideals of the ring of integers OK . We extend this result to include
lattice problems on lattices that are not necessarily ideals of OK . Although, in our reduction, we
extend the set of lattices to a strict superset of OK-ideal lattices, a lattice L that is not an OK-ideal
incurs a cost of an OL-dependent factor in the approximation factor γ. We prove our generalized
hardness result for Ring-LWE, often denoted as OK-LWE, by giving a polynomial time reduction
from O-LWE to OK-LWE and pre-composing it with our hardness result, Theorem 4.1, for O-LWE.
In our O-LWE to OK-LWE reduction, the error parameter gets inflated by the conductor CO of O
in OK , similar to the error inflation in [BBPS19, Cor 5.2].

Fix a modulus q. Let O be an order such that (q, [OK : O]) = 1. Then, qO is an integral
O-ideal coprime to the conductor CO, and therefore by Theorem 2.27 admits a unique factorization
into a product of prime ideals over O. Let SpecO(qO) := {q1, . . . , qr}.

Proposition 4.5. Let K be a number field and O ⊂ OK , an order. Let q be an integer coprime
to [OK : O], let Υ be a distribution over a family of error distribution over KR/qO∨, and let
t ∈ CO \

⋃
i qiCO. Then there is a polynomial time reduction from O-LWEq,Υ to Ring-LWEq,t·Υ.

Notice that the reduction increases the noise by a factor of t. We remark that the error parameter
of the OK-LWE problem in Theorem 4.6 would be the least when t is the shortest lattice vector in

CO\
⋃
i

COqi. The existence of such a short multiplier can be proven either by using the combinatorial

argument from [BBPS19, Lem 2.36] or by sampling according to a Gaussian distribution over the
conductor ideal with a wide parameter, as in [RSW18, Thm 3.1], [BBPS19, Prop 4.7]. We would
like to clarify that the statements in these previous works require that the ideal we sample t from
be invertible. Their proofs, however, hold true for the conductor ideal.

Proof of Prop. 4.5. Define the following maps,

f :
O
qO
→ OK

qOK
, f∨ :

O∨

qO∨
·t→
O∨K
qO∨K

The first map f is induced by the inclusion O ⊂ OK and is an isomorphism under the assumption
that q is coprime to [OK : O] (Lemma 2.19). The second map f∨ is induced by multiplication
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by t. It is an isomorphism for I = CO, J = qO and M = O∨ as tM + IJM = IM. See
Remark 2.18. Both maps can be efficiently computed. We further extend the second map to KR,
f∨ : KR/O∨ −→ KR/O∨K as f∨(1

q · x) = 1
q · t · x, for any x ∈ KR/qO∨. With these maps, define the

following transformation

O
qO
× KR
O∨

−→ OK
qOK

× KR
O∨K

(a, b) 7→ (a′ = f(a), b′ = f∨(b) := t · b mod O∨K)

Since the maps, f and f∨ are isomorphisms, this transformation maps uniform samples to uniform
samples. Further, if b = 1

q · a · s+ e mod O∨ is sampled from the O-LWE distribution Os,ϕ, where

s is uniform in O∨/qO∨ and e← ϕ, for ϕ← Υ, then,

b′ =
1

q
· f∨(a · s) + f∨(e) mod O∨K

=
1

q
· a · f∨(s) + f∨(e) mod O∨K

=
1

q
· f(a) · f∨(s) + f∨(e) mod O∨K

The second equality follows from the fact that f∨ is an O-module homomorphism. The third
equality follows from the fact the following cosets are equal; a · f∨(s) + qO∨K = (a+ qOK) · f∨(s) +
qO∨K = f(a) · f∨(s) + qO∨K . Finally, as e ← ϕ, its image f∨(e) ← t · ϕ. This yields an efficient
transformation from O-LWE(qO,1/q),Υ to Ring-LWEq,t·Υ.

Pre-composing this reduction (Proposition 4.5) by the O-LWE hardness result, Theorem 4.1
yields the following improved hardness result for OK-LWE.

Theorem 4.6. Let K be a number field of degree n and O ⊂ OK , an order. Let q be an integer

coprime to [OK : O]. Let Id(O) denote the set of O-ideals. Choose t ∈ CO \
⋃
i

COqi and choose

α ∈ (0, 1) such that αq ≥ 2ω(1). Then there is a polynomial time quantum reduction from

Id(O)−DGSγ −→ OK − LWEq,t·Υα ,

where

γ = max

{
η(L) ·

√
2 · /α · ω(1),

√
2n

λ1(L∨)

}
.

Comparison with previous work. We note that [BBPS19, Thm 3.8, Cor 5.2] also showed a
connection between Order and Ring-LWE. While the error and the approximation factors obtained
from the two reductions are comparable, the results are complementary in terms of other parame-
ters. Further, the prior requires a set of field elements that generate O∨ over O∨K to map between
the order and the ring of integers, which is similar to the role of our t. Our result poses a signifi-
cant improvement in the size of the set of lattices and the set of relevant moduli, since it considers
solving lattice problems on the set of all O-ideals, whereas the prior result considers solving lattice
problems on the set of O-ideals whose duals are invertible. Our theorem also expands the choice of
the moduli for the Ring-LWE problem: the previous result only holds under the assumption that
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the modulus q be a factor of [OK : O], reducing the choice for q to a finite set, whereas, Theorem 4.6
assumes that q is coprime to [OK : O], tapping an infinite set of choices and also complementing
the previous result by bridging the gap.

Solving DGS on p-ary lattices. We view Theorem 4.6 in a different light. Instead of solving
DGS on O-ideals where O varies over the set of orders of indices coprime to a fixed modulus q, we
use the OK-LWE oracle to solve DGS on the set of (embeddings of) all p-ary lattices. This would
in turn solve DGS on integer p-ary lattices up to an approximation factor related to the field (of
embedding) K. See Section 3 for more details. The image L of a p-ary lattice L when embedded
in a monogenic number field satisfies pOK ⊆ L, thereby making L an ideal of the order Z + pOK .
See Lemma 3.7. However, this order may be strictly contained in the ring of multiplier OL of L.

Corollary 4.7. Let K be a monogenic number field. Let L ⊂ K be a lattice such that pOK ⊆ L,
for a fixed prime p. Choose an integer q, coprime to p, and an α ∈ (0, 1) such that αq ≥ 2ω(1).

For t ∈ COL \
⋃
i

qiCOL, there is a polynomial time quantum reduction

L-DGSγ̃ −→ OK-LWEq,Υα , where γ̃ = max

{
η(L) ·

√
2 · ‖t‖∞/α · ω(1),

√
2n

λ1(L∨)

}

Proof. The result follows from Theorem 4.6 with the order O = OL, as the index [OK : OL] | [OK :
pOK ] and therefore is a power of p, coprime to q.

Observe that for the integer p-ary lattice L, the approximation factor γ obtained above only
makes sense as long as ‖t‖∞ < p. This may be achievable if COL is a proper factor of pOK . However,
the DGS problem on L can also be solved using either an OL-LWE oracle or a Z+pOK-LWE oracle.
The approximation factor from both of these reductions is equal to γ, as in the hardness result,
Theorem 4.1, which is an improvement by ‖t‖∞ from the approximation factor in the Corollary 4.7.

5 Gradients of hardness: From Ring-LWE to LWE

In this section, we describe chains of Order-LWE problems that begin with the well-known Ring-
LWE (often denoted as OK-LWE) and increase in hardness until it reaches an Order-LWE problem
that is equivalent to the unstructured LWE problem. The descending chain of orders (w.r.t in-
clusion) creates a gradient of increasing hardness from Ring-LWE to LWE. This renders a better
understanding of the distance between the structured Order-LWE problems, Ring-LWE being the
easiest among them, to the LWE problem on unstructured lattices. To ease notation, we denote by
O-LWEq,ψ, the Order-LWE problem for the order O, with modulus ideal qO, the element u = 1/q
and an error distribution ψ over KR.

Theorem 5.1 ([PP19, Theorem 4.3]). Given O ⊆ O′ and a positive integer q coprime to the index
[O′ : O], there is an efficient, deterministic and error preserving reduction from O′-LWEq,ψ to
O-LWEq,ψ. In particular, if O′ is the maximal order, OK , then we have an efficient, deterministic
and error preserving reduction from OK-LWEq,ψ to O-LWEq,ψ.

Let L ⊂ OK be a lattice in K. Then, L is an ideal of the order Z + mOK , where m is the
exponent of the quotient group OK/L. See Lemma 3.7. However, the order Z + mOK may be

30



strictly contained in the ring of multipliers, OL. Therefore, since Z + mOK ⊆ OL ⊆ OK , by
Theorem 5.1, we have an error preserving reduction

OK-LWEq,ψ −→ OL-LWEq,ψ −→ (Z +mOK)-LWEq,ψ

as long as q is coprime to m, as both the indices, [OL : (Z + mOK)] and [OK : OL] divide
[OK : mOK ] = mn, owing to the fact that mOK ⊂ Z + mOK . The next result shows that this
chain of LWE problems, increasing in hardness, may be longer depending on the factorization of
mOK as an OK-ideal.

Let SpecOK (mOK) = {m1,m2, . . . ,mr}. Define Oi := Z + m1 · . . . · mi. Then, by Lemma 3.6,
each Oi is an order in K. Further, Oi ⊂ Oj , for i ≥ j, and Z +mOK ⊂ Oi, for all i. By the same
argument, for any lattice, J ⊆ OK , the order Z+mJ ⊆ Z+mOK . This yields the following chain
of orders: OK ⊇ O1 ⊇ · · · ⊇ Or ⊇ Z +mOK ⊇ Z +mJ .

Theorem 5.2. Let m and q be coprime integers, and let J be a lattice in OK such that ([OK :
J ], q) = 1. Then, we have the following efficient, deterministic and error preserving reductions

OK − LWEq,ψ → · · · → Or − LWEq,ψ → Z +mOK − LWEq,ψ → Z +mJ − LWEq,ψ.

Proof. Each reduction follows from Theorem 5.1 under the observation that the indices [OK : Oi] |
[OK : mOK ] = mn, and [Z+mOK : Z+mJ ] are coprime to q. The last index [Z+mOK : Z+mJ ]
is a factor of m · [OK : J ], as it is equal to∣∣∣∣(Z +mOK)/mJ

(Z +mJ )/mJ

∣∣∣∣ =
|(Z +mOK)/mOK |·|mOK/mJ |

|(Z +mJ )/mJ |
=
|Z/mZ|·|OK/J |
|Z/ (Z ∩mJ )|

We now construct (non-maximal) orders such that the corresponding Order-LWE problems,
with error sampled from a spherical Gaussian, become equivalent to the unstructured LWE problem.
Suppose Õ ⊆ K be such an order. Since an elliptical Gaussian from, say, Υα is wider than Dα, the
Õ-LWEq,Υα problem is also equivalent to LWE.

A typical sample from the Õ-LWE distribution looks like (1/q)·a·s+e mod Õ∨, where a·s ∈ Õ∨
and the error e is drawn from a Gaussian distribution Dα over KR. Let {1, θ1, . . . , θn−1} be a fixed
Z-basis for OK . See Lemma 2.13. For any matrix M , let en(M) denote the smallest eigenvalue of
M . Let τ := en−1(T ), where T = (Tr(θiθj) − 1

n · Tr(θi)Tr(θj))1≤i,j≤n−1. Choose r ∈ N such that

τ ·m2r−2 ≥ n. Let Õ := Z+mrOK . Then, a Z-basis for Õ is ~p := (pi)
n−1
i=0 = {1,mrθ1, . . . ,m

rθn−1}.
Let ~p∨ = (p∨0 , p

∨
1 , . . . , p

∨
n−1) be the dual Z-basis for Õ∨, where Tr(pip

∨
j ) = δij and let PÕ =

(Tr(pi · pj))0≤i,j≤n−1 denote the corresponding matrix, as defined in Section 2.3.7. When OK has
an orthogonal Z-basis containing 1, then the matrix T is a diagonal matrix with τ = en−1(T ) ≥

√
n.

Therefore, the condition τ ·m2r−2 ≥ n is achieved with r = 1. See Remark 2.16. In Theorem 5.4,
we show that Õ-LWEq,Dα is equivalent to LWEq,Dα·√n .

However, in fields that are closed under complex conjugation, i.e. K ⊆ K, one may be able to
choose a smaller order Õ′ to show that Õ′-LWE is equivalent to LWE. Note that all Galois fields
and totally real number fields are closed under conjugation. As K ⊆ K, the trace map, TrKR/R|K ,
when restricted to K takes rational values. Therefore, by repeated application of [Cona, Lem.
4.6], K = Q · 1 ⊕ Q · θ′1 ⊕ . . . ⊕ Q · θ′n−1, decomposes orthogonally into Q vector subspaces, for
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θ′i ∈ K. Consider the Z-module generated by this orthogonal basis and call it J . It is a full-rank
lattice and hence an ideal in its ring of multipliers. We multiply by a scalar to make sure that
J is an integral ideal. Then, by Lemma 3.6, the set Õ′ := Z + mJ is an order, generated by
~p′ = (p′i)

n−1
i=0 := {1,mθ′1, . . . ,mθ′n−1} over Z. Let ~p

′∨ = (p
′∨
0 , p

′∨
1 , . . . , p

′∨
n−1) be the Z-basis for Õ′∨,

such that Tr(p′ip
′∨
j ) = δij . Let PÕ′ = (Tr(p′i · p′j))0≤i,j≤n−1.

We stress that we extensively use the properties of the Z-bases of Õ and Õ′ in Proposition 5.3
and Theorem 5.4.

Proposition 5.3. Let K be a number field of degree n and m be an integer greater than q. Let
e ∈ KR be sampled from the distribution Dα over KR. Then,

(i) the coefficients (e0, e1, . . . , en−1) of e with respect to the basis of Õ∨ follow the Gaussian
distribution over Rn, of covariance matrix α2 · PÕ. Further, the marginal distribution of e0

mod Z is

e0 mod Z ← Dα
√
n mod Z

and when α · q ≥ 2 · ω(1), then, for any x0 ∈ R, the conditional distribution

(e1, e2, . . . , en−1) |e0 = x0 mod Zn−1 ≈ U((R/Z)n−1)

(ii) when K ⊆ K, the coefficients (e0, e1, . . . , en−1) of e with respect to the basis of Õ′∨ follow the
Gaussian distribution over Rn, of covariance matrix α2 ·PÕ′. Further, all the coordinates are
independent and if α · q ≥ 2 · ω(1), the marginal distributions for ei mod Z are

e0 mod Z ← Dα
√
n mod Z and

ei mod Z ≈ U(R/Z) for all 1 ≤ i ≤ n− 1.

Proof. (i) By Lemma 2.39, if e ← Dα over KR, the coefficients (e0, e1, . . . , en−1) of e with respect
to the basis {p∨i }

n−1
i=0 of Õ∨ are sampled from the Gaussian distribution Dα

√
PÕ

, with PÕ described

as above. Let Xa := e0 and Xb := (e1, e2, . . . , en−1). The covariance matrix can be expressed as,

α2PÕ = α2 (Tr(pipj))ij = α2

(
Σaa Σab

Σba Σbb

)
,

where Σaa ∈ M1×1(R), Σbb ∈ Mn−1×n−1(R), and the matrices Σab = Σt
ba ∈ M1×n−1(R). By

Proposition 2.3(i), the marginal distribution of Xa is a Gaussian distribution over R of covariance
matrix α2 · Σaa = α2 · Tr(p0p0) = α2 · n, and by part (ii) of the same proposition, the conditional
distribution of Xb|Xa = x0 is a Gaussian distribution over Rn−1 of mean x0α

2Σba(α
2Σaa)

−1 =
x0
n · Σba and of covariance matrix α2

(
Σbb − ΣbaΣ

−1
aa Σab

)
= α2 ·m2r · T . Recall that r was chosen

such that τ ·m2r−2 ≥ n, for τ = en−1(T ). Therefore, the smallest singular value, sn−1(
√
T ), of

√
T

equals
√
τ , and

α ·mr · sn−1(
√
T ) ≥ α ·mr ·

√
τ ≥ α ·m ·

√
n ≥ ω(1) ·

√
n > η(Zn−1).

The last inequality follows from the fact that η(Zn−1) <
√
n, for ε = (eπn/(2n − 2) − 1)−1. See

Lemma 2.6. Thus, since α2 · m2r · T ≥ α2 · m2r · sn−1(
√
T )2, by Lemma 2.5, the distribution of

Xb|Xa = x0 mod Zn−1 is ε-close to the uniform distribution U((R/Z)n−1). This proves the result.
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(ii) Recall that when K ⊆ K, we constructed an orthogonal Z-basis ~p′ of Õ′, i.e., Tr(p′ip
′
j) = 0,

for all 0 ≤ i, j ≤ n − 1. See the discussion before the statement of this result. Let e ← Dα over

KR. Then, by Lemma 2.39, the coefficients (e0, e1, . . . , en−1) of e with respect to the Z-basis ~p′∨

of Õ′∨, are sampled from the Gaussian distribution Dα
√
PÕ′

, where PÕ′ = (Tr(p′ip
′
j))0≤i,j≤n−1. As

the basis ~p′ is orthogonal , the matrix PÕ′ is diagonal, and hence the variables e0, . . . , en−1 are
independent. Moreover, for 0 ≤ i ≤ n − 1, each ei ← D√αi , with αi = eTi · α2 · PÕ′ · ei, where ei
is the canonical column vector with 1 on the i-th place and 0 elsewhere. As p′0 = 1, the parameter
α0 = n · α2. For 1 ≤ i ≤ n− 1, αi = eTi · α2 · PÕ′ · ei = α2 ·m2‖θ′i‖2.

As θ′i ∈ OK , by Remark 2.16, ‖θ′i‖ ≥
√
n. Hence,

ei mod Z← D√αi mod Z for
√
αi ≥ α ·m ·

√
n.

Under the assumption on α and the fact that m ≥ q, for i > 0, the parameter
√
αi > η(Z). The last

inequality follows from the fact that η(Z) <
√
n, for ε = (eπn/2 − 1)−1. See Lemma 2.6. Finally,

by Lemma 2.5, the distribution D√αi mod Z, for i > 0, is statistically ε-close to the uniform
distribution U(R/Z). This proves the result.

Theorem 5.4. Let K be a number field of degree n and let m and q be two distinct integers, with
m ≥ q. Let α · q ≥ 2 · ω(1). Then

(i) for the order Õ = Z + mrOK , the Õ − LWEq,Dα problem is equivalent to the LWEq,Dα·√n
problem.

(ii) when K ⊆ K, the Õ′−LWEq,Dα problem, for Õ′ = Z+mJ , is equivalent to the LWEq,Dα·√n
problem.

Proof. (i) We first give a reduction from LWE to Õ-LWE. This is the non-trivial part of the proof.
As is standard, for this reduction, we define a transformation that sends uniform samples over
(Z/qZ)n × R/Z to uniform samples over Õ/qÕ ×KR/Õ∨ and LWE samples to Õ-LWE samples.

For i > 0, sample uniform elements in R/Z; ui ← U(R/Z). We define the transformation as
follows: given a pair (~a, b0) ∈ (Z/qZ)n × R/Z, output

(a := 〈~a, ~p〉, b := b0 p
∨
0 + u1 p

∨
1 + . . .+ un−1 p

∨
n−1) ∈ Õ/qÕ ×KR/Õ∨

It is straightforward to see that this transformation is well-defined and maps uniform samples
from the domain to uniform samples in the range. We claim that if b0 = 1

q · 〈~a,~s〉 + e, with a

secret ~s← U((Z/qZ)n) and an error e← Dα
√
n, then b ∈ KR/Õ∨, as defined above, is statistically

indistinguishable from b′ := 1
q · a · s + e′ ∈ KR/Õ∨, where s := 〈~s, ~p∨〉 ∈ Õ∨/qÕ∨ and e′ ← Dα

over KR. In fact, we show that the coefficients of b are statistically indistinguishable from the
coefficients of b′ in the basis {p∨i }i of Õ∨. Notice that (a, b′) is an Õ-LWEq,Dα sample with the
uniformly sampled secret s, since ~s← U((Z/qZ)n).

The linearity of the Trace map along with the equality, Tr(pip
∨
j ) = δij , implies that a · s =∑n−1

i=0 Tr(a · s · pi) p∨i , and Tr(a · s) =
∑n

i=1 aisi = 〈~a,~s〉. Therefore, b =
(

1
q · Tr(a · s) + e

)
· p∨0 +∑n−1

i=1 uip
∨
i mod Õ∨, whereas the element b′ =

(
1
q · Tr(a · s) + e′0

)
· p∨0 +

∑n−1
i=1

(
1
q · Tr(a · s · pi) + e′i

)
·

p∨i mod Õ∨. Here, e′ =
∑n−1

i=0 e
′
i p
∨
i is the representation of the error (from the Õ-LWE sample) in

the basis of Õ∨. By Proposition 5.3 (i) the marginal distribution of e0 mod Z is Dα
√
n, whereas
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the conditional distribution of (e1, . . . , en−1)|e0 = x0 mod Zn−1 is statistically indistinguishable
from U((R/Z)n−1), for any x0 ∈ R. This shows that (e0, e1, . . . , en−1) mod Zn is statistically in-
distinguishable from Dα

√
n mod Z × U((R/Z)n−1). Therefore, the coefficients of b and of b′ with

respect to the basis of Õ∨ are statistically indistinguishable, as desired. The converse, from Õ-LWE
to LWE, is a special case of [PP19, Thm 6.1].

(ii) The proof for the LWE to Õ′∨-LWE reduction is exactly as in (i), except that the transformation
is defined using the Z-basis for Õ′, and the error is analyzed using Proposition 5.3 (ii).

Remark 5.5. The parameters m ≥ q in Theorem 5.4 cannot satisfy m� q. This is because when
m� q, the error parameter α > 2ω(1)

q � 1
m is greater than the smoothing parameter of (Z+mOK)∨,

thereby making the second coordinate from the Z + mOK-LWE problem, b ∈ KR/(Z + mOK)∨,
indistinguishable from uniform.

Corollary 5.6. Let K = Q(ζ2n) be a power of two cyclotomic extension. Let m and q be distinct
integers, with m ≥ q. Let α ∈ (0, 1) be such that α · q ≥ 2 · ω(1). Then, for Õ := Z + mOK , the
problems Õ-LWEq,Dα and LWEq,Dα·√n are equivalent.

Proof. Let {θi}n−1
i=0 = {1, ζ2n, . . . , ζ

n−1
2n } be a power basis of OK as a Z-module. Note that this is an

orthogonal Z-basis with respect to the Trace map, i.e., Tr(θiθj) = 0, when i 6= j, and Tr(θiθi) = n.
Therefore, the matrix T = (Tr(θiθj)− 1

n ·Tr(θi)Tr(θj))1≤i,j≤n−1 is the diagonal matrix n·Idn−1×n−1,
and the smallest eigenvalue value τ := en−1(T ) equals n. This implies that we may choose r = 1,
for then τ ·m2r−2 ≥ n. Then, by Theorem 5.4(i), we get that (Z + mOK)-LWEq,Dα is equivalent
to LWEq,Dα√n .

Notice that K is a Galois extension and therefore is closed under complex conjugation. Further,
the power basis orthogonally splits K, as a Q-vector space: K = Q · 1 ⊕ Q · θ1 ⊕ . . . ⊕ Q · θn−1.
Therefore, taking J = OK , we, yet again arrive to the fact that (Z+mOK)-LWEq,Dα is equivalent
to LWEq,Dα√n , by Theorem 5.4(ii).

6 Analyzing lattice problems on unstructured integer lattices with
algebraic tools

In this section, we embed a p-ary lattice L into a monogenic number field K = Q(θ), and give
an algorithm that describes the conductor of the ring of multipliers OL of L, the image of L in
K, under the coefficient embedding. Recall that the image L of a p-ary lattice L when embedded
in a monogenic number field satisfies [OK : L] = det(L) = pk, for some k ∈ N. (Remark 3.2).
The algorithm, however, in its present form, generalizes to non-monogenic fields K as long as the
modulus p is coprime to the index nθ := [OK : Z[θ]]. In this case, the algorithm outputs the prime
decomposition of the conductor Cθ as a Z[θ]-ideal. Notice that since Cθ is an invertible Z[θ]-ideal,
as guaranteed by the condition (p, nθ) = 1, (Lemma 3.9), this prime decomposition yields a prime
decomposition of CθOK , by just inflating the respective prime ideals. See Theorem 2.27. Finally, the
conductor CL of OL in OK is sandwiched between the following OK-ideals, Cθ ·nθOK ⊆ CL ⊆ CθOK ,
which reveals information about the prime decomposition of CL as an OK-ideal.
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6.1 Algorithm for computing the conductor CL
We keep the running notation. Let L be a lattice in a monogenic field K such that pOK ⊆ L ⊆ OK
and [OK : L] = pk, for an integer 1 ≤ k ≤ n. Let OL denote its ring of multipliers. Then, by
Lemma 2.26 and Proposition 2.24, we have the following equality,

CL · O∨L = CL · L · L∨ = O∨K =
1

f ′(θ)
· OK

The equality, for O∨K , uses Proposition 2.22. Let pOK =
∏
i pi be the prime factorization of the

OK-ideal. As pOK ⊆ CL ⊆ OL, and CL is the largest OK ideal in OL, the conductor CL | pOK and
the above equality yields,

p · f ′(θ) · LOK · L∨OK =
pOK
CL

(6.1.1)

Both LOK and p · f ′(θ) · L∨OK are integral OK-ideals, as proven in the following lemma:

Lemma 6.1. Both LOK and p · f ′(θ) · L∨OK are integral OK-ideals that divide pOK .

Proof. The fact that pOK ⊂ L ⊆ OK implies that the inflation LOK is an integral OK-ideal that
divides pOK . Further, dualizing pOK ⊆ L ⊆ OK implies that

1

f ′(θ)
OK = O∨K ⊆ L∨ ⊆ (pOK)∨ =

1

p
O∨K =

1

p
· 1

f ′(θ)
OK .

Multiplying this chain by p · f ′(θ) · OK , yields that pOK ⊆ p · f ′(θ) · L∨OK ⊆ OK , as desired.

Then, Equation (6.1.1) implies that

CL =
∏
pi /∈S

pi, where S := SpecOK{p · f
′(θ) · LOK · L∨OK}.

In order to find the prime decomposition of the integral OK-ideals, we first find their generators,
as OK-modules. It is well-known that an OK-ideal is generated by at most 2 elements, as an OK-
module. See [Coh96, Prop 4.7.7]. As the ideals of interest for us both contain pOK , the element p
may be one of the generators. The following result describes what the other generator should be.

Proposition 6.2. (Adaptation of [Neu99, Prop 8.3]) Let K be a monogenic number field generated
by the root θ of a monic irreducible polynomial f . Let I be an integral OK-ideal such that pOK ⊆ I.
Suppose I = pOK +

∑r
i=1 Ti(θ) · OK , for some polynomials Ti(x) ∈ Fp[x]. Then I = pOK + hI(θ) ·

OK , where hI = gcd(T1(x), T2(x), · · ·Tr(x), f(x)) in Fp[x].

Proof. The image of I under the following surjective ring homomorphism

OK � OK/pOK ' Fp[x]/〈f(x)〉.

is an ideal in Fp[x]/〈f(x)〉 generated by 〈{Ti(x)}ri=1〉, where Ti(x) := Ti(x) mod f(x). In the ring
Fp[x], this ideal is generated by 〈{Ti(x)}ri=1, f(x)〉. Since Fp[x] is a principal ideal domain (PID),
it follows that this ideal is generated by the single element, the gcd hI(x) of {Ti(x)}ri=1 and f(x).
Taking its image mod p and then a pre-image under the quotient map, given above, implies that
I = pOK + hI(θ) · OK .
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To apply Proposition 6.2 to the ideal LOK , let

B :=

(
Idn−k×n−k An−k×k

0 pIdk×k

)
(6.1.2)

denote the row wise HNF basis for the integer matrix L, where A ∈ Mn−k×k(Fp). (See Sec-

tion 2.2.3) Then, the coefficient embedding with respect to ~θ implies that the inflation LOK =
pOK +

∑n−k
i=1 Bi(θ)OK , where Bi(x) ∈ Fp[x] is the polynomial obtained by taking the inner prod-

uct of the i-th row of B with (1, x, . . . xn−1)t. Therefore, by Proposition 6.2,

LOK = pOK + hL(θ) · OK , where hL(x) := gcd({Bi(x)}n−ki=1 , f(x)) ∈ Fp[x] (6.1.3)

We argue similarly for the generators of p · f ′(θ) · L∨OK . By Proposition 3.4, the Z-basis for L∨
are the elements obtained by taking the inner product with (1, x, . . . xn−1)t of the rows of

B∨ := (B−1)t · (V t
f Vf )−1 =

(
Id 0
−At
p

Id
p

)
· (V t

f Vf )−1

Let B∨i ∈ Zn denote the i-th row of p · f ′(θ) · (B−1)t · (V t
f Vf )−1. Then, pf ′(θ)L∨ =

∑n
i=1 Z ·B∨i (θ),

as a Z-module, and the inflation

pf ′(θ)L∨OK = pOK +

n∑
i=1

B∨i (θ) · OK = pOK + hL∨(θ)OK (6.1.4)

where hL∨(θ) := gcd({B∨i (x)}i, f(x)) ∈ Fp[x], by Proposition 6.2.
Now, in a monogenic field, the prime ideal decomposition of the ideal pOK is closely related

to the decomposition of the generating polynomial f(x) into irreducible factors in Fp[x]. This is
described in the following result.

Theorem 6.3 (Dedekind, [Cond, Thm. 1]). Let K be a monogenic number field generated by the
root θ of a monic irreducible polynomial f(x) ∈ Z[x]. Fix a prime p. If f(x) =

∏r
i=1 fi(x)ei splits

into r distinct irreducible polynomials fi(x) ∈ Fp[x], then pOK = pe11 pe22 · · · perr splits into a product
of r distinct primes ideals pi in OK , with multiplicity ei. The prime pi = pOK + fi(θ)OK .

In particular, a prime pi | LOK if and only if fi(x) | hL(x), for 1 ≤ i ≤ r. This follows from the
fact that both the conditions are equivalent to the condition that pi mod pOK | LOK mod pOK .
Multiplicities of the primes (or the polynomials) follow suit, i.e., for each 1 ≤ i ≤ r

LOK =
∏
νi≥0

pνii ⇐⇒ fi(x)νi | hL(x), and

pf ′(θ)L∨OK =
∏
µi≥0

pµii ⇐⇒ fi(x)µi | hL∨(x).

This discussion proves the following proposition describing the conductor CL of OL. For an OK
ideal I and a prime ideal p, let ps ‖ I mean that ps | I and ps+1 - I. We extend the same notation
to polynomials in Fp[x].
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Proposition 6.4. Let L be a p-ary integer lattice and let L denote its image in K under the
coefficient embedding with respect to ~θ. Let OL be the ring of multiplier for L. Then, the conductor
CL | pOK , as OK-ideals. Further, let pOK =

∏r
i=1 p

ei
i , where each pi = pOK + fi(θ)OK is a prime

ideal in OK , with fi(x) ∈ Fp[x]. Then, for 1 ≤ i ≤ r, and 0 ≤ si ≤ ei,

pei−sii ‖ CL ⇐⇒ fsii (x) ‖ hL(x) · hL∨(x) in Fp[x].

In the special case, when pOK splits completely in K, i.e., the prime factors pi = (θ−wi)OK+pOK ,
for a root wi of f(x) in Fp, then

pi | CL ⇐⇒ hL(wi) · hL∨(wi) 6= 0 mod p

Proof. The fact that CL | pOK follows from the fact that Z + pOK ⊆ OL (Lemma 3.7) and that
the conductor is the largest OK-ideal in OL, thereby implying that pOK ⊆ CL.

Fix an index i, and let pi := pOK + fi(x)OK be a prime ideal (over p) in OK . Assume that
pei−sii ‖ CL. Then, 0 ≤ si ≤ ei, as CL is an integral OK-ideal that divides pOK and peii ‖ pOK .
Now,

pei−sii ‖ CL =⇒ psii ‖
pOK
CL

=⇒ psii ‖ pf
′(θ)L∨OK · LOK , by Equation (6.1.1)

As, by Equations (6.1.3) and (6.1.4),

psii = pOK + fsii (θ)OK , and pf ′(θ)L∨OK · LOK = pOK + hL(θ) · h∨L(θ)OK ,

viewing the ideals in OK/pOK ' Fp[x]/f , implies that fsii (x) ‖ hL(x) · hL∨(x). Conversely, if
fsii (x) ‖ hL(x) · hL∨(x), for si ≥ 0, then the ideals

psii = pOK + f sii (θ)OK ⊇ pOK + hL(θ) · h∨L(θ)OK = pf ′(θ)L∨OK · LOK

implies that psii ‖ pf ′(θ)L∨OK · LOK , which in turn implies that pei−sii ‖ CL, as before.
Finally, if pOK splits completely in K, then the irreducible factors fi(x) ∈ Fp[x] are linear, say

fi(x) := x− wi. The claim follows from the observation that for a polynomial g(x) ∈ Fp[x],

fi(x) | g(x)⇐⇒ g(wi) = 0 mod p.

The algorithm to find CL: We present an algorithm that given a HNF basis for a p-ary integer
lattice L and a monogenic number field K := Q(θ) as input, computes the prime decomposition
of the conductor of the ring of multipliers of L and expresses it in a (prime-ideal,multiplicity)-
tuple. Given the minimal polynomial f(x) ∈ Z[x] of θ, we first factorize f(x) mod p ∈ Fp[X]

into irreducible factors fi(x) ∈ Fp[x], which requires Õ(n2 log p) operations in Fp, [vzGG13, Thm
14.14]. Then, we compute the polynomials hL and hL∨ as in Equations (6.1.3) and (6.1.4). We
use the probabilistic algorithm [vzGG13, Alg 6.45], which requires O(n2) operations to find the
gcd in Fp. We finally factorize T = hL · hL∨ in Fp[x] to obtain the maximal power fsii of fi that

divides hL · hL∨ in Fp[x]. Therefore, the total number of operations required is Õ(n2 log p). As
pf ′(θ)L∨OK · LOK = pOK + T (θ)OK divides pOK = pOK + f(θ)OK , the polynomials T | f . We
remark that the algorithm becomes relatively simpler when the prime p splits completely in OK .
As, in this case, the polynomial f(x) splits into n linear factors in Fp[x] and steps 2, 3 and 5 of the
algorithm merely become evaluating the respective polynomials at the roots of f(x).

37



Algorithm 1 The algorithm for the conductor

Input: an HNF basis for a p-ary integer lattice L, a monogenic number field K := Q[x]/〈f(x)〉
and a primitive root θ of f(x) ∈ Z[x]

Output: the prime decomposition, as an OK-ideal, of the conductor CL of the ring of multipliers
of the embedding, L, of L into K

1: factorize f over Fp[X] as f = fe11 · . . . · ferr
2: find the polynomials Bi and the gcd hL as in Equation (6.1.3)
3: find the polynomials B∨i and the gcd hL∨ as in Equation (6.1.4)
4: T = hL · hL∨
5: factorize T over Fp[X] as T = fs11 · . . . · fsrr
6: for i← 1, r do
7: pi = pOK + fi(θ)OK
8: output (pi, ei − si)
9: end for

Remark 6.5. When K is a non-monogenic number field, the above algorithm yields the conductor,
Cθ, of the ring of multipliers OL with respect to the order O := Z[θ], as long as p is coprime
to the index [OK : O]. As, under this coprimality assumption, pO is an invertible O-ideal and
admits a unique factorization into prime ideals in O. This factorization is achieved exactly as in
Theorem 6.3, with OK = O. Further, as discussed at the end of Section 3, the conductor Cθ is an
invertible Z[θ]-ideal if (p, [OK : Z[θ]]) = 1, implying that Equation (6.1.1) holds with OK replaced
by Z[θ]. Therefore, Algorithm 1, when run with OK replaced by O yields the factorization of Cθ as
an O-ideal, if p is chosen to be co-prime to [OK : O]. See the discussion before Subsection 6.1 to
learn what Cθ can say about CL.

6.2 p-ary lattices in the power-of-two cyclotomic extension

We fix the field K to be the power-of-two cyclotomic extension and embed all integer p-ary lattices
into K, via the coefficient embedding with respect to the power basis, to study the behavior of
the corresponding ring of multipliers. Recall that the coefficient embedding introduces a distortion
in the geometry of the complex space, i.e., the Minkowski image of K lies in Vf · Cn, where n is
the degree of K, and Vf is the Vandermonde matrix corresponding to the minimal polynomial of
K. When K is the power-of-two cyclotomic extension, the Vandermonde matrix turns out to be a
rotation of the complex space, up to scaling by

√
n. In other words, the geometry of the complex

space remains invariant (up to scaling) under this embedding. It is the preservation of the norm
and the geometry, in this case, that motivates us to explore how the set of p-ary lattices behave
under the algebraic structure induced from the power-of-two cyclotomics.

Fix n to be a power-of-two and let ζ2n denote the primitive 2n-th root of unity. Let K := Q(ζ2n),
a power-of-two extension of degree n. It is well known that its ring of integers OK equals Z[ζ2n],
and hence under the coefficient embedding with respect to ~ζ2n := (1 ζ2n . . . ζ

n−1
2n ), the lattice Zn

corresponds to OK . For a fixed prime p, let L denote an integer p-ary lattice, i.e., pZn ⊆ L ⊆ Zn.
Then the image L of L in K satisfies pOK ⊆ L ⊆ OK , and the ring of multipliers OL contains the
order Z + pOK , which in turn implies that the conductor, CL, satisfies pOK ⊆ CL ⊆ OK . Even
though the conductor does not describe the order uniquely, i.e., there may be two distinct orders
with the same conductor, it gives a fair idea of the size of the ring. The ideal scenario would be
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that the conductor equals OK , for in that case OL equals OK and one would be able to apply the
results from [CDPR16, CDW17, PHS19, BRL20] to solve lattice problems on L, and in turn solve
lattice problems on L, using Proposition 3.3. The worst case scenario would be that OL = Z+pOK
and hence the conductor equals pOK , for then solving lattice problems on L would be at least as
hard as solving Z + pOK-LWE, (Theorem 4.1) which is as hard as unstructured LWE, as proved
in Corollary 5.6. Thereby proving the additional algebraic structure from K, a redundant piece of
information. Finally, as mentioned in the introduction of Section 3, in all the other scenarios, when
the conductor is strictly between OK and pOK , one may use the Ring-LWE oracle to solve DGS
on L (Corollary 4.7). Recall that the approximation factor for DGS is directly related to the short
vectors in CL. In other words, this approach yields short vectors on L as long as CL has vectors
shorter than p. One of the necessary conditions for that is, that pOK be properly contained in CL.

We fix p = 1 mod 2n to be a prime that splits completely in OK . We use Proposition 6.4 to
count the number of p-ary lattices that fall in the worst case scenario, i.e., lattices L for which the
conductor equals pOK . As we will see, the count yields that the ratio of the size of the subset

Sk := {L : pZn ⊆ L ⊆ Zn, [Zn : L] = pk, and CL = pOK}

to the size of the set of all p-ary lattices of index pk embedded in the power-of-two cyclotomic,
can be bounded to be extremely close to 1, i.e., 1 − o(1) or even negligibly close in some cases.
See Corollary 6.8 for a precise bound. This implies that the power-of-two cyclotomic field that
preserves the geometry of Zn does not yield a ‘good enough’ algebraic structure for integer p-ary
lattices.

Let S̃k be the set of all p-ary integer lattices of det pk. By Equation (6.1.2), the set S̃k is in
one-to-one correspondence with the set {A ∈ Mn−k×k(Fp)} and hence |S̃k| = p(n−k)k. The next
result describes the subset of Mn−k×k(Fp) that corresponds to Sk. Let L be a p-ary lattice of

determinant pk, and let B :=

(
Idn−k×n−k An−k×k

0 pIdk×k

)
be the row-wise HNF basis for L. Let wi,

for 1 ≤ i ≤ n, be the roots of f(x) := xn + 1 mod p. We denote by Ĩdk×k, the k × k matrix with
1’s on the anti-diagonal and 0’s elsewhere.

Proposition 6.6. Let L be a p-ary lattice generated by the matrix B defined above. Let L denote
the image of L in K. Let pOK =

∏n
i=1 pi, with the prime ideal pi = pOK + (ζ − wi)OK . Then,

pi ‖ LOK ⇐⇒ ~V (wi) := (−A|Id)
(
1 wi . . . wn−1

i

)t
= ~0, and

pi ‖ p · n · L∨OK ⇐⇒ ~W (wi) :=
(
wn−k−1
i . . . wi 1 wn−ki . . . wn−1

i

) A
−

Ĩdk×k

 = ~0

Therefore, the set

Sk '
{
A ∈Mn−k×k(Fp) : ~V (wi) 6= ~0 and ~W (wi) 6= ~0, for all 1 ≤ i ≤ n

}
Here, ~0 denotes the zero vector of the appropriate size.

Proof. Recall that when K = Q(ζ2n), the dual ideal O∨K = 1
nOK . Therefore, by Proposition 2.24

and Lemma 2.26, the conductor CL ⊂ K satisfies, CL · LOK · L∨OK = O∨K = 1
nOK . Rewriting this
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equation yields the following equality of integral OK-ideals,

(LOK) ·
(
p · n · L∨OK

)
=
pOK
CL

. (6.2.1)

Further, by Equations (6.1.3) & (6.1.4),

LOK = pOK + hL(ζ) · OK and p · n · L∨OK = pOK + hL∨(ζ)OK ,

for polynomials hL(ζ), hL∨(ζ) ∈ Fp[ζ]. By the discussion before Proposition 6.4, the prime pi ‖ LOK
if and only if hL(wi) = 0. Recall that hL(x) := gcd({Bi(x)}n−ki=1 , x

n + 1) ∈ Fp[x], where each
Bi(x) is obtained by taking the inner product of the i-th row of the HNF basis B with the vector
(1 x . . . xn−1). See subsection 6.1 for details. Under the assumption that xn+1 = 0, the description
of Bi(x)’s in matrix form looks like;

(
−A | Id

)
1
x
...

xn−1

 =

 xkB1(x)
...

xkBn−k(x)

 (6.2.2)

Viewing these values mod p, we get for any 1 ≤ j ≤ n− k

hL(wi) = 0 ⇐⇒ Bj(wi) = 0 ⇐⇒ wki Bj(wi) = 0 as wi 6= 0 mod p

For the other condition, Remark 3.5 describes the basis of L∨ in K, as

B∨ := (B−1)t · (V t
f Vf )−1 =

1

n

(
Id 0
−At
p

Id
p

)
· (e1 − en · · · − e2)

For 1 ≤ j ≤ k, let B∨j (x) ∈ Fp[x] be the polynomial obtained by taking the inner product of the

(n−k+ j)-th row of p ·n ·B∨ with the vector (1 x . . . xn−1). A straightforward computation, along

with the fact that xn + 1 = 0, implies that the the polynomial
B∨j (x)

xk+1 is obtained as follows;

(
xn−k−1 xn−k−2 · · · x 1 xn−k xn−k+1 · · · xn−1

) A
−

Ĩdk×k

 =
(
B∨1 (x)

xk+1 · · · B∨k (x)

xk+1

)
(6.2.3)

Now, hL∨(x) := gcd({B∨j (x)}kj=1, x
n + 1) ∈ Fp[x], and pi ‖ p · n · L∨OK if and only if hL∨(wi) = 0,

which in turn is true if and only if
B∨j (wi)

wk+1
i

= 0 mod p, for any 1 ≤ j ≤ k, as wi 6= 0 mod p. This

proves the second condition.
Finally, a p-ary lattice L of det= pk lies in Sk if and only if pi - LOK and pi - p · n · L∨OK ,

for all i. See Equation (6.2.1). Using the equivalent conditions above yields the final claim in the
statement.

For each 1 ≤ i ≤ n, let Vi := {A ∈ Mn−k×k(Fp) : ~V (wi) = ~0} and Wi := {A ∈ Mn−k×k(Fp) :
~W (wi) = ~0}. Then, by Proposition 6.6,

Sk ' S̃k \
n⋃
i=1

(Vi ∪Wi)
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Proposition 6.7. The size of the set Sk is

k−1∑
s=0

p(k−s)(n−k)

[
(−1)s

(
n

s

)(
1− p−(k−s)

)n−s
−

n∑
i=n−k+s+1

(−1)i
(
n

i

)(
i

s

)
p−(k−s)(i−s)

]

Proof. The inclusion-exclusion principle implies that,

|Sk| = |S̃k|+
2n∑
i=1

(−1)i

( ∑
l+l′=i

|Vi1 ∩ . . . ∩ Vil ∩Wj1 . . . ∩Wjl′ |

)
(6.2.4)

We prove that

• |Vi| = p(k−1)(n−k), and |Vi1 ∩ Vi2 ∩ . . . ∩ Vil | = p(k−l)(n−k), as long as 1 ≤ ij ≤ n are distinct
and l ≤ k. For l > k, the intersection is a null set.

• |Wi| = pk(n−k−1), and |Wi1 ∩Wi2 ∩ . . . ∩Wil′ | = pk(n−k−l′), as long as 1 ≤ ij ≤ n are distinct
indices and l′ ≤ n− k. For l′ > n− k, the intersection is a null set.

• |Vi ∩Wi| = ∅, for 1 ≤ i ≤ n.

• For l + l′ distinct indices, |Vi1 ∩ . . . ∩ Vil ∩Wj1 ∩ . . . ∩Wjl′ | = p(k−l)(n−k−l′) if 0 ≤ l ≤ k and
0 ≤ l′ ≤ n− k, and 0, otherwise.

An element of the set Vi yields n − k polynomials in Fp[x] whose coefficients are given by
each of the n − k rows in (−A|Id). Since A has k columns, each polynomial has k free variables.
However, being an element of Vi, all the polynomials simultaneously vanish at wi. Therefore, each
polynomial has k − 1 free variables, and we have |Vi| = p(k−1)(n−k). The same argument proves
that if A lies in l ≤ k distinct Vi’s, then each polynomial has k − l free variables, implying that
|Vi1 ∩ . . . ∩ Vil | = p(k−l)(n−k). If l > k, the degree k polynomial corresponding to the first row of
(−A|Id) would have more roots than k-many, yielding a contraction. Therefore, for l > k, the
intersection is empty.

The count for the intersection of Wi’s follows from an exact same argument, once we observe
that an element of Wi yields k polynomials in Fp[x] whose coefficients are given by each of the k

columns of (A|Ĩd)t. As A has n− k rows, each polynomial has n−k free variables. However, being
an element of Wi, all the polynomials simultaneously vanish at wi. Therefore, each polynomial has
n−k−1 free variables, and we have |Wi| = pk(n−k−1). Similarly, |Wi1∩Wi2∩ . . .∩Wil′ | = pk(n−k−l′),
as long as 1 ≤ ij ≤ n are distinct indices and l′ ≤ n− k. If l′ > n− k, this intersection is a null set.

Further, if A ∈ Vi∩Wi, then, by Proposition 6.6 the prime pi divides both LOK and p ·n ·L∨OK
implying that p2

i | pOK , which contradicts the fact that p splits completely.
Finally, the fact that, |Vi1 ∩ . . .∩Vil ∩Wj1 ∩ . . .∩Wjl′ | = p(k−l)(n−k−l′), for l+ l′ distinct indices

with 0 ≤ l ≤ k and 0 ≤ l′ ≤ n − k essentially follows from combining the first two arguments.
A detailed proof is included in Appendix A. Compiling this information, along with the equality
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(x+ y)n =
∑n

i=1

(
n
i

)
xiyn−i, we get

|Sk| = |S̃k| −
n∑
i=1

(|Vi|+ |Wi|) +
∑
i 6=j

(|Vi ∩ Vj |+ |Vi ∩Wj |+ |Wi ∩Wj |)

+
n∑
i=3

(−1)i
∑
l+l′=i

|Vi1 ∩ . . . ∩ Vil ∩Wj1 ∩ . . . ∩Wjl′ |

= p(n−k)·k −
n∑
i=1

(
p(k−1)(n−k) + pk(n−k−1)

)
+
∑
i 6=j

(
p(k−2)(n−k) + p(k−1)(n−k−1) + pk(n−k−2)

)
+

n∑
i=3

(−1)i
∑
l+l′=i

p(k−l)(n−k−l′)

=

k−1∑
s=0

p(k−s)(n−k)

[
(−1)s

(
n

s

)(
1− p−(k−s)

)n−s
−

n∑
i=n−k+s+1

(−1)i
(
n

i

)(
i

s

)
p−(k−s)(i−s)

]

For a step-by-step computation of this equality, we refer the reader to Appendix A.

In the particular case of p-ary lattices of determinant p, the Proposition above proves that the
cardinality of the set S1 is (p−1)n−1

p . Therefore, the ratio of S1 to the set of all p-ary lattices of det
p is

|S1|/|S̃1| =
(p− 1)n − 1

pn
≈ 1.

In the next result, we give a rough lower bound for the ratio |Sk|/|S̃k| and argue that the lattices
of Sk are indeed dense in the set of all p-ary lattices of index pk.

Corollary 6.8. Let Sk ⊆ S̃k be the sets defined above. Then,

|Sk|
|S̃k|

≥ 1− n

pk
− n

pn−k
.

Proof. Recall that Sk = S̃k \
⋃n
i=1(Vi ∪ Wi), and |S̃k| = pk(n−k). As explained in the proof of

Proposition 6.7, |Vi| = p(k−1)(n−k) and |Wi| = pk(n−k−1), for 1 ≤ i ≤ n. We use the fact that
|
⋃n
i=1(Vi ∪Wi)| ≤

∑n
i=1(|Vi|+ |Wi|), to get the following:

|Sk| = |S̃k| − |
n⋃
i=1

(Vi ∪Wi)|

≥ pk(n−k) −
n∑
i=1

(|Vi|+ |Wi|)

= pk(n−k) − n · p(k−1)(n−k) − n · pk(n−k−1)

= pk(n−k)

(
1− n

pn−k
− n

pk

)
,

which leads to the lower bound on the ratio |Sk|/|S̃k|, as claimed.
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A Deferred details from Proof of Proposition 6.7

We will make use of the following lemma involving primitive roots of order 2n mod p.

Lemma A.1. Let n be a power of 2. For any x and w distinct primitive roots of order 2n mod p,
i.e. xn = wn = −1, then

xn−k−1wk + xn−k−2wk+1 + . . .+ wn−1 = −(xn−1 + xn−2w + . . .+ xn−kwk−1)

Proof. Notice that xn−wn
x−w = xn−1w + xn−2w2 + . . .+ xwn−1, which is 0, since xn = wn = −1.

Now we prove the size of the mixed terms involved in Equation (6.2.4).

Proposition A.2. For l + l′ distinct indices, |Vi1 ∩ . . . ∩ Vil ∩Wj1 ∩ . . . ∩Wjl′ | = p(k−l)(n−k−l′) if
0 ≤ l ≤ k and 0 ≤ l′ ≤ n− k.

Proof. Let A ∈Mn−k×k(Fp) such that A ∈ Vi1 ∩ . . . ∩ Vil . By definition of the set Vi, we have

(−A|Id)


1 1 . . . 1
wi1 wi2 . . . wil

...
...

. . .
...

wn−1
i1

wn−1
i2

. . . wn−1
il

 = (−A|Id)

Vand1

Vand2

M

 = 0. (A.0.1)

where Vand1 ∈ Ml×l(Fp), Vand2 ∈ Mk−l×l(Fp) and M ∈ Mn−k×l(Fp). Now consider A = (A1|A2)
for A1 ∈ Mn−k×l(Fp) and A2 ∈ Mn−k×k−l(Fp). Equation (A.0.1) can be written using these
notations as follows

A1Vand1 +A2Vand2 = M (A.0.2)

Notice that the matrix Vand1 is the l×l Vandermonde matrix corresponding to the distinct elements
wi1 , . . . , wil ∈ Fp, and hence invertible over Fp. Therefore Equation (A.0.2) gets rewritten as

A1 = (M −A2Vand2) ·Vand−1
1 (A.0.3)

Now consider that A ∈Wj1 ∩ . . . ∩Wjl′ . Using the definition of the set Wi, we have
wn−k−1
j1

. . . wj1 1 wn−kj1
. . . wn−1

j1

wn−k−1
j2

. . . wj2 1 wn−kj2
. . . wn−1

j2
... . . .

...
...

... . . .
...

wn−k−1
jl′

. . . wjl′ 1 wn−kjl′
. . . wn−1

jl′


A
−
Ĩd

 = 0 (A.0.4)

Let E1 =


wn−k−1
j1

. . . wj1 1

wn−k−1
j2

. . . wj2 1
...

. . .
...

...

wn−k−1
jl′

. . . wjl′ 1

 and E2 =


wn−kj1

. . . wn−1
j1

wn−kj2
. . . wn−1

j2
...

. . .
...

wn−kjl′
. . . wn−1

jl′

. Further, let E2 · Ĩd = (F1|F2),

where F1 ∈Ml′×l(Fp) and F2 ∈Ml′×k−l(Fp).
Then we can write Equation (A.0.4) as follows

(E1A1 + F1|E1A2 + F2) = 0 (A.0.5)

We claim the following:
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Claim A.2.1. Equation (A.0.3) and

E1A2 + F2 = 0 (A.0.6)

imply
E1A1 + F1 = 0. (A.0.7)

Using Claim A.2.1, by Equation (A.0.5) we can tell that

|Vi1 ∩ . . . Vil ∩Wj1 ∩ . . . ∩Wjl′ | = |{A2 ∈Mn−k×k−l(Fp)| E1A2 + F2 = 0}|

Notice that E1 is a l′ × n − k matrix of maximum rank l′. Therefore the set has cardinality
p(k−l)(n−k−l′), since each column of A2 has n− k − l′ free variables.

Proof of Claim A.2.1 Using Equation (A.0.3), Equation (A.0.6) and Lemma A.1, the left hand
side of Equation (A.0.7) can be computed as follows:

E1A1 + F1 = E1 · (M −A2Vand2)Vand−1
1 + F1

=


wn−k−1
j1

. . . wj1 1

wn−k−1
j2

. . . wj2 1
...

. . .
...

...

wn−k−1
jl′

. . . wjl′ 1

 ·

wki1 wki2 . . . wkil
wk+1
i1

wk+1
i2

. . . wk+1
il

...
...

. . .
...

wn−1
i1

wn−1
i2

. . . wn−1
il

 ·


1 1 . . . 1
wi1 wi2 . . . wil

...
...

. . .
...

wl−1
i1

wl−1
i2

. . . wl−1
il


−1

−

− E1A2 ·


wli1 wli2 . . . wlil
wl+1
i1

wl+1
i2

. . . wl+1
il

...
...

. . .
...

wk−1
i1

wk−1
i2

. . . wk−1
il

 ·


1 1 . . . 1
wi1 wi2 . . . wil

...
...

. . .
...

wl−1
i1

wl−1
i2

. . . wl−1
il


−1

+ F1
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= −


wn−1
j1

. . . wn−k+1
j1

wn−kj1

wn−1
j2

. . . wn−k+1
j2

wn−kj2
...

. . .
...

...

wn−1
jl′

. . . wn−k+1
jl′

wn−kjl′

 ·


1 1 . . . 1
wi1 wi2 . . . wil

...
...

. . .
...

wk−1
i1

wk−1
i2

. . . wk−1
il

 ·


1 1 . . . 1
wi1 wi2 . . . wil

...
...

. . .
...

wl−1
i1

wl−1
i2

. . . wl−1
il


−1

+ F2 ·


wli1 wli2 . . . wlil
wl+1
i1

wl+1
i2

. . . wl+1
il

...
...

. . .
...

wk−1
i1

wk−1
i2

. . . wk−1
il

 ·


1 1 . . . 1
wi1 wi2 . . . wil

...
...

. . .
...

wl−1
i1

wl−1
i2

. . . wl−1
il


−1

+ F1

= −


wn−1
j1

. . . wn−k+1
j1

wn−kj1

wn−1
j2

. . . wn−k+1
j2

wn−kj2
...

. . .
...

...

wn−1
jl′

. . . wn−k+1
jl′

wn−kjl′

 ·


Idl×l
wli1 wli2 . . . wlil
wl+1
i1

wl+1
i2

. . . wl+1
il

...
...

. . .
...

wk−1
i1

wk−1
i2

. . . wk−1
il

 ·


1 1 . . . 1
wi1 wi2 . . . wil

...
...

. . .
...

wl−1
i1

wl−1
i2

. . . wl−1
il


−1



+


wn−l−1
j1

. . . wn−kj1

wn−l−1
j2

. . . wn−kj2
...

. . .
...

wn−l−1
jl′

. . . wn−kjl′

 ·

wli1 wli2 . . . wlil
wl+1
i1

wl+1
i2

. . . wl+1
il

...
...

. . .
...

wk−1
i1

wk−1
i2

. . . wk−1
il

 ·


1 1 . . . 1
wi1 wi2 . . . wil

...
...

. . .
...

wl−1
i1

wl−1
i2

. . . wl−1
il


−1

+ F1 = 0.

Knowing the size of mixed intersections, we show how we complete the final summation in the
proof of Proposition 6.7.

Proof of final summation from Proposition 6.7 In order to compute the cardinality of Sk, for
0 ≤ l ≤ k, we collect the intersections of any Vi1∩ . . .∩Vil of fixed l factors with any Wj1∩ . . .∩Wjl′ ,
for any 0 ≤ l′ ≤ n− k as following:

Tl =

n−k∑
l′=0

∑
1≤i1 6=... 6=il 6=j1 6=... 6=jl′≤n

(−1)l+l
′ |Vi1 ∩ . . . ∩ Vil ∩Wj1 ∩ . . . ∩Wjl′ |.

Therefore, |Sk| =

k∑
l=0

Tl. Notice that for any 0 ≤ l ≤ k and 0 ≤ l′ ≤ n − k, there are
(
n
l+l′

)
·
(
l+l′

l

)
intersections Vi1 ∩ . . . ∩ Vil ∩Wj1 ∩ . . . ∩Wjl′ . Using Proposition A.2, we get

Tl =
n−k∑
l′=0

(
n

l + l′

)
·
(
l + l′

l

)
· (−1)l+l

′ · p(k−l)(n−k−l′)

= p(k−l)(n−k)
n−k+l∑
i=l

(
n

i

)
·
(
i

l

)
· (−1)i ·

(
1

pk−l

)i−l
.

Now we make use of the l-th partial derivative with respect to X of (1−X)n:

δl

δX l
(1−X)n = l! ·

n∑
i=l

(
n

i

)(
i

l

)
(−1)iXi−l
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On the other hand, δl

δXl (1−X)n = l! · (−1)l
(
n
l

)
(1−X)n−l. When evaluating at X = 1

pk−l
, we get

(−1)l ·
(
n

l

)
·
(

1− 1

pk−l

)n−l
=

n∑
i=l

(
n

i

)(
i

l

)
(−1)i

(
1

pk−l

)i−l
This leads to

Tl = p(k−l)(n−k)

[
(−1)l ·

(
n

l

)
·
(

1− 1

pk−l

)n−l
−

n∑
i=n−k+l+1

(
n

i

)
·
(
i

l

)
· (−1)i ·

(
1

pk−l

)i−l]
.

Summing up all the terms Tl, for any 0 ≤ l ≤ k, we get the desired cardinality.
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