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Abstract. Programmers are used to the rounding and error properties of IEEE double precision
arithmetic, however in secure computing paradigms, such as provided by Multi-Party Computation
(MPC), usually a different form of approximation is provided for real number arithmetic. We compare
the two standard variants using for LSSS-based MPC, with an implementation of IEEE compliant
double precision using binary circuit-based MPC. We compare the relative performance, and conclude
that the addition cost of IEEE compliance maybe too great for some applications. Thus in the secure
domain standards bodies may wish to examine a different form of real number approximations.

1 Introduction

Multi-Party Computation (MPC) is a technique which enables a set of parties to compute a function
on their own joint private input, whilst at the same time revealing nothing about their private inputs
to each other; other than what can be deduced from the output of the function. Most MPC protocols
fall into one of two broad categories: garbled circuits or linear-secret-sharing-scheme-based (LSSS-
based) MPC. The garbled-circuit approach began with the work of Yao [Yao86], who gave a two
party protocol in which one party ‘garbles’ (or encrypts) a binary circuit (along with their input)
and then another party ‘evaluates’ the garbled circuit using their own input. By contrast, the LSSS-
based approach [BGW88,CCD88] involves the parties dividing each secret value into several shares,
over a finite field Fp, and perform computations on the shares, and then reconstruct the secret at
the end by combining the shares to determine the output.

Since their invention in the mid 1980s such technologies have come a long way. The garbled
circuit (GC) based approach of Yao was generalised to the honest-majority multi-party setting
by Beaver et al. [BMR90]. Where now the collection of parties “garble” the binary circuit, and
then later the same collection of parties jointly evaluating the garbled circuit. Recent work [HSS17,
WRK17] (which we denote by HSS and WRK respectively) have given very efficient multi-party
protocols for binary circuits using this methodology for the dishonest majority setting.

The other line of LSSS based work has also had considerable recent practical advances, e.g.
[BDOZ11,DPSZ12], for the case of large prime p and full threshold access structures, or [CGH+18]
for the case of honest majority style access structures for a large prime. For ‘small prime’ LSSS
based MPC Araki et al. [ABF+17] propose a method for the threshold case of (n, t) = (3, 1)
using replicated sharing. This method is relatively easy to generalise to any Q2 access structure
represented by replicated sharing.

In all settings the state-of-the-art is now protocols which provide so-called active (a.k.a. mali-
cious security), namely they allow honest parties to detect when adversarial parties arbitrarially



deviate from the protocol. In addition recent work has also focused on combining the two approaches
so as to get the advantages of working with function representations given by binary circuits, as
well as function representations tailored to the LSSS-based approaches (working with large ba-
sic data types, i.e. integers modulo p). The work [AOR+19], implemented in the Scale−Mamba
system [ACC+21], combines the HSS protocol [HSS17] in the GC world with either the SPDZ
protocol [DPSZ12] (for full threshold adversaries) or the Smart-Wood protocol [SW19] (for non-
full threshold adversaries) in the LSSS world. This conversation is itself based on so-called daBits,
introduced in [RW19].

In real applications one does not want to work either directly with binary circuit based repre-
sentations of functions, nor does one want to work with integers modulo p. After all many practical
real world applications involve processing real numbers. But real numbers are not native datatypes
in MPC systems, just as they are not native in normal computing, thus approximations have to
be made. In standard (in-the-clear) computing we approximate real numbers by floating point
operations; with the IEEE-754 representation being the standard.

For efficiency reasons much prior work on real number arithmetic in has focused on fixed point
operations. This follows from the work of Catrina and Saxena [CS10], who showed how to per-
form efficient fixed point operations within an LSSS-based MPC system. Over the years vari-
ous authors have examined efficient LSSS-based MPC arithmetic on such fixed point numbers,
e.g. [AS19, KLR16, Lie12]. However, as is well known in standard in-the-clear computation, fixed
point arithmetic is not particularly suitable for many real world applications.

Using a floating point representation is possible with an MPC system. By utilizing binary
circuits one can implement the IEEE-754 representation as a circuit and then execute them, so
as to produce true IEEE-754 compliant secure floating point operations. However, unlike normal
circuit design, the binary circuits for GC-operations are composed purely of AND, XOR and NOT
gates; with the major cost associated to AND gates. Thus we need to produce circuits which are
optimized for this cost metric and not the usual electronic circuit style cost metrics. We present a
solution to this circuit creation problem in this work, and present gate counts and run-times of our
IEEE-754 compliant circuits.

Utilizing an LSSS-based MPC system one can often obtain a more efficient form of floating point
arithmetic, using the methodology of [ABZS13]. This tries to emulate the real number arithmetic,
not in a computer whose native operations are modulo a power-of-two (as in IEEE-754 format), but
in a computing machine whose native arithmetic modulo a large prime number p. The methodology
of [ABZS13] gives a number of tunable values, such as the usual mantissa and exponent sizes, but
also a ‘statistical security’ parameter which controls how close ‘leaked’ values are from uniformly
random values4. The paper [KW15] also implements floating point arithmetic but in a passively
secure honest-majority three party setting, utilizing secret sharing modulo 2v. The work approxi-
mates IEEE arithmetic using a technique similar to [ABZS13], but tuned for the case of sharing
modulo 2v. This work was extended and improved in [KLR16].

In this work we compare the binary circuit based approach for exact IEEE-754 arithmetic, with
the approach of [ABZS13]. As remarked above a modern trend is to utilize the two types of MPC
system together. Thus we also present methodologies to convert from the IEEE-754 representa-
tion to the representation used in [ABZS13]. Our work is most closely related to that of [PS15],
which combines, as we do, a binary circuit approach for IEEE 754 arithmetic with a linear secret
sharing approach for other MPC operations. They also use the CBMC-GC approach to obtain

4 The closer they are to uniformly random, then the less information is leaked.
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the binary circuits. However, their MPC implementation is restricted to passive security and the
honest-majority three party setting (as opposed to our actively secure approach for general access
structures). The evaluation of the circuits in [PS15] are performed by classical garbling, as opposed
to our approach (in the honest majority setting) of utilizing an LSSS-based protocol. Thus in the
three party case we achieve roughly a five fold performance improvement for basic operations such
as addition and multiplication, whilst at the same time we achieve active security.

We aim to answer the question; what is the performance penalty one incurs from requiring
adherence to the IEEE-754 standard? We present run-times for all the above variants, and compare
these against run-times for the fixed point representation mentioned above. We examine purely the
basic floating point operations of addition, multiplication and division. For higher level functions
(such as sin, cos, sqrt, log etc) there are often specific protocols in the secure computation domain for
these functions which differ from the ‘standard’ methodologies, see [AS19, ABZS13]. We conclude
that the performance penalty for utilizing IEEE-754 compliant arithmetic as opposed to a tailored
form of arithmetic for MPC computations may be too great.

2 Preliminaries

In this section we introduce three forms of approximating real numbers, as well as our MPC-
black box. The key set in all our methodologies is Z〈k〉, which we define as the set of integers

{x ∈ Z : −2k−1 ≤ x ≤ 2k−1 − 1}, which we embed into Fp via the map x 7→ x (mod p), assuming
k < log2 p. We assume a statistical security parameter sec, which one can think of as being equal to
40. This measures the statistical distance between various distributions in the underlying protocols.

2.1 MPC-Black Box

Here we describe our two MPC systems (one GC-based and one LSSS-based) and how they fit
together using the ‘Zaphod’ methodology given in [AOR+19]. The systems are in the active security
with abort paradigm, i.e. if a malicious party deviates from the protocol then the protocol will abort
with overwhelming probability.

LSSS-Based MPC: We let [[·]]p denote an (authenticated) linear secret sharing scheme (LSSS)
over the finite field Fp (for a large prime p) which realizes either a full threshold access structure
or a Q2-access structure (a Q2-access structure [Mau06] can be thought of as a generalisation of a
threshold system with a threshold t such that t < n/2 for readers not familiar with this terminology)
There are various MPC protocols that enable actively secure MPC with abort to be carried out
using such an LSSS, e.g. [DPSZ12,SW19,CGH+18].

The simplest LSSS is the one which supports full threshold access structures. In this situation
a secret x ∈ Fp is held secure by n parties, by each party holding a value xi ∈ Fp so that x =∑
xi (mod p). This produces an unauthenticated sharing which we denote by 〈x〉p. To ensure

correctness in the presence of active adversaries such a secret sharing needs to be authenticated
with a distributed MAC value, i.e. each party also holds γi ∈ Fp such that α · x =

∑
γi for some

fixed global secret MAC key α; see [DPSZ12,DKL+13] for details and how one can define MPC in
this context in the pre-processing model. Such an authentication is called a SPDZ-style MAC, and
the combined sharing of x we denote by [[x]]p.

For threshold Q2-access structures, which can tolerate up to t corrupt parties out of n, where t <
n/2, one can define the secret sharing scheme using Shamir’s secret sharing [Sha79]. In this method
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a secret x ∈ Fp is shared as the zero’th coefficient of a polynomial f(X) of degree t with player i
being given the share f(i). Share reconstruction can be performed using Lagrange interpolation.
Active security of the underlying MPC protocol is achieved using the error detection properties
of the Reed-Soloman code associated to the Shamir sharing, see [SW19]. Thus we automatically
obtain a sharing [[x]]p which authenticates itself to be correct.

We can also consider LSSS-based MPC over a small prime p, for example p = 2. Utilizing Shamir
sharing is impossible here, without using relatively expensive field extensions, thus it is common
in this situation to represent the Q2-access structure via replicated sharing. This is only possible
when the number of maximally unqualified sets (i.e. n!/(t! · (n− t)!) is ‘small’). For such Q2-access
structures over F2 we use a generalisation of the method of [ABF+17]. This protocol uses Maurer’s
passively secure multiplication protocol [Mau06] to generate passively secure multiplcation triples
over F2. These are then turned into actively secure triples using the method of [ABF+17][Protocol
3.1]. Finally the triples are consumed in a standard GMW/CCD style online phase, using the
methodology of [SW19] to ensure active security, whilst using the techniques of [KRSW18] to reduce
the total amount of communication performed. Again, the use of Q2 access structures ensures that
the sharing authenticates itself. We let [[x]]2 denote such an authenticated sharing of a bit x ∈ F2

using this replicated sharing.

GC-Based n-party MPC: For full threshold access structures we cannot use the trick of utilizing
replicated sharing, thus to execute binary circuits in the full threshold case we turn to general n-
party Garbled Circuit based MPC. We first pick a large finite field of characteristic two, in our
case we select K = F2128 . The size is determined so that an event with probability 1/|K| can
be considered negligible. For each element x ∈ F2 (resp. K), we denote 〈x〉2 (resp. 〈x〉K) the
unauthenticated additive sharing of x over F2 (resp. K), where x =

∑
i∈[n] xi, with party Pi holding

xi ∈ F2 (resp. K).

To obtain active security with abort we need to authenticate these sharings. However, for
technical reasons, this is done using a BDOZ-style MAC introduced by Bendlin et al. [BDOZ11],
as opposed to a SPDZ-style MAC. In particular every party Pi authenticates their share bi towards
party Pj , for each j 6= i, by holding a MAC M j

i ∈ K, such that M j
i = Ki

j + bi · ∆j ∈ K, where

Pj holds the local key Ki
j ∈ K and the fixed global MAC key ∆j ∈ K. This defines an n-party

authenticated representation of a bit, denoted by [[b]]2, where b =
∑n

i=1 bi and each Pi holds the

bit-share bi, n− 1 MACs M j
i , n− 1 local keys Kj

i and ∆i, i.e. [[b]]2 = {bi, ∆i, {M j
i ,K

j
i }j 6=i}i∈[n].

We denote by [[b]]2 a bit that is linearly secret shared according to 〈·〉2 and authenticated ac-
cording to the pairwise MACs. The extension to vectors of shared bits is immediate. We let [[b]]2
denote a secret sharing of a vector b, the sharing of the i-bit will be denoted by [[b(i)]]2, whilst the
i-bit of the clear vector b will be denoted by b(i). Using such sharings one can create an n-party
MPC protocol to evaluate binary circuits, see [HSS17] for details.

Combining the Binary and Large Prime Variants: To combine the binary and large prime
worlds we use the Zaphod methodology [AOR+19], which we briefly recap on. Our interest is in
the function dependent online phase, so we focus on the online functionalities only. When using
the mapping from binary to arithmetic circuits the data being transferred has bit length bounded
by 64. In other words every data item x is an element of Z〈264〉. We will be interested in the ‘large
prime’ regime of Zaphod, so we will require that 64 + sec < log2 p. This guarantees that selecting
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log2 p bits bi at random and then forming, for x ∈ Z〈264〉,

x+

dlog2 pe∑
i=0

bi · 2i (mod p)

will statistically hide the value of x.

Functionality FMPC - Zaphod Evaluation

The functionality runs with parties P1, . . . , Pn and an ideal adversary Adv. Let A be the set of corrupt parties.
Given a set I of valid identifiers, all values are stored in the form (varid , domain, x), where varid ∈ I, domain ∈
{F64

2 ,Fp} and x ∈ domain. We assume p is restricted as in the main text.

Initialize: On input (Init) from all parties, the functionality activates.
If (Init) was received before, do nothing.

Input: On input (Input , Pi, varid , domain, x) from Pi and (input , Pi, varid , domain) from all other parties, with
varid a fresh identifier, store (varid , domain, x).

Evaluate: Upon receiving ({varid j}j∈m, varid , domain, Cf̄ ), from all parties, where f̄ : {domain}m → domain
and varid is a fresh identifier, if {varid j}j∈[m] were previously stored, proceed as follows:
1. Retrieve (varid j , domain, xj), for each j ∈ [m]
2. Store (varid , domain, xm+1 ← f̄(x1, . . . , xm))

Output: On input (Output , varid , domain, type), from all parties with type ∈ {0, . . . , n} (if varid is present in
memory):
1. If type = 0 (Public Output): Retrieve (varid , y) and send it to Adv. If the adversary sends Deliver,

send y to all parties.
2. Otherwise (Private Output): Send (varid) to Adv. Upon receiving Deliver from Adv, send y to Pi.

Abort: The adversary can at any time send abort, upon which send abort to all honest parties and halt.

Figure 1. Functionality FMPC - Zaphod Evaluation

In Figure 1 and Figure 2 we provide the functionality for our MPC black box. Each value in
FMPC is uniquely identified by an identifier varid ∈ I, where I is a set of valid identifiers, and a
domain set domain ∈ {Fp,F64

2 }. One can see FMPC-Zaphod Evaluation as a combination of two
MPC black boxes, specified by the set assigned to domain, along with two conversion routines,
namely ConvertToField and ConvertToBinary, given in FMPC- Zaphod Conversion. If domain = Fp,
the MPC black box provides arithmetic operations over the finite field Fp, whereas if domain = F64

2 ,
it enables one to execute arbitrary binary circuits over binary vectors of length 64, i.e. functions
with arguments and results in the set F64

2 .
FMPC- Zaphod Conversion permits parties to switch between the two MPC black boxes. Note

that we have defined ConvertToBinary and ConvertToField to ensure that they are mutual inverses
of each other (if the Fp-input element is fewer than 64 bits in length when in the centred interval
(−p/2, . . . , p/2]). The algorithms to implement the conversion functions given below are given
in [AOR+19]. To ease notation we will write these two operations, for x ∈ Z〈264〉, as [[x]]p ←
convert([[x]]2) and [[x]]2 ← convert([[x]]p). A trivial modification of the protocol ‘Convert To Field’
allows us to perform an unsigned conversion (i.e. when we think of the bits [[x]]2 representing an
integer x ∈ [0, . . . , 264), which we will denote by [[x]]p ← convertu([[x]]2).

To describe our protocols we will let [[x]]2, for a boldface x, denote a vector of 64 secret shared
bits in the binary arithmetic based side of the computation. We let [[x]]2 for a non-boldface value
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Functionality FMPC - Zaphod Conversion

Convert To Field: On input (Convert , varid1, F64
2 , varid2, Fp):

1. Retrieve (varid1,F64
2 ,x) and convert x to an element y ∈ Fp by setting y ← −x63 · 263 +

∑62
i=0 xi · 2i.

2. Store (varid2,Fp, y).
Convert To Binary: On input (Convert , varid1, Fp, varid2, F64

2 ):
1. Retrieve (varid1,Fp, x) as an integer in the range (−p/2, . . . , p/2).
2. Express y = x (mod 264) as y =

∑64
i=0 yi · 2

i for yi ∈ {0, 1}
3. Consider the values yi as elements in F2 and pack them into a vector y ∈ F64

2 .

Figure 2. Functionality FMPC - Zaphod Conversion

x denote a single shared bit x ∈ {0, 1} in the binary side of the computation. An execution of
Output, for type = 0, we will denote by x← Open([[x]]p) (resp. x← Open([[x]]2).

We let [[x]]2 + [[y]]2 (resp. [[x]]2 · [[y]]2) denote the execution of the Garbled Circuit to evaluate
the addition (resp. multiplication) of two 64-bit integers. Likewise, we let [[x]]2 ⊕ [[y]]2 denote the
bit-wise XOR of the two secret 64-bit bitstrings x and y, and [[x]]2 · [[y]]2 denote the secure bitwise
AND of the single shared bit x with the secrey shared bits of the vector y. Clearly operations
such as left/right-shift (i.e. [[x]]2 � 3) can be done for free, as they are just moving data around in

memory. We let [[x]]
(i)
2 denote the i-th bit of x, with bit zero representing the least significant bit.

A value [[x]]p will always represent a shared value x ∈ Fp. We let [[x]]p + [[y]]p (resp. [[x]]p · [[y]]p)
denote addition (resp. multiplication) modulo Fp. If we know x ∈ Z〈264〉 then we can also perform
shift operations such as [[x]]p � 3, however these are more expensive, and require specific protocols
which are outlined in [Cd10] (amongst other works).

2.2 IEEE-754

The accepted standard for floating-point arithmetic operations is the IEEE-754 standard, first
published in 1985. We use version IEEE-754-2008, published in August 2008. We note that the
relevant international standard, ISO/IEC/IEEE 60559:2011 is identical to IEEE-754-2008. IEEE-
754 defines representations of finite numbers, infinities, and non-numeric values (so-called “NaNs”);
a set of defined arithmetic operations on representable numbers; rounding modes to be used in
generating correct outputs of those operations; and a variety of error conditions that may arise
during those operations. In this paper we concentrate on the double precision binary format of the
IEEE-754 standard.

The IEEE representation has 64 bits in total with the least significant bit (lsb) b0 (which we
assume placed to the right) and the most significant bit (msb) b63 (which we assume placed to
the left). The three parts of the representation are the sign bit, in position b63, the exponent, in
positions b62 · · · b52, and the manitissa in positions b51 · · · b0.

If the sign bit is equal to one, then the number is negative. The eleven bits of exponent represent
a number e ∈ [0, . . . , 2047], which becomes the ‘real’ exponent after subtracting the number 1023.
The mantissa gives an integer m ∈ [0, . . . , 252−1], although this is not the ‘mathematically correct’
mantissa as the initial trailing one bit in the msb position has already been deleted. There are
two special cases for e, correspoding to the cases of the eleven bits being all zeros or all ones. If
e = 0 and m = 0 then this represents the value zero (which can be positive or negative depending
on b63). If e = 2047 and m = 0 then we have either +∞ or −∞ depending on the sign bit b63.
When e = 2047 and m 6= 0 then we have the special number NaN, meaning ‘Not a Number’. Thus
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assuming e 6= 2047 the real number represented by this representation is given by

(−1)b63 ·
(

1 +
52∑
i=1

(b52−i · 2−i)
)
· 2e−1023.

2.3 Secure-Floats via Fp-Arithmetic

The standard floating point representation in LSSS-based MPC over a finite field Fp of odd char-
acteristic is due to [ABZS13], which itself builds on the work of [Cd10]. Unlike [ABZS13] we always
carry around a value err, which the reader should think of as a value which is corresponds to the
NaN in IEEE-754 arithmetic.

Floating point numbers are defined by two global, public integer parameters (`, k) which define
the size of the mantissa and the exponent respectively. Each floating point number is represented
as a five tuple (v, p, z, s, err), where

- v ∈ [2`−1, 2`) is an ` + 1-bit significand with it’s most significant bit always set to one (note
here the msb is not dropped as in the IEEE format).

- p ∈ Z〈k〉 is the signed exponent.
- z is a bit to define whether the number is zero or not.
- s is a sign bit (equal to zero if non-negative).
- err is the error flag (equal to zero if no error has occurred, it holds a non-zero value otherwise).

Thus assuming err = 0 this tuple represents the value u = (1− 2 · s) · (1− z) · v · 2p. We adopt the
conventions that when u = 0 we also have z = 1, v = 0 and p = 0, and when err 6= 0 then the values
of v, p, z and s are meaningless.

Such errors can be triggered by ‘higher level’ functions such as trying to compute
√
−1 or

log(−1), they can be triggered by division by zero operations, or an underflow/overflow operation.
An underflow or overflow occurs when the value p from a computation falls out of the range Z〈k〉.
When an error occures in an operation the err flag is incremented by one. Thus the operation
z ← x/0 + y results in z.err = 1, whereas z ← x/0 + y/0 results in z.err = 2 (assuming in both
cases x.err = y.err = 0.

Following the documentation of Scale−Mamba [ACC+21] we refer to such a floating point
value as an sfloat (secure-float) when the values (v, p, z, s, err) are all secret shared. In which case,
we write ([[v]]p, [[p]]p, [[z]]p, [[s]]p, [[err]]p). Unlike in [ABZS13] the value err is kept permanently masked.
When an sfloat value ([[v]]p, [[p]]p, [[z]]p, [[s]]p, [[err]]p) is unmarked, first the value [[b]]p ← ([[err]]p = 0)
is computed. Then the five values ([[b]]p · [[v]]p, [[b]]p · [[p]]p, [[b]]p · [[z]]p, [[b]]p · [[s]]p, 1 − [[b]]p) are opened.
In this way no information leaks, including how many errors were accumulated, when a value with
err 6= 0 is transferred from the secure to the insecure domain.

Arithmetic is the implemented using the algorithms in [ABZS13], with correctness and security
maintained as long as 2·`+sec < log2 p, for the statistical security parameter sec. In particular 2−sec

represents the statistical distance between values leaked by the algorithms in Fp, and uniformly
random values chosen from Fp.

2.4 Fixed Point Representation

For comparison we also compare how the above two methods compare against the standard LSSS-
based approach to approximating floating point values; namely a fixed point representation first
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given in [CS10], which also utilizes the work in [Cd10]. We define Q〈k,f〉 as the set of rational

numbers {x ∈ Q : x = x · 2−f , x ∈ Z〈k〉}. We represent x ∈ Q as the integer x · 2f = x ∈ Z〈k〉, which

is then represented in Fp via the mapping used above. Thus x ∈ Q is in the range [−2e, 2e − 2−f ]
where e = k − f . As we are working with fixed point numbers we assume that the parameters f
and k are public. For the algorithms to work (in particular fixed point multiplication and division)
we require that f < k and 2 ·k+ sec < log2 p, again for the statistical security parameter sec. Again
the documentation of Scale−Mamba [ACC+21] we refer to such a fixed point value as an sfix when
the value x is secret shared as [[x]]p.

3 Generating Circuits for IEEE Arithmetic

In this section we implement circuits for floating-point arithmetic operations which are suitable
for MPC based on binary circuit computation. While some of this machinery (with respect to
NaN computations etc) may at first glance appear superfluous, leading to more complex circuits
than necessary; however, floating point implementations that lack this machinery may fail to meet
the expectations of real-world users. Thus for our work to be as relevant to real-world settings as
possible, we choose to implement fully IEEE-754-compliant circuit designs.

Unfortunately, because IEEE-754 is the recognized standard, and because floating-point per-
formance is a key competitive metric for hardware implementations such as those found in mod-
ern microprocessors, IEEE-754 compatible arithmetic circuit designs are generally proprietary and
tightly held. So, to achieve our goal of IEEE-754 compliance without readily available compliant
circuit designs, we choose to generate our own standard-compliant circuit designs. To do so, we
choose one of the few thoroughly tested open-source IEEE-754 compliant software libraries, the
Berkeley SoftFloat library, release 2c [Hau18], from which we automatically derive circuit designs
using a C-to-circuit compiler designed for MPC applications (CBMC-GC) [BHWK16].

float64 float64_add(float64 a,float64 b)

{ flag aSign, bSign;

aSign = extractFloat64Sign(a);

bSign = extractFloat64Sign(b);

if ( aSign == bSign )

{ return addFloat64Sigs(a,b,aSign); }

else

{ return subFloat64Sigs(a,b,aSign); } }

Fig. 3. The original SoftFloat C-code for IEEE-754 double addition

For each circuit of interest in this work, we started with the relevant main function in the
SoftFloat library, and modified the circuit to make it acceptable as input to the CBMC-GC compiler.
The necessary edits in each case were minor: changing the name of the relevant function to mpc_main

so that CBMC-GC would compile that function; renaming the input and output arguments to
match the expectations of the compiler; and modifying the code to contain only a single output
assignment statement and return point, with a specific output naming convention, at the end of the
function. Figure 3 shows as an example the original SoftFloat code for IEEE-754 compliant 64-bit
floating-point addition, whilst Figure 4 shows the same function after modification for compilation
by CBMC-GC.
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void mpc_main(float64 INPUT_X_a,

float64 INPUT_Y_b)

{ flag aSign, bSign;

float64 temp_output, OUTPUT_A_x;

aSign = extractFloat64Sign(INPUT_X_a);

bSign = extractFloat64Sign(INPUT_Y_b);

if ( aSign == bSign )

{ temp = addFloat64Sigs(INPUT_X_a,

INPUT_Y_b,aSign);

goto done; }

else { temp =

subFloat64Sigs(INPUT_X_a,

INPUT_Y_b,aSign);

goto done; }

done:

OUTPUT_A_X = temp; }

Fig. 4. SoftFloat C-code after modification for CBMC-GC

CBMC-GC is a compilation pipeline designed to convert software functions written in the C
programming language into circuit specifications suitable for use in secure multi-party compu-
tation – most particularly, garbled circuit computation. The compiler CBMC proceeds by first
unrolling loops in the source algorithm. Next, the compiler converts the algorithm into static
single-assignment form. Finally, the compiler uses multiple passes of optimization techniques with
the aim of reducing gate count in the resulting circuit or reducing depth of that circuit. Optimiza-
tion begins with conversion of the circuit into and-inverter graph (AIG) form – Boolean networks
comprised of 2-input AND gates and inverter gates. During AIG construction, CBMC-GC employs
structural hashing [MCJB05] to prevent addition of redundant AND gates, resulting in an AIG
with partial canonicity. The compiler uses constant propagation techniques to further reduce un-
necessary gates (those that result in constant outputs due to one or more inputs being constant).
The compiler also applies heuristic re-write rules to reduce subcircuit complexity, and employs SAT
sweeping [ZKKS06] to identify additional circuit nodes that realize equivalent logical functions, and
then remove such redundancies.

When optimizing for minimum depth, CBMC-GC precedes these optimization passes with a step
of “aggregating” gates – parallelizing otherwise sequential structures of gates in order to achieve
lower circuit depth. For the addition circuit, we specify no compiler flags. For the multiplication
circuit, we specify the “–low-depth” flag, so that the compiler optimizes for the lowest possible
gate depth. For the division circuit, which is programmed using an iterative approximation loop,
we specify compiler flags that limit the loop unrolling to a factor of 24. We choose this unrolling
depth to closely match the number of stages typically used in modern microprocessor floating-point
division pipelines, thus the output is (experimentally) indistinguishable from the output the circuits
used in a modern microprocessor. Finally, we use the circuit-utils tool in the CBMC-GC tool suite
to convert the optimized circuit into the “Bristol Fashion” used by the Scale−Mamba suite. We
have the Bristol format converter remove OR gates as well, resulting in circuits that contain only
AND, XOR, and INV gates.

Eventually we obtain the following circuit sizes for our three basic operations of IEEE-754
compliant floating-point addition, multiplication, and division:
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No. ANDs No. XORs No. INVs AND Depth

add 5385 8190 2062 235
mul 19626 21947 3326 129
div 82269 84151 17587 3619

In the above table we also present the AND-depth of the circuit; since when operating in the Q2-
domain using an LSSS-based MPC enginer modulo 2 the dominant cost is not the number of AND
gates but the depth of the AND gates in the circuit.

4 Converting Between Representations

Converting between the two representations is mathematically trivial from a functional perspective.
However, the our conversion needs to be executed in the secure domain, and thus we need to ensure
that no sensitive data leaks and in addition we use constructions which can be executed reasonably
efficient in the secure domain.

We first present two trivial extensions to the conversion algorithms in [AOR+19] which were
given earlier. The conversion algorithms work by utilizing a correlated randomness source, called
daBits. A call ([[b]]2, [[b]]p) ← daBits produces a doubly-shared bit b ∈ {0, 1}, which is shared with
respect to the two different methodologies. Having such a correlated randomness source allows us
to perform conversions. See [AOR+19,RW19] for how such correlated randomness is produced.

The first conversion algorithm, which we denote by [[x]]p ← convert([[x]]2), converts a single bit
x from the binary-world to the LSSS-world. This is executed as follows:

1. ([[r]]2, [[r]]p)← daBits.
2. [[v]]2 ← [[x]]2 ⊕ [[r]]2.
3. v ← Open([[v]]2).
4. [[x]]p ← v + [[r]]p − 2 · v · [[r]]p.

The converse algorithm takes a value [[x]]p in the LSSS-world, which we know to represent a value
x ∈ {0, 1} ⊂ Fp and converts it to a shared bit in the binary-world; an operation which we
denote by [[x]]2 ← convert([[x]]p). The procedure for this is a little more complex, and requires that
sec+1 ≤ min{64, log2 p}, which will hold in practice in any case. This operation proceeds as follows:

1. For i = 0, . . . , sec execute ([[ri]]2, [[ri]]p)← daBits.
2. [[r]]p ←

∑sec
i=0[[ri]]p · 2i.

3. [[v]]p ← [[x]]p + [[r]]p.
4. v ← Open([[v]]p).
5. [[x]]2 ← v − [[r]]2.

This works as the value v = x + r is gauranteed to hold a 64-bit unsigned integer, and it is also
statistically hiding of the single bit x. The final subtraction is performed using a binary circuit for
64-bit subtraction.

We can now present our two algorithms for conversion between a secure IEEE floating point
double, held as a bit vector [[x]]2 in the binary circuit world, and an sfloat value ([[v]]p, [[p]]p, [[z]]p, [[s]]p,
[[err]]p) in the LSSS world; and vice-versa. These algorithms are given in Figure 5 and Figure 6, with
the main complexity coming from needing to deal with the variable values ` and k representing the
sizes of the mantissa and exponent in the sfloat datatype. We mark the lines which cost nothing in
the secure domain with a comment of “free”.
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IEEE to sfloat

Input: [[x]]2.
Output: ([[v]]p, [[p]]p, [[z]]p, [[s]]p, [[err]]p), (with parameters ` and k).

1. [[s]]p ← convert([[x(63)]]2).
2. [[z]]2 ← ([[x]]2 = 0)
3. [[v]]2 ← [[x]]2 � 11. . //free

4. [[v(63)]]2 ← 1− [[z]]2. . //free

5. If ` ≥ 64 then
(a) [[v]]p ← convertu([[v]]2).
(b) [[v]]p ← [[v]]p � (`− 64).

6. If ` < 63 then
(a) [[v]]2 ← [[v]]2 � (64− `). //free

(b) [[v]]p ← convert([[v]]2).
7. [[x′]]2 ← [[x]]2. //free

8. [[x′(63)]]2 ← 0. //free

9. [[p]]2 ← [[x′]]2 � 52. //free

10. [[p′]]2 ← (−(`− 1)− 1023) + [[p]]2
11. [[p]]p ← convert([[p′]]2).
12. [[z]]p ← convert([[z]]2).
13. [[e]]2 ← ([[p]]2 = 2047).
14. If k < 11 then

(a) mask← 264 − 1− (2k − 1). //free

(b) [[t]]2 ← [[p′]]2 & mask.
(c) [[e′]]2 ← [[t(63)]]2. //free

(d) [[e′′]]2 ← ([[t]]2 = 0).
(e) [[e]]2 ← [[e]]2 ⊕ ( 1− [[e′]]2) · ( 1− [[e′′]]2 ).

15. [[err]]p ← convert([[e]]2).
16. Return ([[v]]p, [[p]]p, [[z]]p, [[s]]p, [[err]]p).

Figure 5. IEEE to sfloat
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IEEE to sfloat: Algorithm Figure 5, shows how we can securely convert a number from IEEE in
the binary-world to sfloat in the LSSS-world. Step 1 extracts the single bit corresponding to the
sign bit. This uses our optimized methodology for doing such conversions given earlier. In step 2 we
test whether the shared vector x is equal to zero. This is done by forming [[z]]2 ←

∏63
i=0(1− [[x(i)]]2).

In steps 3–6b we are extracting the mantissa v. A naive way to do this would be to take 64
bits of the IEEE representation, shift by 12 to the left and then shift back by 12 to right. Then to
obtain the 52 bits of mantissa then needs to add one bit in the most significant bit position which
is bit position 52 and finally convert the value to the [[v]]p used in sfloat, at which point we could
adjust this to cope with the required value of `. However, this would be very inefficient. We try to
maintain as much of the bit-shifting operations in the [[·]]2 domain, as there bit-shifts come for free.
Thus we first shift left by eleven places, and then add the one bit into the top position (which only
needs to happen if the value x is non-zero, thus we use [[z]]2 for this). We then have two cases to
consider, if ` ≥ 64 then we actually need to shift the value up even more, but we are already using
64-bits. Thus we convert, using the unsigned conversion routine (Step 5a) to a modulo p value, and
then perform the shift up in this domain (which is relatively expensive but unavoidable given the
basic instructions available to us). When ` < 63 we perform the shift down in the binary domain
(Step 6a) and then do the conversion (using an unsigned conversion as we know the top bit is zero).

Steps 7–9 extract the bits of the IEEE exponent p, whereas step 10 converts it to the correct
exponent for the sfloat representation. Now obtaining [[z]]p and [[p]]p is relatively straight forward.
Note, to obtain [[z]]p we use the optimized bit conversion protocol given earlier in this section.

Steps 13 onwards deal with computing the error flag [[err]]p. This is first computed using bit
operations in the modulo two domain, and then converted to [[err]]p using the above optimized
conversion (in the penultimate step). We need to set the flag err if either [[p]]2 represents the value
2047, or there is an error introduced due to a low value of k in the sfloat representation. The first
test, in step 13, is accomplished by setting [[e]]2 ←

∏11
i=0[[p

(i)]]2. The second test, in steps 14a–14e,
test whether the value of [[p′]]2 lies outside the range [−2k−1, . . . , 2k−1 − 1] or not.

sfloat to IEEE. Algorithm Figure 6, shows how we can convert a number from sfloat to IEEE. In
steps 1–6, we are computing the mantissa of IEEE from [[v]]p. To do so, first we need to get rid of
the most significant bit of [[v]]p (step 1) as the sfloat representation stores the msb, whereas IEEE
does not. Since bit-shifting in the [[·]]p domain is expensive, whereas bit-shifting in the [[·]]2 domain
costs nothing we do a complete shift (step 3) when ` > 64 down to 53-bits, but when ` < 64 we
delay the shifting until we have converted [[v]]p to [[v]]2 (step 5).

In step 7–8, we are dealing with the error flag which says if we should end up with NaN or not.
To make it easier to follow we define ok flag which will be one when the error flag is zero. In step
9, we are convert the exponent of the sfloat into the IEEE exponent. When k > 11 this value could
overflow the allowed IEEE representation, so this is detected in step 10 and the ok flag is updated
accordingly.

The sign bit is dealt with in step 11 using the optimized bit conversion protocol which was
explained earlier. In steps 12–13, we need to pack all the preceeding values together to obtain the
IEEE representation. This leaves us with dealing with the two special values of zero and NaN.
These are dealt with in steps 14-17, where we use a fixed NaN value of 0x7FF0000000000001.
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sfloat to IEEE

Input: ([[v]]p, [[p]]p, [[z]]p, [[s]]p, [[err]]p), (with parameters ` and k).
Output: [[x]]2.

1. [[v′]]p ← [[v]]p − 2`−1 · ( 1− [[z]]p ).
2. `′ ← `.
3. If ` > 64 then

(a) `′ ← 53
(b) [[v′]]p ← [[v′]]p � (`− 53).

4. [[v]]2 ← convert([[v′]]p).
5. If `′ < 53 then [[v]]2 ← [[v]]2 � (53− `′). //free

6. Else [[v]]2 ← [[v]]2 � (`′ − 53). //free

7. [[ok]]p ← ([[err]]p == 0).
8. [[ok]]2 ← convert([[ok]]p).
9. [[p]]2 ← convert(( 1− [[z]]p ) · ( [[p]]p + ` + 1023− 1 )).

10. If k > 11 then
(a) [[t]]2 ← [[p]]2 & 0xFFFFFFFFFFFFFF800
(b) [[ok]]2 ← [[ok]]2 & ([[t]]2 == 0).

11. [[s]]2 ← convert([[s]]p).
12. [[x]]2 ← ( [[p]]2 � 52 ) ⊕ [[v]]2. //free

13. [[x(63)]]2 ← [[s]]2.
14. [[z]]2 ← convert([[z]]p).
15. NaN← 0x7FF0000000000001
16. [[x]]2 ← (1− [[z]]2) & [[x]]2.
17. [[x]]2 ← ([[ok]]2 & [[x]]2) ⊕ ((1− [[ok]]2) & NaN).
18. Return [[x]]2.

Figure 6. sfloat to IEEE
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5 Experimental Results

In this section, we give results on our implementation of different operations namely, addition,
multiplication, division, as well as our conversion algorithms of IEEE to sfloat and sfloat to IEEE
which are presented in Section 4. These are given in the Full Threshold case for n = 2, . . . , 8 parties
and in the threshold case for (n, t) values with t < n/2 and n = 3, . . . , 8. In the latter case we do
not present run times for (n, t) = (8, 3) as in this situation the number of maximally unqualified
sets starts to become too big for our replicated secret sharing based technique for evaluating binary
circuits. For the large prime sharing in the threshold case we utilize Shamir sharing.

The experiments were done in Scale−Mamba version 1.11 [ACC+21]. The sfloat data type was
instantiated using mantissas with bit length l = 53 and (signed) exponents with bit length k = 11.
To satisfy the required equation 2 · ` + κ < log2 p, for sfloat, we are utilized a prime with 148 bit
length and statistical security parameter κ = 40. In all experiments we measured the online run
time averaged over 500 runs.

For the basic operations on IEEE values using binary circuit based MPC (Figure 7) the runtime
of the Full-Threshold variants grows with the number of parties. The average online time per
operation in this case ranges for addition from 0.025s (for n = 2) to 0.216s (for n = 8), for
multiplication from 0.092s (for n = 2) to 0.672s (for n = 8), for division from 0.634s (for n = 2) to
3.27s (for n = 8). For the threshold variants we see a range of run-times depending on the precise
values of (n, t), with the them growing as functions of n and t. The range of values is in the threshold
case for addition from 0.013s to 0.035s, for multiplication from 0.022s to 0.041s, for division from
0.191s to 0.643s. So depending on the number of parties and the precise operation the performance
of the threshold variants are between 2 and 6 times faster than their full threshold counterparts.
This behaviour is to be expected as the IEEE operations are performed via binary circuits. In the
full threshold case these are done via the HSS protocol, which is low round complexity but requires
a lot of data to be sent and a lot of computation to be performed. When in the threshold case this
is performed using a replicated LSSS, which requires higher round complexity but the total amount
of data sent and computation performed is less.

We next turn to the sfix operations. Recall sfix addition is a local operation, and involves no
communication thus it is very fast in all situations irrespective of the underlying access structure
or hte number of parties, taking roughly 0.2µs on average per addition. For multiplication the
run times scales with the number of parties, and the threshold, ranging from 0.001s to 0.0004s
for n = 8 in the Full Threshold case. For division, again, the runtime scales with the number of
parties; ranging from 0.0026s for n = 2 to 0.0082 for n = 8 in the Full Threshold case. For the case
of threshold Shamir sharing the times are roughly twice as fast as in the Full Threshold case. See
Figure 8 for details. Thus using sfix instead of IEEE arithmetic equates to savings (in execution
times) of orders of magnitude.

The main issue with sfix operations is the inherent precision loss in fixed-point operations, thus
we next turn to examining the performance (in Figure 9) of the sfloat operations. Recall these are
approximations to real numbers much like standard IEEE arithmetic, but not exactly the same, as
they are more flexible and tunable to the MPC environment. Much like the sfix operations, the sfloat
operations do not require execution of binary circuits. The run time of the Shamir based threshold
access structures is about half that of the Full Threshold access structures we tested. In the Full
Threshold case we obtain execution times ranging from 0.005s-0.018s for addition, 0.002s-0.008s for
multiplication and 0.004s-0.010s for division.
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In summary for the basic operations we have a trade off between accuracy sfix-sfloat-IEEE and
speed IEEE-sfloat-sfix. For multiplication the performance improvement between sfloat and sfix is
a factor of two, whereas the performance improvement between sfloat and IEEE multiplication is
a factor of factor of around one hundred.

Finally we turn to the conversion routines between sfloat and IEEE representations given in
Section 4. We see that since these operations require a combination of LSSS-based operations over
the large field, as well as binary circuit based operations over F2, there is less of a pronounced
difference between the run times for Full Threshold and those for thresholds with t < n/2. The
conversion from IEEE to sfloat is roughly 2-4 times faster than the conversion from sfloat to IEEE.
The timings are given in Figure 10.
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