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Abstract. In this paper, we present a new concept named the basic function. By the
study of the basic function, we find the O(n)-time algorithm to calculate the proba-
bility or correlation for some property of Modulo 2", including the difference-linear
connective correlation coefficients, the linear approximation correlation coefficients,
the differential probability, difference-boomerang connective probability, boomerang
connective probability, boomerang-difference connective probability, etc.
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Since the differential analysis and the linear analysis were proposed [1,2], statistical analysis,
which makes use of some significant probability for the block cipher to distinguish from the
random permutation, have become one of the research hotspots in the cryptanalysis of block
cypher in the last 30 years. And most statistical analysis for block cypher is based on the
statistical properties of nonlinear functions [1-5]. Specifically, most statistical properties
of nonlinear functions is the probability that a series of boolean vector function with the
form @, f(x);, where each f(x); in the @), f(z); is constituted by the composite
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operation of @, the nonlinear function and its inverse, are equal to some given values or
the correlation coefficients of a single boolean vector function @, f(z);. In most of block
cypher, the construction of nonlinear functions is based on the S-box that it can be regard
as the nonlinear function with small scale, especially in the SPN structure and Festial
structure, the calculation of statistical properties of nonlinear functions can be completed
by calculating the statistical properties of S-box. Due to the S-box with tiny scale, the
statistical properties of S-box can be got in a short time by trying all possible values. Thus,
for the SPN cipher and the Festial cipher, it almost has no problem to do the statistical
analysis, such as differential analysis, linear analysis, boomerang analysis, differential-linear
analysis, etc. However, because of the modular addition 2™ with large-scale adopted
as the nonlinear functions in ARX structure, it is infeasible for the ARX cipher to get
the statistical properties of nonlinear functions by trying all possible value. In a word,
compared with the SPN structure and the Festial structure, most studies of the utilize of
statistical analysis method for the ARX cipher, especially the new method or improvement
method proposed in the last decade, have made slow progress due to the above reason.

In order to overcome the above problem, we have to look for the polynomial time
algorithms to calculate the statistical properties of modular addition 2". In 2001, Lip-
maa.etc [6] and Johan Wallén [7] proposed the polynomial time algorithms to calculate the
differential probability and the linear approximation correlation coefficients respectively,
which was been about 10 years since the differential attack and the linear analysis were
proposed. And in 2013, Schulte-Geers [8]showed that mod 2™ is CCZ-equivalent to a
quadratic vectorial Boolean function. Based on it, he proposed the explicit formula to
calculate the linear approximation correlation coefficients and the differential probability,
of which time complex are polynomial. Since then, the CCZ-equivalent relation of mod
2" had been acknowledged as the most powerful method to look for the polynomial time
algorithms to calculate the statistical properties of modular addition 2". In addition, a
series of new statistical properties, including the difference-linear connective correlation
coefficients, difference-boomerang connective probability, boomerang connective probability
and boomerang-difference connective probability, etc [1-5], were proposed in order to
improve the previous methods. And those methods had better performance in the SPN
cipher and the Festial cipher. Unfortunately, according to the study of difference-linear
connective correlation coeflicients for nonlinear function [9], for any two permutations in
the same CCZ-equivalent class, their difference-linear connective correlation coefficients
are not in general invariant. It means that the CCZ-equivalent relation can’t be regard
as the general method to look for polynomial time algorithms to calculate the statistical
properties of modular addition 2™. Then, the following questions may be asked naturally:

1.How to find the polynomial time algorithms to calculate such new proposed statistical
properties?

2.Does there exits a general method that the explicit formula with polynomial time
complex can be got for all of the current statistical properties of modular addition 2™ or
even the properties that may come up in the future?

Our contribution

Firstly, this paper give the O(n)-time algorithm to calculate the probability or correla-
tion for newly proposed property of Modulo 27, including the difference-linear connective
correlation coefficients, the linear approximation correlation coefficients, the differential
probability, difference-boomerang connective probability, boomerang connective probability,
boomerang-difference connective probability, etc.

Secondly, for all of the current statistical property used for statistical analysis in block
cipher, such as difference-linear connective correlation coefficients, the linear approxima-
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tion correlation coefficients, the differential probability, difference-boomerang connective
probability, boomerang connective probability, boomerang-difference connective proba-
bility, etc, it can be summarized as the probability of @77, f(z).; = A;, 1 <j <mor
the correlation coefficients of A - (@) f(x);), where f(z).;, 1 <j<m, 1<z <nj
f(x)i, 1 < i < n are composite operation of @, the nonlinear function and its inverse.
Based the above fact, we propose the concept of the basic function, which is a composite
operation of @ and H. Then, based on the regular of the basic function, we construct the
Aa-set and Df-set. According to the property of the Aa-set and Df-set, we can answer the
question 2. The general method has been found, which is fit for all of current statistical
properties of modular addition 2™. As a result, the form of formula for all of current
statistical properties of modular addition 2™ are similar with the Johan Wallén’s work.

1 Preliminaries

In this section, we will introduce some basic knowledge that we will use in the following.

Definition 1(Addition modulo 2™): For z,y € F3', define yHz = z@ydcarry(z, y),
where carry(z,y) = [¢n-1, ", co]. The i-th bit ¢; is defined as

Cit1 = (@i NY) ® (i Nei) @ (yi Nei),0<i<n—1
Definition 2: Let z,y € FJ', e € Fy, define yBHzBe=yBaH(0,---0,¢).

Let carry’(z,y) = [c;_1, - ,ch], if we define i-th bit ¢ as

Cipr=@iANy) D (i Nc) D (ys Nep),0<i<t—1
And the purpose of defining carry’(x,y) is to make y B8 x B e have the same form as y B x:

Theorems 1: For z,y € F}', e € Fy, define yBaHe =2 @y @ carryi(x,y).

Proof. 1f e = 0, then the theorem holds.

If e = 1, let ¢; = carry(z, y)[i], ¢} = carry(z By, (0,---0,¢))[i], for 0 < i < n; then

cé:O
C%:xOEByO
iy =(@i®yi®c)ANc;,2<i<n-—1
Obviously, ¢ Aco =0, cf Ay =20 Ayo A (0 @ yo) = (w0 Ayo) & (zo A yo) = 0.

Next, we will proof ¢} A¢; = 0, for 0 < i < n—1, by introduction. Supposed that ¢} Ac; =0
for 1 <i < k. Then, for c}C_H A Cik+1, we have

‘311€+1 N Cr41

= (s D yr D cr) Acg) A ((Tk Ayr) @ (@5 A ck) @ (yx Ack))
(e ©yr) Ack) A (@ Ayr) & (2 @ yk) A ci))
(
(

Tk ® ye) A (Te Ayi)) Acy,
T ANyp) B (:Ek/\yk))/\c,lc:O

(
(
(



Thus, for 2 <i<n—1, we have ¢j,; = (z; ®y; ® ;) At = (2, B y;) A, and

G=co®cg®l=1

ct=c1®c

Cih1 = Ciy1 @ G

=(@iAy) @ (2 A (e @) ® (i A @), 2<i<n—1

Notice that carry}(x,y) = carry(z,y) & carry(x By, (0,---0,e)) & (0, - - -0, e).
Thus, yBz B (0,---0,e) =z ® y ® carry’(z,y). O

From the definition of H, we can see that the subtraction modulo 2™ (H) can be
converted into the addition modulo 2™ (H):

Theorems 2: yHz = (z® (1,---1))ByHB1.

Proof. Notice that (1,---1) = —1 mod 2" and carry(z @ (1,---1),2) = 0™, then
(xp(1,---1))Ba=(1,---1) = =1 mod 2™, which is equal to
(x®(1,---1))B1=—xmod 2".

Thus, yBr=y—xzmod 2" = (z® (1,---1)) By H1. O

Combing with the theorems 3, the y H = have the same form as y H x:

Corollary 1: yBz=(x® (1,---1)) @y ® carryi(x ® (1,---1),y).

2 The Basic Function

2.1 The motivation and property

In the cryptanalysis of block cypher, the scholar proposed many analysis method based
on some statistics property of the nonlinear function in the cipher. And these statistics
properties can be summarized as the probability of @Z;l (2):; =4, 1 <j<mor
the correlation coefficients of A - (@), f(x);), where f(z).;, 1 <j<m, 1<z <nj
f(x);, 1 < i< n are composite operation of @, the nonlinear function and its inverse. In
the ARX cipher, the sole nonlinear function is the B and its inverse can be converted into
the composite operation of @& and H. Thus, we can define the basic function as composite
operation of & and H:

Definition 3(The Basic function): Supposed that z,y € F}', Ex, = (eg, €1, - €x—1) €
Fy, ag,on,--ap—1 € F3, Bo, B, Br—1 € F3'. Let Ay = (ap, 02, ag_1), By =
(Bos B2, - - - Br—1), where the element of Ay, By, is n-dimension vector. Then the f(z,y)g, A, B.
is called basic function with k order, if f(x,y)E, a,.B, satisfies the follow the form:

(anyo) = (J?,y)
(Tit1,¥i41) = (@i @ o, (2 D o) B (y; ® B;) Bei),0<i<k—1
F(@.Y) By, Ax, B, = (Th, Yk )-

Then, for 0 <i <k —1, (z; D oy, (z; B o) B (v; ® B;) Be;) is called the (i + 1)-th round

function, and carry} (z; ® a;,y; © f) is called the carry function of (i + 1)-th round
function in f(z,y) g, A, By -

According to the definition 3, we can see that the relation between the f (2, y)g, ;. A,_, Be_s
and the f(z,y) g, A, By
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Remark 3: According to the definition of f(z,y)g, a,,B,, the f(z,Y)E, 4,8, can be
written as:

(.’L’k,h ykfl) = f(xvy)Ek—l,Ak—th—l
(@r,yr) = (@p—1 ® ag—1, (Tr—1 P ag—1) B (Yr—1 P Br—1) Beg_1)
f(xay)Ek,Ak,Bk = (l’k,yk)

where Ej,_y = Ep[0: k—=2] = (eo, €1, - ep—2), Ap—1 = Ak[0: k=2] = (a0, a, - - ap—2), Bp—1 =
Bi[0: k —2] = (Bo, B2, - - Br—2)-

Definition 4: For x = X?||X! € FJ', where X% € Fy, X! € F}, p+ q = n. Define
r=X?|X!=Xx2%.27 + X1
Then, according to the definition of Addition modulo 2", we can see that the basic function
can be divided into two basic function:
Theorem 3: For any nonnegative integer ¢ and any positive integer ¢, supposed that

Litl vlitl o Li+l 141 Li+1l pli+l pli+l 11+1 (i41)-t.
X Z+aY Z+aa0 , O a"'vak_la 0 s M1 s Tt F Ek—(e()vela
sep—1) € FF. Let Ybi = YLiHL[j. ¢ — 1. 0], Y* = Y“+1[(z+1) t—1:4-t,

Xt — XL ¢ —1: 0], X2 = XV (i+1) -t — 1 : i -], then the k order basic
function f(X1*+1 Y1) o i pin can be written as
ALB,

1,5+1 1,5+1 2,0 2,0 L 1,2 1,2
LY R g g g = FXP Y2 )0 o0 p - 27 4 f(XLY ) gy ad e
where

a2t =l G4 1) t—1:i-4,0<m<k—1
ﬂ“ BLF(1+1) t—1:i-4],0<m<k—1
a a““[z t—1:0,0<m<k-1
ﬁi;‘=5;;i+1[z~t—1:0],ogmgk_1

chy =carryl (XY @ay Yy te By t),0<m<k-1
st = = carryy (X2 @ a2 Y2 o B29,0<m<k—1
Z

i [1’L 1 11]

E= Q0 00, ag
12 1,2 1,2
Bk_[ 1 07 Pe— 1]
2,1 2,1 2,1
Ck—[070‘1a"' o]

[ﬁgzv v 7' ﬁill]
Mk = [007017"'Ck—1]
Sli = [367511a"'8;§—1]

Proof. Notice that when order k = 1, according to the definition 2, (X! @ o) @
(YYiH @ B3 ) B ey can be written as

(Xl,i-‘rl @ Oé(l)’i+1) =] (Yl,i+1 P B(]).,’H’l) 2= €o
(XY @ay")BY M @By ) B )2 + (XX @ad)BY> @Y ) Be

Thus, when order k = 1, the theorem holds.

Supposed that when order m < k, the theorem holds.

When order m = k+ 1, according to the definition of carry?(z,y), the value of the i-¢t —th
bit of carry; (X" @ ap™ VP @ B )[i - 1] is only rely on the first i - ¢ — 1 bits of



Xl i+1 e Iiz—‘—l an d Yl i1 @ﬂl i1 namely,

CCLTTka (Xl ,i41 @ ]1€z+1 Yl,i+1 @ﬂl,i—‘rl)[i . t]

fcarryek(X @ k 7Y11®ﬂ )[ ]

Thus,

1i4+1 y 141
I S )Ek+1,Ak+11,B;111

— (X;yi+l @ ]1€z+1) M\ (Yl Jit+1 ® 61 H—l) B ey
= (X' o) B @B ) B, )2" + (X' @ay ) B, ©8,") Bex

On the other hand, due to the assumption of induction, we have:

(X;J-Fl’X;,i-i'l) — (Xl?i’X]z’i) .9l + (X]:Cl7i,X]:<|;7i)
— f(XZi,Y?,i)M]i’C]i’D;; +f(X17iaY17i)Ek’A;€’B/’i

Thus,

Jc()(l,i-‘rl7 Yl,i-‘rl)EkJrhAH_l B1+1 _ (X;,iJrl @ Oé]:i Z+1) E (Yl ,i41 @ /81 7,+1) EE ek

kE+17" k41

= (X oadYBY @B, ) 2"+ (X @a ) B @) Bex
= f(XPY2 ) i pi -2 +f(X1’ZaY1’Z)Ek+1,At Bi

k41" k417" k41 k41 k+1

When m = k + 1, the theorem holds. O

Remark 4: Meanwhile for any positive number i, k, according to the definition of
carry?(r,y) and Theorems 1, we have: Si = M;**.

Remark 5: Obviously, for any Ej, A;t", By, when X171 Y1i+lare given, then
M ;Hare uniquely identified.

Definition 5: For XY € F}, given {f(X,Y)p

a basic function set with code number j, which contams r; basic functions, where

o A1+1‘ B7,+1 ;1 <m < 7‘]}] as
m,J m,j

kg < o0 S kg I By = Brpy 00 kagl, AT = AL [0 Rl Bljnl] —
BZjni“[o : kmj] holds for f(X Y)E,c AL B where 1 < m < r; — 1. Then,

we called the {f(X,Y)p, AR gt ; 1 < m < rj}; is basic function series with

m,g°

code number j. In addition, k:r g is called the depth of the basic function series
{‘f(X’Y)Ekm A | Bitl 1<m S Titj
. ‘m, g m,J

Besides this, for convenience to express whether the basic function f(z,y)g, A, B, IS
chosen, for a € F5, we define the operation * as

ax* f(z,9)E, A, B, =07, when a =0
a * f(xay)Ek,Ak,Bk = f(SC,y)Ek’Akak, when a =1
axx=0" a*xy=0" whena=0

axr=x, axy =1y, whena=1
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2.2 Notion Description About The Basic Function Series

In order to reduce the redundancy of the article, we will introduce some notion description

about the basic function series {f(X'4, Y1) A B 3l<m< r;};, which will
m,j’ m,j’ m,j

be frequently adopted in the following proof. ’ ’

For any positive integer g, t,n, supposed that X,Y € FI* C = (J N) e (F"X’”7 F;X'I't)

)

v, \v,w € FYY, 04(1)’% O‘fz, PE ’ailc;z,j m,JJv EZ vy m, PO ﬁk’q “Lke, €
Fqut, Ekr]‘)j = (EOVij’j,eLkrjyj,' e ,ekrj’j_Lij,j) S F2 . Let

Xhi=X

yhi=y

A Kry [%k O‘i P "allc’(jj—1,krj,ﬂ7

qu =1 é’gr 3 1kT 3 ﬁ/ﬁq ,}3

C = (J ):C,}:( i q)7 )\é:)\’fyq:%‘/ql:v,w;:w.

Then, according to the above description, define the basic function series with code number
j as {f(X1 4yt g, AL B ;1 <m <r;—1},. Due to the property of the basic
function series, the follow relatlon holds

Eka:Ekﬂ[ tkml,1<m<r
Al = A5 0 k), 1 <m <y
Bl = B [0kl l<m<r
For the basic function series {f(X14, Yl’q)Ekmyj AL B 1 <m <r;},;, define:

Y =yl 10 =Yt —1:0]
Y2 =YY+ )t =1 ) =Y+ 1)t —1:0-1]
XM= XV —1:0] = XM[i-t—1:0]
X2 = XV G4 ) ot =1t = XV +1) -t —1:i-1]

2,
a,

;M :ajﬁjl,[(iﬂ)-t—l:z‘-t]:aizgr]‘)j[(i+1)~t—1:z‘-t],ogzgkm,j—L 1<m<ry

B, = BG4 D) it = B [+ 1) b= 1eit,0<z <k, 1 1<m<r

aizj :aizzt}j[i-t—l:()} zal’zﬂ_ Ji-t—=1:0,0<z2<k, ;—1, 1<m<r,
Bl = Blint it =100 =B [+t =1:0,0< 2 < ke =1, 1<m <y

where 1 <7 <¢q—1.
Next,for 1 <i<qg—1,0<2<kp,; —1,1 <m <y, let

i+l _ g 2, 2,i—1 2,1 1,1
Zkm,; [ z kr 7’az krj,j T 70[2,]@ . ja%krj,j]
1i4+1 2,i—1

ﬁzlimj*[ﬁzkr ]’52;% g ’ﬂzkr JB 7‘]}

XLl = [x28 x2i-l... x21xLy
ylLi+l — [y2i y2i-1.. y2l yll)
Beside this, for 1 <¢<¢q, 1 <m <7y, let
(X" ") = (X1 YHY)
(XY = (X e O‘iﬁ%ﬂ-v (X' ® O‘i:;‘% ;)8 ¥ e 5;:12”4) Beok, ) 0<2<km;



and for 1 < i < q, let

i1 1, 1,4 ‘

km.; — [O‘O,kr. 5O g, ot O »—1,kr._.]v L<m<ry
j2d God ¥ 'R

i _ 1,2 1,2 1,2

km,; — [/Bovaj,j’ﬁlykv‘j,j7. o km,j—lykrj,j]’ I<m< Ty

then we have (X’ V"' )= f(X1, V17)

i i <m<r,.
m,j km,j A;Lctnl .7B;+1 ’ for 1 =M= T‘]

Ey )
s m,J

m,j’

From the above, for 1 < m < r;, according to the {f(X'%, Y ) 40 i ;1<
) ) m,g m,,j7 m,j
m < r;};, we get the basic function series {f(Xl’Z’Yl’Z)Ekmj,AL B i l<m<rl
’ m,J m,J

that is defined on the F¥t x F*?.

Secondly, for 1 <i<¢q, 0< 2 <kp;—1,1<m <7y, let M,imj[z] denote the 7 - t-th

value of the carry function of f(X%, Y1)

gi inround z + 1.
2,5 e,k

m,j

Property 2: For any positive integer ¢, and 1 < ¢ < ¢, 1 < m < r; — 1, when
Ekrj,j’Ai: j,B}l€ I X1 XL are given, then M; , are uniquely identified. Thus, for
i i "

{f(Xl’i,Yl’i)Eka‘1A§€m‘j,32mj; 1 <m <r;}y, it satisfies Mlim,j = Mlir].,,- [0: Ep j].

From the Property 2, we can define:

Li g oL Li o alyi .
G carry’e"mr_ (X;'e az,;crj,j’yz ) 5272Tj1j)[z 1,0<2<ky,;—1,1<m<ry
J’ -

J

i i i ,
My, = [Co,kr._,,ﬁ kr.7"'"Ckm_,_,'—l,k,»j,j}’ L<m<r,
where 1 <17 <q.

i 2,1 K 2,1
Lk, =carryl  (X2'e az,zm,j»Yf’ GBI, 0<2<ky;j—1,1<m<ry

2,k 4
z’k’f‘j,j YT G50

Sty = 8000 5181 507 Sk =1k, s L S M ST
. . » . .

where 1 <1 < ¢q—1.
According to the Remark 4:, we have

Remark 6: Forlgmgrj,lgigqflvM’iH =g

m,j Kkm,j*

For convenience to the follow following discussion, for 1 <i < g —1, let

0 _ 171

Tkm,j = Akm,jal <m<r;—1
0 1

ka,j :Bkm,dl Smgrj—l

J
i 2 2,i 24 ‘
Ty, = [ao,krj,j,al,krj,j’ akm,jq,kw,ﬂv L<m <,

7 . Tj7i ’I‘j7i . Q,i .
ka’j = [ 0,k5,;7 Pk, 50 ’Cm,j—Lkrj,j]’l S m S T
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Jils)=Jl[s,0:i-t—1] = Jy[s,0:i-t—1], 1< s <n.

[s] =
Jsl=Jlals, i+ 1) t—1rit]=J)[s,(i+1)-t—1:i-t], 1 <s<n.

N}[s] = N}l4[s,0 z~t—1]:N;[s,0:i~t—1],1§s§n.
NP[s] = Njqls,(i+1)-t—1:i-t]=Ngls,(i+1)-t—1:i-1, 1<s<n.
Cilsl = (Ji[s]. Nils]), 1 < s <.
CPls] = (J2[s], NP[s]), 1 < s <.
Cilsl = (Ji[s]. NPls]), 1 < s <n.
]

>

P=Npl0cit—1] =200t —1],
7= )\ll_H[(z—!—l) t—l.z~t]:/\é[(z’+1).t_1:i.t]’
Y=ta0cit—1] =700t — 1],
7 %+1[(Z )ot—1ti-t]=~k{i+1)-t—1:4-1],

>

W0t =1 =V [0:i-t—1],

W41t =1 ] = V(i +1) -t =1t
Wil:Wi1+1[0:z-t—1]:W;[O:i-t—l],
W2=Winlli+1) t—=1ei-tf=Wli+1)t—1:i-t],

)‘g = )‘%7 7(% :PY%» ‘/02 :Vlla VVO2 :Wll

3 The Aa-set

Definition 6: For any positive integer ¢,t,z and 0 < ¢ < ¢ — 1, given any z basic function
series {f(X i+l Y1’i+1)E AL i 1<m<r;}y, Where 1 < j < z. We define the

Fm k
Aa-set with Out, In as

km,j m,j

1 i+1 1
Aa% In(A’lL@Jr BH , 1< <2)

(X0, YLy ¢ D o = (MG M )
where Out, In € Fg, d = Zl _okri, In = (EkT1 e Ek%z).‘ .
Let d = >°7_ kr,, then there are 2¢ possible results for (Mlz:ll7 e Mfcjlz), thus
Property 3: For any positive integer q,t, 2,7, where 7 satisfy 0 < i < ¢ — 1, given any z

basic function series {f(X 1, Y1’i+1)Ek AT g 1<m<r;}j, where 1 < j < z.

km \J km ,J

Then, for all Out € Fy, the Aa-set with Out7 In satisfies:

1 +1 pitl (i+1)t
U Aa’gut In Aztj,]w ZT RN S z)= {(Xl,iJrhYl,iJrl) X141, Y1641 € Fy }
OuteFg

According to the Property 2, we have:
Property 4: For any positive integer ¢,t,z, and 0 < i < ¢ — 1, given any z basic
function series {f(XM L YLy g 3 1 <m <7y}, where 1 < j < z. For
ki,

Fm,g S

any Outy, Outs € de satisfied Outy # Outs, then

i+1 z+1 z+1 . i+1 i+l it . _
AaG . In(A LB 1< <2) mAaOutz,ln(Akrj,j7Bkrj,j’ 1<j<2)=0

holds.
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From theorem 3, we can see that the Aa-set with Out, In can be divided into many
subset, and each disjoint subset has the following recursive structure:
Lemma 1: For any positive integer ¢,%,z and 0 <14 < ¢ — 1, given any z basic function
series { f(X i1 ylitl) aitt i 5 L <m <rgh, 1< <z We define the Aa-set
m,j m,j

with Out, M4, In as

B i

i+1 i+1  pitl -
AaIOJrut,Mi,In(A;ctj‘j’B;e:,j’ 1<j<2)

XY € Ady, (AL B 1S5 2);
Y1) | | Mi= (M/zrl,l_’ : "Ml;rz,z);

X210 Y% € Aadyyari(Th Yj,D,’%j, 1<j<2).

T

— (X2’i||Xl’i, Y27i

where Mi,Out,In € F§, d=37_ky,, In = (Ej - By, .). Then,

r1,10 "

i+1 i+l i+1 . _ i1 i+1 i+1 .
Aaout,ln(Aij.j’Bky,j,ja 1<j<z)= U AaOut,Mi,In(Aakrj,j’Bkrj,j’ 1<j<2)
MicFy

holds, and for Mi; # Mis, Miy, Miy € FS, satisfy
Aattt (A1 Bl 1 <j<2)nAd] (ATl Bt 1<j<2) =0

Out,Miy,In krj,j’ ij,j Out,Miz,In k’rj,j’ k:rjj7

s

Proof. Firstly, due to A} j,B,i , can be decided according to the definition from the
A;tjl,j , B}:]l] And from the property 4, we know that for Miy # Mio,

Adiyi, Ay, Bi, 1S5 <2)0 Ady, (A, By, 1<5<2)=0

2J T \J rj.d —
Thus,
i+1 i+1 i+1 . i+1 i+1 i+1 :
Aagzt,]\/“lJn(A?;J_,B,ZC+ L 1<j<2)n Ads (A}ijj,B,’:j’j, 1<j<2)=0

— Out,Mia,In

Secondly, from theorem 3, for 1 < ;5 < z, we have:

7

f(X17i+1’Y17i+1)E it gitt = f(X27i7Y27i)M; ,T;é _,Di ) '2i.t+f(X1’i,YLi)E

AL
fm g ke 0 R g Ry Ry WA A
For 1 <j <z let
i1 2,41 2i+1 2,i+1
Ml-‘r — s 5 3
ki [ 0,k 57 Lk 50 ki g 1,k,,j,j]
0 )
Sk,.j P [SO,k,.j i 5Lk, 50 Sk,.j,fﬂ
According to the Remark 6,
ikl i _ * 2,i 2,i 2,i 2,i
Comdors 5 = Sy = CTTYs (X' e Wik, Y e ﬂkq‘j j)[t], 0<m<k,,;—1
Mok : :

J
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holds. Thus,

Aa ZC;s_ult In(A;:rl BZH 1<j<z2)

(X, Y| XL Y € BV 0w — (M)

_ (X2,i X17'L’Y1,i c F2i't7X2,i7y2,i c th,M’L c F2d7

Xl’i7 Y2,i| |Y1,i)

Mi= (M M ), Out=(Si =S )
XU YN e By Mi= (ML M );

_ U X2,i||X1,i7 YQ,iH}/l,i)

X2i y2i¢ Fg;Out — (Szn)l’. . .Slirz,z)-

MicF§
XLiylig AaM’In(A};TN,B};TN, 1<j<2)
= U (X2 | X1, Y2i[[y L) | | Mi = (Mé”,l}’...Mé’.z’Z);
MieFg X2, Y% € Aaby,, Mi(T,gmj,D}WN, 1<j<2).
i+1 i+1 i+1
U Aaz)ut,Mi,In(A;crj_f llcrj 1<j<2)}
MieFyg

O

Definition 7: For any positive integer ¢,¢,z and 0 < i < g — 1, given any z basic
function series {f(X1i+! yLitl) aitt pier s L<m < ritj, 1 < j < z. Supposed

"

that G; € Fy', 1 < j < 2z, yh 1, ALy, VAL W € STV Out, In, Middle € FY,
where d = Y7k, In = (Ey,, ,, - Ey,_.). Define the correlation coefficients of
h(X1 YLty with the linear mask v}, 1, Af 4, V4, Wl as

Ey

m,j’

1
COT’L+1 '112’+15Ai|117V+1aW+1,
2 3
A, B, Gi 1sj <2

— E (_1)(’Yz‘1+1a>‘}+1)‘h(X1’i+17Y1’i+1)@vil+1‘Xl’i+1$wil+1'yl’i+l

X1,z‘+1€F2(i+1)t’
Y111'+1EF2(7'+1)1/

where (X1, Y1) = @, @y Gilm] * (XL Y L

. . 3,5
Additionally define the correlation coefficients of A(X1#+1 Y1i+1) gver the Aa—set with Out,
In and the correlation coefficients of h(X 1+ Y1i+1) over the Aa-set with Out, Mi, In

respectively as

1 1
Corigh [ gt Vb W
T 1
Out In AkTv,j’BkT.,j’Gﬁ 1<j<z

71)(77}4»17)\}+1)‘h(X1,'i+17yl,i+1)@vvil+llxl,i+l @Wi1+1*yl’i+1

Z (X1,i41,Y1,i41)EAat], I,L(Afctl ijiJTr‘lj’ 1<5<z)
'R 3

C ’Yz+1’)‘+17Vz+1’Wz+1>
OTOut Mi,In AH'I IZ;" G]’ 1<j<z
:Z -1 (%1+1a)\%+1)'h(Xl'i+lsYl'i+1)@9vil+1'xl’i+l@wil+1'Yl'H—l

i - - .
(Xl.'i+17Y1,i+1)eAa:jut)1ui11n(A;er).7. ’B;@r]-,j’ 1<5<z)
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From the property of the Aa-set, we can see that the correlation coefficients of
(X1 yLitl) s equal to the sum of the h(X 1+ Y1i+1l)s correlation coefficients
over the Aa-set with Out,In for all Out € Fg§. And the correlation coefficients of
(XL Y Li+l) over the Aa-set with Out, In have the following recursive structure :
Theorem 4: For any positive integer ¢, ¢, 2z, 0 < ¢ < ¢—1, given any z basic function series
{f(X Ll yLitl) AT gt 1<m<r};, 1 <j <z Supposed that G; € Fy’,

Em
2,5 Fm,j

1<j<z, 'yil+1a)‘i+17‘/;+1aw+l € F(ZJr1 , Out,In,Mi € F§, where d = > 7_ kn,,
In = (E) - By, ). Then

T1,17”

Corit! 1f+17)‘i+11)v+1vw+17
In Al B’L G], 1§]SZ

1 1 1
_ 5 ot gt Vi W
= Out]n AZ" 73;:_ .7Gj7 1SJSZ
OuteFg (A it

1 1 1
Cori+ '_;le‘+17 >‘\3—+11’ Vit wi i+1»
3 X2
Out In AijJ,Bkrj,j,Gj, 1 < ] S z

1 1 1
Z Corift iﬁf“’éﬁlhvﬁ.ﬂ?wﬂ’
e Out,Mi,In Akrj,j’Bkrj,j’Gj’ 1<5<z2
2
Z o ’yz,Az V2 W2, o Cor ‘ ’yl,Al Vi Wi,
OOt i | i D’ ,G,lgjgz Omin | At B _7G,1§j§z
k., J k.. k.. J

MieFg 7 Tjod Tjd

Proof. According to the property 3 and property 4, we know that

i1 i1 i1 i+1)t
U Adg m(A B 1< < 2)= {(Xl,i+17Y1,z'+1) X141, i € By }
OuteFyg

and for all Out € de, Aag'ult In(A’Jrl B,i“j, 1 < j < 2) are disjoint with each other.
s

Thus, we have:

1
Corit! szrl?)‘rEl’ViJrl’WJrl’
In AZ B Gy, 1< <2

_ Z (_1)(,Y7:1+1))\11+1)_h(X1,i+1)Yl,i+1)®‘/il+l'Xl,i+1@Wi1+1_Yl,i+l

(X1,71+1,Y1,i+1)€F2(i+1)t
= Z U i+1 i+1 i+1 -1 ('YilJrl’A}Jrl)'h(xl’“rl’Yl”Hl)@Vil«H'lewl@WiIJrl‘Yl’iJrl
(X1,i41,Y1,i41)€ Aag, 1o (AT BT 1<5<z2)
) °r g T
ouf,eFd J J

Z Z - . (_1 (,Yll+1’)\11+1)_h(X1,11+11y1,i+1)®‘/i1+1_Xl,i+1®wi1+l_yl,i+l
(X1i41,Y1,641)€Aal), | (ALY Bit! r 1<5<2)
s

OuteFg Out, In\k,. .

o3
Z C i1 _’Y;+17 z+17v+17W1+1’
OT In,0ut A}CH B’+ Gj, 1<j<z
OutEde
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Likely, from lemma 1, we can also get

1
Coritl ,Vf+1a)‘z+17v+1a Wi iF1s
In,Out A}j B“r GJ, 1<j<z

C i+1 72+1>Az+1v +1)Wz+1’
> Coriviou A;jl B”l G, 1<j<z2
MieFg "

Secondly, from theorem 3, for 1 < j < z, we have

f(Xl’i+1,Y1’i+1)E Aitl pgitl = f(XZ’i,YQ’i)M’i T ’Di . 2i't —|—f(X1’i,Yl’i)E i Bi

g k7 R, rjod’ Byt ke a7 K K

Then

z Tj

R(X Lt yLitl) = @ @ G, [m] * f(XMH’YMH)Ek JrrT—

My R 50T R

j=1m=1
z z
2,1 2,1 it 1,2 1,2 ) i
—EB@G X2 Y2 m pr o2 +EBEBG P XY ) m, ar B
T'=.7 TiJ Ti.d ’ m,J m,J
j=1m=1 7 7 7 j=1m=1
_ h()(l,z7 Yl,z) . 2z»t 4 h(X2’Z,Y2’Z)
It can be concluded that:
1 1 1
Corit! i1 /\i+1a Vidt, W+1,
In,MiOut | AL Bt QL1 <<z
k:,,.j,Jv k,,.j,J’ 7
3 Z (<1) [(,Yil,A}).h(Xl,iJ,l,i)EBVil.Xl,ieawillyl,i:lED[(,Y?Y)\?)'}L(XQJYYQJ)@VI_Z.X2,i®wq£2.y2,i]
(Xl,'i+1’Yl,'i+1)€Aag+ult Mi In(AZH »B;ij—l s 1si<z)
e rid o Trgad
Z ( 1)(%’ )h(Xlzyl 1)®V1 x1 Z@Wl yii
(X3, Y1) GAU‘ML In (A’]"ch’j,B)iTj’j 1<j<z)
y Z (_1)(712,)\12)‘h(XZ,iVYz,i)@VvZZ'XZ,i@WE'Yz.i
(X2:1,Y27) GAaout ML(Tlrj,j’lerj,j’ 1<5<z)
202, V2 W2, LAL VLW
1’ 1)

=Cor}y i i . x Cort il i i .
Mi,Out Tkrj‘j7Dij‘j7G_]7 1 S J S z In,M3 Akrj’jaBij’janv 1 S J S z

Thus,

1 1 1
C i+1 _7i+17)_‘i+17‘/i+17W+17
Orln,Out Az+l Bz+l G 1 <‘7 < 5
kT‘ij" ijvJ" 73 - v -

Z C 1 ) X 71‘27)‘127‘/1'27W127 % C i ) . ’Vil’_)\zla‘/ilawil’
OroutMi\ Ty Dy, Gy 1<j <2 OMiIn\ Ay, Br, G 1S5 <2

MieFg

O
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4 The Df-set

Recall the law of total probability, given a series of subset {A;, 1 < i < n} of the total
space, where U?:l A; is to equal the total space and each A; are disjoint with each other,
then for any event B, its probability P(B) is equal to ;" P(B N A;). Notice that the
the Aa-set with Out, In satisfy the above property, thus the same idea can be adopted to
do the following study.

Definition 8: For any positive integer gq,t,z,i,n, where i satisfy 0 i < qg—1,

<
given any z basic function series {f(X"HL Y1) g 1 < m < gy,
“m,j kﬂl,j’ k

m.j
1 < j < 2. Supposed that Gy € F;**, G; € F,*"7, 1 <j<z,Ch, = (J4,,NL)) €
(B0t G Out, Tn € Fy, where d = Y2 ki In = (B, 4, By, ). We
define the Df-set with In and the Df-set with Out, In respectively:

r1,10 "

sz+1n( 1+17G0aG]aAZ+1 Bl+1 ]- S] S Z)

X Lit1 Yl i+l ¢ F(i+1)-t

= { (it yLit A
’ (Go[s, 0] % X1 Gos, 1] * Y1 H1)€Bh (xt s Y1 ) = O8], 1 < s <.

1 .
Dflotu: ?n(cz-l—lv G07 Gja A?_l BH_l 1< ] < z)
_sz+1 "( 7,+17GO,G],A1+1 Bz+1 1<j<z mAagult,In(AthlyjaB]i:_lyj, 1<j<2)

XLt yLitl ¢ F(i+1)-t Out — (MH-l ~~~M,i+1 ),

(XLt yLitly
7 (Gols, 0] x X Lritl Go[s 1] YLl @ (X Litt Y1 H'1) Clils], 1<s<n.

where
z T3
1,i+1 y1,i41 1,041 y1,i+1
hy (X 1L y it ):@@Gj[s,m} w fX LI yLit )Eka’A;@H it 1<s<n.
j=1m=1 md

According to the property 3 and property 4 we have:

Property 5: For any positive integer ¢,¢,2,7 and 0 < i < ¢ — 1, given any z basic

function series {f(X1i+! yLitl) A it 1<m<r;};, 1 <j<z Supposed
Mg kg i P ke

that Go € F3"*2, Gy € Fy "1 < j <z, Ch, = (JL 1, NL,) € (B OHD e ettty

Out,In € Fg, where d = Y7  kr,, In = (Ej Ekrz,z)~ Then

k

ri,10

i+1, 1 i+1 i+1 . +1, i+1 i+1 :
U Dféut,?n(ci+17GO’Gj7A’ILc,.j,j7BI’L€,.j7j7 1< 7 < Z) Dfl n( z+17G07Gj7A;g,,,j’j7BllgT,j’j7 1< J < Z)

OuteFy

According to the Property 2:, we have:
Property 6: For any positive integer ¢, ¢,2,n and 0 < ¢ < ¢—1, given any z basic function
series {f(Xl’”l,Yl’”l)Ek _A;:cﬂ B;ﬂ ;1 <m < rj}j, 1 < j < z. Supposed that
g Ak, Bior
GO € F2nXQ7 Gj € F2”><Tj’ 1 S .] S Z, C+1 - ( 1+1?N721+1) € (FZnX(H_l). 7F2n><(l+1).t)7 Where
Out,In € Fy, where d = Y;_, ky,, In = (Ej, - Ey,_.). If any two Outy,Outy € F§
satisfy Out; # Outs, then

r1,10 "

1 1 i+1 i+1 . i+1, 1 i+1
Dféttlnln(0i+1,Go,Gj,A?:j’j,BL* , 1gggz)ﬂpfgtt2’j,n( 1+1,G07G],Az+ _,B}j 1<j<z2) =0

5. ri’

As same as the law of total probability, we can get the relation between the Df-set with
In and the Df-set with Out, In :
Theorem 5: For any positive integer ¢,t,z,n and 0 < ¢ < ¢ — 1, given any z basic
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function series {f(Xl’iH,Yl’iH)E Al g 1<m<r;};, 1 <j<z Supposed

km,j km,j

that Go € F5?, Gj € F; ", 1 < j < 2, Olyy = (Jhy, Niyy) € (700 )
where Out,In € FQ, where d=37_okr,, In=(Ey, ., - Ek,. ). Then

km

)

Z #D ZOZ% ?’n( 7,+17G07G AZ+1 BZ+1 1 S ] S Z)
Out€eFg

—4Dfith n@wGO,GJ»,A;’J]_{],,BQJ_{],, 1<j<z)

According to the lemma 1 and theorem 3, it can be concluded that the Df-set with
Out, In have the fllowing recursive structure:
Lemma 2: For any positive integer g, ¢,2z,n and 0 < ¢ < ¢ — 1, given any z basic function
series {f(X1itL Yl’”l)Ek At+1 B ;1 <m <rj};, 1 <j <z Supposed that

m.i .
GO € F2n><27 Gj € F2n><rja 1 S .] S 2, Cz+1 - ( z+1vN7,1+1) (F;X(H_l) 7F2n><(l+1).t)7 Where
Out, In, Mi € Fg, where d = Zf:o kr;y In = (B, ., E,_.). Define

i+1,n 1 i+1 i+1 .
DfOut Mi In(ci-&-lﬂGOijvAkT ,j’Bkr.,j’ 1<;< Z)

XML YN € DIy, (G Go, Gy AL B 1<j<2)

_ X2i|| xLi y2i||yls
( H ) || ) X2 YQlEDfOuth(C Go,GJ7Tk DZ , 1<j§z)
Then,

1, 1 i+1 i+1 1 1 i+1 i+1 .
ng;t?n(ci+l7G07Gj?ALtjhjaBllcj i’ 1<y <Z) U Dfottﬁh In(0i+17G0>GjaA;ctjyﬁBlJr, 1<y Sz)

krj,j’

MicFg
holds. And for any two Miy, Miy € F§, where Miy # Mis, satisfy

i+1,n 1 i+1 i+1 . i+1,n 1 it1 i1 . o
Dfout iy, In(CHl:GO,GjaAkrj,ﬁBkrj,j’ 1<j< Z)ﬂDfOut,IVI'LQ,In(CiJrl’G07Gj’Akrj’j7Bk 53 1<j<z)=2

Proof. According to the Theorem 3, we have

FXTEL Y AT B = XY o pe 2T FXVSY Mg a
kpig’ ke rj.d 37 km g kEmy g
Thus, for 1 < s < n:
z Tj
ho(XMHLY I = B @D Gylsm]+ FXVTLY I g i e
j=1m=1 ' ’ ™l
z T
2,i 172, 1,4 1,0
“DD o A oy P @@ el Yy
j=1m=1 Tad T "3 j=1m=1 | ™ e

_ hs(Xl’i,Yl’i) . 2’L'~t + hs(XQ,i’ YQ,i)
It means that:

1, .
Dyt Z+17G0,G3,A1+1 ;;rlj’ 1<5<2)

Xhyhie Byt X2 Y2 e Fy, Mi€ g, Mi= (M .- M),
= (XX, Y2y L) he (X1 Y1) @ (Gols, 0] x X1, Go[s, 1] + Y1) = v Clsl, T

he(X21 Y29 @P(Gols, 0] x X2 Go[s, 1] * Y24) = C?[s], 1 < s < n.
XL YV e DfE(CY, Go, Gy, Al B 1<j<2)

= (XX YRy L) Mi € F§, Mi= (M- it B

Tz

X2yl e Df}ﬁ"(Cf,GO,GJ,TkTV LD 1<j<z)
"
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Then,

DflJrl n(ClJrla G07 Gj7 A;::Jl] ’ Blitjl)jv 1 S .7 S Z) ﬂ Agult,ﬂii,ln(A2+l 7Bllc+1 1 < .7 < Z)

rj.d rj.d’
X2 x 1 - ' - Mi= (Mf, M),
= Xl’lvylﬂeAﬁ\/Ii,In(A;c v,BIlcT 1<.]<Z anzn C},GQ,G],A;Q Bk e 1§]§2)

WY

Y2yt )X y2i e Abut i (T3, ]»Dir. 1S5S z2)(\Df; CZQ,GmG]ka ; DZ ., 1<5<2)
5 'L J
It can be concluded that

DfH_l n(C7,+17 G07 G A’LJFI BZ+1 1< j < Z) mAiOt}t,Mi,In(A’li:rl 7BIZCJTFJI]’ 1< j < Z)

L]

_chz)tﬁ Tg/h In(CrL+17G07G]7AZ+1 BlJrl 1<j5<2)
From Lemma 1, for any two Miy, Miy € F§, where Miy # Mis, satisfy

i+1 i+l pitl . i+1 i+l pgitl
AGut, iy, Jn(Aij,jaBkrj,j’ 1<j<2) onuuMiz,In(Akwv Kr.j ,1<j<2)=0

Thus,

1 1 i+1 i+1 . i+1, 1 i+1 i+1 .
ng;t K/In In(Ci+17G0?Gj7Allctj,yBllctj:j? 1<5< Z)ﬂDf(l)ttt,ylt/[ig,ln(CiJrlvGOij?A;c-:j’jaBllc-:j,j? 1<5< Z) =g
Secondly, due to

i+1 i+1 ‘+1 i+1 i+1 1+1 .
AlOut In(A;crj,j’ ZT g 1 < ] < Z) U AZOut M+ In(A’lLCTj,_ﬁB;@Tj,j’ 1 S J S Z)

MicFyg
holds in Lemma 1, we can get:
i+1,n i+1 i+1 .
Dfout In(CH-la G07 Gja AzrjijB]Z%j,ja 1 S ) S Z)
i+1, i+1 i+1 . i+1 i+1 i+1 .
_Dyfit n(CHl,GO,Gj,A;; A,B,@j L1<j< z)ﬂAgut,In(Aijyj,B;fjw 1<j<z)

i+1, 1 1 , i1 i+1 1
_Dfl n( Z+17G07GjaAl+ BZJ’_ 1 < J < Z)m U AZO—ZtJ\/[i,In(A;CT__j7 ]2;-:’_ g 1 < .] < Z)
MieFg . "
_ i+1,n i+1 i+1 - +1 +1 i+1
= J D (CHl,Go,Gj,A}CTN_,B,’%’j, 1<j gz)ﬂAgutM”n(Azr LSBT 1<)
MieFg
i+1, 1 i+1 i+1 .
U chl)ut,y\}i,fn(ciﬂvGOijaAZJ:,,ijZ:_,w 1<j<2)
Mi€Fg ’ ’
O

According to the above recursive structure, we can calculate the order of the Df-set
with Out, In based on the following recurrence relation:
Corollary 2: For any positive integer ¢,t,z,n and 0 < i < g — 1, then

#DfZOZ; ?n( z+1aG07Gj»Al+1 BZ+1 L,1<5< z)

= Z #Dfout Mz( GOanaTij,ﬁDliTj,m 1 SJS Z)
MiEFd

X #Df1f; 1a(CF, Go, Gy, Ay, By, [, 1<5<2).

holds.
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5 The effective-time computer method

5.1 General method

From the theorem 4 and the corollary 2, when In are given, if we define a vector D**?,
of which the Out-th(the integer corresponding to the d-bit binary string) component is tak-
en from the order of #szoﬁ?n (CL 1, Go, Gy, Agjl‘j,B,gjld, 1 < j < z) or the correlation

K3
coefficients of h(X 1+ Y1i+1) gver the Aa-set with Out, In, for all Out € F§; then D1
can be got by D! premultiplying a matrix, of which the coefficients of Out, In is taken form
the order of #Df5" | (C,Go, Gy, Ap j,B,i ,» 1 <j < 2) or the correlation coefficients
’ Tjo T

of h(X11,Y11) over the Aa-set with Out, In. In addition, the recurrence relation is hold
for any positive integer i,t. If let ¢ = 1, we can generate all matrixes corresponding to the
all possible parameters of the Df-set and Aa-set in a short time. Then, combing with the
theorem 4 and the corollary 2, we can get the 1 bit regular:

Theorem 6: For any positive integer g, t, z, n, given any z basic function series

{f(Xl’q,Yl’q)Ekmj,AZ pr 3 1<m <} (XY e F{"),1 < j < z; then we can
. ) m,j m,j

get T} oDi, € (F3)" from A ijZ ,» where 1 <j <2z 0<i<q—1 Supposed
s T m,J m,
that G; € Fy’, 1 < j < z; v, \v,w € Ff*, In,Out,In, € F§, where d = .7 kr,,

In=(Ek, ., Ek,,.). Let )\(11 = )\,fy; =, Vq1 = v,w; = w. Then,
1 31 y/1 1 q—1
PY 7A 7V 7W ) ;
q a2 Vgt _ T
CO""[n<AZ _,BZ LG 1<j<z =L HMalQ
rjd T i=0
where L = (1,1,--- ,1) € F{, Qr, € Fg, of which the sole nonzero component satisfies

2 2 2 2
’Yia)‘iax/i aVI/ia

_ i AXd oo tiafos i _ 1 , :
Q[In] =1, and Ma' € R satisfying Ma'[Out, In1] = Corg,, 1y, (lerj,j’D;crj,j’Gj 1<j<=z

0<i<q—1,0<Out,In; <2¢—1.

Proof. For 1 <i < g, define the vector Base’, € F§ as follow:

1 31 1 1
. . Yi, N Vi, Wi
Basep, [Out] = Cortu, <Az B, Gil1<i<s
T3 T3

where 0 < Out < 2% — 1.
According to the lemma 1, we have:
131 71 7l
’Y 7A 7V ’W 9
Cor? e U AL 1 = L - Base?
In <AZ”J,BZTN,GJ' lfj <z In

And by the definition, we see that Base! = Ma° - Q.
In addition, according to the lemma 1, for 1 <i<g—1,0 < Out < 29 — 1, we have

Base' [ Out] = Z Ma'[Out, Out,] - Baseb, [Outy]
Out1€FS

Namely,
i+l _ i i
Base},” = Ma' - Basej,

Thus, the theorem holds. O

)
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Theorem 7: For any positive integer g, t, z, n, given any z basic function series
{f(XP, Y ) g B 3 1l<m< riti (X Yha e FQ"”)7 1 < j < z; then we can
m,j

m,g° krn,,] :

get T} j,D,i, , € (F§)"i from A} j,Bg ,» where 1 <j <2, 0<j<q—1 Supposed
7553 7553 m, m,

that Go € F3*2, Gy € Fy ", 1< j <z C = (J,N) € (F~9" F3"9"), In,Out, In, €

F¢, where d = >;_ ky,, In = (Ey < Ey,..). Let C = (J,N) = C(} = (J;,qu) .

r1,10 "

Then,
qg—1
;N . i T
Dff;(C.Go, G, A L Bi . 1<j<z)=L [[MdQf,
i=0
where L = (1,1,---,1) € F{, Qr, € F§, of which the sole nonzero component satisfies

Q[In] = 1,and Md' € R™ 9 satistying Md'[Out, Iny] = #Df57, m, (C}Go, G, T D, 1<
’ Tj»d RV
j<2),0<i<q—1,0<Out,Ing <27 —1.

Proof. For 1 <i < g, define vector Num?, € F§ as follow:

Numi,[Out] = Df§i, 1,(CH Go. G Ay, By, [, 1<j<2)

55

where 0 < Out < 2% — 1.
According to the theorem 5 we have:

Dff(Cq Go. Gy Ay, B, 1<j<2)=L-Numi,

n vy

And by the definition, we see that Num} = Md° - Q7 .
In addition, according to the corollary 2, for 1 <i < g —1,0 < Out < 2% — 1, we have

NumtHOut] = Z Md'[Out, Out] - Num’, [Out]
OutleF;

Namely,
Numifgl = Md' - Num},,
Thus, the theorem holds. O

Remark 7: Supposed that m = ¢ and t = 1 in theorem 6 and theorem 7, if 2™ >> 2¢

1yl ol
2 : . A’/ ) A 7V ) )
and m > 2%, then the time complex of calculating the Cor, A2 ; éz q _,éj . qS i< z)
75 7

and Df/"(C,G;, A} Bl |, 1<j<z)isabout O(m).
"

Tj5d

5.2 Instance

For F : (z,y) £, (z,zBy), it can be treated as l-order basic function. Besides this,
—1
its inverse function F~! is (,y) £ (z,z By). According to the corollary 1, it can

-1
be conversed into (z,y) ., (x,(z®(1,1,--- ,1))ByHE1). For a,F,7,A € F, let
E = [1,0], By = [0,A], 41 = [0,7], B2 = [8,]], 42 = [a,7]. Then, for 2-order basic
function f(x,y)E .4, B, and f(x,y)E 4, B,, the following equation holds.

f@,y)p,ay,m = FH(F (2, y) ® (1, N))
f(aj?y)E,Az,Bz =F! (F (.’13 Da, ybd 6) D (7’ )‘))
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Thus, according to the theorem 6 and the theorem 7, we have:
1. The formula for calculating the boomerang connective probability and its variant :

Corollary 3(BCT): Let F be (z,y) SN (x,z By), an element of BCT [4] defined by

BCT(a, 8,7, \) = #{(x,y) | 2,y € F ,F ' (F(2, ) @ (v, N) @ F ' (Fe @, y@B) & (,N) = (o, B)} - 27"

where a, 3,7,A € Fg". Then, for 0 < i < n — 1, let Out = (01,09,03,04) € Fy,
[i J,

In = (cr.esenes) € ., dlil = (afil. Bl AN, L = (L1--.1) € BfS, Q =
(0,0,0,0,0,1,0,--,0) € F3° And the My € F,°*'% is defined as

<
i

Md[z] [Out, In]
=D fGut,1((ali], Bi]), (0,0), {(0, 1), (0,[), (0, AN}, £(0, 1), (afi], 7[d]), (B, AliD})

esDesder Dea =0, carrye, (y,x)[1] = o1,
carrye, (Y& x @ e1 ® Ail, & 18 v]i]) [1] = o2,
=# < (2,9) carrye, (y & B i,z & a[i]) [1] = o3,
Carrym(y@ﬁ[]@m@a[]@63@/\[]755691@@[]@7[2})[1]=04;
where carry.(z,y)[1] = (@ Ay) © (x Ne) D (e ANy); x,y, € F2.

where 0 < Out, In < 15. Thus,

n—1

BCT(a,8,7,A) =27>" - L[] May Q"

=0

Corollary 4 (BCT"): Let F be (z,y) = (2,2 By), an element of BCT? [10] defined
as

BCT (o, 8,7, 1,0,0) = #{(z,y) | 2,y € By, F' (F(z, Y@ (A)@F " (Fz®a, y@ ) ® (v, \) = (0,0} - 27"

where «, 3,7, \,0,( € F§". Then, for 0 < i < n — 1, let Out = (01,02,03,04) € Fy,
In = (61,62,63,64) € F247 d[Z] = (O‘[ZLBM”YM,AMae[z]aC[ZD € F263 L= (1,17"' a]-) € F2167
Q=1(0,0,0,0,0,1,0,---,0) € FJ° And the My € F;°*'% is defined as

Md[i] [Out I?’L]

=D [, 1 (01, <[1]), (0, 0),{(0, 1), (0,~[i]), (0, Al)}, {(0, 1), (ali], 7[i]), (BLi], Ali))})

ali] = 0[4], [z] OOl Des®esBer ®ex =0, carrye, (y,z)[1] = o1,
carrye, (Y@ x ®e1r B Ai],z 1 vI[d]) [1] = o2,
=# q (z,v) carrye; (y @& B[i],x & ali]) [1] = o3,
carrye, (Y@ Bl @z @ afi]@es @ Ai],z @ 1@ a[i] ®y[])[1] = o4
where carrye(z, y)[1] = (z Ay) D (xAe)D (e ANy); z,y, € F2.

where 0 < Out, In < 15. Thus,

BCT (, 8,7, 1,60,¢) =27 - L [ My Q"
=0

Corollary 5(BCT?): Let F be (z,y) - (z,2 B y), an element of BCT? [10] defined as

BCT* (0, 8,7, 7, 0,¢) = #{(z,9) | 2,y € F3 , F ' (F(z, ¥) ®(0,) O F ' (F(z® o, y®B) ® (1, A) = (a, f)} - 277"

where a, 3,7, \,0,( € F". Then, for 0 < i < n — 1, let Out = (01,09,03,04) € F3,
In=(€1,62763,64)GFf,d[i]Z(a[i],ﬁ[’LL H H [] H)GF267 (1717"'71)€F216’
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Q =(0,0,0,0,0,1,0,---,0) € F}° And the My € F;°*'% is defined as

Md[i] [Out, In}

=D f5ur,ra((ali], Bi)), (0,0), {(0,1), (0, 6[a]), (0, ¢[i))}, {(0, 1), (ali], [al), (L], Ala))})
i) @ 0[i] @ v[i) ®([i] Dea @ es Der Dex =0,
0[1] & ~[i] = 0, carrye, (y,z) [1] = o1,
carrye, (y @z ® e1 © ([il,x 1@ 6 []) [1] = 02,
carryes (y ® B i,z ® afi]) [1] = o3,
carrye, YO Bl @z Dalil ©es®Ni],z 21D ali] ®v[i])[1] = o4;
where carrye(z,y)[1] = (x Ay) D (zAe) @ (eAy); =y, € F2.
where 0 < Out, In < 15. Thus,

=# (3:7 y)

n—1

BCT (8,7, 1,0,¢) =27" - L [ My Q"
=0

3. The formula for calculating the difference-boomerange connective probability and the
inverse difference-boomrange probability, respectively:

Corollary 6-1:(DBT) Let F be (z,y) EiN (z,2 B y), an element of DBT [5] defined by

_ x m,yGF",F(m, y)@F(I@O"y@B):(e’C)f _9—2n
DBT(“’M’*’G’Q#{( ’y)‘F*(F(x, W) & A) B F L (F(z® o, y@ﬁ)@w,xn—(a,a).} 2
where a, 8,7, \,0,( € F3. Then, for 0 < i < n — 1, let Out = (01, 02,03,04) € Fy,
In = (e1,ea,e3,e4) € Fy, d[i] = (ali], B[i], v[i], A[i], 0]i], ¢[i]) € F9, L= (1,1,--- ,1) € F},
Q =(0,0,0,0,0,1,0,---,0) € F3° And the My € F;°*'% is defined as

Md[z] [Out,ln}

015t (57 ) (60) €(76) - @M. 0 A(T5) (@l T (81N
ali] = 01, ali] ® B[1] & Cli] ® e1 B es =0,
es®esPer ey =0, carrye, (y,x) [1] = o1,
carrye, (y ©x & ex @ Ali,z @ 1@y [i]) [1] = o2,
carrye, (y ® Bli], 7 ® o [i) [1] = o5,

carrye, (Y@ Bl ©xd ali]®es® i, 2 ®1® ali] ®~[i]) [1] = os;

where carrye(z,y)[1] = (x Ay)® (x Ne)® (e Ny); z,y,€ F2.
where 0 < Out, In < 15. Thus,

n—1
DBT(a,8,7,A,60,¢) =27 - L ] Mapy Q"
=0

Corollary 6-2:(IDBT) Let F be (x,y) EiN (z,2HBy), an element of DBT [5] defined by

DBT(a,B,7,X,0,¢) = # {(r, )

x,yEF;’,F_l(a:, y)@F_l(z@a,y@B):(e,C), .2—271
F(F '@ pe@N)er (Fl@ea yep) e () = (ah).

where «, 8,7, \,0,( € F3. Then, for 0 < i < n — 1, let Out = (01, 02,03,04) € F3,
In = (e1,ea,e3,e4) € Fy, d[i] = (li], B[i], v[i], A[i], 0]i], ¢[i]) € F9, L= (1,1,--- ,1) € F},
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Q =(0,0,0,0,0,0,0,0,0,0,1,0,---,0) € F35. And the My € Fy°*'° is defined as

Mgy [Out, In]
15t (5 ) (5 0) 1(V0) - rtd. 0y () @A 50 ADY)

afi] = 0[i], ofi] © Bli] ® Cli] @ e1 ® ez =0,
ea®esDe; @ey =0, carrye, (y,x®1)[1] = o1,
carrye, (Y Sx d1 G ey @ Ni],z ® v[i]) [1] = o2,
carrye, (y ® Bli],z ® 1@ afi]) [1] = o3,
carrye, (Y& Bl @z ® 1@ ali] Ges ® A[i],z @ ali] &vli]) [1] = ou
where carrye(z,y)[1] = (x Ay) & (x Ae) @ (e Ny); z,y, € F2.

where 0 < Out, In < 15. Thus,

=# (l‘, y)

n—1

DBT(a,8,7,A,60,¢) =27 - L ] Mapy Q"
=0

3. The formula for calculating the difference probability :
Corollary 7:(DDT) Let S be S(z,y) = x By, an element of DDT [1] defined by

DDT(a,8,A) = #{(z,y)| 2,y € F}', S (z ® a,y ® B) @ S(z,y) = A} - 27"

where a, 8, A € F3.Then, for 0 < i <n — 1, let Out = (01,03) € F3, In = (e1,e3), L =
(1,1,1,1),Q = (1,0,0,0) € F3,d[i] = (ali], B[i], Ali]) € F3. And the My € F** is
defined as

Md[i] [Out, ITL]
=D [ ((ali], Ali]), (0,0),{(1),(0), (0)}, {(1), (afi)), (Bli)})
alil ® Bli] & Ali] ® eqx ® ez =0,
D carrye, (y,z) [1] = o1,

carrye, (y @ il ,x ® afi]) [1] = os,
where carrye(z,y)[1] = (x Ay) & (x Ae) @ (e Ny); z,y, € F2.

where 0 < Out, In < 3. Thus,

n—1
DDT(a, 8,7, A\, 0,¢) =27 - L ] Mapy Q"
=0

4. The formula for calculating difference-linear connective correlation coefficients:
Corollary 8:(DLCT) Let S be a S(x,y) = 2By, an element of DLCT [4] defined by

DLCT (o, B, \) = 2727 . Z (=1 S8y SS(2.y)

z,yeF}

where a, 3, A € F3*.Then, for 0 <i < n — 1, let Out = (01,03) € F§, In = (e1,e3), L =
(1,1,1,1),Q = (1,0,0,0) € Fiali] = (afi,Bli],A[i]) € F3. And the M,y € Fy** is
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defined as

Ma[i] [Out, ITL]
—Corl, m( 0,A[i],0,0, . )
A \{(1),(0), (0)},{(1), (eld]), (Bli])}
= Z (—1)Me (S@@oalily@pL &S (@)
x,yE€Setai],out,In
carrye, (y,x) [1] = o1,
where Set o) out,in = { (T,9) carryes (y ® Bli],x @ a[i]) [1] = o3,
where carry.(z,y)[1] = (x Ay) ® (z Ne) D (eAy); x,y, € F2.
0 < Out,In < 3. Thus,

n—1

DLCT(ov, 8,7, A, 0,¢) = 272" - L[] May QT
1=0

5. The formula for calculating the linear approximation correlation coefficients(LAT):
Corollary 9:(LAT) Let S be S(z,y) =« By, an element of LAT [2] defined by

LAT(,u,w, /\) — 9 2n, Z (_l)u-ac@w-yea/\s(x,y)

T, yeF}

where p,w, A € F3*.Then, for 0 <i<n—1,let Out € Fy, In € F», L = (1,1), Q@ = (1,0),
ali] = (u[i],wli], A[i]) € F3. And the elements of M,(; € Fy*” is defined as

. 0, Ali], uli], wlil,
ot 11 = Corbunn (05 5153

— Z (_1)u[i]‘w@w[i]‘yeﬂ[i]‘s(ﬂv,y)

zvyeseta[i],Out,In

carrym (y, z) [1] = Out,

where Setafy out,in = { (#:9) ‘where carrye(z, y)[1] = (z Ay)® (zNe)® (e Ay); x,y, € F2

0 < Out,In < 1. Thus,

n—1

LAT(O[, Bu’yv )‘7 97 C) = 2—2n L H Ma[i] QT
=0

According to the Theorem 8 in Appendix-A, after reducing the redundancy of matrix,
we have the formulas for the calculating the boomerange-difference connective probability
and the variant of difference-boomerange connective probability, respectively:

Corollary 10(BDT): Let F be (z,y) EiN (x,xHBy), an element of BDT [10] defined as

BDT (o, 8,7, X,0,0) = # {(way)

z,yEF;’,(a:,y)@F_l(F(xEBa, y®ﬁ)):(9’C) _2*2”
FU(F(z, 9)®(vA))@F ' (Flada, y&B) & (1,N) = (o, B).

where a, 3,7, A, 0, € F. Then, for 0 < i < n—1,let Out = (01, 02, 03,04,05) € F3, In =
(e1,e2,e3,ea,e5) € Fy, L = (1,1,---,1) € F3?, d[i] = (ald], B[], 7], Ai], 0[i], C[3]) € FY,
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Q = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,--- ,0) € F§2. And the My € F3>"?? is defined as

afi] = 0[i], 1@ pli] & (il @ es @ e3 =0,
esPesde ®ey =0, carrye, (y,z)[1] = oy,
carrye, Y Sz ®er ® A[il,x ® 1D v[i]) [1] = 02,
Md[’L] [OUtv ITL] = # (x,y) CaTTYey (y ® /8 M T D M) [1] = 03,
carrye, (y @ Llil @z ®alil G es ® A,z & 1@ ali] @7[i]) [1] = o4;
carrye, (Y S Pl Grx@ali| Bes,z® 1D ali]®)[1] = o0s;
where carrye(z,y)[1] = (x Ay) & (x Ae) @ (e Ny); z,y, € F2.

where 0 < Out, In < 31. Thus,

n—1

BDT(a, 8,7,A,0,¢) =27 - L [] Mapy Q"
=0

Corollary 11(DBT!): Let F be (z,y) - (v,2 By), an element of DBT" [10] defined
as

1 Y — - z,y € Fy,F(z, yY) @F (2@ a, y® B) = (8,¢), L9—2n
DBT (28,7, %6, 6,m9) = #{( ’”‘F*l(F(z, W& (12) ® F (F (e, y)@(%/\)ﬂa(ei))—(nyw)-} 2
where a, 3,7, ), 0,(,n,9 € Fy.Then, for 0 < i <n — 1, let Out = (01,02,03,04) € Fy,

In = (61762763764) € F247L = (]-7]-a 7]-) € F2163 Q = (07070707071707“' ﬂO) € F2167
d[i] = (a[i], B[], v[d], \[4], 0[], C[4], m[i], ¥[i]) € F$. And the My € F,°*'% is defined as

afi] = 0[i], ali] @ Bli] ® ¢[i] ® e e = 0, n[i] = 0],

Y[i) O[] ® ([i] D es D er Bex =0, carrye, (y,x) [1] = o1,
carrye, (YB x®e1 @A,z 1D v[i]) [1] = 02,
carrye, (y ® B[],z @ ali]) [1] = o3,
carrye, (Y@ x @ el ®Ni]| B (li],z® 1~ [i] B 0[i]) [1] = o4;
where carry.(z,y)[1] = (x Ay) ® (x Ae)® (e ANy); x,y,€ F2.

where 0 < Out, In < 15. Thus,

Md[i] [Out,In] = # (l’,y)

n—1
DBT"(, 8,7, A, 0,¢m ) =277 L ] M Q7
=0
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A Reduce The Redundancy of Matrix

Definition 9: For any 2 basic function series {f(X,Y)Ek qitt ity L<m <rmhy
M1k 17 Em 1

and {f(X.Y)p,, ..

Ey, [0 : k1] = By, [0 : k1], A;jl{l[o c k] = A}:;Q[O : kl},B,ijll_l[o k) = B,Qj2{2[0 s k1l;

then we called that the two basic function series are similar. And the degree of similarity
deg for the two basic function series is defined as

a1 pit1 3 1 < m < ra}g, if there exist a Ykrl, such that ki > 0,
km,2" " km,2

deg = mazx {k+ 1|k >0, By, ,[0: k] = Ex,, ,[0: k], AL [0: k] = AT [0 k), B! [0kl = BiF L}

,1 k7n,2

Beside this, if two basic function series are not similar, we define deg = 0.
Definition 10: Given any z number r1,--- ,r,, supposed that 1 < j; < jo < z, deg <
z
Tjy,Tjs, Where d = >"°_ 5, then we can define
Simiti2 = {V e F§ |V = (Vi,Va, - V2), Vi

deg Tj1[05d]:VT [O:dLVinglivlgiSZ}

J2
TR . Qiodtide F opd—deg .
Define the bijection F' : Szmdeg — F; as:
F(‘/l7‘/2a 7‘/]'17"' 7‘/]'2a"' 7‘/,2) = (‘/la‘/Qa a‘/jlv"' aijz[deg:sz _1]5 a‘/;)
Theorem 8: For any positive integer g, t, z, n, given any z basic function series
{f(Xb Y ) g e Br 3 l<m< i} (XPO YN € B 1 < j < 2; then we can
37 kg

m, g ke, )
get T,érjyj,D,iw € (F¥)" from AZm’j,Bgmd, where 1 < j <z, 0 < j < ¢—1. And there are
two basic function series ,of which code are j;, jo respectively, are similar. Then we define
the degree of similarity for the two basic function series is deg. Supposed that Gy € FQ"XQ,
Gy e Fy" 1< j <z C=(JN)e (B> XY, Out,Iny € F§, In € Sim!.7

deg
where d = Y7 ky,, In = (E}, By, ). Let C=(J,N)=C} = (J},N}). We have:

ry,10 ]

Df}];;l(c’ G07 G]7 A(]irj

qg—1
Bl 1si<o) = [[aQF
=0
where L = (1,1,---,1) € FI%9 @ e F{ %9 of which the sole nonzero compo-
nent satisfies Q[F(In)] = 1, and Md’® € R(I—de9)x(d=deq) gatisfying Md[out,in] =
1n ; ; ) ) :
#Dfpll(out),p—l(m)(cig’GO’Gj’TIzrj,J’D;crj,J’ 1<j<2),0<i<qg—1,0<outin <
2d—deg —1.
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Proof. According to the remark 5, for 1 < i < g, we have :
DfOut m(C} ,Go,GJ,A,I€ ]_,B}CT' 1<j<2)=0, whenin ¢ Szm“’]2 and out € Szm“’]2

DfOut In(C“Go,G],Ak Bk ;o 1 <3J<2) =0, when in € Szm]1 72 and out ¢ Sim?! 32.

Thus, for 1 <i <g¢, when In e Sszi;’f

Y #Dfou(Cla, Go G A BT 1< <)

J1.92
OutESzmdeg

_#Df}T’:I(C%Fl’GOanvA;;t]{j,Blitl_, 1 S ] S Z)
And for 1 <i<g—1, when In € Szm“’”,

i+1, i+1 i+1 .
#Df(l)ut ?n( 1+1’G0’Gj’A;€tj,j’Bllc—: s 1 <] < z)

= Y #Df5uai(C}Go, G T\ Di [ 1<j<2)
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< #D i 1a(C1, G0, Gy A, By 1<) <2).

Next, use the bijection F' to transform Simffe’gj2 into F~99 and do the similar way like
the theorem 7. Then, the theorem holds. O

Theorem 9: For any positive integer q,t, z,n, given any z basic function series
X1la yla . a3 1<m<ry qu Y14 e F¥Y), 1< j < z; then we can
Ey A B} i Jisi

™m0 k5

get T} J_,D,iv ; € (Fi)ri from Al j,Bg Iy where 1 < j <2z, 0<j <qg—1. And there
75 75 J m,

are two basic function series ,of which code are j;, jo respectively, are similar. Then we

define the degree of similarity for the two basic function series is deg. Supposed that

G € Fy/, 1< <z v \v,we Fy', Out,Iny € FY, In € Sim?L7?, where d = 37 k.,

deg
In = (Ey By, ). Let \j = A\, 7y =7,V =0, W, =w. We have:

1,10

1 1 1 q—

Yar Ao Ve Wy i AT

CO’"?n<Ag B G| =L [TMa @
53 RN i=

where L = (1,1,---,1) € FI %9 @ e F{ %9 of which the sole nonzero compo-

nent satisfies Q[F ( n)] = 1, and Md* € Rd—deg)x(d=deg) satisfying Ma'lout,in] =
1 717)\2 V2 W2 - - d—deg

COTF—l(out)7F—1(i7L) ler.yDZT.j’G 1<j<z ,0<i<qg—1,0<out,in <2 —1.

Proof. According to the remark 5, for 1 < i < ¢, we have :
1 1 1 1
i ’Yiz)‘i7‘/i7Wi7 J ] 31,3
Corout,in Al B} Gj,1<j<z]|~ =0, when in ¢ Sim;7”* and out € Sim}. 7%

J
131 171 1571
i Vi )‘z ) V; ) Wz )
Cory¢ i i . =0, when in € Szm“’J2 and out Szm]”z.
Out,In (A;c,.j B, ,,Gj 1<j<z ¢

Thus, for 1 <i < g, when In € Simgllegz’

C i . ’Y'LlyAzlz‘/ileil7 o Z C i . 73,)‘117‘/ilvw+17
Ofin \ A Bi .Gy 1<j<z) T orounn \ A Bi, .G, 1<j<z
27 27 77 77

OutGSimfll 2
eg
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And for 1 <i < g —1, when In € Simgtzf:

C i+1 X 7i1+17>4‘11+17‘/i%kl7Wi1+17
OTOut,In A;c+1j7Bllc+lj7Gj? 1 S] <z
T Tis
VizaAzga‘/;lZaWiZa i ’y'}?A'}a‘/il?Wil?
= Z Cordus i | i i , . X Coryin | 4i i i .
’ TkT,.pDkr,ijjz 1<j<z ! Akr,.'karr.ij]v 1<j<=z

Mi€sim]L 72 ’ ’ ’r o
Next, use the bijection F' to transform Sim{fegz into F2d =99 and do the similar way like
the theorem 6. Then, the theorem holds. O
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