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Abstract

Correlation intractability is an important cryptographic notion that is used for establishing soundness
of Fiat-Shamir over public-coin protocols. In this work, we show that symmetric-key cryptography is
neither sufficient nor essential for obtaining correlation intractability.

Specifically, we prove a bidirectional fully black-box separation between one-way functions (OWFs)
and correlation-intractable hash (CIH). In the first direction, we show that CIH for relations as simple as
degree-3 polynomials cannot be based solely on OWFs. In the other direction, we show that there exists
no fully black-box construction of OWF from CIH for all sparse relations. Consequently, we infer that
computationally sound Fiat-Shamir over any specific constant-round proof system does not necessarily
require one-way functions.
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1 Introduction
The Fiat-Shamir transform [FS87] is a popular generic technique for eliminating interaction in interac-
tive public-coin protocols. Fiat-Shamir was first applied to 3-round identification protocols to obtain non-
interactive signature schemes [FS87]. Since its introduction, this methodology has had a substantial impact
on modern cryptography through several lines of research. Fiat-Shamir was found to be very useful, both for
achieving new theoretical feasibility results and for designing communication-efficient practical solutions. In
particular, among its noticeable applications are non-interactive zero knowledge protocols (NIZKs) [KRR17,
CCH+19, PS19, BKM20], succint non-interactive arguments (SNARGs) [Kil92,Mic00, BSCS16, BSBHR19],
and complexity-theoretic hardness results [CHK+19,LV20a,JKKZ20].

The Fiat-Shamir transform over an interactive public-coin protocol uses a hash functionH. The transform
obtains a non-interactive protocol by letting the prover locally simulate the interaction with the verifier while
computing the public-coin challenges using H, without any interaction. More specifically, in each round of
the simulation, the prover computes the verifier’s message as the hash of all messages produced in the
simulated interaction so far.

While it is usually straight-forward to show that Fiat-Shamir preserves some properties of the original
interactive protocol, e.g. completeness and zero-knowledge, it is not clear that it preserves soundness using
any hash function H. This is since, intuitively, the prover has some control over the computed challenges. In
fact, in most applications, the soundness of Fiat-Shamir is based on heuristics. Namely, the soundness of the
non-interactive protocol is assumed per se, and is not based on the hardness of a well-studied mathematical
problem. Indeed, in practice, H is instantiated by an “unstructured” function, e.g. SHA-2. The soundness
of such an instantiation is theoretically justified through the random oracle model [BR94]: by modeling the
hash function as a random oracle, which both parties have access to, one can prove that the Fiat-Shamir
transform is secure as long as a cheating prover does not make unreasonably many queries to the oracle.
Thus, if the hash function behaves like a random function in the eyes of a bounded adversary, then the
non-interactive protocol is sound.

Although the random oracle model provides a clean theoretical framework, it is not clear that a sound
Fiat-Shamir under the random oracle is a strong enough evidence that provably sound Fiat-Shamir in the
plain model exists. In fact, Goldwasser and Kalai [GK03] show that there exists a computationally sound
protocol (i.e. argument) on which the Fiat-Shamir transform is never sound when instantiated with any
actual efficient hash function, even though it is sound in the random oracle model. Further, Bitansky et
al. [BDSG+13] rule out the possibility of constructing a “universal” Fiat-Shamir hash function for all 3-
message public-coin protocols based on standard assumptions, or even basing the soundness of Fiat-Shamir
for some specific protocols on any falsifiable assumption.

This gap between the conjectured soundness of Fiat-Shamir using “sufficiently unstructured” functions and
its provability under cryptographic assumptions in the plain model led Canetti, Goldreich and Halevi [CGH04]
to introduce the notion of Correlation Intractability. Essentially, correlation intractability captures the com-
putational hardness needed from a Fiat-Shamir hash function in order to prove the soundness of the trans-
form. We say that H is a correlation-intractable hash for a relation class R (CIH for R) if, for any relation
R ∈ R, it is computationally hard given a random hash key k to find an input x such that (x,H(k, x)) ∈ R.
Roughly speaking, in order to show that a Fiat-Shamir instantiation is sound for a given protocol, we would
require that the underlying hash function is correlation-intractable for the relation between partial pro-
tocol transcripts and “bad” verifier challenges that allow for soundness error. Based on this outline, it is
known [BLV06,CCR16,KRR17] that a CIH for all sparse relations (i.e. relations where any x is in relation
with at most a negligible fraction of all y’s – see Definition 4.1) is sufficient for Fiat-Shamir over any constant-
round public-coin proof (the special case of 3-message protocols has appeared already in [DNRS03,HT06]).

While Canetti et al. [CGH04] show that obtaining correlation intractability in its most general form is
impossible, an extensive line of work has eventually led to CIH constructions that are useful for a wide
class of protocols, including zero knowledge [CCR16,KRR17,CCH+19], statistical ZAP arguments [BFJ+20,
GJJM20] and other special-purpose protocols [CHK+19,JKKZ20,LV20a]. Overall, the state-of-the-art con-
structions of CIH are based on well-studied cryptographic primitives which are, in turn, provably secure
under standard assumptions such as LWE [PS19,LV20b] (through special fully-homomorphic commitments
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or shiftable shift-hiding functions [PS18]) and DDH [BKM20] (through trapdoor hash functions [DGI+19]).
In this work, we seek to understand the relation between correlation intractability and a different cryp-

tographic notion of hardness, arguably the most fundamental of all: One-wayness. One-way functions
(OWF) [DH76] are functions that are easy to compute but hard to invert. OWFs constitute a central
building block in modern cryptography, and were shown to be essential and sufficient for obtaining ba-
sic symmetric-key cryptographic notions (a.k.a. Impagliazzo’s “Minicrypt” [Imp95]), such as pseudoran-
dom generators [HIL99], pseudorandom functions [GGM85], symmetric encryption [GM84], commitment
schemes [Nao91], zero knowledge [OW93], and more.

1.1 Our Results
We investigate the two directions of this relation and explore the possibilities, but mainly the impossibilities,
in obtaining CIH from OWF and OWF from CIH. More specifically, we consider fully black-box reductions
between the two primitives and establish a two-directional separation using a well-studied framework that
was developed in prior work [IL89,HR04,RTV04]. We then discuss some implications of our findings to the
complexity of the Fiat-Shamir transform. We elaborate below.

Correlation Intractability from One-wayess. While it is almost trivial that one-way functions imply
restricted notions of correlation intractability, such as CIH for all relations Ra = {(x, h(x) + a)} (where
h is any arbitrary fixed function and addition is over a finite field)1, such CIH are too weak to realize
any interesting applications, in particular Fiat-Shamir for useful protocols. It is also known [HL18] that
exponentially-secure OWF imply output-intractability, which is a special case of correlation-intractability
for relations R where the membership (x, y) ∈ R is determined solely by the value of y (but is more
general in the sense that it considers tuples of such outputs), and has different applications. In contrast,
known useful CIH constructions, for input-output relations, are either based on public-key cryptographic
primitives [CCH+19,PS19,BKM20,LV20b], or based on exponentially secure OWF and additionally assume
the existence of indistinguishability obfuscation (iO) [HL18], or based on sub-exponentially secure one-way
permutations and iO [LV20b]. In the first part of this work, we attempt to understand whether the limitations
in basing correlation intractability on OWF are inherent. In general, we ask the following:

Can we construct correlation-intractable hash for useful classes of relations based merely on OWF?

We give a negative answer by showing that there exists no fully-black-box construction of CIH for any
sufficiently “expressive” class of relations based on OWF. More specifically, our impossibility result captures
any 3-wise universal class of relations. This is a class where there exists a distribution over the relations
such that the membership of input-output pairs in a random relation is 3-wise independent and is equally
probable (over all pairs).

Theorem 1.1 (Informal). There exists no fully-black-box construction of correlation-intractable hash (CIH)
for 3-wise universal relations from one-way permutations.

For instance, the class of all relations searchable by degree-3 polynomials over a finite field 2 is 3-wise
universal (and, therefore, so is any class that contains it). For comparison, known Fiat-Shamir applications
require CIH for far more expressive classes such as relations searchable by cryptographic algorithms (e.g.
decryption in a PKE) which may be general polynomial-time circuits [HL18,CCH+19] or “noisy” constant-
degree polynomials [BKM20].

1The hash function H(k, x) = f(x) + h(x) + k, where f is a OWF, is correlation intractable for {Ra}. An adversary that
breaks the correlation intractability of H for some Ra inverts f at a random image y when given the random key k = a− y.

2A relation R is searchable by a polynomial p if (x, y) ∈ R implies y = p(x).
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One-wayness from Correlation-Intractability (or Fiat-Shamir). Given the current state of CIH
constructions, and the fact that one-way functions are insufficient to obtain correlation intractability (at
least in a fully black-box manner), it seems that the notion of correlation intractability is strictly stronger
than one-wayness. Indeed, as pointed out in [CLMQ20], there exists a simple construction of OWF based on
CIH for a relatively small class of sparse relations. While this demonstrates the necessity of OWFs for general
correlation intractability and universal Fiat-Shamir hash [BLV06,CCR16], it does not give any indication
regarding the complexity of instantiating Fiat-Shamir over a specific protocol and, in particular, it leaves
open the following important question:

Is there a protocol Π such that OWFs are necessary to establish the soundness of Fiat-Shamir over Π?

Not surprisingly, we are able to give a meaningful answer to this question through studying the black-box
reducability of one-way functions to correlation intractability. Our main result in this part is a fully black-box
separation of OWFs from CIH for all sparse relations.

Theorem 1.2 (Informal). There exists no fully-black-box construction of one-way functions from correlation
intractable hash for all sparse relations.

Our definition of a fully black-box construction in this context captures any construction of a OWF F from
a CIH H, where the security reduction breaks the correlation intractability of H for a pre-determined sparse
relation R using any adversary that inverts F . That is, we require that the reduction “chooses” the relation
R, with respect to which it breaks H, independently of the given adversary against F . While this notion
of fully black-box constructions is rather limited and, in particular, does not capture the aforementioned
known construction [CLMQ20]3, such a separation has interesting consequences.

Specifically, building on the connection between correlation intractability and Fiat-Shamir for statistically-
sound protocols [BLV06,CCR16] we imply that Fiat-Shamir for any such bounded-interaction protocol Π is
not sufficient to imply the existence of one-way functions, at least not in a relativizable manner (i.e. relative
to any idealized world).

Theorem 1.3 (Informal). For any statistically-sound constant-round public-coin protocol Π, there is an
oracle relative to which there exists computationally sound Fiat-Shamir over Π but no one-way functions.

We stress that the separation considers an oracle relative to which the Fiat-Shamir transform is not
statistically sound (in fact, the Fiat-Shamir simply uses a random hash function). That is, although the
Fiat-Shamir transform is based on computational hardness, such notion of hardness does not imply one-way
functions relative to any oracle.

1.2 Related Work
We hereby discuss prior related work.

Related Work on the Plausibility of Correlation Intractability from OWF. Already in 1999,
Hada and Tanaka [HT99] ask whether the existence of OWFs implies correlation intractability for all sparse
relations. They show that if such an implication is true, then all languages with 3-round auxiliary-input
zero-knowledge proof systems are easy to approximate. This statement is believed to be difficult to prove
unconditionally and, therefore, it is unlikely that one can base strong correlation intractability on one-way
functions. While [HT99] give strong evidence against the possibility of obtaining CIH for all sparse relations
from OWFs, we definitively rule out any fully black-box construction of CIH, even for degree-3 polynomials,
from OWFs.

3The construction from [CLMQ20] is only semi black-box : their (implicit) security reduction can never commit to a “target”
relation R w.r.t. which it breaks the CIH given any OWF inverter. As a matter of fact, a semi-black box separation would imply
that OWFs are not necessary even for a “universal” Fiat-Shamir hash (which provides soundness for a wide class of protocols,
simultaneously). This is incorrect due to Dodis et al. [DRV12].
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Related Work on the Complexity of Fiat-Shamir. The necessity of OWFs (and, in general, cryp-
tographic hardness) for Fiat-Shamir was first studied in the recent work of Chen et al. [CLMQ20], “Does
Fiat-Shamir Require a Cryptographic Hash Function?”. The authors show that this question may have dif-
ferent answers when considering different types of protocols. On the one hand, they show that there exist
useful protocols, possibly in idealizied models (e.g. Schnorr’s identification scheme [Sch90] in the generic
group model), where a simple “non-cryptographic” function is sufficient for a sound Fiat-Shamir – we note
that this does not follow the correlation-intractability framework but rather relies on the soundness of the
specific underlying protocols. On the other hand, they show there exist protocols where a sound Fiat-Shamir
requires a hash function that posses some computational hardness, such as “dependency” on a generic group
oracle or, in the standard model, a notion they call “mix-and-match” resistance. To summarize, [CLMQ20]
focus on understanding the complexity of designing a Fiat-Shamir hash function, through analyzing a variety
of typical use cases, whereas we are interested in the theoretic-complexity of Fiat-Shamir (relative to OWFs),
and our results apply to Fiat-Shamir over any protocol.

Lastly, Choudhuri et al. [CHK+19] show that if there exists sound Fiat-Shamir for the sumcheck protocol
then there exists an efficiently samplable distribution of PPAD instances which is hard-on-average given
#P is hard. Even though an efficiently samplable hard-on-average distribution does not necessarily imply
OWFs, we stress that our separation methodology does not apply to their proof technique since their proof is
unrelativizable, whereas our results presume a world relative to an oracle. Specifically, their reduction builds
on the sumcheck protocol which serves as an interactive proof for a #P-complete language. While this is
true in the plain model, the sumcheck protocol is inherently unrelativizable since it uses arithmetization and,
therefore, it cannot be used for a #PO-complete language relative to any oracle O.

1.3 Technical Overview
We now give an overview of our proofs and the underlying techniques. Our main result is a two-directional
fully-black-box separation between correlation intractability and one-wayness.

In the first direction, we show that correlation intractability, even for relations as simple as degree-
3 polynomials, cannot be based on one-way permutations in a fully black-box manner. Our proof uses
techniques from the work of Bitansky and Degwekar [BD19], where they separate collision-resistant hash
from OWFs. In the other direction, we show that there exists no fully-black-box construction of one-way
functions based on correlation-intractable hash as secure as a random oracle, namely correlation intractable
for all sparse relations.

First, let us briefly recall the fully black-box separation framework which we follow in our proofs.

Fully Black-box Separations. We say that a construction P of a cryptographic primitive P from a
different primitive Q is fully black-box [RTV04] if the construction makes only black-box use of Q (that
is, any instantiation of Q, independently of its implementation) and, further, there is a black-box security
reduction R which breaks P if it is given a black-box access to any adversary A that breaks the underlying
instantiation of Q. A fully black-box separation of P from Q simply means that fully black-box constructions
of P from Q are impossible. As observed by Reingold et al. [RTV04], most constructions of cryptographic
primitives in the literature are fully black-box and, therefore, it is insightful to understand when such
constructions are possible.

A well-developed method to establish a fully black-box separation of P from Q is often referred to as
the “Two-Oracle Methodology” [Sim98,HR04,AS16,BD19]. In this method, it is shown that there exists an
oracle Q, which models an “ideal” implementation of Q, and an oracle A that models an adversary against P,
such that (i) A breaks any black-box construction of P from Q, yet, (ii) Q is still secure (as per the security
definition of Q) in the presence of A. Given such oracles Q and A exist, any fully black-box reduction R fails
in breaking Q using the adversary A and, hence, no fully black-box construction of P from Q exists.
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1.3.1 Correlation Intractability from OWP

Inspired by ideas from prior work [BD19], we prove our first result, which is informally stated in Theorem 1.1:
a fully-black-box separation of CIH form OWP. The separation proof applies for CIH for any class of relations
which is 3-wise universal. Namely, we require that for a random relation R (according to some distribution),
the events {(z, w) ∈ R | z ∈ {0, 1}m, w ∈ {0, 1}n} are 3-wise independent and all occur with the same
probability p(n) (see Definition 3.2 for the formal requirement).

Background: CRH from OWP. We recall the known separation of collision-resistant hash (CRH) from
OWP, specifically, the proof from Bitansky-Degwekar [BD19]. Following the two-oracle methodology de-
scribed above, in order to prove that a fully-black-box construction of CRH from OWP is impossible, [BD19]
show that there exists a collision-finding oracle that breaks any CRH, under which a random permutation
is still one-way. Consequently, any construction of a CRH using a permutation f (in particular, a random
permutation) cannot be proven secure based merely on the one-wayness of f .

At a high-level, the collision-finding oracle takes as input an oracle-aided circuit Cf and outputs a collision
(z, z′) (s.t. Cf (z) = Cf (z′)) with high probability, given C is sufficiently compressing. The oracle is designed
such that each of z and z′ has uniform marginal distribution (over the choice of a random oracle).

It is quite straight forward to see that no CRH exists under the collision-finding oracle and any f : to
break a candidate CRH, the adversary simply calls the collision-finding oracle with the circuit describing the
computation of the hash. To that end, all existing CRH-from-OWP separation proofs share the same outline.
The more challenging part is to show that a random permutation f is one-way under the collision-finder.

The Smoothening Technique. Bitansky and Degwekar [BD19] use a hybrids argument in order to show
that any adversary A with access to f and the collision-finder fails in inverting f at a random image y. At its
core, their proof is based on the fact that any query to the collision-finding oracle can be simulated by A using
a smooth query, without harming A’s success probability. A smooth query consists of a circuit C such that,
for any x ∈ {0, 1}∗, the probability that C on a uniform input calls f at x is negligible. Consequently, we
may reduce our goal to showing one-wayness against smooth adversaries, i.e. adversaries that make smooth
queries only. This is useful since the marginal distribution of any answer z given by the collision-finder (as
part of a collision) is uniform and, therefore, the probability that a smooth query to the collision-finder will
output z such that Cf (z) calls f−1(y) is negligible. Intuitively, this means that the collision-finder cannot
help a smooth adversary to find the pre-image.

The smoothening of any adversary A is done as follows: whenever A is supposed to call the collision
finder at C, he evaluates C on sufficiently many random inputs and records all queries made to f through
these evaluations in a table. He then produces a circuit C ′ which emulates C, with the table hardwired in it,
and sends it to the collision-finder. Observe that the random evaluations aim to detect any “heavy” f -input
x and hardwire it in the circuit C ′ so it is never called during its evaluation. If sufficiently many random
evaluations are made, every heavy input will be detected with high probability and, therefore, C ′ will be
smooth.

Designing a Correlation-Finding Oracle. To separate CIH from OWP, we seek to construct a correlation-
finding oracle CorrFinder which takes as input a circuit C and a key k and finds a correlation w.r.t. some
relation R, i.e. an input z such that (z, C(k, z)) ∈ R 4. Suppose we follow the above outline, then, we
would like to claim that if Cf (k, z) makes some f -query x with noticeable probability, where z is a random
answer returned by CorrFinder(C, k), then x is almost surely detected by the smoothening simulation. Recall
that this was true with the collision-finding oracle because its answers are marginally uniform, thus, if x is
“heavy” among the answers of the collision-finder, then it is “detectable” by the simulation (which evaluates
the circuit on many random inputs). Unfortunately, a correlation-finder’s answer cannot be a uniform input
by the mere fact that it must be a correlation. It appears, then, that we now have a gap between an input

4Notice that the correlation-intractability game allows the relation R to depend on the circuit C but not on k.
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being “heavy” among oracle answers – in our case, the correlation-finding oracle – and being “detectable” by
the smoothening simulation, i.e. heavy w.r.t. a uniform input.

More specifically, we consider a correlation-finder that samples a uniformly random correlation, and we
say that an f -input x is heavy (among correlations) if Cf (k, z) calls f at x with noticeable probability for
a random correlation z (equivalently, for a random z answered by CorrFinder). We say that x is detectable
if this is true when z is a uniformly random input. Since we want to prevent the correlation-finder from
incurring heavy f -inputs in smooth queries, we define it to abort whenever it samples a correlation z such
that Cf (k, z) calls an input which is heavy but is not detectable.

Finding Correlations using the Correlation-Finder. In order to show that the oracle CorrFinder
described above indeed breaks any CIH for a relation class R, we must show that for any circuit C (corre-
sponding to a CIH candidate), there exists a relation R ∈ R such that the probability that CorrFinder(C, k)
outputs a correlation z (s.t. (z, C(k, z)) ∈ R) is large enough. In fact, we show that this is true for a random
R← R with non-zero probability, assuming R is 3-universal.

Observe that CorrFinder fails either if there exist no correlations at all (this happens only if C is statistically
correlation-intractable, which is impossible for interesting classes of relations), or if the oracle samples a
correlation z such that Cf (k, z) makes an f -query which is heavy but not detectable. It suffices, then, to
bound the probability that for a random relation R, random key k, and a random correlation z, Cf (k, z)
calls f on a heavy but non-detectable input. Equivalently, we may consider an experiment where k and z
are sampled according to their original marginal distribution and then, once they are fixed, we sample a
relation R conditioned on (z, Cf (k, z)) ∈ R. Thus, we are interested in answering the following question:
for any fixed k and z, what is the probability that a non-detectable f -query made by Cf (k, z) is heavy
w.r.t. such a random R? Using Chebyshev’s concentration bound, we show that if the distribution of R is
such that the events {(z′, Cf (k, z′)) ∈ R | z′ ∈ {0, 1}m} are pairwise-independent, then the occurrence of
any f -query among the correlations (which is a random subset of the inputs, defined by R) gives a good
estimation of its occurrence among all inputs. Put differently, it is unlikely that a non-detectable f -query is
heavy among correlations w.r.t. a random R. By requiring that our relation class is 3-universal, where the
events {(z′, w) ∈ R | z′ ∈ {0, 1}m, w ∈ {0, 1}n} are 3-wise independent, we derive the pairwise-independence
property for the conditioned distribution over relations.

One-wayness of a Random Permutation under CorrFinder. To complete the separation proof, it
remains to show that a random permutation f is one-way, also against an adversary with access to the
correlation-finding oracle. As already mentioned, we follow the framework laid by [BD19] and reduce to the
case where the adversary is assumed to be smooth. We consider a series of hybrids transforming the inversion
experiment, where a random input x is sampled, and the smooth adversary Af,CorrFinder is challenged to find
x given f(x), to an experiment where the adversary has to find x given an independently random image
y. It is clear that the adversary cannot win with noticeable probability in the latter case. To establish
indistinguishability between the two experiments, we essentially require that an adversary is unable to
distinguish between access to the oracle CorrFinder and access to a punctured oracle CorrFinderx, given f(x).
The punctured oracle CorrFinderx behaves similarly to CorrFinder except it aborts also if Cf (k, z) calls f at
x (where z is the random correlation sampled by the oracle). We rely on the smoothness of A to show that

|Pr[Af,CorrFinder(f(x))]− Pr[Af,CorrFinderx(f(x))]| < negl (1)

as follows. For any query (C, k) that A makes to CorrFinder, if x is heavy then, since x is not de-
tectable by smoothness, CorrFinder already aborts when Cf (k, z) calls f at x, therefore, CorrFinder(C, k) =
CorrFinderx(C, k). Otherwise, if x is not heavy, then the probability that Cf (k, z) calls f at x for a random
correlation z is negligible and, therefore, so is the probability that CorrFinder(C, k) 6= CorrFinderx(C, k).

Passive Smoothening. The rest of the hybrid argument is completed following the outline in [BD19].
There remains, however, a subtle issue with smoothening the adversary, specifically, in the correctness
of the simulation (which is essential for the reduction). Recall that we simulate any adversary using a
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smooth adversary, by replacing any CorrFinder-query (C, k) with a query (C ′, k), where C ′ emulates C
while using a hardwired table to locally answer some of its f -queries. Notice that the table may possibly
contain a non-detectable and heavy query. In such a case, CorrFinder(C, k) and CorrFinder(C ′, k) do not
have equal distributions and, therefore, the simulation may not be correct. We observe, however, that the
indistinguishability argument from (1) only requires that any CorrFinder-query made by A is smooth at x
(the pre-image that A is challenged to find), and not necessarily on all inputs. This leads us to a change the
smoothening strategy as follows: the simulation still evaluates C(k, ·) on a bunch of random inputs however
it does not change A’s queries to CorrFinder at all. We also let the simulation to halt immediately and
output the pre-image x if it finds it during the random evaluations. It is not hard to see that this “passive”
simulation is already smooth at x since if some query is not smooth at x, then x is almost surely detected by
the random evaluations before the query is made. It is also straight-forward that the success probability of
the simulation in inverting f is at least as good as the success probability of the adversary A. In conclusion,
by considering the above relaxed notion of smoothness, which is still useful for the one-wayness proof, we
obtain a reduction to a smooth adversary that preserves correctness, and by this complete the separation
proof.

1.3.2 One-way Functions from Correlation-Intractable Hash

Having shown a black-box separation of CIH from one-way permutations (and, therefore, OWF), we next
present our separation result in the other direction (see Theorem 1.2): there exists no fully-black-box con-
struction of one-way functions from correlation-intractable hash. The separation holds even from a CIH that
is as strong as the correlation intractability of a random oracle, namely, a CIH for all sparse relations.

Recall that our notion of fully black-box constructions captures constructions of OWF where the security
reduction breaks the correlation intractability of the underlying CIH for a relation R which is pre-determined
and independent in the OWF inversion algorithm. That is, we require that there exists a reduction R and a
relation R such that the reduction breaks the CIH w.r.t. R given access to any adversary A that breaks the
candidate OWF.

Our separation proof has the following high-level outline. We consider a random hash function h as an
“idealized” CIH. We then show that for any sparse relation R, there exists an inversion oracle that breaks
any OWF construction from h and, yet, any security reduction R with access to the inversion oracle is unable
to break the CIH of h for R.

The Inversion Oracle. Consider an inversion oracle Inv which, on input a function F (represented as an
oracle-aided circuit) and an image y, outputs a random pre-image x s.t. Fh(x) = y. It is clear that any F is
invertible on any image under such an oracle. It is not the case, however, that a random hash function h is
CI for any relation R under this straight-forward Inv. In particular, we can consider the case where Fh maps
any input z, s.t. (z, h(k, z)) ∈ R, to 0. The reduction may use the inversion oracle to invert F at the image
0, and obtain a correlation.

To prevent such attacks, we define the inversion oracle w.r.t. a relation R to sample a random pre-image
x such that Fh(x) does not make a correlation query to h, i.e. a query (k, z) s.t. (z, h(k, z)) ∈ R5. As a
sanity check, notice that the reduction described above will fail under such an oracle since the query it makes
will be always answered by ⊥ because Fh(x) always makes a correlation query for any x in the pre-image of
0.

We first show that the inversion oracle indeed breaks the one-wayness of any candidate Fh. In fact, this
is not true for all F and all h since one may imagine a case where Fh(x) queries a fixed correlation at the
start of the computation on any input x (in such a case, the inverter will never return a pre-image). Instead,
we prove that the claim is true for all F and a random hash function h with high probability (> 2

3 ). This
will be sufficient for the separation. Roughly speaking, if the inverter fails with noticeable probability at
inverting a random challenge y (where y = Fh(x) for a random x) then this means that, with noticeable
probability, all pre-images of such a y incur a correlation query under Fh. In this case, we can break the

5Note that due to our definition of fully-black-box constructions, we may separate by defining an inverter depending on R.
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correlation intractability of h by simply sampling a random x and computing Fh(x). Since a random h is
correlation-intractable for any sparse relation, this is impossible to do using an efficient F. This implies,
through an averaging argument, that Inv succeeds in inversion with good probability for a strong majority
of functions h, more accurately, for at least 2

3 -fraction. To summarize, we derive the success of Inv from the
correlation-intractability of a random h (in the “plain model”).

A Random Hash is Correlation-Intractable under Inv. It remains to show that, for any relation R,
an adversary A with access to Inv cannot break the correlation intractability of a random oracle h w.r.t.
R. We consider a different experiment, where the adversary A is given access to a random statistically
correlation-intractable hash h′, i.e. a hash function sampled at random conditioned on (z, h′(k, z)) /∈ R for
all k and z. We claim that if the adversary A breaks the correlation intractability of h for R under Inv, then
he breaks the correlation intractability of h′ for R under Inv′ (the inversion oracle defined w.r.t. h′), which
is impossible since h′ never contains any correlations. We establish the reduction based on the following
indistinguishability argument

|Pr[Ah,Inv(k) = 1]− Pr[Ah
′,Inv′(k) = 1]| < negl.

To see this, imagine sampling h and Inv in the original experiment as follows: First, sample a random stat.-CI
hash h′ and its corresponding inversion oracle Inv′. Then, for any h-input (k, z) assign h(k, z) = h′(k, z) with
probability Prh[(z, h(k, z)) /∈ R] and, otherwise, sample a new h(k, z) conditioned on (z, h(k, z)) ∈ R. We
set Inv to behave like Inv′ while making the necessary changes: if F(Inv′(F, y)) 6= y for some y, sample a fresh
Inv(F, y) at random from all pre-images x s.t. Fh(x) does not make a correlation query. By careful inspection,
we show that sampling h and Inv as described is equivalent to sampling a random h and a corresponding
Inv. Further, notice that the adversary’s view when given h′ and Inv′ rather than h and Inv changes only
if it contains an h-query (k, z) for which h(k, z) 6= h′(k, z). From the sparseness of R, this happens with
negligible probability for all z and, thus, we obtain the indistinguishability.

By applying another averaging argument, we argue that since any adversary breaks the CI of a random
h with negligible probability, then this is true for at least 2

3 of fixed functions h. Since we have shown that
Inv breaks any OWF candidate for at least 2

3 -fraction of functions h, then there must exist a function h (in
fact, at least 1

3 -fraction of all functions) that separates OWFs from CIH.

Consequence: Fiat-Shamir does not Necessarily Imply OWFs. Having shown that correlation
intractability does not imply one-way functions in a fully black-box manner, we use the well-studied connec-
tion between Fiat-Shamir and correlation intractability to separate one-way functions from the soundness
of Fiat-Shamir transform over any given constant-round protocol. More specifically, we show that, for any
statistically sound constant-round public-coin protocol Π, there exists an oracle relative to which there is
Fiat-Shamir over Π which is sound against any efficient adversary but is not statistically sound, yet no
one-way functions exist.

First, we establish a fully black-box reduction from the Fiat-Shamir soundness over any statistically sound
constant-round protocol to correlation intractability. For any such protocol Π, we identify a sparse relation
RΠ where breaking the Fiat-Shamir over Π using a hash function h reduces to breaking the correlation
intractability of h for the relation RΠ. Given such a reduction, Theorem 1.3 follows almost immediately
from the separation of OWFs from CIH: relative to a random hash function h and the inversion oracle
corresponding to the relation RΠ, h is correlation intractable – therefore, due to the reduction, Fiat-Shamir
over Π is sound – however, every OWF candidate is broken.

1.4 Paper Organization
The next section contains some preliminaries. In Section 3 we prove the fully black-box separation of
correlation intractable hash from OWPs and, in Section 4, we show the separation in the opposite direction
and its consequence to the complexity of the Fiat-Shamir transform.
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2 Preliminaries
Let us introduce some basic notation and conventions, and recall some preliminary definitions and facts.

Notation. We denote by Fn→m the set of all functions f : {0, 1}n → {0, 1}m. For a distribution X,
we write x ∈ X to say that x is in the support of X, and x ← X to denote that x is sampled from the
distribution X. We overload the notation for sets and write x← S when x is sampled uniformly at random
from the set S. SD(X,Y ) denotes statistical distance between distributions X and Y . For an oracle-aided
algorithm A, an oracle Ψ, and a Ψ-input z, we denote by AΨ(x)

Ψ
⇁ z the event where A, on input x, calls the

oracle Ψ at z, and use AΨ(x) 6Ψ⇁ z to indicate the opposite. We extend this notation for sets: AΨ(x)
Ψ
⇁ Z if

AΨ(x) calls some z ∈ Z, and AΨ(x) 6Ψ⇁ Z otherwise.

2.1 Coupling and Statistical Distance
Coupling is a useful tool for bounding the statistical distance between two probability measures.

Definition 2.1 (Coupling). Let X and Y be two random variables (i.e., distributions) over X and Y (resp.).
We say that a distribution X ′Y ′ over X × Y is a coupling of X and Y if the marginal distributions of X ′
and Y ′ are identical to the distributions of X and, respectively, Y .

We denote by PX,Y the set of all couplings of X and Y .

Proposition 2.2 (Statistical Distance through Coupling). Given any two distributions X,Y over X ,

SD(X,Y ) = inf
X′,Y ′∈PX ,Y

Pr
(x,y)←X′Y ′

[x 6= y]

2.2 Chebyshev’s Inequality
We hereby recall Chebyshev’s tail bound.

Proposition 2.3 (Chebyshev’s Inequality). Let X be a random variable with excpected value µ and non-zero
variance σ2. Then, for any k ∈ R,

Pr[|X − µ| ≥ kσ] ≤ 1

k2
.

2.3 The Borel-Cantelli Lemma
Proposition 2.4 (The Borel-Cantelli Lemma). Let {En}n∈N be a sequence of events in some probability
space such that the sum

∑
n Pr[En] converges. Then, the event where En occurs for infinitely many n ∈ N

has probability measure 0.

3 Separating Correlation Intractability from OWP
In this section we prove our first separation result, showing the impossibility of fully-black-box constructions
of correlation-intractable hash based on OWP. First, let us define a fully-black-box construction of a CIH
from OWP.

Definition 3.1 (Black-box Construction of CIH from OWP). Let κ := κ(n) and m := m(n) be implicit length
parameters, and let R be a class of relations. A (q, ε)-fully black-box construction of Correlation Intractable
Hash (CIH) for R from One-way Permutations (OWP), for functions q := q(λ) and ε := ε(λ), consists of
a pair of PPT oracle-aided algorithms CIH = (Gen,Hash) and an oracle-aided reduction R, satisfying the
following properties:

11



• Correctness: For any permutation ensemble f = {fλ : {0, 1}λ → {0, 1}λ}λ∈N, any n ∈ N and
k ∈ Gen(1n), it holds that

Hashf (k, ·) : {0, 1}m → {0, 1}n

• Black-box Security Reduction: For any permutation ensemble f = {fλ : {0, 1}λ → {0, 1}λ}λ∈N
and any probabilistic oracle-aided adversary A, if there exists a relation R ∈ R such that

Advci
CIH,A,R(n) := Pr

k←Gen(1n)

z←Af (1n,k)

[(z,Hashf (k, z)) ∈ R] >
1

2

for infinitely many n ∈ N, then,

Pr
x←{0,1}λ
A,R

[Rf,A(fλ(x)) = x] ≥ ε(λ)

for infinitely many λ ∈ N.

• Reduction Efficiency: For any λ ∈ N and y ∈ {0, 1}λ, Rf,A(y) makes at most q(λ) queries to the
oracles f and A, and for every A-query (1n, k) made by R(y), Hashf (k, ·) makes at most q(λ) queries
to f on any input.

Our impossibility result captures CIH for any relation class where the events (x, y) ∈ R for any (x, y)
and a random relation R are 3-wise independent and all occur with the same probability p. Such a class is
said to be 3-wise universal. More generally, we define t-wise universality as follows.

Definition 3.2 (Universal Relations). Let t ∈ N and p := p(n) > 0. We say that a relation class R is t-wise
p-universal if there exists a distribution over relations in R (which we ambiguously denote by R) such that
for any n ∈ N, any t′ ≤ t, and any (x1, y1), . . . , (xt′ , yt′) ∈ {0, 1}∗ × {0, 1}n,

Pr
R←R

[(x1, y1) ∈ R ∧ · · · ∧ (xt′ , yt′) ∈ R] = pt
′
(n)

We hereby note a useful property satisfied by universal classes of relations.

Proposition 3.3. Let R be a t-wise p-universal relation class. For any (z, w) ∈ {0, 1}∗×{0, 1}∗, the relation
class Rz,w = {R ∈ R | (z, w) ∈ R} is a (t− 1)-wise p-universal relation class.

We now formally state our separation result: any fully-black-box reduction from CIH to OWP is either
highly inefficient or incurs an almost total security loss.

Theorem 3.4 (Black-box Impossibility of CIH from OWP). Let R be a 3-wise p-universal class of relations
for p(n) ≥ 2−n. Let CIH = (Gen,Hash) be a (q, ε)-fully black-box construction of CIH for R from OWP
where, for any k ∈ {0, 1}κ(n), Hashf (k, ·) makes at most 2m−n/n2 queries to f . Then, either

1. q(λ) > O(2λ/9), or

2. ε(λ) ≤ O(2−λ/9).

Observe that the separation captures any CIH satisfying a reasonable trade-off between compression and
query-efficiency. For instance, it applies to any polynomially-efficient CIH with input lengthm > n+ω(log n).
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3.1 Detectability of Correlation-Heavy Images
Our design of the separation oracles, specifically the correlation-finding oracle, is based at its heart on the
observation that if an f -image y is likely to be heavy under correlations, i.e. if f−1(y) is frequently called by
the circuit C (any CIH candidate) among the set of correlations between C and a random relation R, then
y is detectable by random evaluations of C, that is, f−1(y) is frequently called among all inputs. Speaking
ahead, heavy images are images that a correlation-finding oracle may be useful to invert. Therefore, we would
like to design a correlation-finder that avoids outputting such images unless they are anyway detectable – in
which case an adversary is able to invert also without the help of the correlation-finder.

First, we define the set of correlations between a circuit and a relation, and use Chebyshev’s inequality
to bound the concentration of its size, for a random 2-wise universal relation.

Definition 3.5 (Set of Correlations). Let CΨ : {0, 1}κ × {0, 1}m → {0, 1}n be a Ψ-aided circuit. Fix a key
k ∈ {0, 1}κ and let R be a relation. The set of (R,CΨ

k )-correlations is defined as

CorrR,Ck = {z | (z, CΨ(k, z)) ∈ R}.

We sometimes omit R, C and k from notation when clear by context.

Proposition 3.6. Let CΨ : {0, 1}κ×{0, 1}m → {0, 1}n be a Ψ-aided circuit and let R be a 2-wise p-universal
class of relations. Then, for any fixed oracle Ψ and key k ∈ {0, 1}κ, any set of inputs S ⊆ {0, 1}m, and any
α > 0, it holds that

Pr
R

[||Corr ∩ S| − p|S|| >
√
p|S|/α] < α

where R← R is sampled from the 2-wise universal distribution.

Proof. For any z ∈ S, let Corr(z) be the predicate for z ∈ Corr. Then, we have

ER[|Corr ∩ S|] =
∑
z∈S

ER[Corr(z)] = p|S|

and, from pairwise-independence of {Corr(z)}z∈S (due to 2-wise universality of R),

VarR[|Corr ∩ S|] =
∑
z∈S

VarR[Corr(z)] = (p− p2)|S| < p|S|.

Thus, the proposition follows from Chebyshev’s inequality.

Next, we define detectable images and heavy images.

Definition 3.7 (Detectable Images). Let CΨ : {0, 1}κ × {0, 1}m → {0, 1}n be a Ψ-aided circuit. Fix a
permutation Ψ and a key k ∈ {0, 1}κ. We say that a Ψ-image y ∈ {0, 1}∗ is δ-detectable under CΨ

k , for
δ > 0, if

Pr
z←{0,1}m

[CΨ(k, z)
Ψ
⇁ Ψ−1(y)] > δ.

Definition 3.8 (Heavy Images). Let CΨ : {0, 1}κ×{0, 1}m → {0, 1}n be a Ψ-aided circuit. Fix a permutation
Ψ, a key k ∈ {0, 1}κ, and a relation R. We say that a Ψ-image y ∈ {0, 1}∗ is ε-heavy among (R,CΨ

k )-
correlations (or simply ε-heavy when unambiguous), for ε > 0, if

Pr
z←Corr

[CΨ(k, z)
Ψ
⇁ Ψ−1(y)] > ε.

We now proceed to prove that if an image is not detectable, then it is unlikely to be heavy w.r.t. a
random 2-wise universal relation.
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Lemma 3.9. Let CΨ : {0, 1}κ × {0, 1}m → {0, 1}n be a Ψ-aided circuit and let R be a 2-wise p-universal
class of relations. Let ε, δ > 0 be such that ε > 2(δ+

√
δ). For any permutation Ψ, any k ∈ {0, 1}κ, and any

y ∈ {0, 1}∗, if y is not δ-detectable under CΨ
k then

Pr
R←R

[y is ε-heavy among (R,CΨ
k )-correlations] <

17

p2m

Proof. Fix some permutation Ψ, k ∈ {0, 1}κ and y ∈ {0, 1}∗, and assume that y is not δ-detectable, i.e.

Pr
z←{0,1}m

[CΨ(k, z)
Ψ
⇁ Ψ−1(y)] ≤ δ.

.
Consider R ← R sampled at random and the corresponding random set of (R,CΨ

k )-correlations Corr.
Denote

Hitsy = {z | CΨ(k, z)
Ψ
⇁ Ψ−1(y)}

and observe that |Hitsy| < δ2m and, further,

Pr
z←Corr

[CΨ(k, z)
Ψ
⇁ Ψ−1(y)] = |Hitsy ∩ Corr|/|Corr|.

First, we use Proposition 3.6 with S = {0, 1}m to obtain the following bound

Pr[|Corr| < p2m−1] <
16

p2m
. (2)

From (2) and the definition of an ε-heavy image, we have that

Pr
R

[y is ε-heavy] < Pr
R

[|Hitsy ∩ Corr| > εp2m−1] +
16

p2m
. (3)

We use Proposition 3.6 again, this time with S = Hitsy, and get that

Pr[|Hitsy ∩ Corr| > εp2m−1] <
δp2m

((ε/2− δ)p2m)2
=

δ

(ε/2− δ)2p2m
<

1

p2m

and conclude PrR[y is ε-heavy] < 17
p2m .

3.2 The Correlation-Finding Oracle
We now define our correlation-finding oracle (more accurately, a distribution over oracles). The oracle is
defined with respect to a relation R. On inputs an oracle-aided circuit CΨ and a key k, the oracle samples a
uniformly random correlation z such that (z, CΨ(k, z)) ∈ R and outputs it, unless CΨ(k, z) calls the oracle
Ψ (which models a OWP) on an input which is heavy among correlations w.r.t. R but is not detectable.

Definition 3.10 (Correlation-Finding Oracle). Let δ > 0 be an implicit parameter. Let R be a relation and
let Ψ : {0, 1}∗ → {0, 1}∗ be a permutation oracle. We define the corresponding correlation-finding oracle
CorrFinderΨR(·, ·) as follows.

– Randomness: For any Ψ-aided circuit CΨ : {0, 1}κ × {0, 1}m → {0, 1}n and any key k ∈ {0, 1}κ,
the oracle assigns a correlation zC,k ← Corr chosen uniformly at random from the set of (R,CΨ

k )-
correlations (if Corr = ∅, set zC,k = ⊥).

– Query: On inputs CΨ : {0, 1}κ × {0, 1}m → {0, 1}n and k ∈ {0, 1}κ, the oracle CorrFinderΨR outputs
zC,k if for every y ∈ {0, 1}λ such that CΨ

k (zC,k)
Ψ
⇁ Ψ−1(y), y is either δ-detectable or not 3

√
δ-heavy

and, otherwise, outputs ⊥.
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By relying on Lemma 3.9, we show that the oracle CorrFinder, defined w.r.t. a random 3-wise universal
relation, finds a correlation with high probability when given a circuit and a random key. Later on, we
use this fact to show that any CIH candidate can be broken by an instantiation of CorrFinder (w.r.t. some
relation in a 3-wise universal class).

Lemma 3.11. Let R be a class of 3-wise p-universal relations, and let Ψ be a permutation oracle. For any
Ψ-aided circuit CΨ : {0, 1}κ × {0, 1}m → {0, 1}n, that makes at most q queries on any input, and any key
k ∈ {0, 1}κ,

Pr
R←R

CorrFinderΨR

[CorrFinderΨR(C, k) = ⊥] < O(q/p2m).

Proof. Fix a Ψ-aided circuit CΨ and let R← R be sampled at random from the 3-wise universal distribution.
Recall that CorrFinder outputs ⊥ on inputs C and k only if CorrR,Ck = ∅ or CΨ(k, zC,k) makes a query

which is 3
√
δ-heavy but not δ-detectable.

In fact, we consider a slightly different experiment. Instead of sampling a relation R ← R and then an
oracle CorrFinder, which consists of a random zC,k ← Corr, we consider an experiment where we first sample
R′ ← R, then zC,k ← Corr′ (where Corr′ is the set of (R′, CΨ

k )-correlations) and then sample R ← RzC,k,w,
where w = CΨ(zC,k) and Rz,w is the conditioned distribution as defined in Proposition 3.3. It is evident
that the joint distribution of R and zC,k in the new experiment is identical to that in the original correlation-
intractability experiment, and therefore, the outcome of the experiment, which is determined solely by the
fixed key k, and R and zC,k, is identically distributed.

First, we show that, with high probability, there exists at least one (R′, Ck)-correlation. This may be
implied using Proposition 3.6 with S = {0, 1}m to get

Pr
k,R′

[|Corr′| < 1] <
1

p2m−1
. (4)

We now proceed to bound the probability that CorrFinder outputs ⊥.
For any k ∈ {0, 1}κ and relation R, we denote by BadR,k the set of all y ∈ {0, 1}∗ such that y is not

δ-detectable under Cψk and is 3
√
δ-heavy among (R,Cψk )-correlations. Due to the observations above, we

may bound the probability that CorrFinder aborts in the original experiment as follows

Pr
R,CorrFinder

[CorrFinder(C, k) = ⊥]

= Pr
R′←R

[Corr′ = ∅] + Pr
R′←R

zC,k←Corr′

R←RzC,k,w

[∃y : CΨ(k, zC,k)
Ψ
⇁ Ψ−1(y) ∧ y ∈ BadR,k | Corr′ 6= ∅]

<
1

p2m−1
+ max
z∈{0,1}m

Pr
R←Rz,w

[∃y : CΨ(k, z)
Ψ
⇁ Ψ−1(y) ∧ y ∈ BadR,k]

≤ 1

p2m−1
+ q · max

y∈{0,1}∗
Pr

R←Rz,w
[y ∈ BadR,k]

Using Lemma 3.9, and since Rz,w is 2-wise p-universal for any z, w (by Proposition 3.3), we conclude
that

Pr
R,CorrFinder

[CorrFinder(C, k) = ⊥] <
17q + 2

p2m
.
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3.3 Finding Correlations using CorrFinder

We now build on the above to prove the first step of the separation: for any CIH candidate, there exists a
relation R such that CorrFinderR breaks the correlation intractability of the hash for R.

We say that an oracle-aided adversary AΨ,CorrFinderΨ is a (q, q′, q′′)-adversary if, on any input (1n, k), it
makes at most q(n) queries to the oracle Ψ and at most q′(n) queries to CorrFinder and, for every CorrFinder-
query (C, k) that A makes, CΨ(k, ·) makes at most q′′(n) queries to Ψ on any input.

Lemma 3.12. Let R be a class of 3-wise p-universal relations for p(n) ≥ 2−n, and fix a permutation oracle
Ψ. Let κ := κ(n) and m := m(n), and let CΨ = {CΨ

n : {0, 1}κ × {0, 1}m → {0, 1}n} be any Ψ-aided circuit
ensemble where, for any n ∈ N, CΨ

n makes at most q(n) < 2m−n/n2 queries on any input. Then, there exists
a relation R ∈ R and a (0, 1, q)-adversary AΨ,CorrFinder such that

Advci
C,A,R(n) := Pr

k←Gen(1n)

CorrFinderΨR
z←Aψ,CorrFinder(1n,k)

[(z, Cψ(k, z)) ∈ R] ≥ 1

2

for infinitely many n ∈ N.

Proof. Fix any circuit ensemble CΨ. We consider a random R← R, and show that the claim holds for R with
non-zero probability. We construct a straight-forward adversary A that attacks the correlation intractability
of CΨ for R by calling CorrFinderΨR(C, k) and returning the answer.

We show that the construction indeed breaks the correlation intractability of C with high probability for
infinitely many n ∈ N . Notice that, by construction of CorrFinder (see Definition 3.10), the output of A is
necessarily either a correlation z ∈ Corr or ⊥. Thus, we aim to bound the probability of CorrFinder(C, k) = ⊥.

Fix some n ∈ N, and consider the failure probability of A as a function of R,

Bn(R) = Pr
k←{0,1}κ(n)

CorrFinder

[CorrFinderΨR(C, k) = ⊥],

and its value in expectation

ER[Bn(R)] = Pr
R,k,CorrFinder

[CorrFinder(C, k) = ⊥].

Observe that, due to Lemma 3.11, it holds

ER[Bn(R)] < max
k

Pr
R,CorrFinder

[CorrFinder(C, k) = ⊥] < O(q/p2m)

and, therefore, through a standard averaging argument, we get

Pr
R

[
Bn(R) >

1

2

]
< O(q/p2m).

Since
∑
n q/p2

m converges, we may apply the Borel-Cantelli lemma to conclude that the event Bn(R) ≤ 1
2

holds for infinitely many n ∈ N except for measure 0 of relations R ← R. Hence, there exists a relation
R ∈ R such that

Advci
C,A,R(n) ≥ 1

2

for infinitely many n ∈ N.
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3.4 One-wayness against Smooth Adversaries
Having shown that any CIH candidate is broken by an instance of CorrFinder, in this section we prove that
there exists a one-way permutation under any instance of CorrFinder, hence derive a separation.

Specifically, letting f be a random permutation, our goal is to show that an adversary Af,CorrFinderf fails to
invert f on a given random image y. First, we consider a special case, where the adversary A is smooth and
canonical. It is easy to see that any successful adversary can be assumed to be canonical w.l.o.g. and, further,
we show later in Section 3.5 how to transform any adversary to a smooth adversary, while maintaining the
inversion success probability.

Definition 3.13 (Smooth Queries). Fix an oracle Ψ and let δ > 0.
A CorrFinder-query, which consists of a Ψ-aided circuit CΨ : {0, 1}κ × {0, 1}m → {0, 1}n and a key

k ∈ {0, 1}κ, is (Ψ, δ)-smooth at x ∈ {0, 1}∗ if Ψ(x) is not δ-detectable under CΨ
k .

We say that (CΨ, k) is (Ψ, δ)-smooth at a set X ⊂ {0, 1}∗ if (CΨ, k) is smooth at any x ∈ X.

Definition 3.14 (Smooth Adversaries). Fix an oracle Ψ and let δ := δ(λ) and σ := σ(λ). We say that an
oracle-aided adversary A is (Ψ, δ, σ)-smooth if for any fixed oracle CorrFinderΨR, any λ ∈ N and y ∈ {0, 1}λ,
and any i ∈ N, letting ai be the ith query made by AΨ,CorrFinder(1λ, y) to CorrFinder and Xi be the set of all
Ψ-queries made by A before ai,

Pr
A(1λ,y)

[ai is (Ψ, δ)-smooth at Xi] > σ

Definition 3.15 (Canonical Adversaries). We say that an oracle-aided adversary A is canonical if for any
fixed Ψ and CorrFinderΨR, any λ ∈ N and any y ∈ {0, 1}λ, if AΨ,CorrFinder(1λ, y) calls Ψ at Ψ−1(y), he never
makes any further queries to either oracles.

The one-wayness proof is based on a hybrids argument that transforms the original inversion experiment
against a smooth adversary to an experiment which is statistically impossible to win. The transformation
goes through hybrid experiments, where the adversary is given access to a punctured correlation-finding
oracle, which is defined as follows.

Definition 3.16 (Punctured Correlation-Finding Oracle). Let R be a relation and Ψ be a permutation oracle.
Let S ⊆ {0, 1}∗ be a set of Ψ-inputs. We define the punctured correlation-finding oracle CorrFinderΨR,S(·, ·)
similarly to the oracle CorrFinderΨR (see Definition 3.10) with the exception that the punctured oracle CorrFinderΨR,S
outputs ⊥ on inputs CΨ and k also if there exists x ∈ S such that CΨ

k (zC,k)
Ψ
⇁ x.

In the following, we show that a smooth adversary cannot possibly distinguish between the case where
he is given the oracle CorrFinder and the case where he is given a punctured oracle CorrFinder{x}.

Lemma 3.17. Fix a permutation oracle Ψ and let R be any relation. Let σ := σ(λ), δ := δ(λ). For any
λ ∈ N and x ∈ {0, 1}λ, consider the coupling P of the correlation-finding oracle CorrFinderΨR and its punctured
analog CorrFinderΨR,{x} that insantiates both oracles with the same randomness {zC,k} (see Definitions 3.10
and 3.16). Then, for any canonical (Ψ, δ, σ)-smooth (q, q′, q′′)-adversary A,

Pr
P,A

[AΨ,CorrFinder(1λ,Ψ(x)) 6= AΨ,CorrFinder{x}(1λ,Ψ(x))] ≤ (3
√
δ + (1− σ))q′

Proof. Denote by (a1, b1), . . . , (aq+q′ , bq+q′) and (a′1, b
′
1), . . . , (a′q+q′ , b

′
q+q′) all oracle queries made byAΨ,CorrFinder(1λ,Ψ(x))

and, respectively, AΨ,CorrFinder{x}(1λ,Ψ(x)), and their corresponding answers. Then, it holds that

Pr
P,A

[AΨ,CorrFinder(Ψ(x)) 6= AΨ,CorrFinder{x}(Ψ(x))] ≤
q+q′∑
i=1

Pr
P,A

Pr[(ai, bi) 6= (a′i, b
′
i) | (a<i, b<i) = (a′<i, b

′
<i)]
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For any i ∈ [q+ q′], if ai is a Ψ-query, then clearly bi = b′i assuming b<i = b′<i. Otherwise, ai is a CorrFinder-
query of the form ai = (C, k) and, since A is canonical, then x /∈ a<i. From the (Ψ, δ, σ)-smoothness of A,
we have that

Pr
P,A

[(ai, bi) 6= (a′i, b
′
i) | (a<i, b<i) = (a′<i, b

′
<i)]

≤ Pr
P,A

[(ai, bi) 6= (a′i, b
′
i), ai is (Ψ, δ)-smooth at x | (a<i, b<i) = (a′<i, b

′
<i)]

+ Pr
P,A

[ai is not (Ψ, δ)-smooth at a<i]

≤ Pr
P,A

[(ai, bi) 6= (a′i, b
′
i) | (a<i, b<i) = (a′<i, b

′
<i), ai is (Ψ, δ)-smooth at x] + (1− σ)

We now bound the probability that (ai, bi) 6= (a′i, b
′
i) assuming A has produced a query ai = (C, k) which is

smooth at x. We consider two cases. If Ψ(x) is 3
√
δ-heavy among (R,CΨ

k )-correlations, then observe that,
since Ψ(x) is not δ-detectable (due to smoothness), the oracles CorrFinder and CorrFinder{x} are equivalent

(as they both abort when C(k, zC,k)
Ψ
⇁ x) and therefore (ai, bi) = (a′i, b

′
i) always. Otherwise, if Ψ(x) is not

3
√
δ-heavy, then the two oracles behave differently only when C(k, zC,k)

Ψ
⇁ x and, since Ψ(x) is not heavy,

this occurs with probability at most 3
√
δ over the choice of zC,k ← Corr. This completes the proof.

We are now prepared to prove that a smooth adversary is unable to invert a random permutation f with
noticeable probability and imply that f is one-way under the correlation-finding oracle. We first define the
oracle f .

Definition 3.18 (The Oracle f). The oracle f = {fλ} takes as input x ∈ {0, 1}∗ and outputs f|x|(x), where,
for any λ ∈ N, fλ : {0, 1}λ → {0, 1}λ is a random permutation.

Lemma 3.19. Let σ := σ(λ), δ := δ(λ). For any relation R, and any (Ψ, δ, σ)-smooth (q, q′, q′′)-adversary
A, and any λ ∈ N,

Pr
f,CorrFinder,x

[Af,CorrFinder
f
R(1λ, f(x)) = x] < O

(
2−λ(q + q′q′′) + (

√
δ + (1− σ))q′

)
Proof. First, without loss of generality, we assume that A is canonical (the trivial transformation preserves
smoothness and may only increase inversion probability). We bound the inversion success probability of such
a canonical and smooth A through a series of hybrid experiments, as follows.

– Hybrid1: This is the original inversion experiment:

1. Sample a pre-image x← {0, 1}n and oracles f and CorrFinderfR.

2. x′ ← Af,CorrFinder(f(x)).

3. A wins if x′ = x.

– Hybrid2: Similar to Hybrid1, except A is given access to a punctured oracle CorrFinderfR,{x}.

By using a coupling-based argument, since A is smooth and canonical and relying on Lemma 3.17, we may
bound the statistical distance between Hybrid1 and Hybrid2, and get that

|Pr[A wins in Hybrid1]− Pr[A wins in Hybrid2]| ≤ (3
√
δ + (1− σ))q′. (5)

Denote by fx̂→ŷ the oracle which is identical to f except that x̂ is mapped to ŷ. We define the next hybrid
as follows

– Hybrid3: Similar to Hybrid2, except now we sample an additional pre-image x̂← {0, 1}n, and A is given
access to fx̂→f(x) and a punctured oracle CorrFinderfR,{x,x̂}.
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Notice that the output of A in Hybrid3 is identical to its output in Hybrid2 unless x̂ appears in its transcript,
either in a direct f -query or in an f -query made by Cf (k, z) for some CorrFinder-query (C, k) with an answer
z. Since x̂ is sampled uniformly at random, independently of A’s transcript in Hybrid2, then the probability
of this event may be bound by 2−λ(q + q′q′′) and, hence,

|Pr[S wins in Hybrid2]− Pr[S wins in Hybrid3]| ≤ 2−λ(q + q′q′′). (6)

Next, notice that in Hybrid3, the pre-images x and x̂ are completely symmetric and, therefore, we may switch
to a hybrid where A’s goal is to find x̂, i.e.

– Hybrid4:

1. Sample pre-images x, x̂ ∈ {0, 1}n and oracles f and CorrFinderfR,{x,x̂}.

2. x′ ← Afx̂→f(x),CorrFinder
f
R,{x,x̂}(f(x)).

3. A wins if x′ = x̂.

and obtain
Pr[A wins in Hybrid3] = Pr[A wins in Hybrid4]. (7)

To complete the proof, we perform the same steps that took us from Hybrid1 to Hybrid3. This time we start
with Hybrid4 and go “backwards”, while sticking with the same winning condition:

– Hybrid5: Similar to Hybrid4, except A is given access to f and CorrFinderfR,{x}.

– Hybrid6: Similar to Hybrid5, except A is given access to f and CorrFinderfR.

Based on the same arguments from above, we may bound

|Pr[A wins in Hybrid4]− Pr[A wins in Hybrid6]| ≤ 2−λ(q + q′q′′) + (3
√
δ + (1− σ))q′. (8)

Lastly, observe that in Hybrid6, x̂ is independent from the output of A and, therefore,

Pr[A wins in Hybrid6] ≤ 2−λ. (9)

The proof is complete by combining (5), (6), (7), (8) and (9).

3.5 Smoothening any Adversary
Lastly, we confirm the generality of smooth adversaries via the following smoothening lemma.

Lemma 3.20 (The Smoothening Lemma). For any (q, q′, q′′)-query algorithm A and any β := β(λ), there
exists a (q + βq′, q′, q′′)-adversary S such that the following two properties hold:

1. Correctness: for any relation R and fixed oracles Ψ and CorrFinder := CorrFinderΨR, SΨ,CorrFinder

perfectly simulates AΨ,CorrFinder on any input.

2. Smoothness: S is (Ψ, δ, 1− 2−δβ+log(q′′/δ))-smooth.

Proof. For any adversary A, we construct the simulator S as follows. On inputs 1λ and y, SΨ,CorrFinder

runs AΨ,CorrFinder(1λ, y) and, whenever A calls CorrFinder with input (CΨ, k), S evaluates CΨ(k, ·) on β
uniformly random inputs and only then calls CorrFinder(C, k), forwards the answer to A, and proceeds with
the simulation.

Correctness and complexity of S are straight-forward. For smoothness, fix an oracle CorrFinder and
y ∈ {0, 1}λ. We bound the probability that S(1λ, y)Ψ,CorrFinder makes a query a = (C, k) which is not (Ψ, δ)-
smooth at a Ψ-query which was not made by S before a. Observe that this occurs if there exists x s.t. Ψ(x)
is δ-detectable under CΨ

k but x is not queried by S beforehand. However, notice if Ψ(x) is detectable, x will
be queried by S during the β random evaluations of CΨ(k, ·) except with probability at most (1−δ)β ≤ 2−δβ .
A simple counting argument shows that, for any such C, there exist at most q′′/δ such δ-detectable images.
Therefore, by applying a union bound over all detectable images under CΨ

k , we get that S queries all of them
with probability at least 1− 2−δβ · q′′/δ.
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3.6 Proof of Theorem 3.4
Fix a candidate construction of correlation intractable hash from OWP, CIH = (Gen,Hash). Let f = {fλ} be
sampled at random as in Definition 3.18 and let R and A be the relation and, resp., the (0, 1, q)-adversary
from Lemma 3.12 that satisfy

Advci
C,A,R(n) ≥ 1

2

for infinitely many n ∈ N, with respect to the circuit ensemble Cf = {Cfn} where, for any n ∈ N, Cfn
computes Hashf (·, ·) on inputs of length κ(n) and m(n), respectively.

To prove Theorem 3.4, it is sufficient to show that any efficient reduction Rf,A(1λ, ·) fails in inverting
fλ except with low probability. Observe that if R is efficient and A is a (0, 1, q)-adversary, then Rf,A

may be emulated by a (q, q, q)-adversary Bf,CorrFinder. By applying Lemma 3.20 (with δ(λ) = 2−2λ/3 and
β(λ) = 22λ/3λ), we may bound B’s success probability in inverting f by the success probability of the best
(Ψ, 2−2λ/3, 1− 2−λ/3q)-smooth (q + 22λ/3λq, q, q)-adversary. And, thus, due to Lemma 3.19, we have

Pr
f,x

[Rf,A(1λ, f(x)) = x] < O
(

2−λ/3q2
)

Hence, if ε > O(2−λ/9) then q > O(2λ/9).

4 Separating One-wayness from Correlation Intractable Hash
In this section, we show separation in the opposite direction and prove that correlation intractability does
not imply one-way functions in a fully-black-box manner. Namely, we show that there exists no construction
of OWF that only makes a fully-black-box use of CIH. We are able to prove the statement even when we
consider correlation intractability for sparse relations, which is satisfied by a random hash function.

We first define sparse relations, then formalize the notion of fully-black-box construction of OWF from
CIH.

Definition 4.1 (Sparsity). A binary relation R is said to be µ(·)-sparse if for any n ∈ N and z ∈ {0, 1}∗,

Pr
w←{0,1}n

[(z, w) ∈ R] ≤ µ(n)

Definition 4.2 (Fully-Black-box Construction of OWF from CIH). Let R be a class of relations. A (q, ε)-
fully black-box construction of a One-way Function (OWF) from Correlation Intractable Hash (CIH) for R,
for functions q := q(n) and ε := ε(n), consists of an ensemble of oracle-aided algorithms F = {Fλ}λ∈N and
an oracle-aided reduction R, satisfying the following properties:

• Black-box Security Reduction: For any κ := κ(n), m := m(n) and keyed-hash ensemble h = {hn :
{0, 1}κ × {0, 1}m → {0, 1}n}, there exists a relation R ∈ R such that for any probabilistic oracle-aided
adversary A, if

Advowf
F,A (λ) := Pr

x←{0,1}λ

y=Fhλ(x)

[Fhλ(Ah(1λ, y)) = y] ≥ 1

2

for infinitely many λ ∈ N, then

Pr
k←{0,1}κ

z←Rh,A(1n,k)

[(z, h(k, z)) ∈ R] ≥ ε(n)

for infinitely many n ∈ N.

• Reduction Efficiency: For any κ := κ(n), m := m(n), any keyed-hash ensemble h = {hn : {0, 1}κ ×
{0, 1}m → {0, 1}n}, and any oracle-aided adversary A, the reduction Rh,A, on any input (1n, k),
makes at most q(n) queries to h and, for every A-query (1λ, y) made by R(1n, k), Fhλ makes at most
q(n) queries to h on any input.
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The following theorem constitutes the main result of this section. We show that any fully-black-box
reduction from OWF to correlation intractability, either has high query complexity – as high as a brute-force
attack against the underlying CIH – or has success probability almost as low as a trivial attack against a
random CIH.

Theorem 4.3 (Black-box Impossibility of OWF from CIH). Let F be a (q, ε)-fully black-box construction of
OWF from CIH for µ(·)-sparse relations. Then, either

1. q(n) ≥ 1/6µ(n), or

2. ε(n) < 6q2(n) · µ(n).

4.1 The Inversion Oracle
We start by introducing the inversion oracle w.r.t. a relation R. On inputs an oracle-aided circuit CΨ :
{0, 1}λ → {0, 1}` and an image y ∈ {0, 1}`, the inversion oracle outputs a random pre-image x ← C−1(y)
such that CΨ(x) does not call Ψ at a correlation (w.r.t. R).

Definition 4.4 (The Inversion Oracle). Fix an oracle Ψ : {0, 1}κ × {0, 1}m → {0, 1}n and a µ(·)-sparse
relation R. For any q ∈ N, denote by Corrq the set of all correlations between R and Ψ of length n such that
µ(n) < 1/6q, i.e.

CorrΨq = {(k, z) ∈ {0, 1}κ(n) × {0, 1}m(n) | µ(n) < 1/6q, (z,Ψ(k, z)) ∈ R}.

We define the inversion oracle w.r.t. R, InvΨ
R(·, ·), as follows.

– Randomness: For any oracle-aided circuit CΨ : {0, 1}λ → {0, 1}` and y ∈ {0, 1}`, the oracle assigns
a uniformly random xC,y sampled from the pre-image of y under CΨ, on which CΨ does not make a
correlation query in Corrq, where q is a tight upper bound on the query complexity of C on any input,
i.e.

xC,y ← {x | CΨ(x) = y ∧ CΨ(x) 6Ψ⇁ Corrq}

– Query: On inputs an oracle-aided circuit C and an image y, the oracle outputs xC,y.

We next define the random oracle h, which models a correlation-intractable hash in our separation proof.

Definition 4.5 (The Oracle h). Let κ := κ(n) and m := m(n) be implicit length parameters. The oracle
h = {hn} takes as inputs a key k ∈ {0, 1}κ and an input z ∈ {0, 1}m and outputs hn(k, z), where, for any
n ∈ N, hn : {0, 1}κ × {0, 1}m → {0, 1}n is a random hash function.

In the following lemma, we show that any black-box OWF construction from the oracle h is invertible,
with high probability, using the inversion oracle defined above.

Lemma 4.6. Let h be sampled as in Definition 4.5, let Fh = {Fhλ}λ∈N be an ensemble of oracle-aided
algorithms and let R be a µ(·)-sparse relation. Then, there exists a (0, 1, q)-adversary Ah,InvhR , such that

Pr
h,Inv,y

[Fhλ(Ah,Inv(1λ, y)) 6= y] <
1

6

for all λ ∈ N, where y = FΨ
λ (x) for a uniform x← {0, 1}λ.

Proof. Consider the straight-forward adversary which, on input (1λ, y), outputs x ← InvhF,R(Fλ, y) (where
Fλ is represented by a circuit). From the definition of the inversion oracle, the only case where the inversion
oracle may fail to invert Fhλ is when the set {x | Fλ(x) = y ∧ Fhλ 6

h
⇁ Corrq} is empty, where q is the query

complexity of Fλ. Since y is sampled as the image of a random input x, we have

Pr
h,Inv,y

[Fλ(Ah,Inv(1λ, y)) 6= y] = Pr
h,Inv,y

[{x | Fλ(x) = y ∧ Fλ 6
h
⇁ Corrq} = ∅] ≤ Pr

h,x
[Fhλ(x)

h
⇁ Corrq]
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We bound the above probability as follows. For any fixed x, and any query (k, z) ∈ {0, 1}κ(n)×{0, 1}m(n)

that Fhλ(x) makes for n such that µ(n) < 1/6q, it holds, from sparseness of R, that (z, h(k, z)) ∈ R with
probability at most 1/6q over a random h. By applying a union bound over all queries made by Fλ(x), we
obtain

Pr
h,x

[Fλ(x)
ψ
⇁ Corrq] <

1

6
.

4.2 Correlation Intractability under Inv

We have shown that, under the inversion oracle, any candidate OWF is broken with high probability over the
choice of h. Next, we prove that a random oracle h is correlation intractable with high probability. Looking
ahead, we will eventually use these two statements to imply the existence of a fixed function h which is
correlation intractable under the inversion oracle yet, using which, the OWF candidate is broken under the
oracle.

To prove the correlation-intractability of h, we show that the correlation-intractability experiment, where
the adversary is challenged to find a correlation in h w.r.t. a relation R, given access to h and the inverter,
is in fact indistinguishable from the experiment where the adversary is challenged to find a correlation in
a statistically-correlation-intractable random hash, i.e. a random hash function that does not contain any
correlations w.r.t. R. Such an experiment is clearly statistically hard to win.

First, we define the statistically-CI oracle hR,n, then prove that it is indistinguishable from h under the
inversion oracle.

Definition 4.7 (The stat-CI Oracle). Let κ := κ(n) and m := m(n) be length parameters and let R
be a relation. The statistically correlation-intractable oracle w.r.t. R, hR,n(·, ·), takes as input (k, z) ∈
{0, 1}κ(n′)×{0, 1}m(n′) for some n′ ∈ N and outputs wz,k, where wz,k ← {w ∈ {0, 1}n | (z, w) /∈ R} if n = n′

and wz,k ← {0, 1}n
′
otherwise.

Lemma 4.8. Fix a µ(·)-sparse relation R. For any (q, q′, q′′)-adversary A such that q′′(n) < 1/6µ(n) for
all n ∈ N, and any n ∈ N,

|Pr[Ah,Inv(1n) = 1]− Pr[A(1n)h
′,Inv′ = 1]| < (q + q′q′′)µ

where h and h′ := hR,n are sampled as in Definitions 4.5 and 4.7 (resp.), and Inv := InvhR and Inv := Invh
′

R

as in Definition 4.4.

Proof. We show that the outcomes of the two experiments Ah,Inv(1n) and Ah′,Inv′(1n) are statistically close
through a coupling between the distributions (h, Inv) and (h′, Inv′). Fix n ∈ N. The coupling distribution
Pn first samples h′ with randomness {wk,z} (see Definition 4.7) and an oracle Inv′ with randomness {xC,y}
(see Definition 4.4). The corresponding (h, Inv) are then sampled as follows:

– The oracle h: For any input (k, z) ∈ {0, 1}κ(n′) × {0, 1}m(n′) for n′ 6= n, we set h(k, z) = h′(k, z) =
wk,z. For any input (k, z) ∈ {0, 1}κ(n) × {0, 1}m(n), we set h(k, z) = h′(k, z) with probability pz =
Prw←{0,1}n [(z, w) /∈ R] and with probability 1− pz we sample h(k, z)← {w | (z, w) ∈ R} at random.

– The oracle Inv: For any oracle-aided circuit C : {0, 1}λ → {0, 1}` and y ∈ {0, 1}`, we set Inv(C, y) =

Inv′(C, y) = xC,y if Ch(xC,y) 6 h⇁ Corrhq (where Corrhq is defined as in Definition 4.4) and, otherwise, we

sample a fresh Inv(C, y) at random from {x | Ch(x) = y, Ch(x) 6 h⇁ Corrhq }.

We first confirm that the coupling is valid. Letting ((h, Inv), (h′, Inv′)) ← Pn, it is straightforward by
construction that (h′, Inv′) distribute identically to their original distribution in the experiment. Further,
notice that the marginal distribution of h(k, z), for any (k, z) ∈ {0, 1}κ(n′) × {0, 1}m(n′) is uniform over
{0, 1}n′ : in the case where n 6= n′ this is straight-forward and, the case of n = n′ follows from the choice
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of pz. It remains to analyse the marginal distribution of Inv. For any circuit C (with query complexity q)

and y, let XC,y = {x | Ch′(x) = y, Ch
′

λ (x) 6h
′

⇁ Corrh
′

q } – this is the set from which xC,y is sampled at random

in Inv′. Further, let SC,y = {x | Ch′(x) = y, Ch(x)
h
⇁ Corrhq } and observe that, by construction of Pn and

since Corrh
′

q = Corrhq \ {0, 1}n, then XC,y \ SC,y = {x | Ch(x) = y, Ch(x) 6 h⇁ Corrhq }. Hence, we may describe
the marginal of Inv(C, y) as being sampled as follows: Sample x ← XC,y and, if x ∈ SC,y then sample
x← XC,y \ SC,y. This is equivalent to sampling Inv(C, y)← XC,y \ SC,y and, therefore, to the distribution
of Inv from Definition 4.4.

Having shown that Pn produces the proper marginal distribution, we may apply Lemma 2.2 to bound

|Pr[Ah,Inv(1n) = 1]− Pr[A(1n)h
′,Inv′ = 1]| < Pr

Pn
[Ah,Inv(1n) 6= Ah

′,Inv′(1n)].

Now, observe that for any ((h, Inv), (h′, Inv′)) ∈ Pn, it holds that Ah,Inv(1n) 6= Ah′,Inv′(1n) only if one of the
following occurs: either Ah′,Inv′ makes a query to h′ or Inv′ which is answered differently by h or, resp. Inv.
This happens only if one of the following two events occur:

– Either Ah′,Inv′ makes an h′-query (z, k) such that h(z, k) 6= h′(z, k). This happens with probability at
most 1− pz < µ. Or,

– Ah′,Inv′ makes an Inv′-query (C, y) and is answered by x where Ch
′
(x)

h′
⇁ (z, k) for some (z, k) such

that h(z, k) 6= h′(z, k). Via union bound over all queries made by Ch
′
(x), we bound the probability of

this event by q′′(1− pz) < q′′µ.

The proof is complete by applying union bound again over all q h′-queries and all q′ Inv′-queries that are
possibly made by A.

We now use the indistinguishability argument from Lemma 4.8 to derive the correlation intractability of
h under Inv.

Lemma 4.9. Fix a µ(·)-sparse relation R, and let q(n) < 1/6µ(n). Then for any (q, q, q)-adversary A and
any n ∈ N,

Pr
k←{0,1}κ

z←Ah,Inv(1n,k)

[(z, h(k, z)) ∈ R] < 2q2µ

where h and Inv := InvhR are sampled as in Definitions 4.5 and 4.4, resp..

Proof. Assume there exists a (q, q, q)-adversary A that breaks the correlation intractability of h for some
n ∈ N, specifically, suppose

Pr
k,z←A(1n,k)

[(z, h(k, z)) ∈ R] > 2q2µ. (10)

We use A to construct a (q + 1, q, q)-adversary B that breaks Lemma 4.8 by distinguishing between a
case where he is given access to a random h (and a corresponding Inv) and a case where he is given access
to a statistically correlation-intractable h′ := hR,n (and a corresponding Inv′) as follows. On input 1n, the
algorithm BH,Inv samples k ← {0, 1}κ then calls z ← AH,Inv(1n) and outputs 1 if and only if (z,H(k, z)) ∈ R.

From (10), if H = h, then B outputs 1 with probability at least 2q2µ whereas, if H = h′, then since h′
is statistically correlation-intractable, i.e. produces no correlations at all, then B outputs 1 with probability
0. Hence, B’s distinguishing advantage is at least 2q2µ > (q + 1 + q2)µ, in contradiction to Lemma 4.8.

4.3 Proof of Theorem 4.3
Let F be any (q, ε)-fully black-box construction of OWF from correlation-intractable hash for all µ-sparse
relations, with a corresponding oracle-aided reduction R. Consider a hash oracle h sampled at random as
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in Definition 4.5. For any relation R ∈ R, let A be the adversary from Lemma 4.6 that inverts Fh with
probability all but 1/6, over a random h. Using an averaging argument, such an adversary satisfies

Pr
h

[
Pr
A,y

[Fhλ(A(1λ, y)) = y] ≥ 1

2

]
≥ 2

3
.

for all λ ∈ N, where y = Fhλ(x) for a uniform x← {0, 1}λ. Thus, for at least 2
3 -fraction of all oracles h, and

any relation R, there exists an adversary A such that Advowf
F,A (λ) ≥ 1

2 .
We now show that if q(n) ≤ 1/6µ(n), then for at least 2

3 -fraction of random hash functions h, the
reduction Rh,A fails in finding R-correlations with sufficiently large probability. This completes the proof as
it implies the existence of an oracle h relative to which there exists an A that breaks the one-wayness of F
while Rh,A fails in breaking the correlation-intractability of h.

Observe that if R is efficient and, since A is a (0, 1, q)-adversary, then the computation Rh,A can be
expressed as a (q, q, q)-adversary Bh,Inv. Therefore, via Lemma 4.9, we obtain that

Pr
h,A

k←{0,1}κ

z←Rh,A(1n,k)

[(z, h(k, z)) ∈ R] < 2q2µ

and, through a standard averaging argument,

Pr
h

 Pr
A,k

z←Rh,A(1n,k)

[(z, h(k, z)) ∈ R] > 6q2µ

 ≥ 2

3
.

We conclude that either q(n) > 1/6µ(n) or ε(n) ≤ 6q2µ.

4.4 Fiat-Shamir does not Imply OWFs
In this section, we discuss the implication of the fully black-box separation from Theorem 3.4 to the com-
plexity of the Fiat-Shamir transform, compared to one-way functions. We first confirm that the well-known
reduction from Fiat-Shamir over any constant-round protocol to correlation intractability is indeed fully
black-box. Using such a fully black-box reduction, we then show that the separation proof from above
provides us with an oracle, relative to which there exists computationally sound Fiat-Shamir for the given
protocol, i.e. a Fiat-Shamir transform that is based on computational hardness, rather than statistical im-
possibility (which may be achieved by an idealized hash function), but still, there exist no one-way functions
relative to the oracle.

First, let us recall the Fiat-Shamir transform and set up some notation.

The Fiat-Shamir Transform. Let Π = (PΠ,VΠ) be an r-round public-coin protocol (possibly oracle-
aided and/or in the CRS model), where we denote by ai and bi the prover’s message and the verifier’s (public-
coin) challenge at the ith round, respectively. Let h := {hn : {0, 1}κ × {0, 1}m → {0, 1}n} be an oracle. We
denote by FSh(1n,Π) an instantiation of the Fiat-Shamir transform over Π using the hash function hn. More
specifically, FSh(Π) = (PFS,VFS) is a non-interactive protocol where, on security parameter n ∈ N, the CRS
contains a random hash key k ← {0, 1}κ and possibly a CRS for Π, crs. The prover PFS(1n, (k, crs), x) locally
emulates the interaction between PΠ and VΠ corresponding to crs and the instance x, while computing the
public coins in every round as the hash of the current partial transcript including x and crs, under hn(k, ·)
(w.l.o.g we assume that n public coins are sent in each round). Upon receiving τ = (a1, b1, . . . , ar), the
verifier VFS accepts if and only if bi = hn(k, (crs, x, a1, b1, . . . , ai)) for all i and VΠ(1n, crs, x, τ) = 1.

Definition 4.10 (Fiat-Shamir Soundness). Let Π be a public-coin protocol for a language L and h = {hn :
{0, 1}κ × {0, 1}m → {0, 1}n} be a distribution over oracles. Let q := q(n) and ε := ε(n). We say that the
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Fiat-Shamir transform over Π using h, FSh(Π) = (PFS,VFS), is (q, ε)-sound if for any q-query adversary Ah
and any {xn} /∈ L, it holds that

Pr
h,k,crs

[VFS(1n, (k, crs), x,Ah(1n, (k, crs))) = 1] < ε

for infinitely many n ∈ N.
We say that FSh(Π) is statistically sound if it is (∞, ε)-sound for some negligible ε.
We say that FSh(Π) is computationally sound if it is not statistically sound yet there exists a negligible

ε such that, for any polynomial q, FSh(Π) is (q, ε)-sound.

Next, we define a fully black-box reduction from Fiat-Shamir soundness to correlation intractability,
which has the same flavor of black-boxness from Definition 4.2, then show that such a reduction exists.

Definition 4.11 (Fully-Black-box Fiat-Shamir Transform from CIH). Let R be a class of relations and let
Π be an interactive protocol. A fully black-box (tight) reduction from Fiat-Shamir soundness over Π to CIH
for R is an oracle-aided algorithm R satisfying the following:

• Black-box Soundness Reduction: For any κ := κ(n), m := m(n) and keyed-hash ensemble h =
{hn : {0, 1}κ×{0, 1}m → {0, 1}n}, there exists a relation R ∈ R such that for any probabilistic oracle-
aided adversary A, if A(1n, ·) breaks the soundness of FSh(1n,Π) with probability ε(n) for infinitely
many n ∈ N, then Rh,A breaks the correlation intractability of h for R with the same probability, i.e.

Pr
k←{0,1}κ

z←Rh,A(1n,k)

[(z, h(k, z)) ∈ R] ≥ ε(n)

for infinitely many n ∈ N. Further, for any n ∈ N, Rh,A(1n, ·) only makes a single query to A(1n, ·).

Theorem 4.12. Let Π be any r-round public-coin interactive protocol with soundness error σ(n). Then,
there exists a fully-black-box tight reduction from Fiat-Shamir soundness over Π to CIH for all σ1/r-sparse
relations.

Proof. Fix an r-round public-coin protocol Π which is statistically sound with soundness error σ(n). For
any crs, x /∈ L and partial transcript τ = (a1, b1, . . . , bi), we define the soundness error w.r.t. (crs, x, τ) as

ecrs,x,τ = max
P∗

Pr
bi+1,...,br−1

[Πτ (crs, x,P∗, (bi+1, . . . , br−1)) = 1]

where Πτ (crs, x,P∗, (bi+1, . . . , br−1)) is an invocation of the protocol Π starting from round i + 1 given the
partial transcript τ , with a CRS crs, an instance x, and a (possibly dishonest) prover strategy P∗, where the
public coins are bi+1, . . . , br−1. Intuitively, one can think of eτ as the guaranteed soundness error, given τ is
the transcript so far.

We construct a reduction R that, for any h, attacks the correlation intractability of h for the relation R
defined by:

((crs, x, a1, b1, . . . , bi−1, ai), bi) ∈ R iff ecrs,x,(a1,...,bi) > σ−1/r · ecrs,x,(a1,...,bi−1).

First, we show that this relation is σ1/r-sparse. Notice that, by definition of the soundness error, for any
fixed crs, x, and τ = (a1, . . . , bi−1, ai), it holds that

ecrs,x,(a1,...,bi−1) ≥ Ebi [ecrs,x,(a1,...,ai,bi)]

and, therefore, via an averaging argument,

Pr
bi

[((crs, x, τ), bi) ∈ R] = Pr
bi

[ecrs,x,(a1,...,bi) > σ−1/recrs,x,(a1,...,bi−1)] < σ1/r
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Next, we describe the reduction R, which builds on an adversaryA that breaks the soundness of FSh(1n,Π)
for infinitely many n ∈ N (see Definition 4.10). On inputs 1n and k, R samples a CRS crs at random then
calls Ah(1n, (k, crs)) to obtain a proof τ = (a1, b1, . . . , ar). From the correctness of A, we know that, for
infinitely many n ∈ N, there exists x /∈ L such that bi = hk(a1, . . . , ai) for all i and VΠ(1n, crs, x, τ) = 1, with
probability at least σ. We claim that for any such τ , there exists i ∈ [r] such that ((crs, x, a1, b1, . . . , ai), bi) ∈
R. This is sufficient since R can detect the instance x and the index i for which the above is satisfied (without
any additional queries), then output (crs, x, (a1, b1, . . . , ai)), which is a correlation under R.

The existence of such an i follows from a simple argument: Let ei = ecrs,x,τi denote the soundness error
w.r.t. the partial transcript τi = (a1, b1, . . . , bi). Then, by the soundness of Π, we know that e0 < σ(n) and,
since τ is an accepting transcript, then er−1 = 1. Hence, there must exist i ∈ [r] such that ei > σ−1/r · ei−1.

We now prove the main result in this section, building on the reduction from Theorem 4.11, and the
oracles used in proving the separation of OWFs from CIH.

Theorem 4.13. Let Π be any statistically-sound constant-round protocol with negligible soundness error,
such that the Fiat-Shamir over Π using a random hash function is not statistically sound. Then, there exists
a (randomized) oracle O relative to which there exists a computationally sound Fiat-Shamir over Π but no
one-way functions.

Proof. Denote by σ := σ(n) the negligible soundness error of Π and by r the number of rounds in the protocol.
Let R be the fully black-box reduction from Fiat-Shamir soundness over Π to correlation-intractability
from Theorem 4.11. Consider the random oracle O = (h, InvR), where h is a random hash function (see
Definition 4.5) and Inv := InvhRh is the inversion oracle w.r.t. the relation Rh which is the σ1/r-sparse relation
from Theorem 4.11, corresponding to R and h (it holds that R breaks the correlation intractability of h for
Rh given any adversary against FSh(Π)).

By Lemma 4.6, any one-way function candidate is broken with high probability under O. On the other
hand, from Lemma 4.9, any q-query adversary fails to break the correlation intractability of h for Rh with
probability larger than O(q2σ1/r). This implies that there exists no polynomial-query adversary AO that
breaks FSh(Π) with non-negligible probability since, otherwise, this breaks the correlation intractability of
h for Rh through the reduction R. Further, it is given that FSh(Π) is not statistically sound under such a
random h and, therefore, the Fiat-Shamir transform using h is computationally sound.
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