
The Cost of Adaptivity in Security Games on Graphs

Chethan Kamath∗1, Karen Klein†2, Krzysztof Pietrzak†2, and Michael
Walter†2

1ckamath@protonmail.com
2IST Austria, {kklein,pietrzak,mwalter}@ist.ac.at

July 8, 2021

Abstract

The security of cryptographic primitives and protocols against adversaries
that are allowed to make adaptive choices (e.g., which parties to corrupt or
which queries to make) is notoriously difficult to establish. A broad theoretical
framework was introduced by Jafargholi et al. [Crypto’17] for this purpose. In
this paper we initiate the study of lower bounds on loss in adaptive security for
certain cryptographic protocols considered in the framework. We prove lower
bounds that almost match the upper bounds (proven using the framework) for
proxy re-encryption, prefix-constrained PRFs and generalized selective decryp-
tion, a security game that captures the security of certain group messaging and
broadcast encryption schemes. Those primitives have in common that their se-
curity game involves an underlying graph that can be adaptively built by the
adversary.

Some of our lower bounds only apply to a restricted class of black-box reduc-
tions which we term “oblivious” (the existing upper bounds are of this restricted
type), some apply to the broader but still restricted class of non-rewinding re-
ductions, while our lower bound for proxy re-encryption applies to all black-box
reductions. The fact that some of our lower bounds seem to crucially rely on
obliviousness or at least a non-rewinding reduction hints to the exciting possibil-
ity that the existing upper bounds can be improved by using more sophisticated
reductions.

Our main conceptual contribution is a two-player multi-stage game called the
Builder-Pebbler Game. We can translate bounds on the winning probabilities
for various instantiations of this game into cryptographic lower bounds for the
above-mentioned primitives using oracle separation techniques.

∗Most of the work was done while the author was at Northeastern University, supported
by the IARPA grant IARPA/2019-19-020700009, and Charles University, funded by project
PRIMUS/17/SCI/9.

†Funded by the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (682815 - TOCNeT).

1

Contents

1 Introduction 3
1.1 Our Results . 4
1.2 Related Work . 7

1.2.1 Adaptive Security . 7
1.2.2 Limitations of Reductions . 8
1.2.3 Graph Pebbling . 8

2 Technical Overview 9
2.1 Our Approach . 9
2.2 Step I: Combinatorial Upper Bounds 12
2.3 Step II: From Combinatorial Upper Bounds to Cryptographic Lower

Bounds . 14

3 Preliminaries 16
3.1 Graph Theory . 16
3.2 Graph Pebbling . 16

4 The Builder-Pebbler Game 17
4.1 Player Strategies . 19

5 Combinatorial Upper Bounds 20
5.1 Oblivious Pebbler . 20

5.1.1 Paths . 21
5.1.2 Binary In-Trees . 24
5.1.3 Unrestricted Games . 27

5.2 Node Pebbler . 29
5.2.1 Complete Graphs . 29

5.3 Unrestricted Pebbler . 31
5.3.1 Trees . 31

6 Cryptographic Lower Bound I: Generalised Selective Decryption 33
6.1 Definition and Security Assumption 33
6.2 Lower Bounds for GSD . 35
6.3 Public-Key GSD . 38

7 Cryptographic Lower Bound II: (Asynchronous) Continuous Group
Key Agreement 41
7.1 Definitions and Construction . 42

7.1.1 CGKA: Syntax and Security Model 42
7.1.2 TreeKEM: Protocol and Security 43

7.2 Lower Bound for TreeKEM . 48

8 Cryptographic Lower Bound III: Constrained PRF 54
8.1 Definition, Construction and Security Assumption 54
8.2 Lower Bound for the GGM CPRF . 55

2

9 Cryptographic Lower Bound IV: Proxy Re-encryption 59
9.1 Definitions and Security Assumptions 59
9.2 Lower Bounds . 63

10 Open Questions 65
10.1 Rewinding Reductions . 65
10.2 Reductions Exploiting Rewinding or Non-Obliviousness 66
10.3 Better Reductions for Other Graph Families 67
10.4 Resoving LKH . 67

References 67

1 Introduction

Consider the following game played between a challenger C and an adversary A using
a symmetric-key encryption (SKE) scheme (Enc,Dec). The challenger first samples,
independently and uniformly at random, N keys k1, . . . , kN . These correspond to
users U1, . . . , UN respectively. The adversary A is now allowed to adaptively make two
types of queries:

1. Ask for an encryption of kj under the key ki to obtain Enc(ki, kj), or

2. Corrupt a user Ui to obtain the key ki.

At the end of the game, A challenges C on a user Ui∗ and is given either the real key
ki∗ or an independent, random key r. A wins this “real or random game” if it correctly
guesses which of the two it got. If no efficient A can win with probability higher than
1/2 + ε we say the protocol is 2ε secure.

The above game can be thought of as the adversary A adaptively building a “key-
graph” G = (V, E), where the vertices V = {1, . . . , N} correspond to the users and
their keys, whereas the (directed) edges E correspond to the encryption queries that
A makes: a directed edge (i, j) is added to E if A requests the encryption of kj under
the key ki. Note that for i∗ to be a non-trivial challenge, i∗ must be a sink and must
not be reachable (in the graph-theoretic sense) from any of the corrupted vertices —
otherwise, A can simply decrypt the ciphertexts along the path from any corrupted
node to the challenge to learn ki∗ .

The above game is called generalised selective decryption (GSD) and it captures
the security of protocols for multicast encryption [Pan07] and continuous group key
agreements (CGKA) [ACDT20, ACC+19]. We will use GSD in this introduction as the
running example to convey our ideas. The main question regarding GSD is whether
the security of this game (given that the key-graph is acyclic) can be based on the
IND-CPA security of the underlying SKE.1 For this we need to prove a computational
soundness (i.e., security) theorem of the form: if the SKE is ε-secure then the GSD

1In case the key-graph contains cycles, one must additionally assume that the SKE is key-
dependent message (KDM) secure [BRS03]. Such problems are of a different flavour and we don’t
deal with them. As mentioned before, the GSD game is typically used to capture the security of
protocols where the acyclicity is enforced by the protocol rules.

3

game is ε′-secure for some ε′ that depends on ε. Ideally, the loss of security2 should be
kept to a polynomial, i.e., ε′ = ε/poly(N). Otherwise, this requires to either set the
security parameter of the underlying SKE very large if one wants to maintain provable
security guarantees, which will lead to inefficiency. Or the provided security is only
heuristic, leaving the possibility of an attack against GSD which does not break the
underlying SKE.

The simpler task of proving a soundness theorem in case the adversary is selective,
in the sense that it commits to its queries (and thus the key-graph G) at the beginning
of the GSD game, is relatively straightforward to achieve. If the graph is known ahead
of time, it is easy to construct a series of O(N2) hybrids, each of which can be shown
indistinguishable under the security of the SKE (see, e.g., [JKK+17]). The study of
adaptive security of GSD, where the key-graph is unknown at the beginning of the
game and is only gradually revealed during the query phase, was initiated in [Pan07]
and remains notoriously hard. In particular, non-trivial results are only known in
settings, where the adversary is restricted to query (subgraphs of) specific key-graphs
(which needs to be enforced by the higher level protocol). The state of the art is
represented by the general Piecewise-Guessing framework [JKK+17, KW19].

1.1 Our Results

The Piecewise-Guessing Framework has been successfully used to give improved se-
curity guarantees against adaptive attacks for various applications [KW19, FKKP19,
ACC+19, ACDT20, KNYY20], but there still are significant gaps to knows attacks. In
this paper we approach this question from the other “lower bounds” direction, and for
several applications show that this will not be possible, at least not when using exist-
ing techniques. In particular, we show that there do not exist efficient non-rewinding
black-box reductions – henceforth called “straight-line” reductions for brevity – that
prove security of

• certain forms of restricted GSD (including its public key variant) based on the
IND-CPA security of the underlying SKE (see Section 6),

• popular protocols for CGKA based on the IND-CPA security of the underlying
public-key encryption (PKE) (see Section 7),

• the GGM construction for prefix-constrained PRFs based on the pseudorandom-
ness of the underlying PRG (see Section 8)

• proxy re-encryption3 (PRE) schemes [BBS98] based on the IND-CPA security
of the PKE and N -weak key privacy (see Section 9)

2Consider a reduction R from a problem P to another problem Q. Suppose that R (ε′, T ′)-breaks
P when given access to an (ε, T)-adversary A that breaks Q. The loss in security Λ incurred by R is
defined as the ratio (εT ′)/(ε′T).

3A proxy re-encryption scheme is a public-key encryption scheme that allows the holder of a key
pk to derive a re-encryption key for any other key pk′. This re-encryption key lets anyone transform
ciphertexts under pk into ciphertexts under pk′ without having to know the underlying message. The
formal definition is given in Section 9.

4

Application Underlying Graph Lower Bound Reduction Upper Bound

GSD

Path PN NΩ(log(N)) Oblivious NO(log(N))[FJP15]
Rooted Binary In-Tree Bn NΩ(log(N)) Oblivious NO(log(N)) [Pan07]

Tree4 NΩ(log(N)) Straight-line NO(log(N))[FJP15]

Arbitrary DAG 2Ω(
√
N) Oblivious NO(N/ log(N))[JKK+17]

PRE
Path PN NΩ(log(N)) Oblivious NO(log(N))[FKKP19]

Binary Tree Bn NΩ(log(N)) Oblivious NO(log(N)) [FKKP19]
Arbitrary DAG 2Ω(N) Arbitrary NO(N/ log(N))[FKKP19]

GGM CPRF Tree nΩ(log(n)) Straight-line nO(log(n)) [FKPR14]

TreeKEM Regular Tree MΩ(log(log(M))) Straight-line QO(log(M)) [ACC+19]

Table 1: Summary of lower bounds on the loss in security established in our work. N = 2n denotes
the size of the graph. Therefore, in the case of GGM constrained PRF, n denotes the length of the
input string. For TreeKEM, M denotes the number of users and Q refers to the number of queries
allowed to the adversary.

with only polynomial loss in advantage. For PRE we can even rule out general (i.e.,
rewinding) black-box reductions (see Discussion of Corollary 14). For the theorem
statements of the latter three results, we refer to the corresponding sections, but we
will discuss GSD in a little more detail, so we provide an informal statement here.

Theorem 1 (Informally Stated, Corollary 5). Any straight-line reduction proving
security of unrestricted adaptive GSD based on the IND-CPA security of the underlying
SKE scheme loses at least a factor that is super-polynomial (NΩ(logN)) in the number
of users N .

For the proof we rely heavily on the adversary’s freedom to query arbitrary di-
rected acyclic graphs (DAG). (Actually, the graphs have some structure and so cer-
tain conditions may be imposed on it but these restrictions are very weak.) In many
applications however, the adversary is much more restricted in terms of the graphs it
can query, e.g. in protocols for multicast encryption like logical key hierarchies (LKH)
[WHA98, WGL00, CGI+99], and hence our bound does not apply. However, for a
certain sub-class of straight-line reductions, which we term “oblivious” (see discussion
below), we obtain results for such applications. These results show that the upper
bounds for GSD given in [JKK+17], which are oblivious, are essentially tight and can
only be improved by exploiting new non-oblivious techniques (and similarly for the
bounds for PRE given in [FKKP19]), as stated informally below.

Theorem 2 (Informally Stated, Corollaries 2 to 4). Any oblivious reduction prov-
ing security of adaptive GSD restricted to paths or binary trees based on the IND-
CPA security of the underlying SKE scheme loses a factor that is super-polynomial
(NΩ(logN)) in the number of users N ; for unrestricted GSD the loss is sub-exponential

(2Ω(
√
N)).

Our results for PRE have a similar flavor, but are even stronger, since in this case

4Recall that a tree does not necessarily have to be rooted, so this includes any DAG such that the
corresponding undirected graph does not contain any cycles.

5

the reduction is naturally more restricted. A summary of the results can be found in
Table 1.

The common thread to the applications we consider is that their security game
can be abstracted out by a two-player multi-stage game which we call the “Builder-
Pebbler Game”. We are unable to establish lower bounds for other applications of
the Piecewise-Guessing Framework (e.g., computational secret sharing or garbling cir-
cuits) as their security model is not quite captured by the Builder-Pebbler Game. The
high level reason for this is that the graphs (e.g., circuit to be garbled or the access
structure) in these applications is fixed ahead of the time and the adaptivity comes
from other sources (e.g., choice of garbling input or targeted user). Therefore we
would require other combinatorial abstractions to establish lower bounds for them. In
fact, building on the high level ideas introduced in this work, [KKPW] showed lower
bounds for adaptive security of Yao’s garbling (see Section 1.2.2 for a comparison).
We defer the discussion on the Builder-Pebbler Game to the next section (Section 2.2)
and explain informally what we mean by oblivious reductions next, mostly from the
perspective of GSD. We will then argue that this comprises a natural class of reduc-
tions.

Oblivious reductions. Oblivious reductions are a certain class of black-box reduc-
tions and our definition is motivated by the reductions in [JKK+17]. On a high level,
the behaviour of an oblivious reduction is “independent” of the adversary’s behaviour
throughout the simulation of the security game. To see what we mean by this, let’s
return to the example of GSD. A reduction (simulating some consecutive hybrids) can
decide to answer an encryption query issued by the adversary either with a consistent
or an inconsistent ciphertext (let’s ignore the challenge ciphertext for the moment).
In particular, it has total control over the number of inconsistencies in the final simu-
lation (assuming it knows the number of queries the adversary will make). However,
as the key-graph is only gradually revealed to the reduction, it doesn’t know where
the edge (representing the encryption query) will end up within the key-graph. We
call a GSD reduction oblivious if it does not make use of the partial graph structure
it learns during the game but rather sticks to some strategy that is independent of
the history of the adversary’s queries. There are several ways one could formalise
this: for example, one could require the reduction as initially “committing” to which
queries it will answer inconsistently. However, this does not mean that for all queries
it has to commit to its decision, but rather commit to some minimal description of
the edges it intends to respond inconsistently to. In order to capture as many reduc-
tions as possible (while still being able to prove lower bounds), we ended up defining
them as reductions which commit to a minimal set of nodes which covers all incon-
sistent edges, i.e., a minimal vertex cover.5 For example in the case of graphs of high
indegree, clearly, guessing the set of sinks of inconsistent edges gives a much more
succinct representation. A formal definition of an oblivious GSD reduction is given in
Definition 21; the corresponding definition for PREs is given in Definition 34.

5Technically, we do not require minimal vertex cover, but a weaker notion which we call “non-
trivial” vertex cover (see Definition 2).

6

Why oblivious reductions? We note that oblivious reductions are a quite natural
notion, since they can easily be defined uniformly for all adversaries. Not surprisingly,
they encompass some of the key reductions in the literature. Beside the reductions
proposed and analysed in [JKK+17] (and its follow-up works), partitioning-based re-
ductions, which have been successfully employed in a plethora of works [Cor00], also
roughly behave in an oblivious manner.6 Moreover, oblivious reductions encompass
the currently-known techniques for establishing upper bounds for primitives with dy-
namic graph-based security games, like GSD, PRE, CPRFs etc.. Therefore, our results
imply that in order to obtain better upper bounds on the loss function Λ even in the
more restricted settings, one needs to deviate significantly from the current proof
techniques (i.e., non-oblivious or rewinding reductions for GSD and restricted PRE).
Accordingly, our results on oblivious reductions should not be viewed as separations,
but rather as a guide towards new avenues to finding better reductions by ruling out
a large class of reductions – such possibilities are discussed in Section 10.

1.2 Related Work

1.2.1 Adaptive Security

The security of multi-party computation in the context of adaptive corruption has
been well studied. It is known that a protocol that is proven secure against static
(i.e., non-adaptive) adversaries may turn out insecure once the adversary is allowed
adaptive corruption [CFGN96]. On the other hand, in the (programmable) random
oracle model it is possible to compile a selective protocol into an adaptively-secure
one through non-committing encryption [Nie02].

The notion of generalised selective decryption (GSD) was introduced by Panjwani
[Pan07] to study adaptive corruption in restricted settings. His motivation was to
better understand the problem of selective decommitment [DNRS99] (which is also
known as selective opening in some works [BHY09]) and the closely-related problem
of selective decryption. The problem was further studied by Fuchsbauer et al. [FJP15]
who gave a quasi-polynomial reduction when the GSD game is restricted to trees.

In parallel, the study of adaptive security in the setting of circuit garbling was
undertaken in the works of Bellare et al. [BHR12], Hemenway et al. [HJO+16] and
Jafargholi and Wichs [JW16]. The latter two works are especially relevant since they
established a relationship between adaptive security and graph pebbling. It is also
worth noting that the study of adaptive security of garbled RAM was carried out in
[GS18, GOS18].

The above two series of works culminated in the Piecewise-Guessing Framework
of Jafargholi et al. [JKK+17] who managed to abstract out the ideas therein and
give even more fine-grained reductions. In addition to capturing the results from
[JW16, FJP15, FKPR14], they applied the framework to obtain new results for adap-
tive secret sharing. The framework was further applied to argue adaptive secu-
rity for attribute-based encryption schemes [KW19], proxy re-encryption schemes

6On every signature query issued by the adversary, the reduction in [Cor00] tosses a (biased)
random coin (independent of the history of the simulation) and depending on its outcome decides
whether or not to embed the (RSA) challenge in the signature. The simulation is identical if these
coin-tosses are all carried out together at the beginning of the game.

7

[FKKP19], continuous group key-agreement [ACC+19, ACDT20] and non-interactive
zero-knowledge [KNYY20].

1.2.2 Limitations of Reductions

The study of limitations of reductions (see Footnote 10) was initiated in the seminal
work of Impagliazzo and Rudich [IR89]. They used oracle separations to rule out fully
black-box reduction of key agreement to symmetric-key primitives. This approach
turned out quite useful and has been further exploited to rule out fully black-box
reduction of a variety of cryptographic primitives from one another (e.g., [Rud88,
Sim98]). A fine-grained study of the notion of reductions and separations was later
carried out by Reingold et al. [RTV04].

In addition to ruling out reductions, the more fine-grained question of efficiency of
reduction of one primitive to another has also been studied [GT00, GGKT05, KST99].
This has been applied to the case of adaptive security as well. Perhaps the works
most relevant to ours is that of Lewko and Waters [LW14], who showed that the
security of adaptively-secure hierarchical identity-based encryption must degrade ex-
ponentially in the depth, and Fuchsbauer et al. [FKPR14], who showed that certain
types of constrained PRFs must incur an exponential loss (in the size of the input)
in adaptive security. Note that this class of constrained PRFs does not include the
prefix-constrained PRF construction we consider in this work. Both aforementioned
works employ the more recent meta-reduction technique [BV98, GW11, Pas13], which
is of different flavour from oracle separations.

Comparison with [KKPW]. Building on the high level ideas in this paper, [KKPW]
showed lower bounds on the adaptive security of Yao’s garbling scheme. As pointed
out in the introduction, the graph (i.e., the circuit) in Yao’s garbling scheme is fixed
ahead of time and the adaptivity comes from the choice of (garbling) input. (The
difficulty of the reduction comes from having to guess the bits running over a subset
of wires during evaluation of the circuit.) Therefore they had to rely on a different
combinatorial abstraction from Builder-Pebbler Game (viz., a black-gray pebble game
on the circuit) to establish their lower bound. However, since the security game for
Yao’s garbling consists of just two rounds, [KKPW] did not encounter some of the
difficulties (to do with the multiple rounds of interaction) we do and therefore were
able to rule out arbitrary black-box reductions. While both [KKPW] and this work
model choices made by a reduction by putting pebbles on a graph structure, the anal-
ogy basically ends there. None of the main ideas from [KKPW] seem applicable in
this setting and vice versa.

1.2.3 Graph Pebbling

The notion of graph pebbing, first introduced in the 70’s to study programming lan-
guages, turned out quite useful in computational complexity theory to study the re-
lationship between space and time; in recent years, pebbling has found applications
in cryptography as well [DNW05, DKW11, AS15]. The notion of node pebbling first
appeared (albeit implicitly) in [PH70], whereas the notion of reversible node pebbling
was introduced by Bennett to study reversible computation [Ben89]. The notion of

8

edge pebbling used in this work is defined in [JKK+17]. The lower bound on the re-
versible node pebbling complexity of paths was established by Chung et al. [CDG01]
and an alternative proof can be found in [Krá01]. As for the lower bound on the node
pebbling complexity for binary trees, a proof can be found in [Sav98]. We refer the
reader to the textbook by Savage [Sav98] or the excellent survey by Nordström [Nor15]
for more details on pebbling.

2 Technical Overview

On a high level, our approach can be divided into two steps. In the first step (Sec-
tion 2.2), which is purely combinatorial, we analyse a two-player multi-stage game
which we call the Builder-Pebbler Game. In particular, we exploit ideas from peb-
bling lower bounds to establish upper bounds for the success probability of the Pebbler
(who is one of two players). These upper bounds are then, in the second step (Sec-
tion 2.3), translated to lower bounds on the loss in security of concrete cryptographic
protocols using oracle separation techniques to yield the results stated in Section 1.1.
Before explaining the two steps, we provide a summary of the overall approach so that
the two steps, especially the motivation behind some of the underlying definitions, can
be better appreciated.

2.1 Our Approach

Our goal is to design adversaries that break the GSD game but where any reduction
(in a specified class) to the security of the underlying SKE scheme loses a significant
(super-polynomial) factor in the advantage. Since we are aiming to rule out black-box
reductions, we have the luxury of constructing inefficient adversaries and SKE schemes.
The output of our adversaries will solely depend on the distribution of inconsistent
edges in the final key-graph, which we will denote as pebbles in the following. Clearly,
in order to win the GSD game, our adversaries need to output 0 if the final key-
graph is entirely consistent (i.e., contains no pebbles), and 1 if the final key-graph is
entirely consistent except for the edges incident on the challenge key. Otherwise, we
have complete freedom in assigning output probabilities of 0 and 1 to the remaining
pebbling configurations of the final key-graph.

As we prove formally in Section 6, any reduction attempting to take advantage
of our adversaries must send it’s IND-CPA challenge as a response to a query and
exploit the fact that the real and the random challenge will lead to different pebbling
configurations of the key-graph. It’s hope is that the output distribution of the ad-
versary differs significantly between the two configurations. Note however, that when
embedding the challenge in some edge (i, j) of the key-graph, all edges incident to
i will, with overwhelming probability, be inconsistent independently of the challenge
ciphertext, since the reduction does not know the challenge secret key and thus is
unlikely to be able to send consistent responses to queries incident to i. In other
words, the challenge can only be embedded into an edge where the edges incident to
the source are all pebbled. This naturally leads to studying configurations that are
related by valid moves in the reversible edge-pebbling game: a pebble on an edge may

9

0100

0101

0110

0111 1100

1101

1110

1111

0000

0001

0010

0011 1000

1001

1010

1011

Figure 1: Configuration graph for paths of length four, C4 = ([5], {(1, 2), (2, 3), (3, 4), (4, 5)}). It is a
subgraph of the Boolean hypercube of dimension four (the missing edges are dotted). The labels of
the vertices encode the pebbling status of the corresponding edge and therefore represents a pebbling
configuration: e.g., the vertex labelled 0000 is completely unpebbled (configuration P = ∅) whereas
the vertex labelled 1000 has a pebble only on the first edge (1, 2) (configuration P = {(1, 2)}). An
edge exists between a configuration Pi and Pj if Pj can be obtained from Pi via one valid pebbling
move. The special vertices for PC4 are Pstart = 0000 and Ptarget = 0001 (both boxed). A cut for
this configuration graph consists of the set of (red) vertices that lie on the ‘bottom’ half of the graph:
{0000, 0010, 1010, 1011, 0011, 1000, 0110, 1110}. The set of edges from the top half to the bottom half
form cut set: {(1111, 1110), (1111, 1011), (1100, 1110), (1100, 1000), (0111, 0110), (0100, 0110)}. This
cut is of a geometric nature – the cuts that we deploy in our lower bound, on the other hand, will
have a more combinatorial underpinning (see Sections 2.2 and 5).

only be added or removed if all edges incident to the source are pebbled.
We may now define the configuration graph of our key-graph G: The vertices of

the configuration graph PG, as the name suggests, consist of all possible pebbling
configurations of G. Therefore it is the power set of the edges of G = (V, E). An
edge is present from a vertex Pi to another vertex Pj if Pj can be obtained from
Pi using a valid pebbling move. The edges represent pairs of configurations, where
the reduction may embed its IND-CPA challenge, in other words, a hybrid (from the
reductions point of view). Since we consider reversible pebbling games, the edges in
our configuration graphs are undirected. Therefore one can think of PG as a subgraph
of the Boolean hypercube on 2|E| vertices. Assuming that G has a single sink vertex T ,
PG has two special vertices denoted Pstart = ∅ and Ptarget which consist of the pebbling
configuration where all incoming edges to T carry a pebble. The configuration graph
for C4, the path of length 4, is given in Figure 1. A more formal definition is given later
in Definition 5 (Section 3). A path from Pstart to Ptarget corresponds to a pebbling
sequence in the reversible edge-pebbling game. Any such path can be used for a hybrid
argument to prove upper bounds for the loss in security, which is what prior works
did [Pan07, JKK+17]. In this work we are interested in ruling out the possibility of
using any of the paths (or multiple at once) to improve on these results.

Pebbling lower bounds: Barriers to better cryptographic upper bounds.
In our approach, we will show that in any sequence of hybrids there exist “bottle-

10

Figure 2: The pebbling configurations used to argue lower bounds for edge-pebbling of a perfect
binary tree B3 of depth 3. In the left configuration there exists a path from a leaf (100) to the root
(ε) that is not covered by a pebble highlighted by the thicker (red) path. In the right configuration
all the paths in B3 are covered by pebbles. The cut is defined at such two configurations.

neck” configurations related to pebbling lower bounds. These bottleneck configura-
tions define a cut for the configuration graph PG. Looking ahead, our adversaries will
concentrate all their advantage on these cuts and we will show that it is hard for any
reduction to guess the pebbled edges of the corresponding pebbling configurations.

For example, let’s consider the pebbling lower bound for binary trees. It is known
that the number of pebbles that are needed to node-pebble a complete binary tree of
N vertices is at least log(N) (see [Sav98] for example), and the argument can be easily
adapted for the case of edge pebbling as follows. Consider a pebbling sequence for a
complete binary tree. At the beginning of the sequence none of the N/2 paths from
the root to the leaves carries a pebble; whereas at the end of the sequence – at which
point both the edges incident on the root must carry a pebble – all the paths from
the root to the leaves carry a pebble. Furthermore, by the rules of edge pebbling, only
new pebbles on edges going out of the sources, i.e., the leaves, decrease the number
of paths that carry a pebble. So any pebbling move can only decrease the number
of paths that carry a pebble by one. Therefore there have to exist two consecutive
configurations in the pebbling sequence such that in the first configuration there exists
a path that does not carry a pebble but in the next configuration every path carries a
pebble (see Figure 2). At this point, for each node on the path (except the leaf) there
must be at least one pebble on the graph to pebble all paths going through this node
via the other in-going edge, and therefore there exists a pebbling configuration where
there are at least log(N) pebbles. Such pairs of configurations will serve as the cut
for the case of binary trees. An illustration can be found in Figure 2.

From pebbling lower bounds to cryptographic lower bounds via Builder-
Pebbler Game. The immediate idea would be to translate pebbling lower bounds
directly to cryptographic lower bounds. But pebbling lower bounds apply to fixed
graphs. Therefore we are missing a component that captures the dynamic nature of
the security games, like that of GSD, which involves (the adversary) choosing a graph
G randomly from a class of graphs G. To remedy this, we introduce a two-player multi-
stage game that we call the Builder-Pebbler Game and then show that pebbling lower
bounds can be used to upper bound the probability of success of the Pebbler (Step
I: Section 2.2), one of the players. Then we will use oracle separation techniques to

11

translate these upper bounds into cryptographic lower bounds (Step II: Section 2.3).

2.2 Step I: Combinatorial Upper Bounds

We start off with an informal description of the Builder-Pebbler Game, a two-player
game that will abstract out the combinatorial aspect of establishing lower bounds
for cryptographic protocols that are modelled by multi-user games where the adver-
sary adaptively builds a graph structure among the set of users, as in GSD (formal
definition in Section 4). The game is played between a Pebbler and a Builder, and
intuitively, Pebblers play the role of reduction algorithms whereas Builders correspond
to adversaries in security games.

Builder-Pebbler Game. For a parameter N ∈ N, the Builder-Pebbler Game is
played between a Builder and a Pebbler in rounds. The game starts with an empty
DAG G = (V = [1, N] , E = ∅) and an empty pebbling configuration P, and in each

round the following happens: the Builder first picks an edge e ∈ [1, N]
2 \E and adds it

to the DAG and the Pebbler then decides whether or not to place a pebble on e. This
way the Builder and the Pebbler will construct a graph G and a pebbling configuration
P on this graph. The Builder can stop the game at any point by choosing a sink in
G as the challenge. This results in a challenge DAG G∗ = (V∗, E∗), the subgraph of
G that is induced by all nodes from which the challenge is reachable. The Pebbler
wins if it ends up with a pebbling configuration P that is in a designated subset of
all configurations. This winning set is determined by the graph G. Otherwise, the
Builder is declared the winner. In case the strategies are randomised, we call the
probability with which the Builder (resp., the Pebbler) wins the game as Builder’s
(resp., Pebbler’s) advantage, and denote it by β = β(N) (resp., π = π(N)). We also
consider restricted games where the Builder is restricted to query graphs G that are
subgraphs of some family of graphs G. In summary, one can think of the game as the
Builder building a graph and the Pebbler placing pebbles on this graph with the aim of
getting into a winning configuration and the Builder preventing this from happening.7

Defining winning configurations via cuts of configuration graph. Although
the Builder-Pebbler Game is meaningful for any notion of winning configuration, we
are interested in a particular definition that is essential in establishing our crypto-
graphic lower bounds: we will set the winning configurations as the ones that belong
to bottleneck configurations in the configuration graph of G. The goal is to prove that
it will be difficult for Pebblers to get into such configurations. In some cases we can
do so directly, but in others the Pebbler may be able to achieve this by “flooding”
the graph with many pebbles. For example, recall the bottleneck configurations of a

7This is reminiscent of Maker-Breaker games [HKSS14], a class of positional games (which includes
Shannon Switching Game, Tic-Tac-Toe and Hex) which are played between a Maker, who is trying
to end up with a (winning) position and a Breaker, whose goal is to prevent the Maker from getting
into such (winning) positions. One fundamental difference between Maker-Breaker Games and the
Builder-Pebbler Game is that in Maker-Breaker games one usually considers optimal (deterministic)
strategies, whereas we consider randomised strategies for Builder-Pebbler Game. (Another way of
looking at this is that our “board” is dynamic.) Another difference is the asymmetry in the nature
of moves.

12

binary tree, which consists of all configurations where exactly one path from a source
to the root is not pebbled. A randomised Pebbler that decides for each query whether
to pebble an edge or not using an unbiased coin, will leave any particular path unpeb-
bled with a probability that is inverse polynomial in the number of nodes in the tree.
With a bit more effort one can show that such a path is the only unpebbled path with
significant probability. Our solution is to “artificially” restrict the Pebbler to placing
very few pebbles by requiring it to leave the part of the query graph that is not in the
challenge graph entirely unpebbled, i.e., if at the end of the game there is a pebble on
an edge that is not rooted in the challenge graph, the Pebbler loses. Note that this
does not trivialize our task of finding a suitable Builder, because for our application
to cryptographic lower bounds to work, the Builder’s querying strategy (including the
challenge) needs to be independent of the pebbles placed by the Pebbler. (We call
such Builders also oblivious, see below.) Returning to our example of binary trees, the
Builder may now query two binary trees and select one of them to be the challenge
graph at the end of the game. A Pebbler that places too many pebbles will now lose
the game with overwhelming probability. Of course, care must be taken that this
behaviour cannot be exploited by the reduction. Intuitively, the reason this works is
that in all our applications, if the reduction were to embed the challenge outside of
the challenge graph, our adversaries will almost always interpret it to be a pebble, no
matter if the challenge was real or random.

Combinatorial Upper Bounds in the Builder-Pebbler Game. We bound the
advantage of Pebblers from above against Builders with varying degree of freedom,
i.e., Builders that are restricted to querying certain classes of graphs. The upper
bounds in Theorems 3 to 5 are (almost) tight since a random Pebbler yields (almost)
matching lower bounds.

Theorem 3 (Informally Stated, Theorems 6 and 8). Any oblivious8 Pebbler in the
Builder-Pebbler Game restricted to paths or binary trees has advantage at most inverse
quasi-polynomial (N−Ω(logN)) in N , the size of the graph .

Theorem 4 (Informally Stated, Theorem 9). Any oblivious Pebbler in the unrestricted

Builder-Pebbler Game has advantage at most inverse sub-exponential (2−Ω(
√
N)) in

N , the size of the graph.

Theorem 5 (Informally Stated, Theorem 11). Any Pebbler in the Builder-Pebbler
Game restricted to trees has advantage at most inverse quasi-polynomial (N−Ω(logN))
in N , the size of the graph.

Remark 1 (On Builder Obliviousness). It is worth mentioning that all our Builder
strategies are also oblivious, where oblivious is defined different for Builders than for
Pebblers: it means that the query strategy is independent of the Pebbler’s responses
(see Section 4.1).9 The reason we restrict ourselves to such Builders is mostly for our

8The notion of obliviousness for Pebblers is naturally derived from the one for reductions, see
discussion above and Definition 10.

9One could think of the Builder playing the role of “nature” (who also adopts a strategy that is
oblivious of the opposing player) in Papadimitrou’s Games Against Nature [Pap85].

13

convenience: looking ahead, it means that we can ensure that the reductions in our
cryptographic applications cannot exploit the querying behaviour of the adversary to
gain a larger advantage, rather they must rely solely on the final output bit.

2.3 Step II: From Combinatorial Upper Bounds to Crypto-
graphic Lower Bounds

For translating upper bounds established in Step I into loss in security of concrete
cryptographic protocols, we adapt ideas from oracle separations.

Ruling out tight black-box reductions. Oracle separations are used to rule out
the reduction10 of a primitive Q (e.g., PKE) to another primitive P (e.g., SKE). Our
case is slightly different since it involves a primitive P (e.g., SKE) that is used in a
graph-based “multi-instance” setting QP (e.g., GSD with SKE). In this setting, we
are interested in the more fine-grained question of bounding Λ, the loss in security
incurred by any efficient black-box reduction R that breaks P when given black-box
access to an adversary that breaks QP (i.e., from P to QP). This means we must
show that for every R, there exists

• an instance P (not necessarily efficiently-implementable) of P and

• an adversary AQ (not necessarily efficient) that breaks QP

such that the loss in security incurred by R in breaking P is at least Λ.11 To this end, we
establish a tight coupling between the security game for QP and the Builder-Pebbler
Game (e.g., Lemma 7). If QP involves a graph family G then the Builder-Pebbler
Game will be played on G (or sometimes another family related to G) and the winning
condition is determined by the cut for G. The coupling is established using a Builder
strategy B and a related adversary AQ such that

• every reduction R can be translated to a Pebbler strategy P against B on G, and

• if R has a security loss of at most Λ then B’s advantage against P is at least 1/Λ
(up to negligible additive factors).

If G is a class for which we derived an upper bound of π for Pebbler strategies (in
Step I) then any reduction R such that 1/Λ > π cannot exist. Put differently, an
upper bound on the success probability of the Pebbler in the Builder-Pebbler Game
translates to a lower bound on the loss in security for the reduction R. In the remainder

10The usage of the word ‘reduction’ here and in Section 1.2.2 is in a constructive sense [RTV04]:
a primitive Q is reduced to another primitive P if (i) there is an efficient construction C that takes
an implementation P of P and gives an implementation Q of Q and (ii) there is an efficient security
reduction R which takes an adversary AQ that breaks Q and constructs an adversary AP that breaks
P. For example, the most common type of reduction used in cryptography is a fully black-box
reduction where both R and C are black-box in that they only have black-box access to P and AQ,
respectively. In the rest of the paper, ‘reduction’ is used to refer to a security reduction as in (ii).

11This is obtained by simply negating the definition of a black-box reduction: there exists an
efficient reduction R for every implementation (not necessarily efficient) P of P and for every (not
necessarily efficient) adversary AQ that breaks QP such that the loss in security is at most Λ.

14

of the section, we explain how the coupling works in a bit more detail using GSD on
binary trees as the running example. To keep the exposition simple, we will brush
a lot of issues (e.g., dealing with ‘flooding’ reductions) under the rug and refer the
readers to Section 6 for a more formal treatment.

Example: GSD on Binary Trees. Let’s consider the case where P is SKE and QP

is the GSD game played on G = Bn, the class of binary trees of depth n. Intuitively,
the GSD adversary AQ “simulates” the oblivious Builder B used to derive Theorem 3.
That is, it

1. chooses a binary tree Bn ∈ Bn uniformly at random,

2. queries, in a random order, each edge (u, v) ∈ E(Bn) to obtain the corresponding
ciphertext Enc(ku, kv) from the reduction R and

3. challenges the sole sink T at the end of the game.

For it to be a valid adversary, AQ must distinguish the extreme games, i.e., the real
game where all the ciphertexts are real and the random game where the ciphertexts
incoming to T are both random. To this end, it looks at the ciphertexts it obtained and
extracts a pebbling configuration P from it (as described in Section 2.1). Note that the
extreme hybrids corresponds to Pstart = ∅ (real) and Ptarget such that both the edges
incoming to T carry a pebble (random). AQ distinguishes these by concentrating all
its advantage in the cut in the configuration graph of Bn defined in Section 2.1: i.e.,
it outputs 0 if P is on one side of the cut and 1 otherwise (see Figure 2). To help AQ
faithfully distinguish real ciphertexts from random ones so that it can infer the exact
pebbling configuration P, we fix P to be an ideal implementation (Enc,Dec) of SKE:

• Enc is a random expanding function that implements encryption and

• Dec is the decryption function defined to be “consistent” with Enc.12

Since Enc is injective with overwhelming probability, given a ciphertext AQ can brute
force Enc to determine (exactly) whether or not the ciphertext corresponding to an
edge is real. By carrying this out for all the edges, it can extract a unique pebbling
configuration corresponding to R’s simulation. Since AQ concentrates its advantage in
the cut, for R to have any chance of winning, its own challenge c∗ must be ‘embedded
at the cut’ so that – depending on whether or not c∗ is real – P switches from one
side of the cut to the other. Since this is the only way R can exploit AQ, we may infer
that a reduction with loss in security at most Λ ends up in the cut with probability at
least 1/Λ. However, thanks to the fidelity of the extraction, this also means that the
natural Pebbler strategy P that underlies R, which simply places a pebble whenever
R fakes, wins against B in the Builder-Pebbler Game on Bn with an advantage at
least π = 1/Λ (formally, Lemma 4). If particular, if Λ is significantly less than quasi-
polynomial in N = 2n, it would imply the existence of a Pebbler that is successful

12Since most of our ideal functionalities are implemented using random oracles, it is possible using
standard tricks [IR89] to switch the order of the quantifiers and establish the stronger statement that
there exists a single oracle P and adversary AQ which work for all reductions.

15

with a probability greater than inverse quasi-polynomial, a contradiction to Theorem 3
(formally, Corollary 3). Since Theorem 3 only holds for oblivious Pebblers, the bound
on Λ only holds for oblivious GSD reductions.

3 Preliminaries

We use the notation [N] = {1, . . . , N} and [N]0 = {0} ∪ [N]. For a string x =
x0, . . . , xn−1 ∈ {0, 1}n, for 0 ≤ a ≤ b < n, we use x[a, b] to denote the substring
xa, . . . , xb.

3.1 Graph Theory

Let N ∈ N and G = (V, E) define a directed acyclic graph (DAG) with vertex set
V = [N], edge set E ⊂ [N]× [N], and a set of sinks T . For a subset S ⊆ [N] of nodes,
let in(S) denote the set of ingoing edges and parents(S) denote the set of parent nodes
of nodes in S. For a set of n edges P = {(vi, wi)}ni=1, let V(P) :=

⋃n
i=1{vi, wi} denote

the set of nodes that have an incident edge in P. The edge set P is called disjoint, if
they do not share a node, i.e. if |V(P)| = |

⋃n
i=1{vi, wi}| = 2n. We denote by E(G)

(resp., V (G)) the edges E (resp., vertices V) of G. By Bn, we denote a binary tree
of depth n – the binary tree is perfect if it has all 2n+1 − 1 vertices. We assume the
standard indexing of the vertices in Bn by associating them with binary strings in
{0, 1}≤n determined by their position in the tree: i.e., the root has index ε and the
left (resp., right) child of a vertex with index i is i‖0 (resp., i‖1).

Definition 1 (cuts, cut-sets, frontiers). Let G = (V, E) be an undirected graph. A cut
S of G is a subset of the nodes V. For two nodes v1, v2 ∈ V an s-t-cut that separates
v1 and v2 is a cut S such that v1 ∈ S and v2 /∈ S. The cut-set of a cut S is the set of
edges with one endpoint in S and the other outside of S. We call the frontier of a cut
S the set of all nodes in S that have an incident edge in the cut-set of S.

Definition 2 (Vertex Covers). Let G = (V, E) be a directed or undirected graph and
P ⊆ E be a subset of edges. A vertex cover of P is a subset S of [N] such that for
each edge (i, j) ∈ P either the source i or the sink j lies in S. We define a non-trivial
vertex cover to be a vertex cover S such that S ⊆ V(P). We denote the size of a
minimal vertex cover of P by

VC(P) := min{|S| : S ⊆ [N] covers P}.

3.2 Graph Pebbling

A pebbling configuration on the graph G is a set P ⊆ E defining the subset of pebbled
edges. Let |P| denote the number of pebbles in the configuration and V(P) the set of
nodes involved in the pebbling. We define the complexity of a pebbling configuration P
as the size of a minimal vertex cover of P. For a pebbling sequence P = (P0, . . . ,P`),
we define VC(P) := maxi∈[L]0 VC(Pi).

Let Pstart denote the unique configuration with |Pstart| = VC(Pstart) = 0, i.e.,
Pstart = ∅, and Ptarget = in(T) = {(i, T) ∈ E} denote the configuration where only

16

all the edges incident on some sink T ∈ T are pebbled. We will consider sequences
of pebbling configurations P = (Pstart, . . . ,Ptarget) where subsequent configurations
have to follow certain pebbling rules.

Reversible Pebbling. We consider the reversible edge-pebbling game from [JKK+17].

Definition 3 (Edge-Pebbling). An edge pebbling of a DAG G = (V, E) with unique
sink T is a pebbling sequence P = (P0, . . . ,P`) with P0 = Pstart and P` = Ptarget,
such that for all i ∈ [`] there is a unique (u, v) ∈ E such that:

• Pi = Pi−1 ∪ {(u, v)} or Pi = Pi−1 \ {(u, v)},

• in(u) ⊆ Pi−1.

For some applications, we will actually consider the classical reversible node-pebbling
as in [Ben89], where pebbling configurations Pi are subsets of nodes: A node is deemed
pebbled whenever all ingoing edges are pebbled, and two subsequent pebbling config-
urations differ by a node. Since any node-pebbling sequence induces an edge-pebbling
sequence, we view node-pebbling as a more restricted version of edge pebbling. The fol-
lowing definition of node-pebbling is equivalent to the traditional notion from [Ben89].

Definition 4 (Node-Pebbling). A node pebbling of a DAG G = (V, E) with unique
sink T is a pebbling sequence P = (P0, . . . ,P`) with P0 = Pstart and P` = Ptarget,
such that for all i ∈ [`] there is a unique v ∈ [N] such that:

• Pi = Pi−1 ∪ in(v) or Pi = Pi−1 \ in(v),

• for all u ∈ parents(v): in(u) ⊆ Pi−1.

Definition 5 (Configuration Graph). Let G = (V, E) be some graph. We define
the associated configuration graph PG as the graph that has as its vertex set all 2|E|

possible pebbling configurations of G. The edge set will contain an edge between
two vertices, if the transisition between the two vertices is an allowed pebbling move
according to the pebbling game rules.

Note that the configuration graph depends on the pebbling game. If we consider
reversible pebbling as in Definitions 3 and 4, the configuration graph is undirected.

4 The Builder-Pebbler Game

In this work, we consider security games for multi-user schemes where an adversary
can adaptively do the following actions:

• query for information between pairs of users,

• corrupt users and gain secret information associated to these users,

• issue a distinguishing challenge query associated to a target user of its choice,

• guess a bit b ∈ {0, 1}.

17

We consider such games as games on graphs, where users represent the nodes of
the graph and edges are defined by the adversary’s pairwise queries. If the pairwise
information depends asymmetrically on the two users, then this is represented by the
direction of the corresponding edge and after the game one can extract a directed graph
structure from the transcript of the game. Here, we only consider the case of directed
acyclic graphs, i.e., where the adversary is forbidden to query cycles. Furthermore, to
avoid trivial winning strategies, the adversary must not query a challenge on a node
which is reachable from a corrupt node.

To prove a scheme secure under such an adaptive game based on standard assump-
tions (e.g., the security of some involved primitive), a common approach is to construct
a reduction that has black-box access to an adversary against the scheme and tries to
use the advantage of this adversary to break the basic assumption. To this aim, the
reduction has to simulate the game to the adversary and at the same time embed some
challenge c on the basic assumption into its answers so that the adversary’s output
varies depending on this embedded challenge. Hence, the reduction might not answer
all queries correctly but rather “fakes” some of the edges; such wrong answers will
be represented as pebbled edges in the graph. However, if the reduction answers all
queries connected to the challenge node independent of the challenge user’s secrets,
then the edge queries do not help the adversary to distinguish its challenge and its
advantage in this game can be at most the advantage it has in an alternative secu-
rity game where no edge queries are possible. Indistinguishability in such a weaker
scenario usually follows trivially by some basic assumption.

Thus, we are interested in games that can be abstracted by the following two-player
game.

Definition 6 (N - and (N,G)-Builder-Pebbler Game). For a parameter N ∈ N, the
N -Builder-Pebbler Game is played between two players, called Builder and Pebbler, in
at most N ·(N−1)/2 rounds. The game starts with an empty DAG G = ([1, N] , E = ∅)
and an empty set P = ∅. In each round:

1. the Builder first picks an edge e ∈ [1, N]
2 \E and adds it to G (i.e., E := E ∪{e});

the Builder is restricted to only query edges that do not form cycles; and

2. the Pebbler then either places a pebble on e (i.e., P := P ∪ {e}) or not (i.e., P
remains the same).

The Builder can stop the game at any point by choosing a sink in G as the challenge.
This results in a challenge DAG G∗ = (V∗, E∗), the subgraph of G that is induced by
all nodes from which the challenge is reachable.
In an (N,G)-Builder-Pebbler Game, the Builder is restricted to building graphs (iso-
morphic to subgraphs of) G ∈ G for a class of graphs G.

Definition 7 (Winning Condition and Advantage for (N,G)-Builder-Pebbler Game).
Consider an (N,G)-Builder-Pebbler Game and let G = (V, E), G∗ = (V∗, E∗) and P be
as in Definition 6. We model the winning condition for the game through a function X
that maps a graph to a collection of subsets of its own edges. We say that the Pebbler
wins the (N,G)-Builder-Pebbler Game under winning condition X if the following two
conditions are satisfied:

18

1. only edges rooted in V∗ are pebbled, i.e. P ⊆ {(u, v) ∈ E | u ∈ V∗}

2. the pebbling induced on G∗ satisfies the winning condition, i.e., P|G∗ ∈ X(G∗).

Otherwise, the Builder is declared the winner. In case the strategies are randomised,
we call the probability (over the randomness of the strategies) with which the Builder
(resp., Pebbler) wins the game the Builder’s (resp., Pebbler’s) advantage, and denote
it by β = β(N) (resp., π = π(N)). Since there are no draws, we have β + π = 1.

Remark 2. The corresponding definitions for the N -Builder-Pebbler Game can be
obtained by simply ignoring the restriction to G.

In our setting we will be interested in functions X that output sets of vertices that
represent the frontier of a cut in the configuration graph of the input.

Definition 8 (Cut Function). For a family G = (V, E) of graphs, a function X : G 7→
2E is called a cut function if X(G) is the frontier of an s-t-cut of the configuration
graph PG that separates Pstart from Ptarget for any input G ∈ G. For a cut function
X defined on G and G /∈ G, we set X(G) = ∅.

4.1 Player Strategies

Builder strategies. As motivated in Remark 1, we will be dealing in this paper
mostly with a class of Builders who play independently of Pebbler’s strategy.13

Definition 9 (Oblivious Builders). We say that a Builder’s strategy in the (N,G)-
Builder-Pebbler Game is oblivious if its choice of graph G ∈ G and order of edge
queries are independent of (i.e., oblivious to) the Pebbler’s strategy.

This restriction on the Builder serves two main purposes.

1. Firstly, it ensures that the Builder-Pebbler Game is not trivial for the cut func-
tions we are interested in: otherwise, it is easy to come up with Builder strategies
in which any Pebbler has advantage 0.

2. Moreover, non-oblivious Builder strategies are less interesting in our setting since
they could potentially allow reductions to exploit the query behaviour of the
adversary built on top of a non-oblivious Builder to gain advantage in the security
game.

Pebbler strategies. Ideally, we would like to establish lower bounds that hold
against all Pebblers. Since this is not always possible, we consider Builder-Pebbler
Games where the Pebbler strategy is restricted. The first such class of restricted
Pebbler strategies are oblivious Pebblers.

Definition 10 (Oblivious Pebbler). We say that a Pebbler’s strategy is oblivious if
it fixes a subset of vertices S ⊆ [1, N] at the beginning of the game, and at the end of
the game S is always a non-trivial vertex cover of the pebbling P.

13The exact definition of the strategy will depend on the graph and the application: e.g., see
Theorem 6 for an oblivious Builder strategy for paths that is later used in Corollary 2.

19

Note that the notion of obliviousness differs from that in Definition 9.14 Defini-
tion 10 is motivated by oblivious reductions used in [JKK+17] (see Section 1.1) and
the goal is to capture prior knowledge that a Pebbler may have about the graph struc-
ture that a Builder builds during the query phase. This is captured in Definition 10
by requiring the Pebbler to commit to a non-trivial vertex cover of the pebbling con-
figuration. This allows compressing of pebbling configurations based on the graph
structure: e.g., if the Pebbler knows that the graph contains nodes with high degree
and it aims to pebble all (or some) of the incident edges of such a node, it may guess
this node ahead of time and then adjust its query responses assuming the guess is
correct. In the known upper bounds for the applications we consider, this is used to
compress the amount of information that needs to be guessed ahead of time. The fact
that the vertex cover is required to be non-trivial ensures that this restriction is also
non-trivial: otherwise, the Pebbler may simply output the entire set [1, N]. On the
other hand, using a minimal vertex cover seems too strong, since we do not actually
require it to prove our bounds.

The second class of restricted Pebbler strategies that we consider are node Pebblers.
The definition is motivated by reductions [JKK+17, FKKP19] that rely on the node-
pebbling game from Definition 4. Thus, the restriction placed on Pebbler is natural:
whenever it places a pebble on a vertex v, it must place pebbles on all edges incident
on v.

Definition 11 (Node Pebbler). A Pebbler is a node Pebbler, if for all nodes v ∈ [1, N]
it either places a pebble on all edges incident on v or on none.

Remark 3. Note that restricting the Builder strategy does not weaken our results:
we are constructing lower bounds for reductions and an oblivious Builder gives rise
to oblivious adversaries. In contrast restricting to oblivious or node Pebblers does
weaken the result. However, looking ahead, these restrictions allow us to prove much
stronger bounds compared to an unrestricted Pebbler.

5 Combinatorial Upper Bounds

In this section we show upper bounds for Pebblers in the Builder-Pebbler Game by
constructing Builders (potentially in a restricted Builder-Pebbler Game) and then
showing that no Pebbler can have a good advantage against such a Builder. We
start by considering oblivious Pebblers (Section 5.1), before focussing on Pebblers
that may only pebble all or none of the edges incident on any node, i.e. node Pebblers
(Section 5.2). Finally, we show a bound that holds for arbitrary Pebblers (Section 5.3).

5.1 Oblivious Pebbler

We first construct Builders that are restricted to certain families of graphs, which
are common in applications. At the end of the section we consider Builders in the

14We considered changing the name of at least one of the players to make the distinction clearer,
but did not find another suitable term, since both concepts capture a kind of obliviousness. So we
stick with this nomenclature and simply hope it does not cause too much confusion.

20

unrestricted Builder-Pebbler Game, which allows to deduce a much stronger bound,
but which may not be as widely applicable.

5.1.1 Paths

For the Builder-Pebbler Game restricted to paths of length N (i.e., the class CN), we
show that any oblivious Pebbler playing the Builder-Pebbler Game against a random
Builder (which is oblivious) with a definition of cut that is closely related to pebbling
lower bounds for paths (see Section 5.1.1) has advantage at most quasi-polynomial
in N (Section 5.1.1). We exploit the observation that whenever the Pebbler behaves
obliviously and the Builder queries edges uniformly at random, the nodes from the
vertex cover will be uniformly distributed on the path. Our result matches the best
known Pebbler strategy (of simply guessing the nodes in the cut) that has an advantage
π ≥ 1/N log(N) up to constant factors in the exponent.

Pebbling Characteristics of Paths. To define a suitable cut in the configuration
graph, we use a known lower bound on the number of pebbles needed to reversibly peb-
ble a path [CDG01]: For any k ≥ 1 and every pebbling sequence Pk = (Pstart, . . . ,Pk),
where (2k, 2k + 1) ∈ Pk, it must hold |Pk| := max{|P| | P ∈ Pk} ≥ k + 1. One can
prove this by induction: First, note that pebbling the second edge (2, 3) requires 2
pebbles. Now assume the claim is true for k−1 with k > 1. Clearly, any valid pebbling
sequence Pk must contain a configuration where the 2k−1th edge is pebbled for the
first time, i.e., the 2k−1th edge is pebbled and all subsequent edges are unpebbled.
Assume |Pk| ≤ k and consider the following two cases: Either the 2k−1th edge remains
pebbled until the 2kth edge is pebbled, which would immediately imply a pebbling
strategy to pebble the 2k−1th edge using only k − 1 pebbles – a contradiction. Or
the pebble on the 2k−1th edge is removed while there is at least one pebble on some
subsequent edge (to guarantee progress), which would imply that the pebble on the
2k−1th edge can be removed using only k−2 additional pebbles – again a contradiction
due to the reversible pebbling rules. This proves the claim. The above lower bound is
indeed tight and a matching reversible pebbling strategy can be found, for example,
in [Ben89].

In particular, for all valid edge pebbling sequences P = (Pstart, . . . ,Ptarget) of a
path on N = 2n + 1 nodes, with Pstart = ∅ and Ptarget being the configuration where
only the last edge is pebbled, there must exist a pebbling configuration P ∈ P such
that |P| = blog(N)c+ 1. Thus, we define a cut in the configuration graph as follows:

Definition 12 (Good pebbling configurations, cuts and cut function for paths). We
call a pebbling configuration P for a path C = CN of on N nodes good if it contains
blog(N)c pebbles and there exists a valid pebbling sequence P = (Pstart, . . . ,P) such
that |P | = blog(N)c. We define a cut set X in the configuration graph PC as the set
of all edges consisting of a good pebbling configuration and a configuration which can
be obtained from this good configuration by adding one pebble (following the pebbling
rules). The cut function XC is defined as in Definition 8 as the frontier of this cut.

Remark 4. A complete characterisation of such reachable configurations is given
in [LTV98]. Let the pebbles in a configuration P be {(vi, vi + 1)}i∈[log(N)] for vi ∈

21

[0, N − 1]. Then P is reachable if and only if for every i ∈ [log(N)], P has a pebble in
the range {(vi − 2i, vi − 2i + 1), . . . , (vi − 1, vi)}.

The Upper Bound. Since we consider oblivious Pebbler strategies, this means
that a successful Pebbler must choose a vertex cover S ⊆ [N] such that each node
in S is either source or sink of a pebbled edge in P. If the adversary queries a
uniformly random path on [N], then S will be a uniformly random subset of nodes.
Obviously, we must have (log(N))/2 ≤ |S| ≤ 2 log(N). In the following Lemma we
bound the probability that a uniformly random subset S of nodes of some fixed size
s ∈ [(log(N))/2, 2 log(N)] is a vertex cover of a good configuration P and S is a subset
of the nodes V (P) involved in P.

Lemma 1. Let S ⊆ [N] be a uniformly random subset of size s ∈ [(log(N))/2,
2 log(N)], σ = min{s, log(N)}, and P be the set of good pebbling configurations on
paths on N nodes. Then

Pr[∃P ∈ P : S covers P ∧ S ⊆ V (P)] ≤ s2s

Ns−σ2σ(σ+1)/2
≤ N log(log(N))

N log(N)/8
.

Proof. We call S good if it covers a good pebbling configuration P and S ⊆ V (P).
First, we count the number of subsets of size s which are good. To this aim, note that
since we consider reversible pebbling, a configuration P with |P| = log(N) is good if
and only if all pebbles can be removed without the need of any additional pebbles.
Now, assume S covers a good pebbling configuration P and S ⊆ V (P). If s ≥ log(N),
then it must be the case that there are s̄ ≥ s − log(N) pairs of nodes in S such
that both nodes cover the same edge in P, respectively, and one node from each pair
can be removed from S such that the remaining set S ′ ⊆ S still covers P. Let s̄ be
maximal with this property, hence S ′ a minimal vertex cover of P; we denote its size
by s′ = s− s̄. Clearly s′ ≤ log(N), and there must exist log(N)− s′ nodes in S ′ which
each cover two edges and the pairs of consecutive edges are pairwise disjoint.
Considering the edges in P to be pebbled, one pebble of each such pair of consecutive
pebbles can be removed trivially from the graph. These log(N)− s′ pebbles can now
be used to remove further pebbles. Note, in general, using k pebbles, one can remove
a pebble at distance at most 2k from its predecessor. This in particular implies that
the set S ′ must contain a pair of nodes u1, v1 that have distance at most 2log(N)−s′ in
the path. After removing the pebble incident on node v1, we have one more pebble
at our disposal to remove a further pebble incident on a node in S ′ \ {v1} at distance
≤ 2log(N)−s′+1 of its predecessor in S ′ \ {v1} on the path. Pursuing this idea, in the
kth step, there must be a node at distance ≤ 2k+log(N)−s′ from its preceding node
on the path. In total, there are log(N) − s′ gaps between nodes in S ′, where one
gap is of size ∈ [2log(N)−s′], another one is of size ∈ [2log(N)−s′+1], another one of size
∈ [2log(N)−s′+2], and so on, up to size ∈ [N/2].15

In total, for the s gaps on the path between the nodes in S it holds: s − σ ≤ s̄ gaps
must be of size 1, the remaining σ − s′ gaps of size 1 are in particular one gap of size
∈ [2log(N)−σ], one of size ∈ [2log(N)−σ+1], and so on, up to size ∈ [2log(N)−s′−1]. For

15Note, we also consider the distance between the source node and the first node in S on the path
as a gap.

22

the remaining s′ gaps, as stated above, there must be one gap of size ∈ [2log(N)−s′],
one of size ∈ [2log(N)−s′+1], up to size ∈ [N/2]. Thus, independent of s̄, there must be
s− σ gaps of size 1 and σ gaps of sizes ∈ [2log(N)−σ+k−1] for k ∈ [σ], respectively.
Thus, we can upper bound the number of good subsets of size s as the number of
possible subsets of s nodes having the required gap sizes on the path as discussed.
Of course, the s gaps do not need to be in order, so we get an upper bound on the
number of different good subsets S by

good subsets ≤ s! ·
σ−1∏
k=0

2log(N)−σ+k ≤ ss · 2
∑log(N)−1

k=log(N)−σ k = ss · 2σ(2 log(N)−σ−1)/2.

On the other hand, the total number of subsets of s nodes is
(
N
s

)
. Thus, we can upper

bound the probability of S being good by

Pr[S is good] ≤ ss · 2σ(2 log(N)−σ−1)/2(
N
s

) ≤ ss · 2σ log(N)−σ(σ+1)/2 · ss

Ns
≤ s2s

Ns−σ2σ(σ+1)/2
.

This upper bound is maximal when s = (log(N))/2, where it attains

((log(N))/2)log(N)

2(log(N))/2·((log(N))/2+1)/2
≤ N log(log(N))

N log(N)/8
.

On the other hand, the probability of S being good is 0 whenever it has size <
(log(N))/2 or > 2 log(N). The claim follows.

Lemma 1 immediately allows us to prove the following upper bound on the advan-
tage π(N) of an oblivious Pebbler whenever we restrict the Builder-Pebbler Game to
paths.

Theorem 6 (Combinatorial Upper Bound for Paths). The advantage of any oblivi-
ous Pebbler against a random Builder in the (N, CN)-Builder-Pebbler Game with the
winning condition XC defined as in Definition 12 is at most

π ≤ 1/N log(N)/8−log(log(N)).

Proof. Consider the following random Builder strategy B.

1. Pick a path PN uniformly at random from PN the set of all paths of length N .

2. Query the edges of PN , one at a time in random order.

3. Challenge the (only) sink of PN .

Since the Pebbler is oblivious it has to commit to some vertex cover S ⊆ [N] in the
beginning of the game. Since B queries edges uniformly at random, S is a uniformly
random subset of [N]. Thus, by Lemma 1, the probability that P̃ is good is at most

N log(log(N))

N log(N)/8
=

1

N log(N)/8−log(log(N))
.

This proves the theorem.

23

5.1.2 Binary In-Trees

In the case we restrict the Builder-Pebbler Game to binary trees directed from the
leaves to the root – short, “in-trees”; but we will simply refer to them as binary
trees in this entire section – we show that any oblivious Pebbler playing the Builder-
Pebbler Game against a random Builder with a definition of cut that is again related
to pebbling lower bounds for trees (see Section 5.1.2) has advantage at most quasi-
polynomial in N (Section 5.1.1). As a warm up, we analyse in Section 5.1.2 the
advantage of an oblivious Pebbler when the size of the vertex cover is bounded (i.e,
o(N) to be precise). We then extend this to arbitrary oblivious strategies for Pebbler
(Section 5.1.2). The main idea is to borrow ideas from pebbling lower bounds for
binary trees as described in the introduction (and recalled below).

Pebbling Characteristics of Binary Trees. It is known that the number of peb-
bles that are needed to pebble a perfect binary tree Bn of depth n, and therefore of
size N = 2n+1 − 1, is at least n, and the argument is as follows (refer to [Sav98] for
example). Consider a pebbling sequence for a perfect binary tree: at the beginning
of the sequence none of the 2n paths from the root to the leaves carries a pebble,
whereas at the end of the sequence (at which point the edges incident on the root
carry a pebble) all the paths from the leaves to the root carry a pebble. Furthermore,
only new pebbles outgoing from leaves decrease the number of paths that carry a peb-
ble, because a pebble can only be placed on an inner edge if both edges incident on its
source are already pebbled. Hence, all paths through the source of this this inner edge
already carry a pebble. So any pebbling move can only decrease the number of paths
that carry a pebble by 1. Therefore there has to exist two consecutive configurations
in the pebbling sequence such that in the first configuration there exists a path that
does not carry a pebble but in the next configuration every path carries a pebble. At
this point at least all the edges incident on this path which do not lie on the path
themselves need to be pebbled, and in particular there exists a pebbling configuration
where there are at least log(N) pebbles. Such pairs of configurations serve as the cut
for the winning condition. A formal definition follows.

Definition 13 (Good pebbling configurations, cuts and cut function for binary trees).
Let P be the set of pebbling configurations on Bn such that Bn contains at least
one path from a leaf to the root that does not carry a pebble, i.e. all edges on this
path are unpebbled. As the cut-set on (the configuration graph of) Bn we choose
X = {(Pi,Pj) | Pi ∈ P ∧ Pj /∈ P}. Note that any Pi with (Pi,Pj) ∈ X for some Pi
must have exactly one path from some leaf to the root not carry a pebble while every
other path must carry a pebble. The cut function XB is defined as in Definition 8 as
the frontier of this cut.

Warm-up: Upper Bound for Bounded Vertex Cover. Consider an oblivious
Pebbler that selects at most s (random) vertices on the binary tree as the vertex cover.
(Note that since the Pebbler is oblivious and the Builder picks a uniformly random
permutation of the graph, we can view any oblivious Pebbler as selecting the vertices
in the cover at random.) For the ease of analysis, we will consider a slightly different

24

Pebbler which – instead of selecting s vertices at random – will include each vertex
in the cover with probability α := s/N . We first show in Lemma 2 that this cannot
decrease the success probability too much, so any super-polynomial lower bound we
obtain in this way holds in general.

Lemma 2. Let Ps be a Pebbler that selects s vertices at random and let Pα(s) be a
Pebbler that behaves exactly like Ps but for every one of the N vertices chooses to
include it in the vertex cover i.i.d. with probability α(s) = s/N . Then for any event
E over the output of Ps we have Pr[Ps → E] = O(

√
N)Pr[Pα(s) → E].

Proof. Let L be the event that Pα(s) selects exactly s vertices. Then we have Pr[Ps →
E] = Pr[Pα(s) → E | L]. On the other hand, we have

Pr[Pα(s) → E] = Pr[Pα(s) → E | L]Pr[L] + Pr[Pα(s) → E | L̄]Pr[L̄]

where L̄ is the complementary event to L. This implies

Pr[Ps → E] ≤ Pr[Pα(s) → E]/Pr[L].

It remains to bound Pr[L] from below:

Pr[L] =

(
N

s

)(s
N

)s(N − s
N

)N−s
=

N !

NN

ss

s!

(N − s)N−s

(N − s)!
≥

√
N

2πes(N − s)
.

Theorem 7 (Combinatorial Upper Bound for Binary Trees: Bounded VC). Let Bn be
the class of perfect binary trees of depth n and size N = 2n+1− 1. Then any oblivious
Pebbler P in the (N,Bn)-Builder-Pebbler Game with perfect binary trees with cut XB
defined as in Definition 13 has an advantage of at most

π ≤

{
1/N log(N) for s = o(N)

1/Nω(1) for s = N ε with ε < 1 constant.

against a random Builder B.

Proof. Note first that since B queries a random graph Bn ∈ Bn, one can view Ps as
choosing the s vertices in the cover uniformly at random. By Lemma 2 we can instead
bound the advantage of Pα(s), which chooses for each vertex i.i.d. if it will be included
in the cover with probability α = s/N .

Fix a path p from a leaf to the root in Bn. Define Pp ⊂ P to be the set of
configurations in which p does not carry a pebble but every other path does. In the
following we say that a subtree is covered by S, if there exists a configuration P in
which all paths from the leaves to the root of this subtree carry a pebble, such that
S is a vertex cover of P and S ⊂ P. Let P (d) denote the probability that a perfect
binary tree of depth d is covered when vertices are included in the cover independently
using coin toss of bias α = s/N . We argue via induction that P (d) ≤ 2α. For the

25

base case, note that P (1) = α+ (1− α)α2 ≤ 2α. Suppose that the hypothesis is true
for binary tree of depth d− 1. It is not hard to see that

P (d) = α+ (1− α)P (d− 1)2.

It follows that P (d) ≤ α+ (1− α)4α2, and it suffices to show that

(1− α)4α2 ≤ α⇔ (1− α)α ≤ 1/4.

This is indeed true since (1 − α)α is a quadratic polynomial which is maximized at
α = 1/2.

In order for a configuration to be in Pp, all subtrees that are rooted in the copath
of p must be covered by the selected vertex cover or the parent in the path must be in
the vertex cover. The probability of this is ≤ α+ 2α = 3α. Finally, since the vertices
involved in each subtree are disjoint, we get that the probability of a vertex cover that
is minimal for some configuration in Pp is less than

n−1∏
i=1

3α = (3α)n−1

where n, if you recall, is the depth of Bn.
By applying the union bound, we have that the probability that there exists some

unpebbled path is at most N/2 · (3α)n+1. It follows that Λ ≥ 2/(N · (3α)n+1), which
is quasi-polynomial when s = N ε for a constant ε < 1, and super-polynomial when
s = o(N).

Upper Bound for Unbounded Vertex Cover. Unfortunately, the above Builder
strategy does not work when the Pebbler is allowed an unbounded number of vertices
in the cover: in particular, in case the bias α = 1/2 — in which case it places around
N/2 pebbles — it gets into the cut with high probability. Thus, we need to somehow
limit the number of pebbles that the Pebbler places, and this is accomplished by adding
a second binary tree in the game. In the new strategy, the Builder randomly queries
two binary trees and then proceeds to challenge one of these trees picked uniformly
at random; Recall that if any edge in the other binary tree is pebbled, the Pebbler
immediately loses. In case the Pebbler places too many pebbles, it is likely that it gets
caught in this process. We show in the analysis that this intuition is in fact correct
and consequently we obtain a tighter upper bound.

Theorem 8 (Combinatorial Upper Bound for Binary Trees: Unbounded VC). Let
Bn be the class of perfect binary trees of depth n and size N = 2n+1 − 1. Then
any oblivious Pebbler Ps which commits to a vertex cover of bounded size s in the
(N,Bn)−Builder-Pebbler Game with the cut function XB defined as in Definition 13
has an advantage of at most

π ≤ 1/N log(N)−log(log(N))

against a random Builder B.

26

Proof. The random Builder B plays the Builder-Pebbler Game on Bn as follows: it
picks Bn ∈ Bn at random, queries all edges except for the two edges incident on
the root uniformly at random, and then uniformly at random challenges the root of
one of the two binary subtrees (Bn−1,b). Again, as in Theorem 7, by Lemma 2 we
can bound the advantage of a Pebbler Pα(s), which chooses for each vertex i.i.d. if
it will be included in the cover with probability α = s/N . Clearly, such a Pebbler
has probability (1 − α)N/2 of not selecting any vertex in Bn−1,1−b (note that this is
a requirement, since by definition of oblivious Pebblers any node in the vertex cover
must be adjacent to at least one pebbled edge and there must not be any pebbled edges
in the non-challenge part of the graph). By combining this with the bound obtained
in Theorem 7, the probability of Pα(s) selecting a vertex cover that is minimal for a
configuration that is in X and is entirely unpebbled in Bn−1,1−b is less than

N

2
3n−1(1− α)N/2αn−1.

As a function of α, this expression is maximized for α = 2n/(N + 2n) and yields the
bound

N− log(N)+log(log(N/2))+o(1).

5.1.3 Unrestricted Games

In the following we prove an almost exponential upper bound on the advantage of
oblivious Pebblers in the Builder-Pebbler Game on complete graphs. Obviously, this
implies a subexponential upper bound for oblivious Pebblers whenever the Builder is
not restricted at all and, in particular, can query a complete graph.

Pebbling Characteristics of Complete Graphs. The best known pebbling strat-
egy P = (Pstart, . . . ,Ptarget) for a complete graph KN of size N has vertex cover
VC(P) = N/2 + 1, which implies an exponential upper bound. Note, this is not
trivial since the complete graph has VC-complexity N − 1. The strategy works as
follows: First, greedily pebble all edges connected to the first half [N/2] of the nodes
in topological order; this can trivially be done at VC-complexity N/2. Next, unpebble
all edges within the first half starting from those incident on node N/2 up to those
on node 2; this still has VC-complexity N/2 since only edges were removed. At this
point, all edges from [N/2] to [N/2+1, N] are pebbled, but there are no pebbles within
either part of the graph; this configuration can be covered by the set [N/2], but also
by [N/2 + 1, N] which will be a minimal cover for all subsequent configurations. Now,
pebble all edges within the second half starting with those outgoing from node N/2+1
up to node N − 1, which can be done since all ingoing edges from the first half are
already pebbled; all these configurations can be covered by the set [N/2 + 1, N]. Fi-
nally, unpebble all edges not incident on N by following the sequence in reverse order,
keeping N in each minimal vertex cover. This gives a valid pebbling strategy with
VC-complexity N/2 + 1.

Unfortunately, our lower bound doesn’t match this upper bound, but clearly gives
a nontrivial result as stated in the lemma below.

27

Lemma 3 (Lower Bound on VC-complexity of Complete Graphs). Let PN = (Pstart,
. . . ,Ptarget) be a valid (edge-) pebbling sequence of the complete graph KN of size N .
Then

VC(PN) ≥
√
N − 1.

Proof. We argue via induction on N . For N = 1, the claim is trivially true. Now,
assume it holds for all N ′ < N . Let P be a minimal (w.r.t. VC-complexity) pebbling
sequence. W.l.o.g., we can assume that P is reduced and, in particular, edges incident
on N are never unpebbled again. Let P∗ be the first configuration in P where an
edge (i∗, N) incident on N is pebbled and S∗ be a minimal vertex cover of P∗. If
VC(P∗) ≥

√
N − 1 the claim trivially follows from VC(PN) ≥ VC(P∗). Thus, in the

following we consider the case |S∗| = VC(P∗) <
√
N − 1.

When we remove the set S∗ as well as the two nodes i∗ and N (where at least
one of them is contained in S∗) from the graph KN , we end up with a complete
(sub)graph K∗ which is entirely unpebbled and will be pebbled during the configura-
tions P∗, . . . ,Ptarget. It holds

N − 2 ≥ |V (K∗)| ≥ |KN | − |S∗| − 1 > N − (
√
N − 1)− 1 = N −

√
N.

By induction hypothesis, any valid pebbling sequence on K∗ has VC-complexity at

least
√
|V (K∗)| − 1 ≥

√
N −

√
N − 1; this in particular also holds for the pebbling

sequence on K∗ induced by P . Since the edge (i∗, N) remains pebbled throughout
P∗, . . . ,Ptarget and is node-disjoint with K∗, it follows

VC(PN) ≥ VC(P) ≥ (

√
N −

√
N − 1) + 1 =

√
N −

√
N.

The claim now follows since
√
N −

√
N ≥

√
N − 1 for all N ≥ 1.

This also yields the following definition of good configuration for the complete
graph.

Definition 14 (Good pebbling configurations, cuts and cut function for complete
graphs). We call a pebbling configuration P for the complete graph KN of size N
good if the VC-complexity of P is

√
N − 2 and there exists a valid pebbling sequence

P = (Pstart, . . . ,P) such that the VC-complexity of the sequence VC(P) ≤
√
N − 2.

As the cut-set on (the configuration graph of) KN we choose the X to be defined as
the set of pairs (Pi,Pj) such that Pi is good, Pj is not good, and Pj differs from Pi
in one valid pebbling step. The cut function XK is defined as in Definition 8 as the
frontier of this cut.

The Upper Bound. Lemma 3 implies the following upper bound on the advantage
π for oblivious Pebblers against a random Builder on the Builder-Pebbler Game played
on a complete challenge graph.

Theorem 9 (Combinatorial Upper Bound for Complete Graphs). Let KN denote the
class of complete directed graphs on N vertices. Then any oblivious Pebbler in the

28

(N,KN)-Builder-Pebbler Game with the cut function XK defined in Definition 14 has
advantage at most

π ≤ e−2(
√
N/(e3)−1).

against a random Builder B.

Proof. We use the following random Builder: the graph structure B queries consists of
two complete directed graphs of sizes n and N − n, respectively, where we will define
n later in this proof. Since, by assumption, the reduction committed to a non-trivial
vertex cover S ⊆ [N] in the beginning of the game and B chose a permutation of [N]
independently and uniformly at random, the probability that S lies completely in the
first part of the graph is at most(

n√
n−1

)(
N√
n−1

) ≤ (n√
n− 1

)√n−1(
(
√
n− 1) · e
N

)√n−1

=
(ne
N

)√n−1

.

By computing the derivative of the latter function one finds that it takes its minimum

close to n = N/e3, hence B will use this value for n. Thus, π ≤ e−2(
√
N/(e3)−1). This

proves the claim.

5.2 Node Pebbler

Here, we consider node Pebblers as defined in Definition 11, i.e., the Pebbler is only
allowed to either pebble all ingoing edges to a node, or none as in the node-pebbling
game (Definition 4). As we will see in Section 9, for certain applications it is sufficient
to restrict to this class of Pebblers. Looking ahead, since node-pebbling reductions
are a subclass of edge-pebbling reductions (and node pebbling strategies are a sub-
class of all pebbling strategies), all previous results carry over. For certain graphs
of high indegree, however, we will prove much stronger bounds. These are stronger
not only quantitatively, but also qualitatively as they will lead to cryptographic lower
bounds which hold for arbitrary (potentially non-oblivious and rewinding) black-box
reductions.

5.2.1 Complete Graphs

For node Pebblers in an unrestricted Builder-Pebbler Game, we prove an exponential
upper bound on the Pebbler’s advantage. To define a suitable cut, we exploit the
crucial difference between edge and node pebbling in terms of VC-complexity regarding
graphs of high indegree: Let u be an intermediate node which has high indegree in the
challenge graph. In the edge pebbling game, to be able to pebble an edge (u, v), we
need to have all edges incident on u pebbled; there might be up to N edges involved
but, however, one can cover all these edges with the single node u. On the other hand,
in the node pebbling game, to pebble node u, all the parent nodes need to be pebbled
and, in general, the only way for the reduction to get into this configuration is to guess
all parents correctly. This is formalised in the following definition and theorem.

Definition 15. For a node v ∈ V, let the reachability graph Sv ⊆ G be the subgraph
induced by the nodes in V that can be reached from v (but not v itself). Furthermore,

29

define the level 2 predecessor graph P2
v ⊆ G as the subgraph induced by all the nodes

in V from which v can be reached through a path of length at most 2 (but again
not v itself). Finally, for a graph G define D(G) = max{|Ed| | Ed ⊂ E(G) ∧ |{u |
(u, v) ∨ (v, u) ∈ Ed}| = 2|Ed|} to be the maximum number of pairwise disjoint edges
in G.

Theorem 10. For any graph family G containing all graphs isomorphic to some con-
nected DAG G = (V, E) ∈ G, there exists a cut function X and a Builder B such that
any (not necessarily oblivious) node Pebbler P has advantage at most

π ≤
(

max
v∈V

(
D(Sv) +D(P2

v)

D(P2
v)

))−1

in the (N,G)-Builder-Pebbler Game.

We remark that for any v ∈ V, D(P2
v) must be smaller than or equal to the in-

degree of v. So, Theorem 10 only yields interesting results for graphs with large degree
(but not all of them). Furthermore, if Sv and P2

v contain long paths, then they have
many disjoint edges.

Proof. Let v be such that it maximizes the quantity in the theorem. We define a cut S
on PG as containing all configurations where v and Sv are entirely unpebbled. The cut
function X is now defined as the frontier of that cut (after applying the isomorphism).
Note that for any configuration in X(G) all edges in P2

v are pebbled, while all edges
in Sv are unpebbled. The Builder B picks a random graph G′ in G and first queries
for the disjoint edges in P2

v and Sv in a random order. Note that the Pebbler P has no
information about which edge is in P2

v and which is in Sv. Accordingly, the probability
of the challenge graph being in X(G′) at the end of the query phase is at most(

D(Sv) +D(P2
v)

D(P2
v)

)−1

. (1)

Note that the above argument still works if we let B send all the queries of the first
phase (i.e., randomly permuted P2

v and Sv edges) at once: as they are disjoint, getting
them all at once is of no help to P for guessing whether an edge belongs to P2

v or
Sv. As for a single query there’s no distinction between an oblivious or non-oblivious
Pebbler (as there’s no second query that could depend on the answer to the first), this
upper bound applies to non-oblivious Pebblers.

Corollary 1. For any graph family G containing all graphs isomorphic to the complete
directed graph KN , there exists a cut function X and a Builder B such that any (not
necessarily oblivious) node Pebbler P has advantage at most

π ≤ 2−Ω(N)

in the (N,G)-Builder-Pebbler Game.

30

Proof. Invoke Theorem 10 with v = N/2. Note that P2
v is the entire subgraph induced

by [N/2 − 1], and similarily Sv is the entire subgraph induced by {N/2 + 1, . . . , N}.
Both P2

v and Sv have about N/4 disjoint edges (simply pick every second edge along
the longest path), so by Theorem 10 any node Pebbler P has advantage at most

π ≤
(
N/2

N/4

)−1

≤ 2−Ω(N).

5.3 Unrestricted Pebbler

5.3.1 Trees

In this section we prove a first combinatorial upper bound for unrestricted – i.e., non-
oblivious – Pebblers in the Builder-Pebbler Game. While our upper bound on the
advantage of unrestricted Pebblers is significantly weaker than the result for oblivious
Pebblers, it is still non-trivial. It relies on a generalization of the known pebbling
characteristics for paths from Section 5.1.1.

Generalized Pebbling Characteristics of Paths. Let k ∈ [N] be arbitrary. We
prove that any pebbling sequence on a path of length N must contain a pebbling
configuration such that blog(dN/ke)c+ 1 of the dN/ke subpaths of length ≤ k contain
at least one pebble respectively. Note, for k = 1 this result is already known and was
proven in Section 5.1.1. Assume, for contradiction, that there exists a k > 1 and a
valid pebbling strategy P for paths of length N such that the claim was false. Then
this strategy implies a pebbling strategy P ′ of complexity less than blog(dN/ke)c+ 1
for paths of length dN/ke as follows: For each pebbling configuration P in P , define
P ′ in P ′ to contain a pebble on the ith edge if the ith subpath of P contains a
pebble. Cancelling redundant steps in P ′, i.e., configurations that equal the preceding
configuration in the sequence, implies a valid pebbling sequence of complexity less than
blog(dN/ke)c+ 1 for paths of length dN/ke – a contradiction.

We will use the following definition of k-cuts for paths matching this generalized
pebbling lower bound.

Definition 16 (k-good pebbling configurations, k-cuts and k-cut function for paths).
For k ∈ N we call a pebbling configuration P for a path C = CN on N nodes k-
good if blog(dN/ke − 1)c of the dN/ke − 1 non-source subpaths of C of length (≤)k
contain at least one pebble respectively16, and there exists a valid pebbling sequence
P = (Pstart, . . . ,P) such that in all configurations in P at most blog(dN/ke−1)c of the
subpaths simultaneously carry a pebble. We define a k-cut set X in the configuration
graph PC as the set of all edges consisting of a k-good pebbling configuration and
a configuration which can be obtained from this good configuration by adding one
pebble (following the pebbling rules) in a previously unpebbled subpath. The k-cut
function XC,k is defined as in Definition 8 as the frontier of this cut.

16For technical reasons, we exclude the first subpath of length k in C.

31

The Upper Bound. The Builder strategy is to query a (polynomial-sized) subgraph
of an exponential-sized tree of outdegree δout ≥ 2, so that in order to pebble any edge
in the final challenge path the Pebbler has to guess one out of many source nodes at
the same depth in the tree (see Figure 3).

Theorem 11 (Combinatorial Upper Bound for Unrestricted Pebblers). Let G be the
family of directed trees on N = 2n nodes (with n ∈ N). Then there exists a Builder
strategy querying a challenge path G∗ ∈ C√N , such that the advantage of any Pebbler
against this Builder in the (N,G)-Builder-Pebbler Game with the winning condition
XC√N defined as in Definition 12 is at most

π ≤ 1/N log(N)/8.

Let G2 ⊂ G be the subset of graphs in G of bounded outdegree δout = 2. Then there
exists a Builder strategy querying a challenge path G∗ ∈ C√N , such that the advantage
of any Pebbler against Builder in the (N,G2)-Builder-Pebbler Game with the winning
condition XC√N ,k for k = log(N)/4 defined as in Definition 16 is at most

π ≤ 1/N log(N)/8−log(log(N))/4.

Proof. We define a Builder strategy B for graph family Gδout of outdegree bounded
by δout as follows: First, B chooses a source node in [N] uniformly at random. It
then proceeds in D = N/δ2k

out rounds (where k is the ‘overlap parameter’ and will be
specified later), increasing the current graph’s depth by 1 in each round. In each round
R ≤ 2k and each round R 6≡ 1 mod k, for all sinks at depth R − 1 in the current
graph B queries δout outgoing edges respectively. Note, after the first 2k rounds, B’s
queries form a δout-regular tree directed from root to leaves, with δ2k

out sinks at depth
2k (see Figure 3). For all rounds such that R > 2k and R ≡ 1 mod k, the Builder B
first chooses an integer i ∈ [δkout] and then only queries edges outgoing from the ith
batch of δkout sinks at depth R − 1. Finally, B chooses the target node uniformly at
random from the δ2k

out sinks at depth D = N/δ2k
out (see Figure 3).

First note that B’s queries involve less than D · δ2k
out = N nodes and the challenge

graph forms a path of length D. To win the game, the Pebbler needs to place at least
one pebble on blog(dD/ke − 1)c of the disjoint subpaths of length k in the challenge
path respectively. But whenever it wants to place a pebble in a subpath starting from
depth i · k with i ≥ 1, the Pebbler has to at least guess which of the δkout sources
of edges at depth i · k will end up in the challenge graph. Since this choice is made
uniformly at random by the Builder B only after all queries at depth (i + 1) · k were
made, the advantage of the Pebbler to correctly pebble an edge in the subpath sourced
at depth i · k is at most 1/δkout. Since this bound holds also conditioned on the event
that previous guesses were done correctly, and to win the game, the Pebbler has to
pebble blog(dD/ke − 1)c subpaths of the challenge path, we obtain

π ≤ 1/δ
k·blog(dD/ke−1)c
out . (2)

Now, for the graph family G of unbounded outdegree, we set δout = N1/4 and k = 1

to obtain D =
√
N and hence π ≤ 1/N1/4 log(

√
N) = 1/N log(N)/8 (e.g., Figure 3.(a)).

32

For δout = 2, on the other hand, we set k = log(N)/4 to obtain D =
√
N and

π ≤ 1/N1/4(log(
√
N)−log(log(N)/4)) = 1/N log(N)/8−log log(N)/4 (e.g., Figure 3.(b)).

6 Cryptographic Lower Bound I: Generalised Selec-
tive Decryption

The generalized selective decryption game (GSD) was informally introduced in Sec-
tion 1. In this section, we formally define GSD and interpret the lower bounds from
Sections 5.1.1 to 5.1.3 and 5.3.1 for GSD. Then, in Section 6.3, we define the public-
key analogue of GSD [ACC+19], where PKE is used instead of SKE as the underlying
primitive. We will establish analogous lower bounds for public-key GSD, which will
serve as a basis for the lower bound on TreeKEM in Section 7.

6.1 Definition and Security Assumption

We use the definitions from [JKK+17].
Let (Enc,Dec) be a symmetric encryption scheme with Enc : K×M→ C, Dec : K×

C →M and we assume K ⊆M (i.e., we can encrypt keys). We assume that (Enc,Dec)
is correct, i.e.,

∀k ∈ K,m ∈M : Pr[Dec(k,Enc(k,m)) = m] = 1

and that it is ε-indistinguishable under chosen-plaintext attack (IND-CPA) – see Def-
inition 17.

Definition 17 (IND-CPA). The game is played between a challenger (either G0 or
G1) and an adversary on the symmetric encryption scheme (Enc,Dec). The challenger
chooses the challenge key k← K. The adversary can make two types of queries:

• Encryption queries (encrypt,m), m ∈M: the challenger returns Enc(k,m).

• One challenge query (challenge,m0,m1), m0,m1 ∈ M: the challenger when
simulating Gb returns the challenge ciphertext Enc(k,mb).

An encryption scheme (Enc,Dec) is said to be ε-indistinguishable under chosen-plaintext
attack, if G0 and G1 are ε-indistinguishable.

The GSD game is defined as follows:

Definition 18 (Adaptive GSD [Pan07, JKK+17]). The game is played between a
challenger G (which is either GL or GR) and an adversary A using an SKE scheme
(Enc,Dec). G picks N keys {k1, . . . , kN} ← K uniformly at random, and initialises
a key-graph G := ({v1, . . . , vN}, ∅); it also initialises a set C = ∅. A can make three
types of queries:

• Encryption queries, (encrypt, vi, vj): G returns ci,j ← Enc(ki, kj), and adds
(vi, vj) to E .17

17If A repeatedly queries encryptions of kj under ki, it always obtains the same encryption ci,j .
Hence, we assume A never queries an edge twice.

33

(a)

(b)

Figure 3: (a) Highlighted in blue is a regular tree of out-degree δout = 3 and depth D = 4 that could
result from the Builder strategy in Theorem 11 with overlap parameter k = 1. It is a subgraph of
the perfect regular tree of out-degree δout = 3 and depth D = 4 which is in the background in gray.
The challenge path is highlighted in red. (b) Similar to (a), but with δout = 2, depth D = 6 and
overlap parameter k = 2 and the supergraph is a perfect binary tree. In both (a) and (b), the perfect
subgraphs of depth 2k and out-degree δout is shaded in blue.

34

• Corruption queries, (corrupt, vi): G returns ki, and adds vi to C.

• One challenge query (challenge, vi): Here the answer differs between GL and
GR: GL answers with ki (real key), whereas GR answers with r ← K (fake key)
sampled uniformly at random — for the task to be non-trivial, vi must be a sink
and must not be reachable from any vertex in C.

In the GSD game restricted to G (for some family of graphs on N vertices G), the
adversary is restricted to query key-graphs G ⊆ G′ ∈ G.

Definition 19. An SKE scheme SKE = (Enc,Dec) is called ε-adaptive GSD-secure
(restricted to G) if GL and GR are ε-indistinguishable.

Definition 20 (Black-Box and Straight-Line GSD Reduction). R is a black-box GSD
reduction if for every SKE SKE = (Enc,Dec) and every adversary A that wins the
GSD game played on SKE, R breaks SKE. Moreover, if A is an (ε, t) GSD adversary
and R (ε′, t′)-breaks SKE (where ε′ and t′ are functions of ε and t) then the loss in
security is defined to be (t′ε)/(tε′). A black-box GSD reduction R is straight-line if it,
additionally, does not rewind A.

6.2 Lower Bounds for GSD

In many applications one considers games where the adversary’s queries are restricted
to certain graph structures, e.g., paths, “in-trees” (i.e. rooted trees directed from the
leaves to the root), or low-depth graphs. These restrictions depend on the protocol
under consideration and often allow to construct stronger reductions.

Interesting upper bounds are known for specific settings for (oblivious) black-box
reductions R proving adaptive GSD security based on IND-CPA security (short, GSD
reductions). Our results now allow us to prove lower bounds on Λ for GSD with
various restrictions (which cover similar settings as known upper bounds). Note that
our lower bounds are stronger and more widely applicable the more restrictions they
can handle.

The following definition mirrors the obliviousness of Pebblers in the context of the
Builder-Pebbler Game (cf. Definition 10).

Definition 21 (Oblivious GSD Reduction). A straight-line GSD reduction R (Def-
inition 20) is oblivious if it commits to a non-trivial vertex cover of all inconsistent
edges at the beginning of the game.

In all our bounds we require the reduction to assign keys to nodes at the beginning
of the game.

Definition 22 (Key-Committing GSD Reduction). A black-box GSD reduction R is
key-commiting if it commits to an assignment of keys to all nodes at the beginning of
the game.

This is due to the fact that Pebblers in the Builder-Pebbler Game commit to
whether an edge is pebbled or not as soon as they respond to the query. Without
this requirement, this is not true for reductions in the GSD game, since they could

35

potentially respond to a query and decide later if that edge is consistent or inconsistent
by choosing the key for the target accordingly (as long as this node does not have an
outgoing edge). However, this requirement should not be seen as a very limiting
restriction, but we introduce it for ease of exposition, since there are several “work
arounds” to this issue. 1) One could use an adversary that “fingerprints” the keys by
querying the encryption of some message under each key before starting the rest of
the query phase. This would entail adding the corresponding oracle to the GSD game,
which seems reasonable in many (but not all) applications, since the keys are often not
created for their own sake, but to encrypt messages. 2) In case the adversary is not too
restricted (which is application dependent), there is a generic fix where the adversary
abuses the encrypt oracle to achieve this fingerprinting by introducing a new node
and querying the edges from every other node to this new node. This introduces only
a slight loss in the number N of nodes.

Both of these approaches work, but would make the proof more complicated: recall
that the challenge node must be a sink, so neither of the two fixes can be applied
to it. We can still fix all other nodes (which is sufficient), thereby giving away the
challenge node right at the start of the game. But this can only increase the reduction’s
advantage by a factor N , since it could also simply guess the challenge node. Since
we are only interested in super-polynomial losses in this work, this would not affect
the results. But for the sake of clarity we refrain from applying this workaround and
simply keep this mild condition on the GSD reductions. Looking ahead, we will see
that some protocols are based on a public key version of GSD (cf. 6.3) rather than
the secret key version we consider here. In such cases the public keys are known to
the adversary and commit the reduction to the corresponding secret keys and thus no
assumption or extra fix are required.

We now give a general lemma that allows to turn lower bounds for the Builder-
Pebbler Game into lower bounds for the GSD game.

Lemma 4 (Coupling Lemma for GSD). Let G be a family of DAGs and X a cut
function. Let B be an oblivious Builder in the (N,G)-Builder-Pebbler Game with
winning condition X. Then there exists

1. an ideal SKE scheme Π = (Enc,Dec)

2. a GSD adversary A in PSPACE

such that for any key-committing straight-line reduction R there exists a Pebbler P
such that the advantage 1/Λ of R is at most the advantage π of P against B (up to an
additive term poly(N)/2Ω(N)). Moreover, if R is oblivious then so is P.

Proof. We first construct Π = (Enc,Dec): We will pick Enc to be a random expanding
function (which is injective with overwhelming probability). More precisely, assuming
(for simplicity) the key k, the message m and the randomness r are all λ-bit long,
Enc(k,m; r) maps to a random ciphertext of length, say, 6λ with λ = Θ(N). Dec is
simulated accordingly to be always consistent with Enc.

We now define a map φ from GSD adversaries and reductions to Builder-Pebbler
GameBuilders and Pebblers:

36

• The number N of nodes in the Builder-Pebbler Game corresponds to the number
N of keys in the GSD game.

• An encryption query (encrypt, vi, vj) maps to an edge query (i, j) in the Builder-
Pebbler Game.

• A response to a query (encrypt, vi, vj) is mapped to “no pebble” if it consists
of a valid encryption of kj under the key ki, and to “pebble” otherwise. (Note
that this is always well-defined for key-committing GSD reductions.)

• A corruption query (corrupt, vi) is ignored in the Builder-Pebbler Game.

• The challenge query (challenge, vt) is mapped to the challenge node t.

Let A ∈ PSPACE be the following preimage of B under φ: A performs the same
encryption queries as B and selects its GSD challenge node as the challenge node
chosen by B. It then corrupts all nodes not in the challenge graph Gt. If there is
an inconsistency (i.e. a pebble) in G \ Gt, A aborts and outputs 0. Finally, it uses
its computational power to decrypt all the received ciphertexts and determines the
resulting pebbling configuration P on Gt. If P is in the cut defined by the frontier
X(Gt), A outputs 0, otherwise it outputs 1. Clearly, A wins the GSD game against
Π with probability 1. We will now show that the advantage of R in using the GSD-
adversary A to break the IND-CPA security of Π is at most the advantage of P = φ(R)
against B (up to a negligible additive term).

Note that since Enc is a random function, the GSD game is entirely independent of
the challenge bit b until the tuple (k,mb, r) such that c∗ = Enc(k,mb; r) (where c∗ is
the challenge ciphertext) is queried to Enc. Since R is PPT, the probability of R doing
this is at most poly(N)/2Ω(N). Accordingly, to gain a larger advantage, R must send
c∗ to A as response to some edge query. Since B = φ(A) is oblivious, the behaviour
of A does not depend on c∗ (and thus not on b) during the entire query phase. This
means that the statistical distance of A induced by b = 0 and b = 1 is∑

(Pi,Pj)∈PGt
pi,j |Pr [A(Pi)→ 1]− Pr [A(Pj)→ 1]|

where pi,j is the probability that the query phase results in the configuration Pi or
Pj depending on c∗. More formally, for an edge (Pi,Pj) in the configuration graph

PGt , let Pcij be the “configuration” that is equal to Pi if c∗ represents a consistent
encryption edge (i.e. is not a pebble) and equal to Pj if c is inconsistent (i.e. a pebble).
Then we define pi,j as the probability of the query phase resulting in Pcij . Clearly, we
have |Pr [A(P1)→ 1] − Pr [A(P2)→ 1]| = 0 for any edge (P1,P2) where P1 /∈ X(Gt)
and 1 otherwise. The statistical distance of A induced by b is thus bounded by the
probability of the querying phase ending up in a configuration in X(Gt) (if c∗ is
considered not a pebble for this argument). This is exactly the advantage of Pebbler
P = φ(R) in the Builder-Pebbler Game against B. By data processing inequality, this
also means that the advantage of R is bounded from above by the same quantity.

For the final statement of the lemma, note that φ maps oblivious GSD reductions
to oblivious Pebblers.

37

The following lower bounds on GSD now easily follow from Lemma 4 and the
theorems in the previous section (Theorems 6, 8, 9 and 11, resp.).

Corollary 2 (Lower Bound for GSD on Paths, Oblivious Reductions). Let N be the
number of users in the GSD game. Then any key-committing oblivious reduction
proving adaptive GSD-security restricted to paths based on the IND-CPA security of
the underlying encryption scheme loses at least a factor

Λ ≥ N log(N)/8−log(log(N)).

Corollary 3 (Lower Bound for GSD on Binary Trees, Oblivious Reductions). Let
N be the number of users in the GSD game. Any key-committing oblivious reduc-
tion proving adaptive GSD-security restricted to rooted binary in-trees based on the
IND-CPA security of the underlying encryption scheme loses at least a factor

Λ ≥ N log(N)−log(log(N)).

For adversaries which are allowed to query any acyclic graph structure on N ver-
tices and choose an arbitrary challenge, Theorem 9 gives the following result.

Corollary 4 (Lower Bound for GSD on Arbitrary DAGs, Oblivious Reductions). Any
key-committing oblivious reduction proving adaptive (unrestricted) GSD-security with
N users based on the IND-CPA security of the underlying encryption scheme loses at
least a factor

Λ ≥ 22(
√
N/(e3)−1).

Finally, we can extend our results on paths to non-oblivious reductions. However,
in this case our adversary needs to be able to query outside of the challenge graph
and thus the restrictions we are able to handle outside of the challenge graph are not
arbitrary as in Corollary 2.

Corollary 5 (Lower bound for GSD on Trees, Straight-Line Reductions). Let N be
the number of users in the GSD game. Any key-committing straight-line reduction
proving adaptive GSD-security restricted to trees based on the IND-CPA security of
the underlying encryption scheme loses at least a factor

Λ ≥ N log(N)/8.

Even if the adversary is restricted to querying graphs with outdegree 2, the reduction
loses at least a factor

Λ ≥ N log(N)/8−log(log(N))/4.

6.3 Public-Key GSD

In this section we define the public-key analogue of GSD, where PKE is used in-
stead of SKE as the underlying primitive. It was recently introduced in [ACC+19]
to analyse the security of continuous group key agreement protocols like TreeKEM
[BBR18, BBM+20]. We recall the formal definition in Definition 23 and then extend
the lower bounds that we established for GSD in Corollaries 2 to 5 to public-key GSD
(Corollaries 6 to 9). Corollary 9 will be used later in Section 7 to show a lower bound
for TreeKEM. But first we highlight some important differences in the modelling of
the game for public-key and symmetric-key GSD.

38

Public-key GSD vs. (symmetric-key) GSD. The natural way to adapt the
notion of key-graph to public-key GSD, played with a PKE (Gen,Enc,Dec), is as
follows:

• a vertex v is associated with a pair of public and secret keys (pkv, skv); and

• an edge (u, v) encodes the ciphertext Enc(pku, skv).

However, compared to symmetric-key GSD, there is a small subtlety with respect
to the challenge node. In particular, the adversary must never learn the public key
associated to the challenge node, since it could otherwise trivially distinguish the
corresponding secret key from a random one. So instead one can think of the challenge
node being associated only with a secret key. (In fact, in applications like TreeKEM,
the root is not associated with a PKE key pair, but with an SKE key or a seed used
as input for a KDF.) We recommend the reader think of all secret keys in this game
as randomness for the key generation algorithm. Then, secret keys of PKE key pairs
can be thought of as secret keys for SKEs as long as the public key remains hidden.

In contrast to symmetric-key GSD, in public-key GSD there needs to be a mecha-
nism for the adversary to learn the public keys, even if they are not all created at the
beginning of the game. [ACC+19] simply sent public keys of the source nodes along
with encryptions. This also ensured that the adversary would never learn the public
key of the challenge, since the challenge must be a sink, and thus can be thought of as
being associated to a secret key. We will slightly change this mechanism and introduce
a new oracle for this, reveal, which allows the adversary to retrieve the public keys
of nodes. Using this oracle the adversary can learn the public keys of nodes that are
currently sinks (but will not be sinks at a later stage) and thus commit the reduction
to placing a pebble immediately after an edge query. Clearly, the adversary must not
call this oracle on the challenge as discussed above.

This change is purely for technical reasons. We argue that the mechanism through
which the adversary learns the public keys does not matter too much for the appli-
cations, since any reduction that relies on public keys remaining secret (even for a
limited time) is probably not very meaningful.

Definition 23 (Public-Key GSD [ACC+19]). Let (Gen,Enc,Dec) be a public key
encryption scheme with secret key space K and message space M such that K ⊆M.
The public-key GSD game is a two-party game between a challenger C and an adversary
A. On input an integer N , for each i ∈ [N] the challenger C generates a key pair
(pki, ski) and initializes the key-graph G = (V, E) := ({v1, . . . , vN}, ∅), the set of
corrupt users C = ∅ and the set of revealed users R = ∅. A can adaptively do the
following queries:

• (encrypt, vi, vj): On input two nodes vi and vj , C returns an encryption c =
Encpki(skj) of skj under pki and adds the directed edge (vi, vj) to E .

• (corrupt, vi): On input a node vi, C returns ski and adds vi to C.

• (reveal, vi): On input a node vi, C returns pki and adds vi to R.

39

• (challenge, vi), single access: On input a challenge node vi, C samples b ←
{0, 1} uniformly at random and returns ski if b = 0, otherwise it returns a new
secret key generated by Gen using a new independent uniformly random seed.
In the context of GSD we denote the challenge graph as the graph induced by all
nodes from which the challenge node vi is reachable. We require that none of the
nodes in the challenge graph are in C, that G is acyclic and that the challenge
node vi is a sink and not in R.

Finally, A outputs a bit b′ and it wins the game if b′ = b. We call the encryption scheme
(ε, t)-adaptive GSD-secure if for any adversary A running in time t the distinguishing
advantage is at most ε.

We now give a general lemma that is the analogue of Lemma 4, i.e., it allows to
turn lower bounds for the Builder-Pebbler Game into lower bounds for the public-key
GSD game. The definition of oblivious, straight-line and black-box reductions for
public-key GSD can be defined similarly to (symmetric-key) GSD (i.e., Definitions 20
and 21).

Lemma 5 (Coupling Lemma for Public-Key GSD). Let G be a family of DAGs and
X a cut function. Let B be an oblivious Builder in the (N,G)-Builder-Pebbler Game
with winning condition X. Then there exists

1. an ideal PKE scheme Π = (Gen,Enc,Dec)

2. a public-key GSD adversary A in PSPACE

such that for any key-committing straight-line reduction R for public-key GSD there
exists a Pebbler P such that the advantage 1/Λ of R is at most the advantage of P
against B (up to an additive term poly(N)/2Ω(N)). Moreover, if R is oblivious then
so is P.

Proof (Sketch). The proof of this lemma is similar to that of Lemma 4 except that
we use an ideal PKE scheme as defined in [GMR01] in place of an ideal SKE scheme.
Therefore, we only highlight the difference in the ideal scheme here. The key-generation
algorithm Gen in Π is defined to be a random expanding function from λ bits to 2λ
bits. The encryption function Enc is then defined similar to that in Lemma 4 except
that the domain and co-domain are adjusted to be 4λ and 8λ to accommodate the
public-key. Dec is defined to be consistent with Enc.

The following lower bounds on public-key GSD now follow from Lemma 5 and the
Theorems 6, 8, 9 and 11, resp., in Section 5. These are analogous to Corollaries 2 to 5
for GSD. Note that oblivious reductions for public-key GSD can be defined similar
to Definition 10. As mentioned, we do not need to assume that the reduction is key-
committing, since the public keys sent as response to the queries act as a fingerprint
on the private key.

Corollary 6 (Lower Bound for Public-Key GSD on Paths, Oblivious Reductions). Let
N be the number of users in the public-key GSD game. Then any oblivious reduction

40

proving adaptive security for public-key GSD restricted to paths based on the IND-CPA
security of the underlying encryption scheme loses at least a factor

Λ ≥ N log(N)/8−log(log(N)).

Corollary 7 (Lower Bound for Public-Key GSD on Binary trees, Oblivious Reduc-
tions). Let N be the number of users in the public-key GSD game. Any oblivious
reduction proving adaptive security for public-key GSD restricted to rooted binary in-
trees based on the IND-CPA security of the underlying encryption scheme loses at
least a factor

Λ ≥ N log(N)−log(log(N)).

Corollary 8 (Lower Bound for Public-Key GSD on Arbitrary DAGs, Oblivious Re-
ductions). Any oblivious reduction proving adaptive security for unrestricted public-
key GSD with N users based on the IND-CPA security of the underlying encryption
scheme loses at least a factor

Λ ≥ 22(
√
N/(e3)−1).

Corollary 9 (Lower Bound for Public-Key GSD on Trees, Straight-Line Reductions).
Let N be the number of users in the public-key GSD game. Any straight-line reduction
proving adaptive security for public-key GSD restricted to trees based on the IND-CPA
security of the underlying encryption scheme loses at least a factor

Λ ≥ N log(N)/8.

Even if the adversary is restricted to querying graphs with outdegree 2, the reduction
loses at least a factor

Λ ≥ N log(N)/8−log(log(N))/4.

7 Cryptographic Lower Bound II: (Asynchronous)
Continuous Group Key Agreement

The main motivation behind the definition of GSD in [Pan07] was to analyse the
security of a particular protocol for multicast encryption [FN94] called logical key
hierarchy (LKH) [WGL00]. The recent constructions of (asynchronous) continuous
group key agreement (CGKA) protocols like TreeKEM [BBR18, BBM+20] (and its
variant Tainted TreeKEM [ACC+19]) can roughly be regarded to be the public-key
analogue of LKH – the security of TreeKEM (and its variants) is, in fact, analysed
using the public-key GSD game (Definition 23).

Although abstracting TreeKEM as public-key GSD suffices for establishing upper
bounds for loss in adaptive security, we have to be careful when it comes to establishing
lower bounds. In particular, the lower bounds established for public-key GSD in
Section 6.3 do not quite carry over to a lower bound for TreeKEM. The high level
reason is that the key-graphs that result in its security analysis are more ‘structured’
than in the case of public-key GSD, and as a result the querying strategies that we

41

deployed in the public-key GSD adversaries in Corollaries 2 to 5 cannot be used in
this setting per se.

Nevertheless, we show in Section 7.2 that it is possible to ‘emulate’ some of these
strategies: in particular, the Builder strategy from Theorem 11 can be emulated within
a TreeKEM adversarial strategy. Consequently, we get that any straight-line reduction
for TreeKEM (and its variants) must lose a factor that is super-polynomial in M , the
number of users (Corollary 10). Rather surprisingly, we are unable to show any results
for LKH as the security model for multicast encryption is rather weak compared to
that for CGKA (see Section 10.4).

Remark 5. In an orthogonal line of work, [MP04] showed lower bounds on the com-
munication complexity of generic multicast encryption protocols. Dodis et al. [BDR20]
recently build on that work to show lower bounds on the communication complexity
of generic CGKA protocols.

7.1 Definitions and Construction

For sake of space, we keep the discussion on CGKA and TreeKEM at an informal level
sufficient to explain the lower bound, and refer the readers to [ACDT20, ACC+19] for
a more formal treatment.

7.1.1 CGKA: Syntax and Security Model

CGKA is a public-key, multi-user primitive which involves M users denoted U0, . . . ,
UM−1. Any user Ui can initialise a group U0 ⊆ {U0, . . . , UM−1} by sending protocol
messages to all group members, from which each group member can compute a shared
group key K0. To this aim, Ui must know the (current) public key pkj of each invitee
Uj ∈ U0. Once a group has been created, CGKA allows any group member Ui to
update their key using (update, Ui). The role of the update operation is to allow the
user to ‘refresh’ their state in case their previous state was leaked to an adversary and
help achieve post-compromise security. This is accomplished by replacing their old
public key with a new one, and then accordingly updating the group key. Any group
member Ui can use (add, Ui, Uj) to add a new user Uj , and use (remove, Ui, Uj) to
remove an already-existing member Uj . Carrying out these group operations results
in the evolution of the group through epochs from U0 to UQ, Q being the total number
of epochs, with the corresponding group keys K0, . . . , KQ.18

Handling asynchronicity. The group operations – update, add and remove – re-
quire sending protocol messages to all members of the group. Since it is not assumed
that the parties are online at the same time (asynchronicity), all protocol messages
are instead exchanged via an untrusted delivery server. It is possible that the server
receives conflicting requests (e.g., (remove, Ui, Uj) and (remove, Uj , Ui)). This is han-
dled in CGKA via the confirm operation: (confirm, Ui, gi) is used to confirm or reject
Ui’s request for a group operation gi (Ui then proceeds to update their own local state

18Note that if the operation at epoch q was an update operation, then Uq+1 = Uq but the group
key does get updated.

42

accordingly). In case the group operation gi is confirmed, the server delivers the mes-
sage to the members and a member Uj 6= Ui uses (process, Uj , gi) to process the
group operation. These two operations – confirm and process – constitute the deliv-
ery operations. Although the delivery server can always prevent any communication
taking place, it is required that the shared group key in the CGKA protocol – and
thus the messages encrypted in the messaging system built upon it – remains private.
This is captured formally by the following adversarial model.

Definition 24 (Adaptive Security of CGKA [ACC+19]). The security for CGKA
is modelled using a game between a challenger C and an adversary A. At the be-
ginning of the game, A creates a group U0 ⊆ {U0, . . . , UM−1} by making a query
(initialise, Ui,U0). A can then make a sequence of Q queries, enumerated below,
in any arbitrary order. On a high level, the first four items allow the adversary to
carry out any group and delivery operations of its choice, whereas start-corrupt

and end-corrupt enable it to corrupt any user for a time period. The entire state
(old and pending) and random coins of a corrupted user are leaked to the adversary
during this period.

1. (add/remove, Ui, Uj): Ui requests to add/remove Uj to/from the group.

2. (update, Ui): Ui requests to refresh their current local state.

3. (confirm, q, β): the q-th query in the game, which must be a group operation
g ∈ {(add, Ui, Uj), (remove, Ui, Uj), (update, Ui)} initiated by some user Ui, is
either confirmed (if β = 1) or rejected (if β = 0) to Ui.

4. (process, q, Uj): if the q-th query is as above – i.e., a group operation g initiated
by Ui – then C delivers the message to Uj , who immediately processes it.

5. (start-corrupt/end-corrupt, Ui): starts/ends leakage of the entire internal
state and randomness of Ui to the adversary from this time point.

6. (challenge, q∗): A picks a query q∗ ∈ [0, Q] corresponding to a group operation
g or the initialization (if q∗ = 0). Let K0 = Kq∗ denote the group key that
is sampled during this operation and K1 be a random, independent key. The
challenger tosses a coin b and – if the challenge is non-trivial – the key Kb is
given to the adversary (otherwise the game is aborted).

Roughly speaking, the challenge is non-trivial if the group key Kq∗ is not efficiently
derivable from the information learned from user corruption (a formal definition, which
uses the notion of safe predicates, can be found in [ACC+19]). At the end of the game,
the adversary outputs a bit b′ and wins if b′ = b. We call a CGKA scheme (Q, ε, t)-
CGKA-secure if for any adversary A making at most Q queries and running in time t
the advantage in guessing b is at most ε.

7.1.2 TreeKEM: Protocol and Security

For simplicity, we consider a vanilla version of TreeKEM which suffices to explain our
lower bound. In particular, we make the following simplifying assumptions to the

43

protocol (version 9) described in [BBM+20]. (The assumptions will make more sense
once the protocol is described.)

1. TreeKEM uses a propose-commit mechanism, where one member Ui ‘proposes’ a
group operation gi and another member Uj (potentially same as Ui) ‘commits’ gi
by executing it and generating the corresponding protocol messages. Moreover,
batches of proposed group operations (assuming they are mutually-consistent)
can be committed by Uj in one go. We assume that the member proposing a
group operation gi (i.e., Ui above) themself generate the protocol messages for gi
and leave it to the delivery server to confirm or reject gi. Moreover, we prohibit
batching and limit members to only one group operation per proposal.

2. TreeKEM is built on top of a PKE scheme and its group-key-generation algo-
rithm invokes the key-generation algorithm of this PKE scheme multiple times.
TreeKEM optimises this process using so-called hierarchical key-derivation, where
a member Ui uses a hash-based key-derivation function (HKDF) to generate the
key-pairs (of the underlying PKE) on ‘its path to the root’. The motivation is
to decrease the communication complexity. We, on the other hand, assume that
all the keys are generated independently by Ui. This will result in a simpler
key-graph at the cost of a slightly more inefficient protocol.

3. The TreeKEM protocol is based on ratchet trees and its structure evolves over
time along with the structure of the group. We assume

(a) unlike in TreeKEM, a priori upper bound M = 2m on the number of users,
and therefore the size of the group; and

(b) that the leaf i ∈ {0, 1}m in the ratchet tree is reserved for the user Ui: in
TreeKEM the position of a user is not fixed and when a user is added it is
assigned the ‘leftmost’ free leaf in the current ratchet tree.

As a result of these assumptions, the ratchet tree for every epoch will be the
perfect binary tree Bm and we can avoid having to deal with extending this tree.

The lower bound we establish for vanilla TreeKEM can be extended to the TreeKEM
protocol described in [BBM+20] and Tainted TreeKEM [ACC+19] without much dif-
ficulty. Henceforth, by TreeKEM we refer to the vanilla formulation.

Ratchet tree. The TreeKEM protocol is based on so-called ratchet trees and the
structure of the ratchet tree evolves over the epochs along with the structure of the
group. The key-graph corresponding to the ratchet tree for an epoch q ∈ [0, Q] is a
perfect binary tree Bm of depth m (see Figure 4). The vertices in Bm are classified
into two: normal and ‘blank’. A normal vertex is associated with a key-pair of the
underlying PKE scheme, whereas a blank vertex is not – the exact role of these blank
vertices will be explained along with the add operation later in the section. The
vertices have the following semantics19:

19To be precise, each vertex v should be accompanied by a superscript which specifies the epoch
it belongs to: e.g., v(q) when v is from epoch q. However, to avoid the cluttering introduced by this

44

• Members are associated with leaves: the leaf i ∈ {0, 1}m of member Ui ∈ Uq
is associated their key-pair and is therefore normal. All unoccupied leaves are
blank.

• The root ε is associated with the current group key Kq and is therefore normal.
In fact, the root is normal for all epochs.

• Each normal internal vertex v ∈ {0, 1}<m is associated with an independently
sampled key-pair (pkv, skv).

The edges in Bm encode the ciphertexts generated to enable the members to compute
the group key Kq. To this end, the following invariant is maintained throughout the
epochs: each member Ui ∈ Uq only knows the secret keys corresponding to the vertices
on its path Pi to the root

i = i [0,m− 1]→ i [0,m− 2]→ . . .→ i [0, 1]→ i [0, 0]→ ε

where i[0, b] denotes the prefix of i of length b + 1. Therefore, the protocol messages
designated to a member Ui ∈ Uq consists of the ciphertexts Enc(pku, skv) for every
edge (u, v) ∈ E(Pi) (see Figure 4.(a)). Since there are no keys corresponding to a
blank vertex, the idea is to ignore these vertices when computing ciphertexts, i.e.:

• If a leaf i is blank no ciphertext is computed for i. The same holds for any blank
internal vertex v whose ancestors are all blank.

• When an internal vertex v (with some normal ancestor) is blank, it is skipped
and the ciphertext corresponding to the (unique) successor v′ of v is computed
– in case v′ is also blank this rule is applied recursively until a normal node is
encountered (recall that the root is guaranteed to be normal).

For example, when all the internal vertices from a leaf i ∈ {0, 1}m to the root are
blank then there is a single ciphertext which is the encryption of the group key under
the public key of Ui.

Group operations. Since both add and remove are dependant on it, we start off
with update. Looking ahead, update is the only group operation that our adversary
(Algorithm 1) will employ (it also crucially uses the delivery operations though).

• Update. To update themself (see Figure 4.(b)), a user Ui ∈ Uq first generates a
fresh path P ′i

i′ → i [0,m− 2]
′ → . . .→ i [0, 1]

′ → i [0, 0]
′ → ε′

with normal vertices to the root. That is, for each vertex v′ ∈ V (P ′i) it generates
a fresh key-pair (pkv′ , skv′) and for each edge (u′, v′) ∈ E(P ′i) it generates a
ciphertext Enc(pku′ , skv′). Next, to enable the other members in the group to

notation, we simply assume that the epoch to which a vertex belongs is clear from the context. In
case there are two vertices that need disambiguation, we use a prime in the exponent, with the prime
usually referring to v in a later epoch: e.g., v and v′ instead of v(q) and v(q+1).

45

(a) (b)

(c) (d)

Figure 4: Ratchet tree and group operations in TreeKEM. (a) The ratchet tree of the group in epoch
q. The blank (resp., normal) vertices are shown as squares (resp., circles). The group currently has
six members Uq = {U0, . . . , U4, U7} assigned the leaves 000, . . . , 100 and 111 respectively. The leaves
101 and 110 are unpopulated and hence blank. The dotted edges represent the actual ciphertexts
corresponding to paths involving blank vertices: the shorter (resp., longer) of the dotted edges repre-
sents the ciphertext Enc(pk10, Kq) (resp., Enc(pk111, Kq)) which is encoded by the path (10, 1) → (1, ε)
(resp, (111, 11) → (11, 1) → (1, ε)) . Note that there are no ciphertexts corresponding to the empty
leaves 101 and 110. (b) The key-graph after U7 updates themself. A normal path P ′111 from the leaf
111′ to the (new) root ε′ (and its co-path edges) replaces the old path P111 (and its co-path edges)
which is shown in grey. This results in the new ratchet tree for epoch q + 1 as shown in black and
the part of the key-graph in grey is outdated. (c) The ratchet tree after U5 is added to the group by
U7. A blank path from the leaf 110′ to the root (ε′′) is added after which U7 updates themself (the
two steps have been merged into one in the picture). Note that the node 10′ is blanked in order to
maintain the invariant: otherwise U7 would know a secret key associated to a node on the path from
U4/U5 to the root. However further nodes on the path are normal as these also lie on the path from
U7 to the root which lies outside its own path to the root. (d) The ratchet tree after U1 is removed
from the group by U3. A blank path from the leaf 001′ to the root (ε′′′) is added after which U3

updates themself (the two steps have been merged into one in the picture). The node 00′ is blanked
for the same reason as in (c).

46

Figure 5: The path P100 = 100 → 10 → 1 → ε is highlighted in red. Its co-path vertices – 101, 11
and 0 – are also highlighted (in blue).

process this update, it adds edges from all ‘co-path’ vertices (see Figure 5) of Pi
to P ′i , i.e.,

{v0 . . . vl−1v̄l : v = v0, . . . , vl−1vl ∈ V (Pi)},

where v̄l is the bit complement. By the semantics described above, this means
that for each co-path vertex u and its successor v′ (which lies on P ′i and is hence
normal), Ui generates

– ciphertext Enc(pku, skv′) if u is normal; or

– ciphertexts Enc(pkw, skv′) for each normal ancestor w of u such that all
internal nodes on the path from w to v′ are blank, in case u is blank.

Finally, it sends all the ciphertexts and the newly-generated public keys to the
delivery server. In case the update is indeed confirmed, the group moves to the
new epoch q+ 1 with the new ratchet tree B′m obtained by replacing Pi and the
edges incoming to it with P ′i and its co-path edges, while retaining the rest of
Bm (see Figure 4.(b)).

• Add and remove. Suppose that a member Ui ∈ Uq wants to add a user Uj to
the group. According to the protocol specification Ui does the following (see
Figure 4):

1. Perform an update operation ‘on behalf of’ Uj but using blank internal
vertices: i.e., Ui adds a path P ′j that has a normal leaf j′ (associated with
the key-pair of Uj) but with the rest of the vertices blank and then adds
edges from the co-path vertices of Pj .

2. Update themself.

The reason to use blank vertices in Item 1 instead of normal vertices as, e.g.,
in Item 1 is to maintain the aforementioned invariant: if Ui samples keys on
behalf of Uj then it would know secret keys corresponding to vertices other
than the ones that lie on its own path to the root. It is worth mentioning that
Items 1 and 2 have been separated above only for the sake of exposition: in
Figure 4 they have been clubbed together into one step. The steps for a member
Ui ∈ Uq to remove another member Uj ∈ Uq is mostly similar to that in add (see
Figure 4.(d)):

47

1. Perform an update operation ‘on behalf of’ Uj but using only blank vertices:
i.e., Ui adds a path P ′j with only blank vertices and then adds edges from
the co-path vertices of Pj .

2. Update themself.

Authentication. The (base) protocol described thus far only takes care of the pri-
vacy aspect of CGKA. It is thus secure in a restricted setting where the delivery server
behaves honestly and the group is always in a consistent state (i.e., in an attack model
where the adversary cannot make delivery queries). To deal with dishonest delivery
servers, the full protocol employs authentication on top of the base protocol and,
furthermore, each ratchet tree Bm is tagged with a

1. tree hash, a commitment to (the public part of) Bm; and

2. transcript hash, a commitment to the history of operations that led to Bm as in
a blockchain.

Therefore, whenever a user Ui commits a group operation g and the group enters a new
epoch, they have to – in addition to the protocol message of the base protocol for g –
compute the tree hash of the new ratchet tree and generate the transcript hash using
the previous transcript hash, the new tree hash and the particulars of g. Moreover,
another member Uj processes g only if the accompanying hashes are consistent with
the ones stored locally as part of their own state. This enables group members to
ensure that they agree on the public cryptographic state of the group and guarantees
that only users that are in consistent state can communicate with each other.

Security. As a consequence of the structure of the group operations, the overall key-
graph consists of a DAG of depth m and in-degree two (but the out-degree can depend
on the number and order of group operations). The security game for TreeKEM can
therefore be considered to be a special case of public-key GSD played on graphs of
depth m and in-degree two. A security reduction for such a public-key GSD game
was shown in [ACC+19] with a quasi-polynomial (in M = 2m) loss of security, which
translates to the following theorem for TreeKEM.

Theorem 12 (Theorem 2 in [ACC+19] Restated for TreeKEM). If the underlying
PKE scheme is IND-CPA secure and the hash function is collision resistant then
TreeKEM is CGKA-secure with a loss in security of O(M2QO(m)), where M = 2m is
the number of users and Q is the number of queries.

7.2 Lower Bound for TreeKEM

Note that in comparison to public-key GSD, an adversary A trying to break TreeKEM
does not have complete freedom over the structure of the key-graph since the edges
added for group operations always form a path to a root (with additional edges from
the co-path vertices) as described in Section 7.1.2. Furthermore, A cannot corrupt
arbitrary nodes in the ratchet tree but is restricted to corruption of users, which are
associated with leaves in the tree. Therefore, the strategy of the public-key GSD

48

adversary used in the lower bound, e.g., using Theorem 11 (via Lemma 5 and Corol-
lary 9), does not directly carry over since it requires more fine-grained control on which
edges are added and which nodes are corrupted. However, we show that the querying
strategy there can still be emulated by a TreeKEM adversary through appropriate
group and delivery operations. The adversarial query strategy is formally described
in Algorithm 1, and below we provide an intuitive overview.

Overview of the query strategy. Recall that the Builder strategy B in Theo-
rem 11 (with the overlap parameter k = 1) is to construct, level by level, a regular
tree T∆ with in-degree 1, out-degree (denoted here by) ∆ and depth D. Let’s denote
the d-th vertex in the `-th level of this tree by v`,d. Our goal is to embed T∆ into the
TreeKEM key-graph (see Figure 6) with the root v0,1 of T∆ set as the user U0. Before
describing the query strategy of our TreeKEM adversary A, we make two observations
about the TreeKEM protocol (Section 7.1.2) and the attack model (Definition 24) that
will help with the description:

1. The only way to increase the out-degree of a vertex v (leaf or internal) in the
key-graph is indirectly by performing a group operation on a member Ui such
that v is a co-path vertex of the path Pi, or – in case of blank nodes – v is
connected to a co-path vertex v′ of Pi such that all nodes on the path from v
to v′ except v itself are blank (see Figure 4). We say that Ui extends the vertex
v. In case the group is in a consistent state – i.e., all members have processed
all the group operations – then only vertices in the current ratchet tree can be
extended. Therefore, if delivery operations are not available to an adversary
then vertices ‘in the past’ cannot be extended.

2. The adversary can only indirectly corrupt an internal node v of the key-graph by
(i) corrupting a user Ui (on leaf i) that is an ancestor of v to obtain their internal
state and (ii) using the (public) knowledge of protocol messages to decrypt the
chain of ciphertexts from i to v. Moreover, only the current internal state of a
user can be obtained via such corruptions. Even though a internal state might be
part of the key-graph (in some user’s view), these are inaccessible to a TreeKEM
adversary due to the restriction placed by the CGKA attack model. In other
words, the adversary is not permitted to corrupt ‘in the past’.20

With the observations in mind, our approach to simulate B is as follows (the value of
∆ and D in terms of M will be specified later in Corollary 10):

1. Let’s assume the initial group was created by a user in the right half of Bm,
i.e. all internal nodes on the path 0m → 0m−1, . . . , 0 → ε from 0m to the root
are blank (see Figure 6.(a)). To embed the level 1, A updates a set U0,1 of ∆
users such that each user Ui ∈ U0,1 extends 0m – since we assumed the internal
nodes from 0m to the root to be blank, such users are guaranteed to exist. These

20Note that adding this capability to the adversary strengthens the model. In fact the proof in
[ACC+19] holds in this stronger model. This boils down to the fact that the public-key GSD game
has no notion of time and it is possible to corrupt any node as long as it does not render the challenge
trivial.

49

level-0 updates result in a set of level-1 vertices V1 := {v1,0, . . . , v1,∆−1}, which
A extends in Item 2 (see Figure 6.(b) and Figure 6.(c)).

2. To embed level 2, for each level-1 vertex v1,i ∈ V1 just added in Item 1, A fixes
a set of ∆ members U1,i such that each member Uj ∈ U1,i extends v1,i. Then it
forks the state of the group as follows:

(a) Uj processes all messages Ui processed so that they share the same group
state,

(b) both Uj and Ui process the update of Ui (which created node v1,i), and

(c) Uj extends v1,i by updating themself.

At the end of these level-1 updates, A will have embedded a set of ∆2 level-2
vertices {v2,0, . . . , v2,∆2−1} (see Figure 6.(d)).

3. As in B, A randomly selects a ∆-sized batch of level-2 vertices

V2 = {v2,d∗1∆, . . . , v2,(d∗1+1)∆−1} ⊂ {v2,0, . . . , v2,∆2−1},

where d∗1 ∈ [0,∆− 1], which will be extended to get the next level.

4. A repeats Items 2 and 3 above another D − 3 times to complete the tree T∆:
i.e., for ` ∈ [3, D], in the `-th iteration

(a) vertices in V`−1 are extended by forking the group state to get level-` ver-
tices {v`,0, . . . , v`,∆2−1}; and

(b) a random batch V` = {v`,d∗`−1∆, . . . , v`,(d∗`−1+1)∆−1} ⊂ {v`,0, . . . , v`,∆2−1} is

selected to be extended in the next iteration.

5. Finally, A chooses an update corresponding to a random level-D vertex in
vD,d∗D ∈ VD as the challenge epoch. Then, for each level `, it indirectly (re-
call the second observation above) corrupts every level-` vertex v ∈ V` bar the
one that lies in the challenge path

v0,d∗0
= 0m → v1,d∗1

→ . . .→ vD,d∗D

by corrupting the member which generated v. This is to make sure the reduction
answers the edges not rooted in the final challenge graph honestly.

The query strategy is formally described in Algorithm 1 and an example of the result-
ing graph structure is shown in Figure 6. Note that A crucially exploits the process
operation in Item 2 in order to force the group into an inconsistent state and get
around the two issues we noted above, viz., inability to extend vertices in past ratchet
trees or corrupt past states. Let’s consider the first of the issues: if the level-0 up-
dates made by U0,1 in Item 1 are all processed by all the members in the group –
i.e., the group is in a consistent state – then all members in U1,j would (by protocol
specification) extend v1,∆, the level-1 vertex that was added in the last level-0 update.
Instead, in Item 2, A makes only select members (i.e., U1,j) process select updates
(i.e., level-0 update by Uj ∈ U0,1). This necessarily forks the state of the group, which

50

means that the ratchet tree that a member perceives as current will be determined by
the update they process. Consequently the vertices they extend will belong to what
they perceive as the current ratchet tree (see Figure 6). However, this also means that
members belonging to two different ‘forks’ of the group state will – due to the layer
of authentication – no longer be able to communicate with each other (e.g., add each
other). This is not an issue though as A’s query strategy does not require doing this
anyway. Finally, note that forking the group state also solves the second issue: since
the current ratchet tree of each fork is considered to be ‘in the present’ in the model,
the members belonging to any fork can be corrupted (we still have to be careful not
to render the challenge trivial though).

1: (initialise, UM−1, {U0, . . . , UM−1}) . UM−1 fully populates the group, Ui
assigned leaf i

2: for each i ∈ {0, 1}m do . All users process the group initialisation
3: (process, 0, Ui)
4: end for

. U0,1 set as {U∆2 , . . . , U∆2+∆−1}
5: for d ∈ [0,∆− 1] do . Each user Ud ∈ U0,1...
6: (update, U∆2+d): query update0,dupdates themself to extend root 0m...
7: end forand generate level-1 vertices V1 = {v1,0, . . . , v1,∆−1}
8: Set d∗0 := 0 . Challenge path v0,d∗0

→ . . .→ vD,d∗D initiated at the leaf 0m

9: for ` ∈ [1,m− 2δ] do . For each higher level ` of T∆

10: for k ∈ [0,∆− 1] do . Fork the group for each extendable v`,d∗`−1∆+k ∈ V`
. Set U`,k := {U2`∆2+k∆, . . . , U2`∆2+(k+1)∆−1} and Ui := U2`−1∆2+d∗`−1∆+k

11: for each d ∈ [0,∆− 1] do . For each user Uj = U2`∆2+k∆+d ∈ U`,k
12: for l ∈ [0, `− 2] do . Uj processes all messages that...
13: (process, updatel,d∗l ∆, U2`∆2+k∆+d)Ui processed...

14: end forand both Ui and Uj end up in the same state
15: (process, update`−1,d∗`−1∆+k, U2`−1∆2+d∗`−1∆+k) . Both Ui and...

16: (process, update`−1,d∗`−1∆+k, U2`∆2+k∆+d)Uj process Ui’s update

17: (update, U2`∆2+k∆+d): query update`,k∆+d . Uj extends v`,d∗`−1∆+k

18: end for . Added v`+1,k∆, . . . , v`+1,(k+1)∆−1

19: Sample d∗` ← [0,∆− 1] . Part of level ` to be extended in iteration `+ 1
20: end for
21: end for
22: (challenge, updatem−2δ,d∗m−2δ

) . Challenge epoch q∗

23: for ` ∈ [1,m− 2δ − 1] do . For each (but extreme) level ` of T∆ indirectly...
24: for d ∈ [0,∆− 1] \ {d∗`−1} docorrupt the unextended level-` vertices by...
25: (start-corrupt, U2`∆2+d∗l ∆+d)corrupting the user that generated it
26: (end-corrupt, U2`∆2+d∗l ∆+d)
27: end for
28: end for

Algorithm 1: Query strategy for the TreeKEM adversary A, parametrised by the number of users
M = 2m and degree of embedding ∆ = 2δ. Only details pertaining to the embedding of T∆ has been
included.

51

(a)

(b)

(c)

(d)

Figure 6: Embedding a regular tree of outdegree ∆ = 2, depth D = 2 and overlap k = 1 in the
TreeKEM key-graph. (a) Initial ratchet tree. The ratchet tree after the group was initialised by
UM−1 and all invitees process this initialisation. (b) and (c) The key-graph after level-0 updates.
The key-graph after U4 on leaf 0100 and U5 on leaf 0101 update themself (before either operations are
processed). These key-graphs have the same structure and the only difference is in what U4 and U5

perceive (viz., (b) and (c) respectively) as current ratchet tree after they process their own updates
and the group state is forked. The first-level embedding is highlighted in blue (with U1,0 = {U4, U5}).
(d) The key-graph after level-1 updates. The point of view is of U11 on leaf 1011. The embedding is
complete (with U2,0 = {U8, U9} and U2,1 = {U10, U11}): since the vertices 000 and 00 on the path
0000 → 000 → 00 are blanked, the embedding actually is rooted at 0000 according to our convention
for blank vertices from Section 7.1.2. The challenge path is highlighted in red.52

The lower bound. In Lemma 6 we establish a tight coupling between the security
game for TreeKEM and the Builder-Pebbler Game played on trees. Our lower bound
for TreeKEM, Corollary 10, follows once the parameters are set appropriately.

Lemma 6 (Coupling Lemma for TreeKEM). Let G be the family of DAGs of depth m
and size N . Furthermore, let B and XCm,1 be the Builder and the cut from Theorem 11.
Then there exists

1. an ideal PKE scheme Π = (Gen,Enc,Dec)

2. a CGKA adversary A in PSPACE

such that for any straight-line reduction R that proves the CGKA security of TreeKEM
for groups of size M = 2m based on the security of the underlying PKE scheme there
exists a Pebbler P such that the advantage 1/Λ of R is at most the advantage of P
against B (up to a negligible additive term poly(M)/2Ω(M)).

Proof (Sketch). The proof proceeds similar to Lemma 5. The ideal PKE is defined
exactly as in Lemma 5 (with λ = Θ(M)) and the query strategy of the adversary
A is defined in Algorithm 1. The map φ from the CGKA game for TreeKEM to
Builder-Pebbler Game can be carried out in two steps: in the first step we map
the CGKA game for TreeKEM to the public-key GSD game by simply following the
protocol description, and in the second step we use the map from Lemma 5 to end
up with a Builder-Pebbler Game. Since Algorithm 1 embeds a ∆-regular tree T∆ of
depth m in the TreeKEM key-graph G, it follows that the corresponding Builder B
obtained by mapping Algorithm 1 using φ also ends up building a graph G such that
T∆ is embedded in it. The proof now follows by the observation that the bound we
established for Lemma 5 can be extended to any graph that has T∆ embedded in it
and because the order in which the embedding is carried out in G is exactly as by the
Builder in Lemma 5.

Corollary 10 (Lower Bound for TreeKEM). Let M = 2m be an upper bound on
the number of users. Then any straight-line reduction proving CGKA security of
TreeKEM based on the security of the underlying encryption scheme loses at least a
factor

Λ ≥MΩ(log(m)).

Proof. Simply set k = 1, ∆ = M1/4 (denoted δout there) and D = m/2 in Equation (2)
in the proof of Theorem 11 to arrive at an upper bound of π ≤ 1/MO(log(m)) on the
Pebbler’s advantage. This proves the claim.

Remark 6. It is possible to slightly improve on the constant factors in the exponent in
Corollary 10 by using a more frugal query strategy that uses add and remove operations
instead of just update. However, there will still remain a significant asymptotic gap
in the upper bound from [ACC+19] stated in Theorem 12 and our lower bound (see
Table 1). It is unclear whether or not the techniques used in the lower bound can be
extended to close this gap and therefore a resolution in either direction is an interesting
open question.

53

k∅

k0

k00

k000 k001

k01

k010 k011

k1

k10

k100 k101

k11

k110 k111k010

Figure 7: Illustration of the GGM PRF. Every left child kx‖0 of a node kx is defined as the first half
of PRG(kx), the right child kx‖1 as the second half. The thick node (shaded in green) corresponds to
FGGM (k∅, 010).

8 Cryptographic Lower Bound III: Constrained PRF

In this section we use our combinatorial results for the Builder-Pebbler Game to prove
that the constrained pseudorandom function (CPRF) [BW13, BGI14, KPTZ13] based
on the GGM PRF [GGM84] cannot be proven adaptively-secure based on the secu-
rity of the underlying pseudorandom generator (PRG) using a straight-line reduction.
Our lower bound almost matches the best-known upper bound by Fuchsbauer et al.
[FKPR14].

8.1 Definition, Construction and Security Assumption

The following definitions are essentially taken from [JKK+17].

Definition 25 (GGM PRF). Given a PRG : {0, 1}λ → {0, 1}2λ, the PRF FGGM :
{0, 1}λ × {0, 1}∗ → {0, 1}λ is defined as

FGGM (k, x) = kx where k∅ = k and ∀z ∈ {0, 1}∗ : kz‖0‖kz‖1 = PRG(kz).

A graphical representation of the GGM construction is depicted in Figure 7.
Next, we give the definitions for CPRFs that are tailored to prefix-constrained

PRFs.

Definition 26 (Prefix-constrained PRF). For n ∈ N, a function F : K × {0, 1}n → Y
is a prefix-constrained PRF if there are algorithms F.Constrain : K× {0, 1}≤n → Kpre
and F.Eval : Kpre × {0, 1}n → Y which for all k ∈ K, x ∈ {0, 1}≤n and kx ←
F.Constrain(k, x) satisfy

F.Eval(kx, x
′) =

{
F(k, x′) if x is a prefix of x′

⊥ otherwise.

54

That is, F.Constrain(k, x) outputs a key kx that allows evaluation of F(k, ·) on all
inputs that have x as a prefix. We can derive a prefix-constrained PRF from the
GGM construction by setting K = {0, 1}λ, Y = {0, 1}λ, and for a random k ← K and
x ∈ {0, 1}l with l ≤ n defining FGGM .Constrain(k, x) = (k1

x, k
2
x) := (x,FGGM (k, x))

and

FGGM .Eval(kx, x
′) :=

{
FGGM (k2

x, z) if x′ = x||z for some z ∈ {0, 1}n−l

⊥ otherwise.

The security for prefix-constrained PRFs is argued using the following game.

Definition 27. The game is played between a challenger G (which is either GL or
GR) and an adversary A using F. The challenger G picks a random key k ← K, and
initialises a set X = ∅. A can make at most q = q(n) queries, which is either:

• Constrain queries, (constrain, x): G returns F.Constrain(k, x), and adds x to
X .

• One challenge query (challenge, x∗): Here the answer differs between GL and
GR: GL answers with F.Eval(k, x∗) (real output), whereas GR answers with ran-
dom r ← Y (fake, random output) – for the task to be non-trivial, no element
in X must be a prefix of x∗. G adds x∗ to X .

Definition 28. A prefix-constrained PRF F is (s, ε, q)-adaptive-secure if GL and GR
are (s, ε)-indistinguishable.

8.2 Lower Bound for the GGM CPRF

To prove a lower bound for GGM, we use the combinatorial upper bound from Sec-
tion 5.3 for non-oblivious Pebblers, restricted to the class of graphs with outdegree 2.
The main challenge here is that – in contrast to our Builder from Section 5.3 – the
constrain queries of an adversary in the security game for prefix-constrained PRFs
correspond to paths in an exponentially large binary tree (see Figure 8). But it’s not
only that the adversary has to follow a certain query pattern, but more importantly
for each query (which corresponds to a path of up to n edges) it only receives a single
evaluation (and this evaluation allows A to efficiently compute any evaluations for the
entire subtree below it). While A might be able to use its unrestricted computational
power to distinguish whether the answer to its query lies in the image of the PRG (for
an appropriately chosen PRG), it is impossible to extract a pebbling configuration
on the entire path given just the single evaluation. This is why we follow a different
approach and instead of choosing a PRG with sparse output range construct a PRG
from two random permutations, which allows A to invert the function and compare
whether two queries were computed from the same seed. Similar to the Builder strat-
egy in Section 5.3, our adversary A makes bunches of queries forming complete binary
subtrees, threaded along the challenge path. However, these queries are now paths of
length n such that their prefixes cover the binary subtrees, respectively. Accordingly,
we then map these bunches of queries to a pebbling strategy on the corresponding
binary subtrees, instead of mapping single edges to a pebble or no pebble, as we did

55

in previous applications. Fortunately, the combinatorial bound from Section 5.3 still
holds for Builders revealing such bunches of queries at once.

Lemma 7 (Coupling Lemma for GGM CPRF). Let G be the family of trees of depth
D, size N = poly(D), indegree 1, outdegree 2 and a single source; i.e. G denotes
the set of poly(D)-sized subtrees of the binary tree of depth D which include the root,
where edges are directed from the root to the leaves. Furthermore, let B and XCD,k for
k = log(D)/2 be the Builder and the cut from Theorem 11. Then there exists

1. an information-theoretically secure length-doubling PRG scheme PRG

2. a CPRF adversary A in PSPACE

such that for any straight-line reduction R that proves CPRF security of the GGM
construction for input length D+1 based on the security of the underlying PRG scheme
there exists a Pebbler P such that the advantage 1/Λ of R is at most the advantage of
P against B (up to a negligible additive term poly(D)/2Ω(D)).

To prove this lemma, we will use the following construction of an information-
theoretically secure PRG scheme.

Lemma 8. Let π0, π1 : {0, 1}λ → {0, 1}λ be two random permutations. Then PRG :
{0, 1}λ → {0, 1}2λ defined by PRG(x) := (π0(x), π1(x)) is a poly(λ)/2λ/2-secure
length-doubling PRG.

Proof. Since random permutations are indistinguishable from random functions using
only polynomially many queries, we may consider the PRG as a concatenation of two
poly(λ)/2λ/2-secure PRFs by a hybrid argument. Again by hybrid argument, the
concatenation of two secure PRFs yields a PRF from {0, 1}λ to {0, 1}2λ. The lemma
follows, since length extending PRFs are PRGs.

Having a construction of a PRG in place, we are now ready to prove Lemma 7.

Proof of Lemma 7. We pick the PRG from Lemma 8 for λ = Θ(D).
Analogously to the proof of Lemma 4 we define a map φ between the CPRF game

and the Builder-Pebbler Game:

• For a constrain query by adversary A, (constrain, x), we make a case distinction
on the length l of x:

– if l = D + 1, the Builder B extends the current tree in the natural way,
ignoring k-sized blocks of trailing zeros in x and adding random nodes as
needed. More formally, write x = x1||x2||x3 ∈ {0, 1}l1 × {0, 1}l2 × {0}l3 ×
{0, 1} with l1, l2, l3 ≥ 0 and k|l3, where x1 is the longest prefix of x that
has been queried so far. For each prefix x′ of x with length between l1 + 1
and l1 + l2, B chooses a uniformly random node (that is not associated to
any prefix yet) and associates it to x′. Writing x2 = (x2

1, x
2
2, . . .), it then

queries the edges between the nodes associated with x1 and x1||x2
1, between

x1||x2
1 and x1||x2

1||x2
2, etc.

– if l ≤ D, B ignores the query.

56

• For the challenge query (challenge, x∗), proceed as for constrain queries to
extend the tree. Choose the node associated to x∗ as the challenge T .

• Pebbles are determined in the following way. Recall that the Builder from The-
orem 11 always extends the tree in chunks of entire subtrees (and the queries
comprising such a chunk can be sent at the same time). So we may restrict the
definition of φ to preimages of such Builders. To determine which edges in such
a subtree are pebbled, consider the responses yi corresponding to the queries xi
in such a chunk. For each yi invert π0 repeatedly to obtain the seed associated
to the i-th leaf in the subtree. Then for every node, bottom-up, if

– the children are associated with seeds s0, s1, resp., check if π−1
0 (s0) =

π−1
1 (s1). If this is true, associate the node with this computed seed. Oth-

erwise, consider both outgoing edges from this node as pebbled and set the
seed of this node to ⊥.

– only the left (right) child is associated with a seed s, set the seed of this
node to π−1

0 (s) (π−1
1 (s), resp.).

– neither of the children is associated with a seed, set the seed of the current
node to ⊥.

For the root of the subtree, which already has a seed s (or ⊥) associated to it,
check if s is consistent with its children; if not, update to ⊥ and pebble both
outgoing edges.

Let A be the preimage under φ of B from Theorem 11 as follows: A first queries
CPRF evaluations for {0, 1}2k||0D−2k+1 in reverse order (i.e. starting from 12k||0D−2k+1)21

– this is in analogy to the first 2k rounds of B (see Figure 8). Then it proceeds in
[D/k− 2] rounds, where in round j ∈ [D/k− 2] it first samples x∗j ∈ {0, 1}k and then

makes 22k queries x∗1|| . . . ||x∗j ||{0, 1}2k||0D−(j+2)k+1 in reverse order, starting with x∗1||
. . . ||x∗j ||12k||0D−(j+2)k+1. Next, A samples a challenge x∗ = (x∗1, . . . , x

∗
D, 1) in x∗1|| . . . ||

x∗D/k−2||{0, 1}
2k||1 uniformly at random. Furthermore, it makes constrain queries for

all prefixes (x∗1, . . . , x
∗
j−1, x̄j) for j ∈ [D]. If the answers to the prefixes are not consis-

tent with the previous CPRF queries, then A aborts and outputs 0. Otherwise, A uses
its unrestricted computational power to compute the mapping φ from the reduction’s
answers to its queries to a pebbling configuration on the subtree. Note that due to the
previous check, there must not be any pebbles on edges rooted at nodes outside the
challenge path. A now considers the pebbling configuration induced on the challenge
path. If this pebbling configuration lies in the cut defined by XCD,k, the adversary A
outputs 0, otherwise 1.

Clearly, A wins the CPRF game with probability 1. Now, let R be an arbitrary
straight-line reduction. First, note that the probability that R queries PRG on the

21This is for technical reasons: We defined the mapping φ to ignore k-blocks of trailing zeros in
order to associate queries x||0D−2k+1 to (non-disjoint) paths of length 2k. To this aim φ prolongs
the longest already existing subpath associated to some prefix x′ of x. If A now starts querying the
string 0D+1, this query would simply be ignored. On the other hand, if there was a preceding query
02k−1||1||0D−2k+1, then the query 0D+1 is mapped to an edge extending the path associated with
the prefix 02k−1.

57

1

2

3

4

5

6

Figure 8: A schematic diagram showing the adversarial query strategy for GGM CPRF in Lemma 7.
The outer (gray) triangle represents the perfect binary tree of depth D = 7k + 1 (also see Figure 3)
representing the GGM PRF. The internal (blue) triangles represent perfect binary trees of depth 2k
with the j-th triangle representing the 22k queries x∗1|| . . . ||x∗j ||{0, 1}2k||0D−(j+2)k+1. The challenge

x∗ is highlighted (in red) with the label j indicating the string x∗j .

challenge seed is negligibly small (poly(D)/2Ω(D)). Assuming this does not happen,
R can only gain a bigger advantage if it embeds its PRG challenge when interacting
with A and manages to hit a pebbling configuration in the cut, i.e. such that depending
on the challenge being real or random the pebbling configuration which A extracts lies
either in the cut set or not. Note that choosing a value in the tree at random instead of
applying PRG to the correct output is equivalent (w.r.t. A’s behavior) to responding to
the respective queries inconsistently and will thus yield a pebble with overwhelming
probability. Furthermore, the consistency check after the constrain queries ensures
that R may only place pebbles on edges rooted in the challenge graph and can only
embed its challenge in the challenge graph. Similar to the proof in Lemma 4, one can
see that R maps (under φ) to a Pebbler in the Builder-Pebbler Game which has at
least the same advantage of achieving such a configuration.

Using the above lemma, the following corollary now easily follows from Theorem 11.

Corollary 11 (Lower Bound for GGM). Let n be the input length of the GGM CPRF
scheme. Then any straight-line reduction proving cPRF security of the GGM con-
struction based on the security of the underlying PRG scheme loses at least a factor

Λ ≥ nlog(n)/2−log(log(n))/2.

58

9 Cryptographic Lower Bound IV: Proxy Re-encryption

As an application of our results on node Pebblers, we consider the recent work by
Fuchsbauer et al. [FKKP19] on adaptively-secure proxy re-encryption (PRE). In par-
ticular, they identify two natural security properties – indistinguishability of cipher-
texts and δ-weak key privacy – which allow them to prove adaptive CPA-security via
an (oblivious) black-box reduction. The notion of δ-weak key privacy clearly trans-
lates to node pebbling and a relation to the more general edge pebbling is not clear.
The current work now allows us to prove lower bounds on the security loss involved by
any black-box reduction that proves adaptive CPA security of a PRE scheme based
on these two basic security properties.

Remark 7. Other applications considered by Jafargholi et al. [JKK+17], such as
Secret Sharing and Yao’s Garbled Circuit, as well as the recent application to ABE
by Kowalczyk and Wee [KW19] use node-pebbling reductions. However, in all three
of these applications of the framework from [JKK+17], the graph structure is known
to the reduction in the beginning of the game, which allows for some compression
of the representation of the pebbling configurations. (As mentioned in Section 1.2.1,
[KKPW] managed to show lower bounds for Yao’s Garbled Circuit.)

9.1 Definitions and Security Assumptions

A PRE scheme is a public-key encryption scheme that allows the holder of a key pk

to derive a re-encryption key (short, rekey) rk for any other key pk′ [BBS98]. This
rekey lets anyone transform ciphertexts under pk into ciphertexts under pk′ without
having to know the underlying message. We say that a PRE is unidirectional if rk
does not allow transformations from pk′ to pk [AFGH05]. Moreover if ciphertext c′

for pk′ that was derived from a ciphertext c for pk, can be further transformed to
another ciphertext c′′ corresponding to public key pk′′ using a rekey rk′, the PRE is
said to allow two “hops”. A PRE that allows multiple hops, i.e. a multi-hop PRE, can
be defined analogously. A more formal definition of multi-hop, unidirectional PRE, to
which we apply our lower bounds, is given below – we use the definitions and security
assumptions from [FKKP19].

Definition 29 (Multi-hop, unidirectional PRE [FKKP19]). A multi-hop, unidirec-
tional PRE scheme for a message space M consists of the six-tuple of algorithms (S,
K,RK,E,D,RE), which are explained below.

S(1λ, 1ν)→ pp: On input the security parameter λ and the maximum level ν (both in
unary) supported by the scheme, setup outputs the public parameters pp. We
assume that pp is implicit in other function calls.

K(pp)→ (pk, sk): Key generation returns a public key pk and the corresponding
secret key sk.

RK((pki, ski), pkj)→ rki,j: On input a source key pair (pki, ski) and a target public
key pkj , re-key generation generates a unidirectional re-encryption key (rekey,
for short) rki,j .

59

E(pk, (m, `))→ (c, `): Encryption takes as input the public key pk, a message m and
a level ` ∈ [ν], and outputs a level-` ciphertext (c, `).

D(sk, (c, `))→ m : On input a ciphertext (c, `) and the secret key sk, decryption
outputs a message m, or the symbol ⊥ (if the ciphertext is invalid).

RE(rki,j , pki, pkj , (ci, `))→ (cj , `+ 1): Reencryption takes a re-key rki,j , a source
public key pki, a target public key pkj and a level-` ciphertext ci under pki
and transforms it to a level-(` + 1) ciphertext cj under pkj . Only ciphertexts
belonging to levels ` ∈ [ν − 1] can be re-encrypted.

Definition 30 (Correctness [ABH09, FKKP19]). A proxy re-encryption scheme (as
in Definition 29) is correct w.r.t. the message spaceM if the following two properties
hold:

1. Correctness of encryption: ∀λ, ν ∈ N ∀ pp ∈ [S(1λ, 1ν)] ∀ (pk, sk) ∈ [K(pp)]
∀ (m, `) ∈M× [ν]:

Pr
[
D
(
sk,E(pk, (m, `))

)
6= m

]
= negl(λ, ν),

where the probability is over the random coins of E.

2. Correctness of re-encryption: ∀λ, ν ∈ N ∀ pp ∈ [S(1λ, 1ν)] ∀ (pki, ski),
(pkj , skj) ∈ [K(pp)] ∀ rki,j ∈ [RK((pki, ski), pkj)] ∀ (m, `) ∈M× [ν − 1]:

Pr
[
D
(
skj ,RE(rki,j , pki, pkj , (ci, `))

)
6= m

]
= negl(λ, ν),

where (ci, `) is a level-` ciphertext of m under pki resulting either from direct
encryption or a reencryption of level-`−1 ciphertext, and the probability is over
the random coins of E and RE.

We consider the CPA-security from [FKKP19] as defined in Game 1. In the security
game an adversary first receives the public keys of all users and then can adaptively
do the following queries: It can corrupt a party and receive its secret key, it can query
for rekeys between two users or for a re-encryption of a ciphertext encrypted under
the public key of one user to an encryption of the same plaintext under the public
key of another user, and, only once, it can issue a challenge query where it chooses a
challenge user, two messages m0,m1 as well as a level and receives an encryption of
mb to the chosen levelunder the challenge user’s public key. The adversary’s goal is
to guess the bit b.
Consider the graph structure on the set of users which is defined throughout the game
as follows (see Figure 9): Whenever the adversary queries a rekey or a reencryption of
some ciphertext from user i to user j, this is represented as an edge from j to i (note,
for CPA-security we do not distinguish between rekey and reencryption queries).22

22In [FKKP19], edges were defined in a more natural way, opposite to here, which led to an inverse
pebbling game where a node can be pebbled/unpebbled if all its children are pebbled. For the ease of
presentation, we chose to define the query graph so that it fits our general framework and the usual
reversible pebbling game. Analogously to the GSD game, corrupting a node allows the adversary
to decrypt ciphertexts encrypted under the public key of any node which is reachable from it in the
graph.

60

To avoid trivial wins, we need to restrict the adversary so that it can not simply
reencrypt the challenge ciphertext to a corrupted party and then use the known secret
key to decrypt. Thus, for CPA-security23, the adversary is not allowed to query any
paths of rekey or reencryption queries from the challenge user to a corrupted user.
Considering the query graph in Figure 9, this corresponds to the requirement that the
challenge node is not reachable from any corrupt node.

1

2

3 4

7

5 6

8

9

10

11

12

13

14

15

sk2

rk1,3

ReEnc(rk3,5, c3)

3

Encpk3(mb)

Figure 9: Recoding and challenge graph as generated in game CPAb. The round green nodes represent
the honest users, the square red ones the corrupted users. Solid black arrows from node i to node
j represent that a rekey rkj,i from j to i was issued, and, similarly, dotted blue arrows represent
re-encryption queries. For the definition of the recoding graph we do not distinguish between these
two types of edges. The challenge node is marked in orange, here node 3, and the challenge graph
(shaded grey) is the subgraph induced on all the ancestors of the challenge node.

Definition 31 (PRE-CPA-security [FKKP19]). A PRE scheme is ε-adaptively secure
against chosen-plaintext attack if there is no adversary which can distinguish CPA0

from CPA1 with advantage larger than ε, where CPAb is defined in Game 1.

Fuchsbauer et al. [FKKP19] reduce the CPA security of a PRE scheme to the
following two basic security properties which are naturally satisfied by the popular
constructions they analysed. The first basic security property is indistinguishability
of ciphertexts, as defined for public-key encryption in [GM82], but on all levels:

Definition 32 (Indistinguishability). A proxy re-encryption scheme PRE has ε-in-
distinguishable ciphertexts if no adversary can distinguish IND0 from IND1 with ad-
vantage larger than ε, with IND as in Game 2.

23In [FKKP19], the authors also consider the stronger and less restrictive notion of security under
honest re-encryption attack (HRA) which was introduced in [Coh19] and distinguishes between (iter-
ated) re-encryptions of the challenge ciphertext and unrelated ciphertexts. They prove HRA-security
for PRE schemes which satisfy one more basic property called source-hiding. Our lower bounds
also hold for black-box reductions proving HRA-security of the scheme based on these three basic
properties.

61

Challenger CPAb(1λ, 1ν , n)
1: Set C, E = ∅ . Stores corrupt keys and issued re-keys and re-encryptions
2: pp← PRE.S(1λ, 1ν), (pk1, sk1), . . . , (pkn, skn)← PRE.K(pp) . Generate keys
3: ∀i, j ∈ [n], i 6= j : rki,j ← PRE.RK((pki, ski), pkj) . Generate re-keys

4: b′ ← A(corrupt,·),(rekey,·,·),(reencrypt,·,·,·),(challenge,·,·,·)(pp, pk1, . . . , pkn)
5: if A made call (challenge, i∗, ·, ·) for some i∗ then . Check for abort
6: if ∃ i ∈ C : i is connected to i∗ in ([n], E) then return 0 end if
7: end if
8: return b′

Oracle (corrupt, i)
1: Add i to C
2: return ski

Oracle (rekey, i, j)
1: Add (j, i) to E . Add to recoding graph
2: return rki,j

Oracle (reencrypt, i, j, (ci, `))
1: Add (j, i) to E . Add to recoding graph
2: return (cj , `+ 1)← PRE.RE(rki,j , pki, pkj , (ci, `))

Oracle (challenge, i∗, (m∗0,m
∗
1), `∗) . Single access

1: return (ci∗ , `
∗)← PRE.E(pki∗ , (m

∗
b , `
∗))

Game 1: PRE-CPA[FKKP19]

Challenger INDb(1λ, 1ν)
1: pp← PRE.S(1λ, 1ν), (pk, sk)← PRE.K(pp)

2: return b′ ← A(challenge,·,·)(pp, pk)

Oracle (challenge, (m∗0,m
∗
1), `∗)

1: return PRE.E(pk, (m∗b , `
∗))

Game 2: Security game IND for ciphertext indistinguishability

Challenger KPb(1λ, 1ν)
1: pp← PRE.S(1λ, 1ν), (pk0, sk0), . . . , (pkδ, skδ)← K(pp)

2: ∀j ∈ [δ] : rk
(0)
0,j ← RK((pk0, sk0), pkj)

3: rk
(1)
0,j ← RK∗(pp, pkj)

4: return b′ ← A(pp, pk0, . . . , pkδ, rk
(b)
0,1, . . . , rk

(b)
0,δ)

Game 3: Security game KP for weak key-privacy [FKKP19]

The second security property is δ-weak key privacy, which says that a set of δ re-
encryption keys rk0,i from a given source key (pk0, sk0) to δ given target public keys
pki, where i ∈ [δ], is indistinguishable from a set of δ rekeys which were generated from
a freshly sampled source key pair (pk′0, sk

′
0). The security game for weak key-privacy

as considered in [FKKP19] is given in Game 3 where the simulator RK∗ is defined as

RK∗(pp, pk1) := RK((pk′0, sk
′
0), pk1) : (pk′0, sk

′
0)← K(pp).

Definition 33 (Weak key-privacy [FKKP19]). Let δ ∈ N. A proxy re-encryption

62

scheme PRE is (ε, δ)-weakly key-private if no adversary can distinguish KP0 from KP1

with advantage larger than ε, where KP is defined in Game 3.

9.2 Lower Bounds

In applications of PRE schemes it often makes sense to only consider security against
restricted classes of adversaries where the recoding graph can only have a specific
form, such as a path (e.g., in the application of key rotation) or binary trees (e.g., in
a hierarchy of low depth). While for these cases quasi-polynomial upper bounds on
the security loss involved when proving CPA-security of the PRE scheme based on
IND-CPA security and δ-weak key privacy are known [FKKP19], our results allow us
to prove quasi-polynomial lower bounds for all oblivious reductions, which basically
means, that only the development of new techniques can lead to significally better
reductions and hence stronger security guarantees.

Definition 34 (Oblivious PRE Reduction). A straight-line PRE reduction R is obliv-
ious if it commits to a non-trivial vertex cover of all inconsistent edges (rekey queries)
at the beginning of the game.

In all our bounds we require the reduction to assign keys to nodes at the beginning
of the game.

Definition 35 (Key-committing PRE Reduction). A PRE reduction R is key-committing
if it commits to an assignment of keys to all nodes at the beginning of the game.

Lemma 9 (Coupling lemma for PRE). Let G be a family of DAGs and X a cut
function. Let B be an oblivious Builder in the (N,G)-Builder-Pebbler Game with
winning condition X. Then there exists

1. an ideal PRE scheme Π = (S,K,RK,E,D,RE)

2. a PRE adversary A in PSPACE

such that for any key-committing straight-line reduction R that proves adaptive PRE-
CPA security of a PRE scheme based on the IND-CPA security of the underlying PKE
scheme and the δ-weak key privacy there exists an oblivious Pebbler P such that the
advantage 1/Λ of R is at most the advantage of P against B (up to an additive term
poly(N)/2Ω(N)). Moreover, if R is oblivious, then so is P.

Proof. The proof is analogous to the one of Lemma 4, so we only point out the
differences here. The ideal PRE scheme Π is defined as follows: we build on the ideal
public-key encryption scheme from Section 6.3, from which ideal IND-CPA security
follows. We now equip the PKE scheme with PRE capabilities by defining RK to
respond with the output of a random function (with large enough co-domain, so that
rekeys are sparsely distributed in the range of the function) under the query input.
Upon re-encryption queries, the oracle 1) computes the secret and public keys that
are consistent with the rekey and the ciphertext, 2.a) if the source key pair of the
rekey coincides with the key pair associated with the ciphertext, it correctly decrypts
the ciphertext and re-encrypts the message using the target public key of the rekey,

63

2.b) and otherwise (i.e., if the source key pair of the rekey and the key pair associated
with the ciphertext do not match), it outputs a uniformly random string from the
ciphertext space (i.e., co-domain of E). The scheme described is clearly correct, and
one can show that it satisfies weak key privacy information-theoretically.

We now decribe the map φ that maps the parties in the PRE game to parties in a
Builder-Pebbler Game:

• The number N of nodes in the Builder-Pebbler Game corresponds to the number
N of keys in the PRE game.

• A rekey query (rekey, i, j) maps to an edge query (j, i) (sic!) in the Builder-
Pebbler Game.

• A response to a query (rekey, i, j) is mapped to “no pebble” if it consists of a
valid rekey from pki to pkj , and to “pebble” otherwise. (Note that this is always
well-defined for oblivious PRE reductions, because these need to commit to an
assignment of keys at the beginning.)

• Corruption and re-encryption queries are ignored in the Builder-Pebbler Game.

• The challenge query (challenge, i∗) is mapped to the challenge node t.

Analogously to the adversary in Lemma 4, A is the preimage of B under φ: A
performs the same rekey queries as B. When B selects a challenge node, A issues a
challenge query on the same node with randomly chosen messages m0 6= m1. A then
corrupts all nodes that are not in the challenge graph. If there are any inconsistencies
in the corrupted part, A aborts and outputs 0. Finally, A extracts the pebbling
configuration P from the transcript and checks whether the challenge ciphertext is
an encryption of m0 or m1 under the correct key. If the encrypted message is m0

(resp. m1) and the pebbling configuration is a valid node pebbling in the cut defined
by X(Gt), then A outputs 0 (resp. 1). Otherwise A outputs always 0. Clearly, this
adversary has advantage 1 in the PRE-CPA game.

Since Π is information-theoretically IND-CPA secure, R can only gain any advan-
tage in the IND-CPA game by sending A the challenge ciphertext as response to the
challenge query. However, this means the challenge node is associated to the challenge
public key. R does not know the corresponding secret key and thus, with overwhelm-
ing probability, will respond with a fake rekey when queried for the edge(s) incident
on the challenge node. This means in the extracted configuration, the target node
is pebbled, so the configuration is not in the cut. Accordingly, the output of A is
independent of the IND-CPA challenge bit.

This means, R must attempt to break δ-key privacy. The remaining proof is the
same as for Lemma 4, with the δ-key privacy challenge taking the role of the IND-CPA
challenge.

Corollary 12 (Lower bound for PRE restricted to paths). Let N be the number
of users. Then any oblivious, key-committing black-box reduction proving adaptive
PRE-CPA of a PRE scheme restricted to paths based on IND-CPA security and 1-
weak key privacy loses at least a factor

Λ ≥ 2 ·N log(N)/8−log(log(N)).

64

Corollary 13 (Lower bound for PRE restricted to binary trees). Any oblivious, key-
committing black-box reduction proving adaptive PRE-CPA security of a PRE scheme
restricted to rooted binary in-trees on N users based on IND-CPA and 2-weak key
privacy loses at least a factor

Λ ≥ N log(N)−log(log(N)).

For adversaries that are allowed to query complete (directed acyclic) graphs, Corol-
lary 1 implies an exponential lower bound on the security loss even for non-oblivious
black-box reductions:

Corollary 14 (Lower Bound for PRE). Let N be the number of users. Any key-
committing, straight-line reduction (possibly non-oblivious) proving unrestricted adap-
tive PRE-CPA security of a PRE scheme based on IND-CPA security and N -weak key
privacy loses at least a factor 2Ω(N).

Handling Rewinding Reductions Theorem 10 does not hold (and thus neither
Corollary 1) if we allow Pebbler P to rewind Builder B: P can invoke B once to learn
which edges queried in the first phase belong to P2

v and Sv, respectively. Then rewind
B, and in this 2nd execution the reduction can easily put pebbles so the graph ends
up in the cut.

However, Corollary 14 can be extended to rewinding reductions in the following
way. We can consider another adversary A∗ who only at the end of the first phase
decides which edges should belong to P2

v and Sv. A∗ will derive the randomness for
this assignment by using a random function (only known to A∗) on input the transcript
of the first query phase. The reduction can get a fresh shot at guessing which edges
belong to P2

v and Sv by rewinding A∗, but the probability of any such guess being
correct is upper bounded as in Equation (1) because every time the transcript changes,
there’s a completely new assignment, and thus the reduction cannot gradually learn
anything about the edge assignments.

10 Open Questions

We conclude this work by explaining some of the open questions and avenues for
further improving our results.

10.1 Rewinding Reductions

A large class of reductions that we do not consider in this work are rewinding reduc-
tions. While our lower bound for black-box reductions against unrestricted adversaries
in the PRE game allows rewinding (see discussion after Corollary 14), this is not the
case for our applications of the bounds on edge-pebbling Pebblers. To see this, let
us consider the oblivious adversary restricted to paths, which we constructed in the
proof of Theorem 6. Since this adversary chooses a uniformly random path in the be-
ginning of the game and then obliviously sticks to this graph structure, we can define
a reduction which manages to get into any pebbling configuration it wishes: First, R

65

runs the adversary once on an arbitrary pebbling strategy, e.g., it answers all queries
real. Then it rewinds the adversary until the point after it chose the path. But now
R knows the full path structure and can trivially embed the pebbles and its challenge
such that it ends up in a configuration in the cut.

To fix this issue, we could consider an adversary who follows the same oblivious
threshold strategy, but chooses the edges of the path uniformly at random while the
game proceeds; i.e., it first chooses a uniform edge e = (u, v) ← E := [N]0 × [N]0 \
{(x, x) | x ∈ [N]0}, then a uniform edge e′ ← E \ {(u′, v′) | u′ = u ∨ v′ = v}, and
so on. In particular, this adversary behaves randomly in each step, conditioned on
ending up with a path structure on the set of nodes. However, also this oblivious
adversary can be exploited by a rewinding reduction: Assume, R wants to end up
with a specific pebbling configuration P. When receiving A’s first query, R guesses
the position (i, i + 1) of this query on the path. If i is its challenge key it embeds
the challenge ciphertext, if (i, i + 1) ∈ P it places a pebble, otherwise it answers
real. For the next query R rewinds the adversary until it receives a query which is
connected to the first edge and, in particular, assuming its initial guess was correct,
knows the position of this edge on the path. Thus, it answers this query according to
the pebbling configuration it has in mind. R acts similarly for all following queries. If
it realises that its initial guess was wrong, R stops and rewinds the adversary until the
first query and starts another run of the game. Following this strategy, the reduction
has to rewind on expectation O(N2) times for each of the expected O(N) runs until
its initial guess is correct. Thus, this reduction can use the considered adversary at
an only polynomial slow-down.

This example shows that assuming non-rewinding (i.e., straight-line) reductions
is necessary for our proof to go through, and one can make similar observations for
the other adversaries considered in this work. We consider it an interesting open
problem to extend (some of) our lower bounds to rewinding reductions. Note that
the Builder-Pebbler Game might not be the right abstraction here, since it doesn’t
capture additional sources of randomness the reduction might choose (e.g. encryption
randomness in the case of GSD).

10.2 Reductions Exploiting Rewinding or Non-Obliviousness

Instead of extending our lower bounds to rewinding reductions, a promising approach
would be to find better reductions using rewinding. It might even be possible to find
polynomial reductions for many applications. We believe the GGM prefix-constrained
PRF might be a suitable target, due to the general interest of the primitive and
because we think this might be technically feasible. Using a similar approach as we
laid out for paths in Section 10.1 it is easy to see that our lower bound established
in Corollary 11 indeed does not hold for rewinding reductions, so this avenue remains
open.

Similarly, it would be of interest to find better non-oblivious reductions in the
more restricted settings, where we needed to exclude such reductions. This would
help clarify in which settings non-obliviousness is required and where it is simply an
artifact of our proof technique. Considering the broader implications, determining
the exact restrictions on the adversary that require non-oblivious and/or rewinding

66

reductions could provide guidance towards reductions for new applications that involve
dynamic graph-based security games.

10.3 Better Reductions for Other Graph Families

We showed in Section 4 that the advantage of a Pebbler in the (Restricted) Builder-
Pebbler Game is intimately related to cuts in the configuration graph of the challenge
graph. Our lower bounds exploited that certain configuration graphs have low weight
cuts, such that they are hard to exploit for a reduction. Assume, we could show
that for certain graphs there is no such cut in the configuration graph. Could this be
exploited to obtain better Pebbler strategies in the Builder-Pebbler Game restricted
to such graphs? This has the potential of resulting in better reductions for such graphs
in certain applications.

10.4 Resoving LKH

The tree-based protocols for CGKA and LKH are extremely related. While we are able
to use our techniques to show lower bounds for the former, we are unable to obtain any
bounds for LKH as pointed out in Section 7. The reason lies in the difference in the
security games: while in both games the adversary may force parties into inconsistent
states, only in the CGKA game the adversary can exploit this to prompt these parties
to generate encryptions to almost arbitrary previous keys. This is not true in the
security game for LKH (Multicast Encryption), where all encryptions are generated
by a trusted authority, which, by definition, is never in an inconsistent state. Still,
the setting is so tantalizingly close to the one of CGKA (and, more generally, GSD
on specific graph families), that it seems unlikely that such a bound could not be
established. However, at this point we cannot even rule out oblivious reductions, so
there might be better reductions lurking even in this class.

References

[ABH09] Giuseppe Ateniese, Karyn Benson, and Susan Hohenberger. Key-private
proxy re-encryption. In Marc Fischlin, editor, CT-RSA 2009, volume 5473
of LNCS, pages 279–294. Springer, Heidelberg, April 2009. (Cited on
page 60.)

[ACC+19] Joël Alwen, Margarita Capretto, Miguel Cueto, Chethan Kamath, Karen
Klein, Ilia Markov, Guillermo Pascual-Perez, Krzysztof Pietrzak, Michael
Walter, and Michelle Yeo. Keep the dirt: Tainted TreeKEM, adap-
tively and actively secure continuous group key agreement. Cryptology
ePrint Archive, Report 2019/1489, 2019. https://eprint.iacr.org/

2019/1489. (Cited on pages 3, 4, 5, 8, 33, 38, 39, 41, 42, 43, 44, 48,
49 and 53.)

[ACDT20] Joël Alwen, Sandro Coretti, Yevgeniy Dodis, and Yiannis Tselekounis.
Security analysis and improvements for the IETF MLS standard for

67

https://eprint.iacr.org/2019/1489
https://eprint.iacr.org/2019/1489

group messaging. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part I, volume 12170 of LNCS, pages 248–277. Springer,
Heidelberg, August 2020. (Cited on pages 3, 4, 8 and 42.)

[AFGH05] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger.
Improved proxy re-encryption schemes with applications to secure dis-
tributed storage. In NDSS 2005. The Internet Society, February 2005.
(Cited on page 59.)

[AS15] Joël Alwen and Vladimir Serbinenko. High parallel complexity graphs
and memory-hard functions. In Rocco A. Servedio and Ronitt Rubinfeld,
editors, 47th ACM STOC, pages 595–603. ACM Press, June 2015. (Cited
on page 8.)

[BBM+20] Richard Barnes, Benjamin Beurdouche, Jon Millican, Emad Omara, Ka-
triel Cohn-Gordon, and Raphael Robert. The Messaging Layer Security
(MLS) Protocol. Internet-Draft draft-ietf-mls-protocol-09, Internet Engi-
neering Task Force, March 2020. Work in Progress. (Cited on pages 38,
41 and 44.)

[BBR18] Karthikeyan Bhargavan, Richard Barnes, and Eric Rescorla. TreeKEM:
Asynchronous Decentralized Key Management for Large Dynamic Groups.
May 2018. (Cited on pages 38 and 41.)

[BBS98] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and
atomic proxy cryptography. In Kaisa Nyberg, editor, EUROCRYPT’98,
volume 1403 of LNCS, pages 127–144. Springer, Heidelberg, May / June
1998. (Cited on pages 4 and 59.)

[BDR20] Alexander Bienstock, Yevgeniy Dodis, and Paul Rösler. On the price of
concurrency in group ratcheting protocols. In Rafael Pass and Krzysztof
Pietrzak, editors, TCC 2020, Part II, volume 12551 of LNCS, pages 198–
228. Springer, Heidelberg, November 2020. (Cited on page 42.)

[Ben89] Charles H. Bennett. Time/space trade-offs for reversible computation.
SIAM Journal on Computing, 18(4):766–776, 1989. (Cited on pages 8, 17
and 21.)

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and
pseudorandom functions. In Hugo Krawczyk, editor, PKC 2014, volume
8383 of LNCS, pages 501–519. Springer, Heidelberg, March 2014. (Cited
on page 54.)

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure
garbling with applications to one-time programs and secure outsourcing. In
Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658
of LNCS, pages 134–153. Springer, Heidelberg, December 2012. (Cited on
page 7.)

68

[BHY09] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossi-
bility results for encryption and commitment secure under selective open-
ing. In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS,
pages 1–35. Springer, Heidelberg, April 2009. (Cited on page 7.)

[BRS03] John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme
security in the presence of key-dependent messages. In Kaisa Nyberg and
Howard M. Heys, editors, SAC 2002, volume 2595 of LNCS, pages 62–75.
Springer, Heidelberg, August 2003. (Cited on page 3.)

[BV98] Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be
equivalent to factoring. In Kaisa Nyberg, editor, EUROCRYPT’98, volume
1403 of LNCS, pages 59–71. Springer, Heidelberg, May / June 1998. (Cited
on page 8.)

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions
and their applications. In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, Part II, volume 8270 of LNCS, pages 280–300. Springer,
Heidelberg, December 2013. (Cited on page 54.)

[CDG01] Fan Chung, Persi Diaconis, and Ronald Graham. Combinatorics for
the east model. Advances in Applied Mathematics, 27(1):192–206, 2001.
(Cited on pages 9 and 21.)

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively
secure multi-party computation. In 28th ACM STOC, pages 639–648.
ACM Press, May 1996. (Cited on page 7.)

[CGI+99] Ran Canetti, Juan A. Garay, Gene Itkis, Daniele Micciancio, Moni Naor,
and Benny Pinkas. Multicast security: A taxonomy and some efficient
constructions. In IEEE INFOCOM’99, pages 708–716, New York, NY,
USA, March 21–25, 1999. (Cited on page 5.)

[Coh19] Aloni Cohen. What about bob? The inadequacy of CPA security for proxy
reencryption. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II,
volume 11443 of LNCS, pages 287–316. Springer, Heidelberg, April 2019.
(Cited on page 61.)

[Cor00] Jean-Sébastien Coron. On the exact security of full domain hash. In Mihir
Bellare, editor, CRYPTO 2000, volume 1880 of LNCS, pages 229–235.
Springer, Heidelberg, August 2000. (Cited on page 7.)

[DKW11] Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. One-time com-
putable self-erasing functions. In Yuval Ishai, editor, TCC 2011, volume
6597 of LNCS, pages 125–143. Springer, Heidelberg, March 2011. (Cited
on page 8.)

[DNRS99] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer.
Magic functions. In 40th FOCS, pages 523–534. IEEE Computer Society
Press, October 1999. (Cited on page 7.)

69

[DNW05] Cynthia Dwork, Moni Naor, and Hoeteck Wee. Pebbling and proofs of
work. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS,
pages 37–54. Springer, Heidelberg, August 2005. (Cited on page 8.)

[FJP15] Georg Fuchsbauer, Zahra Jafargholi, and Krzysztof Pietrzak. A quasipoly-
nomial reduction for generalized selective decryption on trees. In Rosario
Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I,
volume 9215 of LNCS, pages 601–620. Springer, Heidelberg, August 2015.
(Cited on pages 5 and 7.)

[FKKP19] Georg Fuchsbauer, Chethan Kamath, Karen Klein, and Krzysztof
Pietrzak. Adaptively secure proxy re-encryption. In Dongdai Lin and
Kazue Sako, editors, PKC 2019, Part II, volume 11443 of LNCS, pages
317–346. Springer, Heidelberg, April 2019. (Cited on pages 4, 5, 8, 20,
59, 60, 61, 62 and 63.)

[FKPR14] Georg Fuchsbauer, Momchil Konstantinov, Krzysztof Pietrzak, and Van-
ishree Rao. Adaptive security of constrained PRFs. In Palash Sarkar and
Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS,
pages 82–101. Springer, Heidelberg, December 2014. (Cited on pages 5,
7, 8 and 54.)

[FN94] Amos Fiat and Moni Naor. Broadcast encryption. In Douglas R. Stin-
son, editor, CRYPTO’93, volume 773 of LNCS, pages 480–491. Springer,
Heidelberg, August 1994. (Cited on page 41.)

[GGKT05] Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan.
Bounds on the efficiency of generic cryptographic constructions. SIAM
J. Comput., 35(1):217–246, 2005. (Cited on page 8.)

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic
applications of random functions. In G. R. Blakley and David Chaum,
editors, CRYPTO’84, volume 196 of LNCS, pages 276–288. Springer, Hei-
delberg, August 1984. (Cited on page 54.)

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to
play mental poker keeping secret all partial information. In 14th ACM
STOC, pages 365–377. ACM Press, May 1982. (Cited on page 61.)

[GMR01] Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility of
basing trapdoor functions on trapdoor predicates. In 42nd FOCS, pages
126–135. IEEE Computer Society Press, October 2001. (Cited on page 40.)

[GOS18] Sanjam Garg, Rafail Ostrovsky, and Akshayaram Srinivasan. Adaptive
garbled RAM from laconic oblivious transfer. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of
LNCS, pages 515–544. Springer, Heidelberg, August 2018. (Cited on
page 7.)

70

[GS18] Sanjam Garg and Akshayaram Srinivasan. Adaptively secure garbling
with near optimal online complexity. In Jesper Buus Nielsen and Vincent
Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS,
pages 535–565. Springer, Heidelberg, April / May 2018. (Cited on page 7.)

[GT00] Rosario Gennaro and Luca Trevisan. Lower bounds on the efficiency of
generic cryptographic constructions. In 41st FOCS, pages 305–313. IEEE
Computer Society Press, November 2000. (Cited on page 8.)

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive ar-
guments from all falsifiable assumptions. In Lance Fortnow and Salil P.
Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM Press, June 2011.
(Cited on page 8.)

[HJO+16] Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro,
and Daniel Wichs. Adaptively secure garbled circuits from one-way func-
tions. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part III, volume 9816 of LNCS, pages 149–178. Springer, Heidelberg, Au-
gust 2016. (Cited on page 7.)

[HKSS14] D. Hefetz, M. Krivelevich, M. Stojakovic, and T Szabó. Positional Games.
Birkhäuser Basel, 2014. (Cited on page 12.)

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable conse-
quences of one-way permutations. In 21st ACM STOC, pages 44–61. ACM
Press, May 1989. (Cited on pages 8 and 15.)

[JKK+17] Zahra Jafargholi, Chethan Kamath, Karen Klein, Ilan Komargodski,
Krzysztof Pietrzak, and Daniel Wichs. Be adaptive, avoid overcommitting.
In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I,
volume 10401 of LNCS, pages 133–163. Springer, Heidelberg, August 2017.
(Cited on pages 4, 5, 6, 7, 9, 10, 17, 20, 33, 54 and 59.)

[JW16] Zahra Jafargholi and Daniel Wichs. Adaptive security of Yao’s garbled
circuits. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B,
Part I, volume 9985 of LNCS, pages 433–458. Springer, Heidelberg, Octo-
ber / November 2016. (Cited on page 7.)

[KKPW] Chethan Kamath, Karen Klein, Krzysztof Pietrzak, and Daniel Wichs.
Limits on the adaptive security of Yao’s garbling, CRYPTO 2021, To
Appear. (Cited on pages 6, 8 and 59.)

[KNYY20] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Ya-
makawa. Compact NIZKs from standard assumptions on bilinear maps.
In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III,
volume 12107 of LNCS, pages 379–409. Springer, Heidelberg, May 2020.
(Cited on pages 4 and 8.)

71

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS
2013, pages 669–684. ACM Press, November 2013. (Cited on page 54.)

[Krá01] Richard Královič. Time and Space Complexity of Reversible Pebbling,
pages 292–303. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.
(Cited on page 9.)

[KST99] Jeong Han Kim, Daniel R. Simon, and Prasad Tetali. Limits on the effi-
ciency of one-way permutation-based hash functions. In 40th FOCS, pages
535–542. IEEE Computer Society Press, October 1999. (Cited on page 8.)

[KW19] Lucas Kowalczyk and Hoeteck Wee. Compact adaptively secure ABE for
NC1 from k-Lin. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part I, volume 11476 of LNCS, pages 3–33. Springer, Hei-
delberg, May 2019. (Cited on pages 4, 7 and 59.)

[LTV98] Ming Li, John Tromp, and Paul Vitányi. Reversible simulation of irre-
versible computation. Physica D: Nonlinear Phenomena, 120(1):168 – 176,
1998. Proceedings of the Fourth Workshop on Physics and Consumption.
(Cited on page 21.)

[LW14] Allison B. Lewko and Brent Waters. Why proving HIBE systems secure
is difficult. In Phong Q. Nguyen and Elisabeth Oswald, editors, EURO-
CRYPT 2014, volume 8441 of LNCS, pages 58–76. Springer, Heidelberg,
May 2014. (Cited on page 8.)

[MP04] Daniele Micciancio and Saurabh Panjwani. Optimal communication com-
plexity of generic multicast key distribution. In Christian Cachin and Jan
Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages
153–170. Springer, Heidelberg, May 2004. (Cited on page 42.)

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity
theoretic proofs: The non-committing encryption case. In Moti Yung,
editor, CRYPTO 2002, volume 2442 of LNCS, pages 111–126. Springer,
Heidelberg, August 2002. (Cited on page 7.)

[Nor15] Jakob Nordström. New Wine into Old Wineskins: A Survey of SomePeb-
bling Classics with Supplemental Results. 2015. (Cited on page 9.)

[Pan07] Saurabh Panjwani. Tackling adaptive corruptions in multicast encryption
protocols. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS,
pages 21–40. Springer, Heidelberg, February 2007. (Cited on pages 3, 4,
5, 7, 10, 33 and 41.)

[Pap85] Christos H. Papadimitriou. Games against nature. Journal of Computer
and System Sciences, 31(2):288 – 301, 1985. (Cited on page 13.)

72

[Pas13] Rafael Pass. Unprovable security of perfect NIZK and non-interactive non-
malleable commitments. In Amit Sahai, editor, TCC 2013, volume 7785
of LNCS, pages 334–354. Springer, Heidelberg, March 2013. (Cited on
page 8.)

[PH70] Michael S. Paterson and Carl E. Hewitt. Record of the project mac con-
ference on concurrent systems and parallel computation. chapter Com-
parative Schematology, pages 119–127. ACM, New York, NY, USA, 1970.
(Cited on page 8.)

[RTV04] Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibil-
ity between cryptographic primitives. In Moni Naor, editor, TCC 2004,
volume 2951 of LNCS, pages 1–20. Springer, Heidelberg, February 2004.
(Cited on pages 8 and 14.)

[Rud88] Steven Rudich. Limits on the Provable Consequences of One-way Func-
tions. PhD thesis, EECS Department, University of California, Berkeley,
Dec 1988. (Cited on page 8.)

[Sav98] John E. Savage. Models of computation - exploring the power of computing.
Addison-Wesley, 1998. (Cited on pages 9, 11 and 24.)

[Sim98] Daniel R. Simon. Finding collisions on a one-way street: Can secure hash
functions be based on general assumptions? In Kaisa Nyberg, editor,
EUROCRYPT’98, volume 1403 of LNCS, pages 334–345. Springer, Hei-
delberg, May / June 1998. (Cited on page 8.)

[WGL00] Chung Kei Wong, Mohamed G. Gouda, and Simon S. Lam. Secure group
communications using key graphs. IEEE/ACM Trans. Netw., 8(1):16–30,
2000. (Cited on pages 5 and 41.)

[WHA98] D. M. Wallner, E. J. Harder, and R. C. Agee. Key management for
multicast: Issues and architectures. Internet Draft, September 1998.
http://www.ietf.org/ID.html. (Cited on page 5.)

73

http://www.ietf.org/ID.html

	Introduction
	Our Results
	Related Work
	Adaptive Security
	Limitations of Reductions
	Graph Pebbling

	Technical Overview
	Our Approach
	Step I: Combinatorial Upper Bounds
	Step II: From Combinatorial Upper Bounds to Cryptographic Lower Bounds

	Preliminaries
	Graph Theory
	Graph Pebbling

	The Builder-Pebbler Game
	Player Strategies

	Combinatorial Upper Bounds
	Oblivious Pebbler
	Paths
	Binary In-Trees
	Unrestricted Games

	Node Pebbler
	Complete Graphs

	Unrestricted Pebbler
	Trees

	Cryptographic Lower Bound I: Generalised Selective Decryption
	Definition and Security Assumption
	Lower Bounds for GSD
	Public-Key GSD

	Cryptographic Lower Bound II: (Asynchronous) Continuous Group Key Agreement
	Definitions and Construction
	CGKA: Syntax and Security Model
	TreeKEM: Protocol and Security

	Lower Bound for TreeKEM

	Cryptographic Lower Bound III: Constrained PRF
	Definition, Construction and Security Assumption
	Lower Bound for the GGM CPRF

	Cryptographic Lower Bound IV: Proxy Re-encryption
	Definitions and Security Assumptions
	Lower Bounds

	Open Questions
	Rewinding Reductions
	Reductions Exploiting Rewinding or Non-Obliviousness
	Better Reductions for Other Graph Families
	Resoving LKH

	References

