
FPGA Offloading for Diffie-Hellman Key Exchange
using Elliptic Curves

Dorin-Marian Ionita
Computer Science Department

University Politehnica of Bucharest
Bucharest, Romania

dorin.marian.ionita@gmail.com

Emil Simion
Mathematics Department

University Politehnica of Bucharest
Bucharest, Romania
emil.simion@upb.ro

Abstract—Cryptographic offloading to hardware is a hot
research topic promising accelerated execution time and im-
proved security compared to the software counterpart. However,
hardware design and production is a lengthy process which
enquires significant financial resources and technical expertise.
Our research paper focuses on elliptic curve cryptography,
specifically Diffie-Hellman, and on minimizing these deficiencies
by highlighting solutions to map this class of algorithms to
hardware description. The insights are not limitative and can
be equally applied to other cryptographic primitives.
The resulting design uses few hardware resources, has low power
consumption, is easy to interface with the software and can be
implemented on cheap FPGAs.

Index Terms—elliptic curves, cryptography, diffie-hellman,
FPGA, hardware security, high level synthesis

I. INTRODUCTION

Elliptic curve cryptography has the advantage that it pro-
vides a higher level of security than cryptography based
directly on finite fields, resulting in keys of smaller sizes
for equal protection. As any other algorithm, ECDH (Elliptic
Curve Diffie-Hellman) can be implemented either in software
or in hardware, each approach having its own benefits and
deficits.

When implemented in software, the development time is
smaller and therefore the productivity of the programmer is
improved. Unfortunately, due to the multi-layered abstraction
stack (hardware, programming language, libraries, etc.) and
because of the general nature of the underlying hardware (a
generic processor) software implementations tend to be slower
than the hardware ones [5]. Moreover, algorithms implemented
in software have a larger attack surface because the intended
interface of the component is not necessarily the only access
point to the code and data [6]. An attacker will look for
alternative attack paths.

The previous argument holds equally true for hardware, but
since it is placed at a lower level of the abstraction stack,
the unintended access points are severely limited, especially
on dedicated implementations - FPGA (Field Programmable
Gate Array) or ASIC (Application Specific Integrated Circuit).
While the hardware adds security benefits and improves the
execution time, software implementations are often preferred,
not only because of the more rapid development process, but
also because ASICs and FPGAs demand significant financial

investments [7]. Furthermore, it is more difficult to interface
hardware with software than software-to-software components,
because of the need to match different level of the abstraction
stack.

This paper presents the results and insights obtained from
our attempts to mitigate the aforementioned downsides of
hardware implementation for cryptographic schemes, more
specifically applied to ECDH. We start with a brief overview
of related topics and existing work, as presented in section
II. Next, in section III we explain our development cycle,
responsible for reducing the development time. In section IV,
we continue by providing details about the high level synthesis
implementation of the cryptographic module. In section V and
the Appendix, the interface between the PS (Processing Sys-
tem, the CPU) and the PL (Programmable Logic, the FPGA)
is explained in more detail. These implementation details,
especially those related to HLS (high level synthesis), are
directly connected to section VI, which present our practical
results: quantity of the hardware resources used from FPGA,
execution time, power consumption and timing closure, price
of the SoC (System on Chip) we used. Finally, section VII
summarizes our results and highlights possible future research
direction.

II. TOPIC OVERVIEW AND RELATED THEORETICAL WORK

For our hardware implementation of ECDH we used a
number of already well established techniques and theoretical
results, which are presented in more detail in this section.

From a theoretical perspective, the Diffie-Hellman Key
Exchange [8] scheme is presented. Next, Diffie-Hellman needs
a random number generator for the choice of the key and to
this aim we used a linear shift register [9]. While the initial
description of the algorithm used the multiplicative group of
integers modulo n for the underlying mathematical support
needed to define the discrete logarithm problem [10], a more
secure approach is to use the elliptic curves over a finite field.
In fact, using elliptic curves leads to shorter key lengths for
the same level of security compared to the classical version
[1].

Implementing arithmetic operations on elliptic curves, as
ECDH needs, implies a way to compute modulo n inverse,



which can be done using the extended version of Euclid’s
Algorithm, in the iterative version.

From a practical approach, we summarize the HLS tech-
nique [11] and its advantages and disadvantages when com-
pared to classical RTL (Register Transfer Level) design.

A. Diffie-Hellman Key Exchange

Public key cryptographic schemes allow 2 parties to share
a secret over a public channel. Each party involved in the
communication possesses a pair of keys: a public one and
a private one. The public key is shared with the other party
over the public channel, while the private key is only know
to its owner. Combining the public key of the communication
partner with one’s private key leads to the secret. The obtained
secret is the same for both parties.

More to the point, Diffie-Hellman particularizes this scheme
in a manner in which obtaining the private key from the
public key requires the attacker to solve the discrete logarithm
problem [10] (for which no known efficient algorithm is
known [10]).

The algorithm requires that the communicating parties pre-
viously (perhaps publicly) share a number of parameters: a
large primer number p (which together with multiplication
defines a finite field (Z∗

p, · )) and an initial integer x such that
2 6 x 6 p− 1.

The algorithm is symmetrical for both communication par-
ties, as presented in Algorithm 1, where kA denotes own’s
private key, KA own’s public key, KB the public key of the
other party, and kA,B the shared secret.

Algorithm 1 Diffie-Hellman over (Z∗
p, · )

INPUT: p, x
kA = random choice({2, ... p− 2})
KA ≡xkA mod p
send(KA)
receive(KB)
kA,B ≡KB

kA mod p

B. Pseudo-Random Number Generators

An entropy source or a pseudo-random number generator is
needed in order to choose a private key in the Diffie-Hellman
scheme. To this aim, we used the theoretical basis of the LFSR
(Linear-Feedback Shift Register) [9]. An example scheme for
such a register, with degree 3, is presented in Figure 1 [12].

Fig. 1. Linear-Feedback Shift Register, degree 3 [12]

In Figure 1, at each time moment (set by the clock signal),
a new value for the si bits is computed, as a combination of
xor-sum operations on the values of the bits at a previous time
moment. The numbers resulting from the concatenation of the
bits have good statistical randomness properties over time [9].

As explained in [12], this design of pseudorandom-number
generator is straightforward to be extended to arbitrary lengths
and we used it to obtain private keys in our implementation
of ECDH.

C. Elliptic Curves

As shown in [13], there are algebraic structures which
provide better security for Diffie-Hellman Key Exchange than
(Z∗

p, · ). More precisely, elliptic curves can be defined over a
finite field.

Such an elliptic curve, denoted by E(Zp), is defined as the
subset of points from Z2

p satisfying equation 1 together with
a distinguished ∞ point,

y2 ≡ x3 + ax+ b (1)

where a, b ∈ Zp and 0 6≡ 4a3 + 27b2 mod p.
We denote by #E(Zp) the number of points on E(Zp).
Once the set on which the algorithm operates is defined, we

also need to define an equivalent to the multiply operations
shown in Algorithm 1.

Let (x1, y1), (x2, y2) ∈ E(Zp). We define (x3, y3) =
(x1, y1) + (x2, y2) using formulae 2 and 3, where s is defined
by formula 4.

x3 ≡ s2 − x1 − x2 mod p (2)

y3 ≡ s(x1 − x3)− y1 mod p (3)

s ≡

{
(3x2

1 + a)(2y1)
−1 mod p , if (x1, y1) = (x2, y2)

(y2 − y1)(x2 − x1)
−1 mod p , otherwise

(4)
Finally, let P ∈ E(Zp) and n ∈ N, then we define addition

of a point with itself n times as in formula 5.

nP =

{
P + (n− 1)P , if n ≥ 2

P , if n = 1
(5)

One last theoretical result, related to elliptic curves, which
we used in our hardware implementation is Hasse’s Theorem
(formula 6) [14]. It provides a boundary for #E(Zp).

p+ 1− 2
√
p 6 #E(Zp) 6 p+ 1 + 2

√
p (6)

D. Algorithm for Computing Inverse modulo n

As show in formula 4, an algorithm for computing inverses
modulo n is needed in order to implement arithmetic opera-
tions on elliptic curves. One example of such an algorithm is
presented in [15], based on extended Euclid’s Algorithm.



E. Diffie-Hellman Key Exchange using Elliptic Curves

Using the definitions in section II-C, algorithm 1 can
be adapted to have (E(Zp), · ) as underlying support. This
adaption, known as ECDH is presented in Algorithm 2.

This time, the hyperparameters of the algorithm are the
curve parameters a and b, the primitive element G ∈ E(Zp)
and the prime p.

Algorithm 2 Diffie-Hellman over (E(Zp), · )
INPUT: a, b, p, G
kA = random choice({2, ...#E(Zp) −1})
KA = kAG
send(KA)
receive(KB)
kA,B = kAKB

F. High Level Synthesis

For our hardware design we used a mixed approach of
RTL and HLS design. This is because we aimed at accessing
the advantages of both approaches, while eliminating the
deficiencies.

The usual approach to hardware design for FPGA is to use
low level hardware description languages such as VHDL and
Verilog. While these languages provide good control of the
synthesized design, the drawback is that development at this
abstraction level, called RTL, is a slow process.

To mitigate this, HLS allows the hardware designer to use
a high level hardware description language, usually based on
a programming language such as C, C++, Scala or Haskell
[16]. The hardware described using such a language is then
compiled to a low level hardware description language which,
in turn, can be synthesized to program a FPGA.

III. HARDWARE-SOFTWARE CODESIGN CYCLE

In our implementation we took a multi-step approach to our
development, as presented in Figure 2.

First, ECDH is implemented in Vivado HLS based on C.
Once the implementation is complete, it is considered software
and compiled to binary, followed by testing against a software
test bench. Once the functional tests are passed, the HLS
description is compiled to VHDL. Multiple target frequencies
are tried, in descending order, and the HLS description is
optimized until time closure is achieved. The final HLS version
is compiled to an RTL description and is validated against the
same test bench.

The resulting module is then integrated with the rest of the
SoC at RTL level. This is where the interconnecting between
the PS and the PL is described, as well as where the maximum
possible frequencies are set. After synthesis and after the
FPGA is programmed, the drivers, which run on the PS, are
written. They are needed to send inputs to the FPGA and to
receive outputs from it, and for performance measurements.

Fig. 2. Hardware-Software Codesign Cycle

IV. HIGH LEVEL SYNTHESIS ARCHITECTURE DETAILS

In the first part of this section, we describe our architecture
as a black-box, explaining the desired behaviour and the
interface to the processing system.

In the following parts of this section, we follow the white-
box approach to explain the actual details of the HLS im-
plementation. We show how we considered the limitations
and enhancement of the HLS language compared to the C
programming language, when applied to ECDH: arbitrary
size data types and associated arithmetic operations, lack of
recursion or arbitrary length loops, lack of complex mathe-
matical operations, persistent and secure data storage, external
interfaces.



A. The Accelerator as Black-Box

For the High Level Synthesis, we developed the IP (Intellec-
tual Property) in Figure 3. Ports s axi CONTROL BUS,
ap clk, ap rst n and interrupt have meaning only in the
context of interconnection with the PS and are explained in
section V, while the rest of them come from our implementa-
tion of ECDH, and are detailed in the next 2 paragraphs.

Fig. 3. ECDH IP Generated Using HLS

The IP works in 2 stages. In the first one, the private key
is generated (and kept inside the FPGA). The output of this
stage is the public key. The PS sets the curve parameters: p1
(the prime number), a and b (the curve coefficients) and g x
and g y (the primitive element). Signaling that we wish to
generate the key (as opposed to the shared secret) is done by
setting the gen key flag. After the execution of this step, the
public key is available on the kA y and kA x ports.

In the second step, the public key of the communication
partner is sent to the FPGA using the ports kB x and kB y,
and the gen key flag is not set. The resulting shared key
will be available on ports k x and k y.

In the HLS language, the inputs and outputs of the black-
box are described using specific pragma directives, as shown
in Listing 1.

#pragma HLS INTERFACE s_axilite port=return
bundle=CONTROL_BUS

#pragma HLS INTERFACE m_axi port=p_in
offset=slave bundle=p

Listing 1. Pragma Directives Describing the Interface

B. Arbitrary Data Types and Associated Operations

The most obvious difficulty in implementing the algorithm
in hardware is that we need to use large numbers and
perform basic arithmetic operations on them. In a program-
ming language one could use a large numbers library and
in Verilog/VHDL vectors with arbitrary number of elements,
each with 1 bit length can be employed. These approaches

are not available in HLS. Fortunately, the custom hardware
description language defines arbitrary size data types. One
such case is our definition of the curve parameters, as shown
in Listing 2. For example uint224 defines a 224 bits long
unsigned integer. The unsigned integer type specification is
important because there are a number of operators defined on
it: addition, multiplication, subtraction, division and modulo.
Pointer referencing and dereferencing for this type is also
possible.

uint224 a, b;

Listing 2. Arbitrary Size Curve Parameters in HLS

Furthermore, using this abstraction from HLS, operations
on smaller data type are implicitly implemented (provided the
user fills the remaining bits with 0). This allows a hardware
design with a higher level of generality, for example a 256
key-length ECDH implementation will also support a 224 bits
one, ultimately resulting in shorter development time for the
hardware.

C. Mitigating Lack of Recursion and Arbitrary Length Loops

Notably, an operation which is not defined for arbitrary
length data types is the modulo inverse. In order to implement
this operation, we used the extended version of Euclid’s
Algorithm. Since recursion can not be used in HLS, we had
to use the algorithm in iterative form, as explained in [15].
Moreover, loops of length that can not be known at compile
time, such as while instructions, can not be used in HLS. To
mitigate this, we simply used a for instruction of maximum
possible length for the data type and a break instruction for
stopping the loop earlier. The precise code is shown in Listing
3.

for (i = 0; i <= max_uint224; i++) {
if (b1 == 0)

break;
...

}

Listing 3. Persistent and Secure Data Storage

D. Mitigating Lack of Complex Mathematical Operations

With respect to generation of the private key, Algorithm 2
requires a random choice of a number based on the number
of the points on the elliptic curve. In order to gain the number
of points we started from the prime parameter of the curve
and Hasse’s Theorem (briefly explained in section II-C). The
disadvantage of this theorem is that it requires a square root
computation, which can be costly to do in FPGA. A simpler
approach is to find a lower bound of the number of points on
the elliptic curve and use it instead of the square root.

Starting from expression 6, and considering (from Algo-
rithm 2) kA 6 #E(Zp)− 1, equation 7 follows.

kA 6 p+ 1− 2
√
p− 1 (7)



Equation 7 can be simplified to equation 8.

kA 6 p− 2
√
p (8)

For the next step of our boundary proof, we notice that for
large enough p expression 9 holds true.

√
p 6

p

4
(9)

From 8 and 9 the boundary in formula 10 follows, which
allows us to choose the private key of ECDH randomly from
the set {0..p/2}.

kA 6
p

2
(10)

E. Persistent and Secure Data Storage

In order to further improve the security of our design, the
private key never leaves the FPGA. To achieve this in HLS, it
suffices to define the variable representing the key as global
and static - the static keyword in this case actually signifies
that the value is kept between multiple calls to the accelerator.
This exact technique was also used to avoid resetting the LSFR
at private key generation. A code snippet for this is shown in
Listing 4.

static uint224 lfsr;
static uint224 private_key;

Listing 4. Persistent and Secure Data Storage

V. REGISTER TRANSFER LEVEL DESIGN

The interconnection between the PS and the PL was im-
plemented at RTL level, being based on the AMBA [17] bus
protocol and a double master-slave approach, as shown in the
Appendix on the last page of this paper.

We used 2 AXI [18] Interconnect modules from Xilinx to
buffer the data between our accelerator and the PS. The whole
system lays in a single clock domain controlled by the PS. The
Processor System Reset modules offers the PS the ability to
control the PL.

The data and control ports of the accelerator are memory-
mapped and can be accessed from the accelerator just as any
other memory region.

VI. EXPERIMENTAL SETUP AND RESULTS

A. Execution Environment

The hardware on which we ran our experiments is a
Zynq7000-based board [19], which as of 2021 costs less than
500$ [20]. For testing purposes, we implemented the drivers
for our accelerator on top of FreeRTOS [23], mainly by reusing
the code from the test benches in the codesign phase. We used
software timers to measure the execution time. The precise
elliptic curve we used for our experiments is Weierstraß P-
224, as standardized by NIST [21].

Resource Utilization Available Utilization %
LUT 17940 53200 33.72

LUTRAM 391 17400 2.5
FF 27697 106400 26.03

BRAM 36.50 140 26.07
DSP 0 220 0

BUFG 1 32 3.13
TABLE I

FPGA CONSUMED RESOURCES

B. Timing, Execution Speed, Hardware Resources and Power
Consumption

The hardware resources utilized from the FPGA are pre-
sented in table I.

With respect to timing closure, we managed to obtain
stability for our accelerator at a frequency of 92 MHz, resulting
in similar execution speed for both steps of our accelerator (as
presented in section IV-A).

The execution time is heavily dependent on how large the
randomly chose private key is. In our experiments we noticed
that it varies from 431 ms to 1.309 s.

The power consumption of our accelerator is estimated to
1.832W by Vivado [22].

VII. CONCLUSIONS AND FURTHER WORK

For the elliptic curve cryptography class of algorithms,
we have shown how using HLS in conjunction with RTL
level design, for FPGA, can lead to few hardware resources
consumption, energy efficiency and quick development time.

We have highlighted specific approaches to mapping ECDH
to hardware and these approaches can be used for other
cryptographic algorithms as well, even on cheap FPGAs.

Furthermore, we have shown that the codesign cycle im-
proves the interfacing between the software driver and the
hardware accelerator.

The execution speed can be improved and more research
is needed in this direction. We acknowledge that limiting the
possible choices for the private key, while required because
of the HLS limitations, is not desirable from a security
perspective. More theoretical research is needed in order to
obtain a larger bound for the maximum value of the private
key, thus improving security.

REFERENCES

[1] Senekane, Makhamisa Qhobosheane, Sehlabaka & Taele, Benedict -
Elliptic Curve Diffie-Hellman Protocol Implementation Using Picoblaze,
2011

[2] Zerene Sangma, Hardware implementation of elliptic curve Diffie-
Hellman key agreement scheme in GF(p), 2018

[3] Muhammad Malik, Efficient Implementation of Elliptic Curve Cryptog-
raphy Using Low-power Digital Signal Processor, 2010

[4] Ionita, Dorin & Manole, Filip & Slusanschi, Emil - Efficient Parallel
Simulatin of Wireless Signal Propagation, 2020

[5] Ionita, Dorin & Deaconescu, Razvan & Chiroiu, Mihai - Hardware
Implementation of the Python Virtual Machine, 2019

[6] Aleph, One - Smashing The Stack For Fun And Profit, Phrack, 1996
[7] Intel - Decrease Total System Costs with Industry’s Lowest Cost, Lowest

Power FPGAs, 2019



[8] Kar, Jayaprakash & Mishra, Manoj Ranjan - A study on diffie-hellman
key exchange protocols, 2017

[9] Shabaz, Mohammad & Patel, Anand, et. all - Design of Reconfigurable
2-D Linear Feedback Shift Register for Built-In-Self-Testing of Multiple
System-on-Chip Cores, 2015

[10] Corrigan-Gibbs, Henry & KoganThe, Dmitry - Discrete-Logarithm Prob-
lemwith Preprocessing, 2019

[11] Meeus, Wim & Van Beeck, Kristof et. all - An overview of today’s
high-level synthesis tools, 2012

[12] Paar, Cristoph & Pelzl, Jan - Understanding Cryptography, pp. 40-44,
2010

[13] Amara, Moncef & Siad, Amar - Elliptic Curve Cryptography and its
applications, 2011

[14] Soeten, Mirjam - Hasse’s Theorem on Elliptic Curves, 2018
[15] Liu, Chao-Liang & Horng, Gwoboa & Liu, Hsin-Yu - Computing the

modular inverses is as simple ascomputing the GCDs, 2007
[16] Selvaraj, Henry & Daoud, Luka & Zydek, Dawid - A Survey of High

Level Synthesis Languages, Tools, and Compilers for Reconfigurable
High Performance Computing, 2013

[17] Suan, Wang Huan & Jambek, Asral Bahari - Design and analysis of
microcontroller system using AMBA-Lite bus, 2017

[18] Neelavathi, D. - Design of AMBA 3.0 (AXI) Bus based SoC, 2012
[19] Tang, Zhiwei - The Zynq-7000 SoC on UltraScale Architecture, 2021
[20] Kumar, Santosh & Shah, Madhu & Singh, Arjun - FPGA – Raspberry

pi Interface for low cost IoT based image processing, 2017
[21] Chen, Lily & Moody, Dustin et. all. NIST: Recommendations for

Discrete Logarithm-Based Cryptography: Elliptic Curve Domain Param-
eters, 2019

[22] Feist, Tom - Vivado Design Suite, 2012
[23] Zhu, Ming-Yuan - Understanding FreeRTOS: A Requirement Analysis,

2011



1

APPENDIX
RTL INTERCONNECT BETWEEN THE PROCESSING SYSTEM AND THE PROGRAMMABLE LOGIC


