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ABSTRACT One of the main security requirements for symmetric-key block ciphers is resistance against
differential cryptanalysis. This is commonly assessed by counting the number of active substitution boxes
(S-boxes) using search algorithms or mathematical solvers that incur high computational costs. These
costs increase exponentially with respect to block cipher size and rounds, quickly becoming inhibitive.
Conventional S-box enumeration methods also require niche cryptographic knowledge to perform. In this
paper, we overcome these problems by proposing a data-driven approach using deep neural networks to
predict the number of active S-boxes. Our approach trades off exactness for real-time efficiency as the bulk
of computational work is brought over to pre-processing (training). Active S-box prediction is framed as
a regression task whereby neural networks are trained using features such as input and output differences,
number of rounds, and permutation pattern. We first investigate the feasibility of the proposed approach
by applying it on a reduced (4-branch) generalized Feistel structure (GFS) cipher. Apart from optimizing a
neural network architecture for the task, we also explore the impact of each feature and its representation
on prediction error. We then extend the idea to 64-bit GFS ciphers by first training neural networks using
data from five different ciphers before using them to predict the number of active S-boxes for TWINE, a
lightweight block cipher. The best performing model achieved the lowest root mean square error of 1.62
and R2 of 0.87, depicting the feasibility of the proposed approach.

INDEX TERMS Active S-boxes, block cipher, cryptanalysis, deep learning, differential cryptanalysis,
lightweight cryptography, neural networks, TWINE

I. INTRODUCTION

BLOCK ciphers are ubiquitous cryptographic primitives
that not only provide data confidentiality but are used

as building blocks for a myriad of other cryptographic al-
gorithms and protocols. More recently, lightweight block
ciphers have been gaining popularity as they provide data
security to resource-constrained devices such as RFID tags
or smart Internet-of-Things (IoT) devices [1]. A block ci-
pher processes a fixed-length (block) of data using a key-
dependent transformation that usually consists of generic
operations such as substitution and permutation. This key-
dependent transformation will be applied multiple times
(multiple rounds) before the final ciphertext is produced.
Keys for each encryption round, known as round keys,
are derived from a master key using a key scheduling al-

gorithm. Depending on their underlying structure, modern
block ciphers can be classified into different categories such
as the generalized Feistel structure (GFS), addition-XOR-
rotate (ARX), and substitution-permutation network (SPN).
A block cipher is considered to be secure enough for practical
applications if it has shown to be resistant against various
state-of-the-art cryptanalysis techniques over a certain period
of time.

In 1990, Biham and Shamir introduced differential crypt-
analysis, a statistical tool that observes the propagation of
plaintext differences (input differences) through a block ci-
pher to produce ciphertext differences (output differences)
[2]. Even today, resistance against differential cryptanalysis
is considered one of the de facto requirements for block
ciphers, and more recently, authenticated ciphers. It has even
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been used to analyse the security of image encryption algo-
rithms [3]. An input difference is defined as

∆X = X ′ ⊕X ′′, (1)

where X ′ and X ′′ are two distinct plaintexts and ⊕ refers
to the exclusive-OR (XOR) operation. An output difference,
∆Y can be similarly defined using a pair of corresponding
ciphertexts, Y ′ and Y ′′. We denote an r-round differential
path or differential trail as the propagation of ∆X to ∆Y
after r rounds of encryption, ∆X

r−→ ∆Y . Each differential
path holds with a certain probability, Pr(∆X

r−→ ∆Y ) =
2−p which an adversary wishes to maximize. Generally, a b-
bit block cipher is considered insecure if p < b because the
differential trail can be used as a statistical distinguisher for
key recovery attacks.

Many block cipher designs that are based on substitution
boxes (S-boxes) estimate their security margins against dif-
ferential cryptanalysis by counting the number of active S-
boxes [4]–[6]. An S-box is considered differentially active
when it receives a nonzero difference as an input. For each
nonzero input, there are several possible output differences
with varying chances of occurrence. Thus, the difference
propagation through each active S-box incurs a statistical
cost, lowering the overall differential probability by a factor
of psbox which is the probability that a particular difference
propagation can occur. psbox is obtained by deriving a differ-
ential distribution table for a particular S-box. Resistance is
estimated using the worst-case probability (from the perspec-
tive of the block cipher designer), which for optimal 4 and 8-
bit S-boxes are usually psbox = 2−2 and psbox = 2−6 respec-
tively. The overall differential probability for a differential
trail is then calculated as Pr(∆X

r−→ ∆Y ) = (psbox)AS ,
where AS is the total number of active S-boxes after r rounds
of the cipher. In other words, each active S-box incurs a
penalty, lowering the overall differential probability. Thus,
the goal of a block cipher designer is to maximize the number
of active S-boxes in their block cipher designs whereas a
cryptanalyst aims to find a differential trail that minimizes
this number. Identification of the best differential trail is a
computationally intensive task which can be performed using
searching algorithms [7], [8] or mathematical solvers [9],
[10].

Recently, concepts from differential cryptanalysis have
been used for an entirely different purpose - to train ma-
chine learning algorithms for cryptanalysis applications. The
relationship between machine learning and cryptanalysis was
examined nearly two decades ago by Rivest [11] but recently
began to gain traction thanks to Gohr who introduced the first
successful application of machine learning (or more specif-
ically, deep learning) in the context of classical cryptanaly-
sis [12]. A machine learning-based differential distinguisher
trained using differential data was used to achieve the best
cryptanalytic attack to date on a round-reduced Speck32/64.
His findings showed that machine learning distinguishers
were superior to conventional differential distinguishers,
paving the way for future research in the area.

A. CONTRIBUTION
In this paper, we train deep neural network models to predict
the number of active S-boxes for lightweight block ciphers
based on general block cipher features and differential data.
More specifically, the training samples consist of features
such as truncated input and output differences, the number
of rounds, and permutation pattern whereas the number of
active S-boxes is used as labels. We modified the branch-and-
bound search from [7] to generate randomly sampled data for
training and testing1. Unlike most of the existing machine
learning-based cryptanalysis methods, ours is generalizable
to more than just one block cipher; the resulting neural
network can predict the number of active S-boxes for block
ciphers other than the ones it has been trained for.

We first investigate the feasibility of the approach on
smaller-scale (4-branch) GFS ciphers. This allows us to iden-
tify optimal neural network models for the prediction task
within a practical amount of time. In addition, we explore
the impact of each block cipher feature and its representation
on prediction error. Compared to other neural networks such
as long short-term memory (LSTM) and convolutional neu-
ral networks (CNN), we found that fully connected neural
networks were best suited for the prediction task due to
the innate complexity of block ciphers. The best performing
models achieved low root mean square error (RMSE) values
ranging between 1.67 to 1.96 and R2 scores of approximately
0.88. Our results show that the permutation pattern has the
biggest impact on prediction performance as its removal
leads to the largest increase in prediction errors (88.8%),
followed by input differences (23%) and finally output dif-
ferences (15.8%). We also found that splitting these key
features into multiple features (e.g. representing each bit in
a truncated difference as separate features) leads to improved
prediction performance.

Next, we extend the idea towards full-scale (16-branch or
64-bit) lightweight block ciphers. Here, we investigate the
capability of trained neural network models to generalize to
a block cipher that they have not seen during training. The
lightweight GFS block cipher, TWINE deveoped by NEC
Corp. [6] was used as the target cipher. The neural network
model was trained using data generated from five GFS ci-
phers, each with different permutation patterns and limited
to eight rounds. In the baseline experiments, this model
was trained and tested using data taken from these GFS
ciphers. Then, we use this data to train deep learning models
to label data samples taken from a round-reduced TWINE.
The best performing model achieved the lowest RMSE of
1.62 (as compared to the baseline result of 0.71) and R2 of
0.87 (a 12.6% decrease from the baseline result). From the
perspective of a cryptanalyst, the trained deep learning model
can be expected to correctly predict the number of active S-
boxes that deviates, on average, by ±1.62 from the actual
result. These results showcase the feasibility of the proposed

1Supplementary code for this paper, including the search algorithm, is
available at https://github.com/jesenteh/deeplearning-gfs.
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approach that has a myriad of practical applications, ranging
from a rapid assessment of block cipher security to filtering
differential pairs for cryptanalytic attacks. It is also a data-
driven approach that can be easily adopted without requiring
niche cryptographic expertise.

B. OUTLINE
The rest of this paper is structured as follows. Related work,
background information on neural networks, truncated differ-
entials, and GFS are provided in Section II. The experiments
on both the 4-branch and 16-branch ciphers are described in
Section III followed by experimental results in Section IV.
Section V discusses the important findings and potential ap-
plications of the proposed work before the paper is concluded
in Section VI.

II. BACKGROUND
A. RELATED WORK
The use of machine learning in cryptography may not be
new but successful applications in cryptanalysis have only
recently begun to emerge. One popular use case of machine
learning is to distinguish or identify encryption algorithms
based on ciphertext data. These approaches have been used
to analyze data encrypted by popular block ciphers such as
AES, 3DES, Blowfish and Camellia [13]–[16]. Cryptanalysts
have also attempted to use machine learning in a straightfor-
ward manner - performing decryption of ciphertexts without
knowledge of the secret key. This is equivalent to training a
machine learning model to emulate or mimic an encryption
algorithm for a fixed secret key. For this purpose, [17] uti-
lized unsupervised learning with neural networks to attack
classical ciphers such as the Vigenere and Shift ciphers.

Mishra et al. investigated whether neural networks can be
used to predict plaintext bits of the block cipher PRESENT
based on data obtained from any particular round [18]. They
used the same approach in [19] against the FeW cipher,
both with limited success. Xiao et al. described a black-
box security evaluation approach to measure the strength
of proprietary ciphers without knowledge of the encryption
algorithms themselves [20]. They quantified the strength of a
cipher by measuring how difficult it was for a neural network
to mimic the cipher algorithm. Their results showed that the
security of Hitag2 (a cipher used for keyless entries in mod-
ern cars) was weaker than 3 rounds of the Data Encryption
Standard (DES). Cipher mimicking has also been explored
in [21]. The researchers optimized a deep neural network
to decrypt 64-bit DES ciphertexts without knowledge of the
secret key, achieving an accuracy of up to 90%.

Perov demonstrated that using machine-learning tech-
niques, it was possible to distinguish the ciphertexts of round-
reduced ciphers from random sequences [22]. This was
achieved with a smaller sample size (212 bits) as compared to
conventional statistical methods. A machine learning model
was used in [23] to predict the outputs of a quantum random
number generator. Their model could perform predictions
better than random guessing even when a given random

sequence passed the NIST statistical test. Machine learning
was also used to identify locations that are sensitive to fault
attacks in block and stream ciphers [24].

Although there have been attempts in the past to identify
differential characteristics using neural networks [25], Gohr
introduced what was considered the first successful applica-
tion of machine learning from the perspective of conventional
cryptanalysis back in 2019 [12]. A machine learning-based
differential distinguisher was developed and used to attack
Speck32/64 reduced to 11 rounds. The machine learning
distinguishers were found to be superior to conventional
differential distinguishers. [26] expanded upon this concept
by developing deep learning distinguishers based on all-
in-one differentials for non-Markov ciphers. As proofs-of-
work, they performed distinguishing attacks using 8-round
distinguishers on Gimli-Hash and Gimli-Cipher, each with
trivial complexity. Machine learning has also been applied
to perform linear cryptanalysis on DES based on plaintext-
ciphertext pairs and linear expressions [27]. [28] recently
proposed machine learning classifiers that can classify differ-
ential trails as secure or insecure based on differential data.
Proof-of-concept experiments were performed on small-scale
GFS ciphers. Their findings showed that the trained models
were able to generalize to ciphers that the models have not
seen before. Last but not least, [29] attempted key recovery
attacks on block ciphers, Simon and Speck, using deep
learning. They were successful in recovering encryption keys
for full-round Simon32/64 and Speck32/64 only when the
keyspace was restricted to text-based keys.

B. NEURAL NETWORKS

A neural network is a machine learning algorithm that can
train a computer to perform a task from training examples.
Modeled loosely on how the human brain works, a neu-
ral network composes of connected processing units called
neurons. The neurons are organized into multiple layers of
interconnected nodes, including an input layer, output layer,
and one or more hidden layers. The more hidden layers
they are, the “deeper" the neural network. Each neuron is
assigned a weight, which is multiplied by the data from every
incoming connection. The resulting products for a neuron are
then added together. If the sum of products reaches above a
threshold, the neuron “fires" and sends along the number to
all its outgoing connections [30].

Training a neural network involves optimizing these
weights to minimize the difference between the actual (ex-
pected) value and a predicted value, otherwise known as
the loss function. Given a set of initial weights, training
data enters the input layer and is transformed as it passes
successively through each layer of the neural network until
it reaches the output layer that determines the result of the
prediction. The weights are continuously adjusted during
training until the loss function reaches near-zero error.

Loss functions that were used in the proposed work in-
clude:

VOLUME 4, 2016 3



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

• Root mean square error (RMSE) is the square root
of the average of squared differences between an actual
value and its predicted value (prediction error) for all
instances in a dataset.

• Mean absolute error (MAE) calculates the average of
the absolute values of prediction errors for all instances
in a dataset.

• The quantile loss function is applied to predict in-
tervals or range of predictions rather than just single
point predictions. The value below which a fraction of
predictions in a group falls is known as a quantile.

We have selected to experiment with the fully connected
deep neural network architecture in our regression task. Af-
ter experimenting with various neural network architectures
such as LSTM and CNN, we found that a fully connected
neural network performed consistently for the active S-box
prediction problem. In addition, a fully connected neural
network does not make any assumption to the input, thus
making it flexible to be applied in our problem [31]. A
fully connected neural network consists of a series of fully
connected layers, where each neuron is connected to all
neurons in the following layer. Figure 1 illustrates the fully
connected neural network that was used in our experiments
on the 4-branch GFS ciphers, where the edges represent the
weights of each input. A fully connected neural network with
many layers is also referred to as a deep network.

Input Layer (+3)

 (+54)

 (+54)

 (+54)

 (+54)

 (+54)

1

1112 1314151617181920

23456 78910

2122 2324252627282930

3132 3334353637383940

4142 4344454647484950

5152 5354555657585960

Output Layer

FIGURE 1: Fully Connected Neural Network

C. TRUNCATED DIFFERENTIAL CRYPTANALYSIS
Differential cryptanalysis relies on identifying an r-round
differential trail, ∆X

r−→ ∆Y with a high probability of
occurring. Truncated differential cryptanalysis is a general-
ization of differential cryptanalysis whereby differences that
are only partially determined can be used in attacks. In our
paper, we adopt the same definition as [32], whereby a full
input difference or concrete differential state, ∆X can be
mapped to a truncated differential state ∆X̂ by dividing the
input difference into t-bit blocks that have the same size
as the S-box. For example, a 64-bit input difference can be
truncated to a 16-bit truncated difference if 4-bit (t = 4) S-
boxes are used. As long as any of the t bits are nonzero in the
concrete differential state, its corresponding truncated bit is
set to 1. Otherwise, if a t-bit block in the concrete differential
state is zero, its corresponding truncated bit is set to 0. An
example of the truncation process is depicted in Figure 2.

FIGURE 2: 4-branch GFS (1 round)

D. GENERALIZED FEISTEL STRUCTURE AND TWINE
One of the common structures for a block cipher is GFS, a
generalization of the Feistel structure made popular by DES.
A GFS divides an input into b sub-blocks (or words), where
b ≥ 2. The size of these sub-blocks is usually dependent
on the S-box size. The Type-II GFS [33], [34] is one of
the more popular GFS variants used in many block cipher
designs where one sub-block from each pair of sub-blocks
will undergo a key-dependent transformation (referred to as
a round function) before being XOR-ed with the other half.
This is followed by a permutation layer. Figure 2 illustrates
one round of a 4-branch Type-II GFS cipher that will be
used in the proof-of-concept experiments in our proposed
work. In the diagram, an example of an input to output
difference propagation is provided, along with their truncated
representation. The left S-box is considered active because it
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receives a nonzero difference as an input. The round function,
F is defined as

F (xi) = s(xi ⊕ rki), (2)

where s is the S-box function and rki is the round key. In
essence, this 4-branch structure can represent either a 16
or 32-bit block cipher depending on the S-box size. There
are a total of 4! = 24 possible permutation patterns for a
4-branch permutation. The permutation pattern depicted in
Figure 2 is P = {1, 2, 3, 0}. The structure of the block
cipher TWINE [6] is basically an extension of this 4-branch
GFS to 16 branches, with a permutation pattern of P =
{5, 0, 1, 4, 7, 12, 3, 8, 13, 6, 9, 2, 15, 10, 11, 14}. TWINE is a
lightweight 64-bit block cipher that supports 80 and 128-bit
keys designed for hardware efficiency. It processes the 64-bit
plaintext as 16 4-bit sub-blocks. The size of the sub-blocks
corresponds to the cipher’s S-box size. TWINE will be used
as the target cipher for our generalization experiments.

III. METHODOLOGY
A. PROBLEM FRAMING
The overall goal of the proposed work is to train neural
network models to predict the number of active S-boxes of a
GFS block cipher based on features such as truncated differ-
ences, the number of rounds, and permutation patterns. Using
supervised learning, we framed the problem as a regression
task because the goal is to predict the number of active S-
boxes consisting of non-negative integers. Experiments were
performed for both the 4-branch and 16-branch GFS ciphers.

The minimum number of active S-boxes is 0 when the
plaintext consists entirely of zeroes whereas the maximum
number of active S-boxes, ASmax will vary depending on
the number of rounds, r, block size, b, S-box size, t, and
underlying structure of a block cipher. A generic GFS block
cipher such as TWINE would have a theoretical maximum of
ASmax = b×r

2t active S-boxes whereas a classical SPN block
cipher such as PRESENT [4] would have ASmax = b×r

t .
The goal of a cryptanalyst is to identify a differential trail that
minimizes the number of active S-boxes so it can be used in
attacks against the cipher.

RMSE and R-squared (R2) are two performance metrics
selected to evaluate the performance of the neural networks
on the test set. RMSE measures the magnitude of prediction
errors made by a machine learning model. Ideally, a trained
model should have an RMSE value of as close to zero
as possible. RMSE indicates the average deviation of the
predicted number of active S-boxes from the actual one.
R2 is the quantitative measure of the goodness of fit of a
regression model. In other words, it represents how closely
prediction values conform to the best-fitted regression line.
The R2 metric ranges between 0 and 1, where 1 is the ideal
value. Both metrics will be used to determine how accurate
the trained models are in predicting the number of active S-
boxes.

B. NEURAL NETWORK ARCHITECTURE
In all of the following experiments, we utilized fully con-
nected neural networks. We first performed hyperparameter
tuning to identify the optimal number of layers, number
of neurons per layer, loss function, optimizer, number of
epochs, and batch size for the regression task. Based on our
experiments, we selected a neural network with four hidden
layers. The number of neurons per layer differs depending
on the target block cipher. For 4-branch GFS ciphers, there
are 13 neurons in the input layer (equivalent to the number
of input features), four hidden layers with 64 neurons each,
and an output layer with 1 neuron to represent the predicted
number of active S-boxes as depicted in Figure 1. As for
16-branch GFS ciphers, there are 49 neurons for the input
layer, 512 neurons for the hidden layers, and 1 neuron for
the output layer. The remaining hyperparameters used in our
experiments are summarized below:
• 4-branch GFS Experiments

-- Optimizer: Adam with 0.001 learning rate
-- Activation Function: Exponential linear unit (ELU)
-- Epochs: 100 epochs
-- Batch Size: 32

• 16-branch GFS Experiments
-- Optimizer: Adam with 0.001 learning rate
-- Activation Function: ELU
-- Epochs : 200 epochs
-- Batch Size: 32

In the experiments on full-scale GFS ciphers, we have
selected regularization as a means to avoid overfitting. Reg-
ularization involves adding an additional penalty term to the
loss function. This additional term controls or regulates the
function by placing constraints on the amount and type of
information being stored by the model, forcing it to focus
more on prominent patterns. This leads to higher chances of
the model generalizing well to unseen data.

C. DATA PREPARATION
By using the smaller scale 4-branch GFS ciphers for proof-
of-concept experiments, we could generate a large dataset
within a practical amount of time. In addition, data for
all 24 possible permutation patterns (each of which can
be viewed as an individual 4-branch GFS cipher) could
be generated. We generated a dataset of 500000 samples
(denoted as DATA4b) using a modified branch-and-bound
differential search algorithm [7]. Modification of the original
search algorithm was required because our goal was not to
identify the minimum number of active S-boxes but rather
to enumerate every possible branch to ensure that the dataset
consisted of randomly sampled differential data from round
1 to 12 of the 24 GFS ciphers. The format of the data samples
is depicted in Table 1.

As it was not practical to enumerate every possible per-
mutation pattern or block cipher variant for a 16-branch
GFS, we selected only six for our experiments. The first was
TWINE itself, our target cipher, whereas the other five were
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∆X̂ ∆Ŷ Active S-boxes r P
1101 1101 20 12 2301
1011 0011 9 10 0213
1101 0101 11 9 1203
0101 1101 17 11 1203
0111 0101 6 7 0213

TABLE 1: Examples of data samples for the 4-branch GFS

based on permutation patterns with the best cryptographic
properties based on findings in [34]. Notably, they all achieve
full diffusion in eight rounds and have a minimum number
of active S-boxes of at least 40 after 20 rounds. All six
permutation patterns are listed in Table 2.

Name Permutation Pattern, P
No. 5 5,2,9,4,11,6,15,8,3,12,1,10,7,0,13,14
No. 7 1,2,11,4,3,6,7,8,15,12,5,14,9,0,13,10
No. 9 1,2,11,4,9,6,15,8,5,12,7,14,3,0,13,10

No. 10 7,2,13,4,11,8,3,6,15,0,9,10,1,14,5,12
No. 12 1,2,11,4,15,8,3,6,7,0,9,12,5,14,13,10
TWINE 5,0,1,4,7,12,3,8,13,6,9,2,15,10,11,14

TABLE 2: 16-branch permutation patterns

The dataset was generated using the same modified
branch-and-bound search. 100000 data samples were gener-
ated for each cipher, consisting of 12500 randomly selected
samples from round 1 to 8. Apart from being able to generate
data samples within a practical amount of time, the 8-round
limit was selected because it is the minimum number of
rounds required to achieve full diffusion of plaintext bits
[34]. We limited the number of output differences per input
difference to four, to ensure that there was a larger variety
of input differences in the dataset. The format of the data
samples is similar to the one depicted in Table 1. The 500000-
sample dataset that consists of the five GFS ciphers (exclud-
ing TWINE) is denoted as DATA16b whereas the 100000-
sample dataset generated from only TWINE is denoted as
DATATW .

D. ACTIVE S-BOX PREDICTION FOR 4-BRANCH GFS
Our experiments on the 4-branch GFS were divided into two
main phases: In Phase 1-1, we identified the best performing
neural network architecture to become our baseline model
whereas in Phase 1-2, we examined the effect of excluding
certain features on prediction error. Prediction error was
measured using RMSE and R2. The DATA4b dataset was
used in both phases. All experiments were implemented
using Tensorflow 2.3.1 on an Intel Core i5 Processor, 8GB
RAM using Python and Jupyter Notebook.

1) Phase 1-1 - Baseline Experiment
The first experiment involved training a baseline model using
all the available block cipher features, where a train-test split
with a ratio of 80:20 was applied to the DATA4b dataset
(400000 training samples, 100000 test samples). In terms of
feature representation, we first performed our experiments
with each feature being represented as individual variables as

illustrated in Table 1. However, we later found that the trained
models performed better when the truncated difference and
permutation features were split into four separate variables
each (four features) as shown in Table 3. In this paper, we
only report results from experiments that used this alterna-
tive representation. We trained three separate deep learning
models, each using a different loss function (MAE, RMSE,
and quantile), to determine which one led to more accurate
predictions.

∆X̂ ∆Ŷ Active S-boxes r P
1, 1, 0, 1 1, 1, 0, 1 20 12 2, 3, 0, 1
1, 0, 1, 1 0, 0, 1, 1 9 10 0, 2, 1, 3
1, 1, 0, 1 0, 1, 0, 1 11 9 1, 2, 0, 3
0, 1, 0, 1 1, 1, 0, 1 17 11 1, 2, 0, 3
0, 1, 1, 1 0, 1, 0, 1 6 7 0, 2, 1, 3

TABLE 3: Examples of data samples for the 4-branch GFS
with alternate representation

2) Phase 1-2 - Feature Refinement
In this phase, we explored the effect of specific block cipher
features on prediction error. This was performed by exclud-
ing only one of the features (truncated output difference,
truncated input difference, or permutation) then using the
remaining ones for training. The experiment was performed
three times (once for each feature). The magnitude of per-
formance degradation would correspond to the impact that a
particular block cipher feature has on the prediction task. The
best performing model from Phase 1-1 was used for training
and comparison purposes.

E. ACTIVE S-BOX PREDICTION FOR 16-BRANCH GFS
Our experiments on 16-branch GFS ciphers were also di-
vided into two main phases: In Phase 2-1, we identified the
best performing neural network architecture to become our
baseline model whereas in Phase 2-2, we determined if deep
learning models trained using data from five GFS ciphers can
generalize to data from an unseen GFS cipher, TWINE. This
showcases the improved flexibility of the proposed method as
compared to existing machine learning-based cryptanalysis
methods that are cipher-specific [12], [26]. Prediction error
was again measured using RMSE and R2. The same com-
puting setup as the 4-branch GFS experiments (Tensorflow
2.3.1, Intel Core i5 Processor, 8GB RAM, Python, Jupyter
Notebook) was used in Phase 2 as well.

1) Phase 2-1 - Baseline Experiment
In this phase, the models were trained and tested using the
DATA16b dataset. A train-test split with a ratio of 80:20
was used (400000 training samples, 100000 test samples).
In terms of feature representation, we split the truncated
input and output differences, and permutation pattern into 16
separate features. In total, 49 features were used for training
(corresponding to the 49 neurons in the input layer of the
deep neural network). We also investigated the use of three
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different loss functions (MAE, RMSE, quantile) to determine
their impact on prediction error.

2) Phase 2-2 - Generalization Experiment
Next, we determined if the proposed deep learning models
were capable of labeling unseen data or in other words,
generalize to a block cipher they have never encountered
before. The models were trained using 500000 data samples
from DATA16b and tested using the 100000 samples from
DATATW . By using separate datasets for training and test-
ing, the deep learning models would have never encountered
data samples from TWINE during the training stage. This
experiment represents one of the practical use cases of the
proposed approach, whereby a deep learning model can be
pre-trained using available data, and then used to perform
active S-box predictions for other block ciphers in the future.
The same fully connected neural network architecture and
hyperparameters as the baseline model was used for these
experiments. However, rather than just one loss function,
we still examined the use of all three (MAE, RMSE, and
quantile). In addition, we used the L2 regularizer (regular-
izers.l2(0.001) in TensorFlow) to overcome overfitting prob-
lems for better prediction performance.

IV. EXPERIMENTAL RESULTS
A. 4-BRANCH GFS RESULTS
The experimental results for Phase 1-1 are shown in Table
4 which compares the baseline performance of the deep
learning models based on three loss functions, MAE, RMSE,
and quantile. Overall, all models could predict the number
of active S-boxes with an RMSE of 1.96 and under. This
implies that on average, predictions vary from the real value
by approximately two active S-boxes. The R2 values of 0.88
to 0.89 imply that there is a strong relationship between the
actual and predicted values for all three cases. The quanti-
tative metrics suggest that the use of any of the three loss
functions will lead to similar performance.

From the perspective of differential cryptanalysis, an av-
erage error of two 4-bit active S-boxes translates to a prob-
ability penalty of 2−2×AS = 2−4. This penalty is more sig-
nificant for a smaller number of rounds because the number
of active S-boxes is generally lower. Thus, the deep learning
models can also be compared in terms of how well they
perform for a smaller number of block cipher rounds which
generally have fewer active S-boxes. Figure 3 illustrates that
the quantile loss function has slightly better curve fitting as
compared to the other loss functions, especially when the
number of active S-boxes is smaller. Therefore, the neural
network model with the quantile loss function was chosen as
the baseline model for Phase 1-2.

The experimental results for Phase 1-2 are shown in Table
5. Generally, exclusion of either the truncated input or output
difference had a minor negative effect on prediction error.
Experimental evidence from Table 5 suggests that the input
difference, ∆X̂ plays a slightly bigger role in prediction
performance than the output difference, ∆Ŷ . Removal of

Loss Function RMSE R2

MAE 1.67 0.88
RMSE 1.72 0.89

Quantile(90%) 1.96 0.88

TABLE 4: Predicted number of active S-boxes based on loss
functions (4-branch GFS)

(a) Prediction error for MAE loss function

(b) Prediction error for RMSE loss func-
tion

(c) Prediction error for quantile loss func-
tion

FIGURE 3: Comparison of loss functions for baseline exper-
iments (4-branch GFS)

∆X̂ led to a 23% increase in prediction errors (as compared
to the baseline results) whereas removal of ∆Ŷ led to a
15.8% increase. In both cases, R2 values only reduced by
an average of 6.3% as compared to the baseline, implying
that there was still a strong relationship between actual and
predicted values. In contrast, excluding the permutation pat-
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tern had a detrimental impact on the model’s performance
as it led to a significant increase of 88.8% in prediction
errors (RMSE), with the R2 score dropping by 31.8%. By
excluding the permutation pattern from the training process,
a neural network must learn how to differentiate between
24 different block ciphers based entirely on the input and
output truncated differences. This is a complex task due to the
strong diffusive property of block ciphers. Our experimental
results confirmed this notion by showing that the deep learn-
ing model relied heavily on permutation patterns to make
accurate predictions. Based on our findings, all three features
were included in the 16-branch GFS experiments to ensure
optimal prediction performance.

Model RMSE R2

All features (baseline) 1.96 0.88
Only ∆Ŷ removed 2.27 0.83
Only ∆X̂ removed 2.41 0.82

Only P removed 3.7 0.60

TABLE 5: Predicted number of active S-boxes when remov-
ing specific features

B. 16-BRANCH GFS RESULTS
The baseline performance of the deep learning models when
performing predictions for 16-branch GFS ciphers are sum-
marized in Table 6. Generally, the models had low prediction
errors for all three loss functions, achieving RMSE values of
0.96 and under. From a cryptanalyst’s perspective, the results
imply that the proposed models can perform active S-box
prediction with low error (±1 active S-box on average) for
block ciphers that the model has seen. The R2 values are
also near-ideal (ranging between 0.992 to 0.994), depicting a
strong relationship between the predicted and actual values.
We note that there is a significant improvement in prediction
performance for the 16-branch GFS ciphers as compared
to 4-branch ciphers, which could be attributed to the larger
number of training features (49 as compared to 13). Figure
4 illustrates good graph fitting for all three instances. Gen-
erally, predictions were more accurate for a lower number
of active S-boxes (/ 10) and a larger number of active S-
boxes (' 40). As prediction errors are more significant for a
smaller number of rounds that have a lower number of active
S-boxes, we conclude that both the MAE and RMSE loss
functions respectively led to slightly better prediction perfor-
mance as compared to the quantile loss function based on the
quantitative results in Table 6 and the curve fitting observed
in Figure 4. However, as there are only minor differences in
performance, we still used all three loss functions in Phase
2-1.

Loss Function RMSE R2

MAE 0.67 0.994
RMSE 0.71 0.995

Quantile(90%) 0.96 0.992

TABLE 6: Predicted number of active S-boxes based on loss
functions (16-branch GFS)

(a) Prediction error for MAE loss function

(b) Prediction error for RMSE loss func-
tion

(c) Prediction error for quantile loss func-
tion

FIGURE 4: Comparison of loss functions for baseline exper-
iment (16-branch GFS)

Experimental results in Table 7 show that the deep learning
models are capable of predicting the number of active S-
boxes for the unseen cipher, TWINE based on data from five
other GFS ciphers. In other words, the model can generalize
well to a cipher it has never seen before based on data from
the ones that it already has. The neural network model with
RMSE as its loss function had the lowest prediction errors
(RMSE=1.62) and the highest R2 score (0.87). The use of
the quantile loss function led to the worst performance of the
three.

Overall, prediction performance faltered as compared to
the baseline experiments. This was an expected outcome

8 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

because predictions for TWINE were made based on what
the deep learning models learned from other GFS ciphers.
Prediction errors when using the MAE, RMSE, and quantile
loss functions doubled respectively as compared to their
baseline counterparts. From the cryptographic perspective,
this is equivalent to an increase from ±1 to ±2 active S-
boxes. Considering that a full-sized block cipher such as
TWINE can have a large number of active S-boxes (50 or
more even at 8 rounds), a deviation of two active S-boxes is
small in comparison. Therefore, a cryptanalyst must account
for a possible deviation of two active S-boxes when using the
proposed approach in a practical attack scenario.

Loss Function RMSE R2

MAE 1.71 0.86
RMSE 1.62 0.87

Quantile(90%) 2.31 0.83

TABLE 7: Predicted number of active S-boxes based on loss
functions (TWINE)

V. DISCUSSION AND FUTURE WORK
Our preliminary experiments on the 4-branch GFS showed
that neural networks can be trained to predict the number
of active S-boxes of a block cipher based on block cipher
features that are common to more than just one block ci-
pher. We also discovered that among these features, the
permutation pattern plays the biggest role in reducing pre-
diction error. However, we still recommend the inclusion of
all other supporting features, such as truncated input and
output differences, as they all contribute towards minimizing
prediction error. Next, we showcased the feasibility of the
proposed approach when being applied to actual lightweight
GFS block ciphers such as TWINE. Apart from achieving
even smaller prediction errors as compared to the preliminary
experiments, the trained model was able to generalize well
to block ciphers that it has yet seen. Based on our findings,
we recommend the use of the following neural network
architecture for future S-box prediction efforts, notably for
64-bit GFS ciphers:
• Input layer: 49 neurons (equivalent to the number of

training features)
• Output layer: 1 neuron
• Hidden layer: 4 hidden layers, each with 512 neurons
• Loss function: RMSE
• Regularizer: regularizers.l2(0.001) (L2 regularization)
• Optimizer: Adam with 0.001 learning rate
• Activation Function: ELU
• Epochs: 200
• Batch size: 32
The capability of the deep learning models to generalize to

the same block cipher structure they have been trained on is
one of the main strengths of the proposed method. It is more
flexible than prior cipher-specific approaches because there
is also no need to retrain the model if other block ciphers
with a similar structure need to be analyzed. In addition, the

(a) Prediction error for MAE loss function

(b) Prediction error for RMSE loss func-
tion

(c) Prediction error for quantile loss func-
tion

FIGURE 5: Comparison of loss functions for generalization
experiment (TWINE)

predictions are nearly instantaneous. Thus, the active phase
of a cryptanalytic attack can be made more efficient as the
bulk of the computational work has been moved to pre-
processing (the training phase). This can be seen as a type
of cryptanalytic time/memory/data trade-off [35], [36]. The
proposed approach is also a trade-off between efficiency and
exactness (predictions rather than actual values).

To illustrate this trade-off in practice, we compared the
performance of a branch-and-bound search [7] and the pro-
posed deep learning model when labeling the number of
active S-boxes for 10000 randomly selected truncated differ-
ence pairs for TWINE. The amount of time required to label
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these pairs with respect to the number of rounds is depicted in
Figure 6. The time required by the branch-and-bound search
increased from approximately 2 milliseconds for 1 round to
9.7 hours for 8 rounds whereas the deep learning model had a
constant time of around 1.2 seconds. To calculate the number
of active S-boxes for a given truncated plaintext-ciphertext
pair, the branch-and-bound search algorithm needs to tra-
verse every possible branch until a match is discovered. The
number of branches increases exponentially with the number
of rounds, leading to an exponential decline in efficiency.
This exponential increase in computational complexity also
occurs in other differential search methods such as MILP
[10]. In contrast, the prediction speed for the deep learning
model is independent of the number of rounds. However,
as compared to the branch-and-bound search which is an
exact method, the deep learning model is bound to have
prediction errors. For example, when performing predictions
for up to 8 rounds of TWINE, the best-performing model
achieved an R2 score of 0.87. This can be estimated as a 13%
degradation in terms of error in exchange for an efficiency
gain of approximately 31000%.

FIGURE 6: Time required to label 10000 randomly selected
truncated differential pairs

Performing cryptanalysis usually requires niche expertise
which includes a strong understanding of the underlying
structure of a block cipher and the intricacies of the crypt-
analytic method itself. The proposed method alleviates some
of the technical expertise required to analyze block ciphers,
making it a more data-driven approach. A trained model can
potentially be utilized in a multitude of ways such as filtering
differential pairs for attacks, block cipher security evalua-
tion for fast design prototyping, and security benchmarking.
These potential applications will be explored further in future
work.

However, the proposed method is not without its draw-
backs. Firstly, as a data-driven approach, it relies on having
a sufficiently large dataset which may take a long time to
generate. For example, generating data samples for 8 rounds
of a 16-branch GFS took two days to complete. The increase
in search time is exponential with respect to the number
of rounds and block size. This can be alleviated by iden-
tifying suitable bounding criteria for the branch-and-bound

algorithm that can ensure that examples are still randomly
sampled without having to exhaustively explore each branch.
Another drawback is that prediction performance falters
when labeling data generated from more rounds than the
model has been trained for. This is due to the fact that there
are many instances where the number of active S-boxes is
out of the range used in training. One way to overcome this
issue is by labeling the dataset with a new metric that scales
the number of active S-boxes with respect to the number of
block cipher rounds. Last but not least, the current work has
only delved into GFS ciphers. More research is still required
to identify suitable block cipher features that can be used for
SPN or ARX ciphers.

VI. CONCLUSION
In this paper, we proposed a deep learning approach to
block cipher security analysis. Specifically, we train fully
connected, deep neural network models to predict the num-
ber of active S-boxes, trading off exactness for efficiency.
The active S-box prediction is framed as a regression task,
whereby the fully connected, deep neural networks are
trained using common block cipher features such as the
number of rounds and permutation pattern, and differential
cryptanalysis-related features such as truncated input and
output differences. We investigate the feasibility of the pro-
posed approach and the effect of block cipher features and
their corresponding data representations on prediction error
by applying it to smaller-scale (4-branch) GFS ciphers. The
best performing models achieved low RMSE scores of under
1.96, which translates to prediction errors of approximately
±2 S-boxes. High R2 values ranging between 0.88-0.89 also
indicate that there is a strong relationship between predicted
and actual values. In terms of the features, the permutation
pattern has the biggest impact on prediction performance
as its removal leads to the largest increase in prediction
errors (88.8%) as compared to the truncated input (23%) and
output differences (15.8%). We also found that splitting these
features into multiple smaller features reduces error. When
applied to full-scale (16-branch) lightweight GFS block ci-
phers, the neural network models achieved low RMSE scores
of under 0.96, and R2 values ranging between 0.992-0.994.
The deep learning models were also able to generalize to
a cipher that they have not seen before, specifically the
lightweight block cipher TWINE. The best performing model
was able to predict the number of active S-boxes for TWINE
with an RMSE of 1.62 and R2 of 0.87. Overall, our findings
showcase the feasibility of the proposed approach which
can be used for rapid security assessment (which in turn
contributes towards faster block cipher prototyping), security
benchmarking, and also to aid cryptanalytic efforts.
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