
Banquet: Short and Fast Signatures from AES?

Carsten Baum1, Cyprien Delpech de Saint Guilhem2, Daniel Kales3,
Emmanuela Orsini2, Peter Scholl1, and Greg Zaverucha4

1 Dept. Computer Science, Aarhus University, Aarhus, Denmark.
2 imec-COSIC, KU Leuven, Leuven, Belgium.

3 Graz University of Technology, Graz, Austria.
4 Microsoft Research

cbaum@cs.au.dk, cyprien.delpechdesaintguilhem@kuleuven.be,

daniel.kales@iaik.tugraz.at, emmanuela.orsini@esat.kuleuven.be,

peter.scholl@cs.au.dk, gregz@microsoft.com

Abstract. This work introduces Banquet, a digital signature scheme
with post-quantum security, constructed using only symmetric-key prim-
itives. The design is based on the MPC-in-head paradigm also used by
Picnic (CCS 2017) and BBQ (SAC 2019). Like BBQ, Banquet uses only
standardized primitives, namely AES and SHA-3, but signatures are
more than 50% shorter, making them competitive with Picnic (which
uses a non-standard block cipher to improve performance). The MPC
protocol in Banquet uses a new technique to verify correctness of the
AES S-box computations, which is efficient because the cost is amortized
with a batch verification strategy. Our implementation and benchmarks
also show that both signing and verification can be done in under 10ms
on a current x64 CPU. We also explore the parameter space to show the
range of trade-offs that are possible with the Banquet design, and show
that Banquet can nearly match the signature sizes possible with Picnic
(albeit with slower, but still practical run times) or have speed within a
factor of two of Picnic (at the cost of larger signatures).

1 Introduction

Digital signatures such as RSA and ECDSA form the backbone of authentication
mechanisms on the Internet, and are central to many uses of cryptography.
While being highly efficient, it is also known that in the presence of quantum
computers, nearly all such currently deployed constructions will be rendered
insecure [Sho94].

This has led to a search for efficient, plausibly post-quantum-secure construc-
tions of digital signatures that do not rely on assumptions such as factoring or
the hardness of the discrete logarithm problem. There are a multitude of can-
didates with different design ideas: some rely on plausibly hard problems over
(structured) lattices [GPV08,Lyu12,DKL+18], others rely on the hardness of
certain problems from coding theory [DST19],multivariate cryptography [?] or
isogenies [DG19].

? This paper appeared at PKC 2021, this is the full version.

While these signature schemes all rely on number-theoretic, or structured
hardness assumptions, digital signatures can be built from symmetric-key prim-
itives alone, offering the possibility of relying on “less structured” and better-
studied assumptions compared with public-key encryption, where this is not
known to be possible. The Picnic signature scheme [CDG+17,ZCD+19] is one ex-
ample which uses the following paradigm: the public key is a plaintext-ciphertext
pair (x, y) while the secret key k defines a one-way function Fk, instantiated with
a block cipher. A signature is then a non-interactive zero-knowledge proof show-
ing that the prover (the signer) knows a key k such that y = Fk(x).

As the proof size depends on proving statements about the chosen block
cipher in zero knowledge, the authors of Picnic chose a special block cipher
called LowMC [ARS+15] that is optimized for a low number of AND gates in
its Boolean circuit representation. While LowMC has so far withstood crypt-
analytic efforts in the context of Picnic, its security is still less established
than standards like AES, and there have been attacks on older versions of
LowMC [DLMW15,RST18] or in applications where more than one plaintext-
ciphertext pair is available [LIM20].

MPC (in the Head). The zero-knowledge proof of the Picnic scheme is based
on the so-called MPC-in-the-Head (MPCitH) paradigm [IKOS07]. We will now
explain this paradigm in more detail before we continue to describe our contri-
butions.

We consider interactive multi-party computation (MPC) protocols, where a
set of N parties P1, . . . ,PN securely and correctly evaluate a function f on a
secret input x. In order to do so, each Pi obtains as input a secret share of
the input x. Then, all parties together run an interactive computation where
they exchange messages with the goal of ending up with a secret-sharing of the
output, f(x). These shares are then sent to whomever should learn the output.
Assuming an adversary controls at most t of the N parties (i.e., a corruption
threshold t), the MPC protocol guarantees that no information beyond f(x) is
leaked. For the types of MPCitH protocols related to this work, we only consider
the case of passive security, where all parties are assumed to follow the protocol.
Typically, the function f is described as a Boolean circuit or an arithmetic circuit
over a finite field F. We say that the MPC protocol uses preprocessing if, before
the input x is specified, P1, . . . ,PN are given secret-shares of correlated, random
values that are sampled according to some known distribution.

The idea of MPCitH is that such an MPC scheme can be turned into a
zero-knowledge proof, in the following way: the witness of a statement is secret-
shared as the input x, while f will be a verification function that outputs 0 iff
x is a valid witness. The prover simulates all N parties locally (hence the name
in the head) and sends the verifier commitments to each parties’ input shares,
secret random tapes, and all communicated messages. Additionally, it sends the
output shares of the parties (that should reconstruct to 0) to the verifier. Then,
the verifier randomly chooses t of the parties’ commitments to be opened, and
verifies that the committed messages are consistent with an honest execution
of the MPC protocol according to the opened input shares and random tapes,

2

and the previously received output shares. Since only t parties are opened, the
verifier learns nothing about the secret input x, while the random choice of the
opened parties ensures that enough simulations of the other parties must also be
correct (with some probability), ensuring soundness of the proof. Typically, to
make the soundness error small enough, several parallel repetitions of the basic
protocol are carried out.

Digital Signatures from MPCitH. To obtain a signature scheme, Picnic uses an
MPCitH protocol to prove knowledge of a secret key k such that y = Fk(x), for a
one-way function Fk. This gives a zero-knowledge identification protocol, which
can be turned into a signature scheme with the Fiat–Shamir transform. Making
this approach practical requires an MPC protocol that efficiently evaluates the
one-way function since the communication complexity of most MPC protocols
scales with the number of AND (or multiplication) gates in the circuit, and
multiple parallel repetitions are required.

As mentioned earlier, Picnic uses a one-way function based on the LowMC
cipher, which has a relatively low AND gate count (around 600, at the 128-
bit security level). However, this means that Picnic relies inherently on a non-
standard assumption. A direct instantiation using, say, AES instead of LowMC
would remove this assumption, but increase the signature size by around 4–5x
due to the much larger AND gate count in the AES circuit. Since AES has a
relatively compact description using operations over F28 , it is natural to also
consider using MPC protocols tailored for this field instead of F2. This was the
approach recently taken in the BBQ scheme [dDOS19], which reduced AES-
based signature sizes by 40% compared to the binary circuit approach. However,
AES-based signatures are still about 2-3x larger than LowMC-based signatures.

1.1 Our Contributions

In this work, we present Banquet, a novel approach to constructing AES-based
identification and signature schemes. Compared with the previous AES-based
approach in BBQ [dDOS19], Banquet reduces signature size, and our implemen-
tation results show that Banquet can be made almost as efficient as Picnic.

First, we leverage the prover’s full knowledge of the secret MPC input in
an MPCitH protocol to design a protocol that does not “recompute” the AES
function, but “verifies” it instead. As it turns out, verifying that y = AESk(x)
for public x, y is cheaper than encrypting x under k, as the prover knows all
AES evaluation intermediate states, which must then be shown to be consistent.

To achieve this, we construct a new test for batch verification of multiple
intermediate states in the AES encryption circuit at once, instead of verifying
them individually. This batch test also allows us to avoid a preprocessing step,
unlike previous work (BBQ and Picnic), reducing costs of the entire protocol.
Our amortization technique does come with higher computational costs due to
polynomial operations, and an increase in the number of rounds from 3 or 5 in
previous MPCitH constructions up to 7, which affects concrete security bounds
when using Fiat–Shamir.

3

We show that our approach reduces signatures sizes when compared with
BBQ by around 50%, for the same security level. Interestingly, these signatures
are now very close in size to Picnic5, meaning that Banquet is comparable in
signature size to the state of the art of MPCitH-based signatures while using a
standard block cipher.

See Table 1 for a high-level comparison of the signature size and run times.

Protocol N Sign (ms) Verify (ms) Size (bytes)

Picnic2 64 41.16 18.21 12 347

16 10.42 5.00 13 831

Picnic3 16 5.33 4.03 12 466

AES Bin 64 - - 51 876

BBQ 64 - - 31 876

Banquet 16 6.36 4.86 19 776

107 21.13 18.96 14 784

Table 1. Signature size (in bytes) and run times (if available) for Picnic2, Picnic3, AES
Binary, BBQ and Banquet for comparable MPCitH parameters and 128 bit security,
where N denotes the number of MPCitH parties.

Moreover, we provide a full prototype implementation of Banquet that works
for a wide variety of parameter sets, and give a detailed analysis of how to se-
curely choose parameters. At the 128-bit classical security level (corresponding to
NIST’s L1 category), our optimized implementation can sign messages in 6.4ms,
about 1.2x slower than the 5.3ms required for Picnic3 (the latest version of Pic-
nic), while our signature size is 19.8kB, around 50% larger than Picnic3’s 12.5kB.
At higher security levels (NIST’s L3 and L5), Banquet’s signing speed ranges
from 1.5–10x slower than Picnic, and signatures are 1.2–2x larger, depending on
the choices of parameters.

At all security levels, our signature size is around 40-50% smaller than the
AES-based scheme BBQ, which is itself much smaller than a naive AES-based
scheme instantiated with a binary circuit and MPCitH [KKW18] (denoted AES
Bin in Table 1). Note that there is no reported implementation of BBQ, so we
cannot compare runtimes here.

SPHINCS+ [BHK+19] is a hash-based signature scheme based on standard,
symmetric-key primitives, like Banquet. At NIST’s L1 security level, we show
that Banquet can outperform the SPHINCS+ -fast parameters in both signature
size and signing time, but with slower verification. At higher security levels
SPHINCS+ obtains smaller signatures, but sometimes with slower signing time.

1.2 Our Techniques

Our main building block to achieve smaller signatures in Banquet is a new amor-
tized inverse verification check, which replaces the solution from BBQ. Recall

5 Using the Picnic3 parameter sets, see [KZ20b].

4

that in AES, the only non-linear operations are the S-box evaluations, which can
be seen as inversions in F28 , with the difference that 0 maps to 0. In BBQ, these
were evaluated with preprocessed multiplication triples based on techniques from
MPC, with a modification to the AES key generation phase to ensure that 0 is
never inverted (which reduces the key space by 1 bit).

At a high level, our approach for verifying inverses works in four steps.

Inject inverses. We provide the outputs of all m S-box evaluations already as
part of the witness, and only verify that the product of the input and output
for each of the m S-box instances is 1. Already, this optimization simplifies the
original BBQ construction and reduces its main communication cost down from
4 to 3 field elements per S-box (per MPC execution).

Amortize the verification of multiplicative relations. Then, we observe that it is
not necessary to multiply all m S-box inputs with all outputs that are claimed
to be correct independently. Instead, one multiplication of secret shared values
is sufficient. This is done by arranging all inputs and outputs of the S-boxes
into polynomials S(·) and T (·) (which can be done using free linear operations),
providing a product polynomial P (that guarantees the required relation) as part
of the witness and checking that P (·) is indeed the product of S(·) and T (·) by
performing only one multiplication by evaluating at a random point. The prover
additionally needs to send m field elements to specify the polynomial P (·).

Boost the soundness. The product test, which relies on the Schwartz–Zippel
Lemma, has soundness that depends on the gap between the degree of P (·)
and the size of the underlying field. In F28 this gives quite poor soundness in
practice, so we boost soundness by lifting all polynomials to an extension field
and performing the test there.

Reduce communication with linear combinations. Finally, we split our test from
one polynomial triple S(·), T (·), P (·) with S, T of degree m into ≈

√
m poly-

nomial triples with factors of degree ≈
√
m each. This stage is inspired by a

recent zero-knowledge proof technique which was used to verify a batch of low-
degree relations [BBC+19]. To verify these polynomial products, we then take
a random linear combination of the polynomials to reduce the verification of all
S-box evaluations down to a single check on polynomials of degree ≈

√
m, which

reduces communication further.

1.3 Related Work

MPCitH was introduced in [IKOS07] and first shown to be feasible in practice
with the ZKBoo protocol [GMO16] and its follow-up work ZKB++ [CDG+17].
Later, Katz et al. introduced preprocessing to MPCitH-type protocols [KKW18],
which was further developed by Baum and Nof [BN20]. This paradigm of con-
structing signatures from MPCitH was first used in Picnic [CDG+17] and further
developed in several later works [KKW18,KRR+20,Beu20,Bd20,KZ20b].

5

Other paradigms for generic zero-knowledge proofs from symmetric-key prim-
itives could also be used to instantiate our approach, such as Ligero [AHIV17] or
Aurora [BCR+19]. These systems are not particularly well-suited to signatures,
however, since despite good asymptotic performance, their proof sizes are quite
large for small circuits like AES. For instance, a recent variant of Ligero was
suggested for constructing post-quantum signatures [BFH+20], but when using
AES as the one-way function, it achieves a signature size of 224KB and signing
time of 256ms, which (although on different hardware) are both significantly
worse than Banquet.

A recent, alternative suggestion for MPCitH is to use the Legendre symbol
as a one-way function [Bd20]. This improves upon Picnic in terms of both speed
and signature size, but also relies on a somewhat esoteric assumption, which has
not seen much quantum cryptanalysis.

In addition to Picnic, there are several other signature schemes in the 3rd
round of the NIST Post Quantum Cryptography Standardization Process6. The
current finalists are the two lattice-based proposals Dilithium [DKL+18] and Fal-
con [PFH+20], as well as Rainbow [DS05], based on multivariate polynomials.
“Alternate Candidates” are, in addition to Picnic, the SPHINCS+ [BHK+19]
framework which is hash-based and GeMSS [CFM+20] which also uses multi-
variate polynomials. We will compare Banquet to Picnic, BBQ and SPHINCS+
since they are all based on symmetric key primitives.

2 Preliminaries

We let κ denote the computational security parameter. We denote by [n] the set
of integers {1, . . . , n} and by [0, n] the set {0, . . . , n} with 0 included. We use L1,
L3 and L5 to refer to the three security levels defined by NIST [Nat20] in the
call for post-quantum proposals, which match or exceed the brute-force security
of AES-128, AES-192 and AES-256, respectively.

2.1 Definitions

We first recall standard definitions for signature and commitment schemes.

Definition 1 (Signature Scheme). A signature scheme Sig is a tuple of al-
gorithms (Gen,Sign,Verify) such that:

1. The key-generation algorithm Gen(1κ) takes as input a security parameter κ
in unary representation and outputs a key pair (sk, pk).

2. The (randomized) signature algorithm Sign(sk, µ) takes as input a secret
key sk and a message µ and outputs a signature σ.

3. The (deterministic) verification algorithm Verify(pk, µ, σ) takes as input a
public key pk, a message µ and a signature σ and outputs 1 (or accept) or 0.

6 https://csrc.nist.gov/projects/post-quantum-cryptography/

round-3-submissions

6

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

For correctness, it is required that, for any message µ,

Pr
Gen,Sign

[
Verify(pk, µ, σ) = 0

∣∣∣∣ (sk, pk)← Gen

σ ← Sign(sk, µ)

]
≤ negl(κ).

The standard security notion for digital signature schemes is that of existen-
tial unforgeability under adaptive chosen-message attacks (EUF-CMA) [GMR88].

Definition 2 (EUF-CMA security). Given a signature scheme Sig = (Gen,
Sign,Verify) and security parameter κ, we say that Sig is EUF-CMA-secure if
any PPT algorithm A has negligible advantange in the EUF-CMA game, defined
as

AdvEUF-CMA
A = Pr

[
Verify(pk, µ∗, σ∗) = 1

∧ µ∗ 6∈ Q

∣∣∣∣ (sk, pk)← Gen(1κ)

(µ∗, σ∗)← ASign(sk,·)(pk)

]
,

where ASign(sk,·) denotes A’s access to a signing oracle with private key sk and Q
denotes the set of messages µ that were queried to Sign(sk, ·) by A.

As a stepping stone to EUF-CMA security, we will first prove security of
our scheme against key-only attacks (EUF-KO) where the adversary is given the
public key but no access to a signing oracle.

Definition 3 (EUF-KO security). Given a signature scheme Sign = (Gen,Sign,
Verify) and security parameter κ, we say that Sig is EUF-KO-secure if any PPT
algorithms A has negligible advantange in the EUF-KO game, defined as

AdvEUF-KO
A = Pr

[
Verify(pk, µ∗, σ∗) = 1

∣∣∣∣ (sk, pk)← Gen(1κ)

(µ∗, σ∗)← A(pk)

]
.

A crucial building block of our construction are commitment schemes, which
are central to the security of the zero-knowledge protocol.

Definition 4 (Secure Commitment Scheme). Let κ be a security parame-
ter, Commit be a PPT (in κ) algorithm that on input m outputs c, r and Open
be a deterministic polynomial-time (in κ) algorithm that on input m, r, c outputs
a bit b. Then we say that Commit,Open are a secure commitment scheme if for
any PPT algorithms A1,A2, the following advantages are negligible in κ:

Advbind
A1

= Pr

[
Open(µ1, r1, c) = 1∧

Open(µ2, r2, c) = 1 ∧ µ1 6= µ2

∣∣∣∣(µ1, µ2, r1, r2, c)← A1(1κ)

]
,

Advhide
A2

= | Pr [A2(c1) = 1]− Pr [A2(c2) = 1]|

where µ1, µ2 are arbitrary inputs to Commit and ci ← Commit(µi).

7

2.2 MPC in the Head

We now recall the MPC-in-the-Head (MPCitH) scheme used in Picnic and other
previous works. In zero-knowledge proofs based on the MPCitH paradigm, the
prover simulates N parties P1, . . . ,PN for a computation over a field F. As a
single computation usually does not achieve a negligible soundness error, the
prover evaluates τ independent instances of the MPC scheme we describe below.

For simplicity, we focus on one MPC instance only. We describe the proto-
col from the view of the individual parties, although it is actually the prover
simulating each such party who performs these actions.

First, each Pi obtains a tape of private randomness derived from a seed sd(i).
These seeds are used whenever a party needs to generate pseudorandom values
or randomness for commitments. In order to secret-share a value x ∈ F, the
parties P1, . . . ,PN first locally generate a pseudo-random share x(i) ∈ F, which
P1 adjusts to x(1) ← x−

∑N
i=1 x

(i), so that x(1), . . . , x(N) form the secret-sharing
〈x〉 of x. Observe that all parties can easily, without communication, generate a
secret-sharing 〈r〉 of a pseudorandom value r by each deterministically deriving

shares from sd(i). In order to open a secret-shared value 〈x〉, each Pi simply
broadcasts its share x(i) of x to all other parties.

Initially, before the parties obtain the secret-shares of the secret input, they
may first obtain shares of random triples a, b, c, such that c = a · b. The process
of establishing shares of such random triples is usually part of a preprocessing
step. Each party commits to all shares from the preprocessing.

If all parties have enough shares of random triples and also obtained shares of
the input (to which they also commit) then they can perform the computation.
Let C be a circuit over F the parties evaluate as follows:

– For the secret-shared values 〈x〉, 〈y〉 the parties can compute a secret sharing
〈x+ y〉 or 〈α · x+ β〉 for publicly known α, β ∈ F by using the linearly ho-
momorphic property of the secret-sharing scheme. The parties can therefore
compute shares of the outcome of the operation without interaction.

– To compute a secret-sharing 〈x · y〉, from secret-shared values 〈x〉, 〈y〉, the
parties take an unused sharing of a random triple 〈a〉, 〈b〉, 〈c〉, open the two
values 〈δ〉 = 〈a− x〉, 〈ε〉 = 〈b− y〉, locally reconstruct δ and ε and then
use the communication-free linear operations to compute a sharing of 〈z〉 =
δ · 〈y〉+ ε · 〈x〉− δ · ε−〈c〉, which is correct if all shares were opened correctly
and a, b, c indeed form a correct multiplicative triple.

When broadcasting values, each party locally commits to the values that it
sends to and receives from other parties. Finally, each party locally sends its
share of the output of the computation to the verifier, together with all the
aforementioned commitments.

The verifier chooses a party Pi which should not be opened, whereupon
the prover will send the verifier the openings for all commitments and seeds
of the remaining N − 1 parties, as well as all values that the un-opened party
broadcast in the process. The verifier then re-computes all messages that are sent
by each opened party and checks if these are consistent with the commitments

8

as well as the pseudorandom seeds. It accepts if all these checks go through. In
order to also verify the preprocessing, one would have also have to verify the
preprocessing independently [KKW18,BN20]. We do not describe such checks
here since our signature scheme, in comparison to BBQ [dDOS19], does not
require preprocessed data.

One can see that the output, which the verifier obtains as shares from all N
parties, must be correct with probability at least 1/N , as the prover could have
cheated in at most one party (the one which is not opened to the verifier). But in
order to do so it would have had to anticipate the verifier’s choice before making
the commitments as it cannot undo cheating later. As mentioned before, the
soundness error can be reduced by running the aforementioned scheme τ times
in parallel. Note that by only revealing the secret states of N − 1 parties, the
protocol we described above does not leak any information about the secret input
to the verifier, as every N − 1 out of N shares appear pseudorandom and the
remaining shares are hidden inside commitments.

2.3 AES

AES is a 128-bit block-cipher based on a substitution-permutation network
(SPN). It allows key lengths of 128, 192 or 256 bits, where the SPN uses 10,
12 or 14 rounds respectively. The state of AES always consists of 128 bits and
can be considered as a 4 × 4 matrix of elements in F28 . The round function is
composed of four operations on the state, of which only one called SubBytes is
non-linear. SubBytes transforms each of the 16 bytes of the state by applying
an S-box to each byte. The AES S-box computes a multiplicative inverse in the
field F28 , followed by an invertible affine transformation, and can be seen as

S : s 7→ φ−1
(
A · φ

(
s−1
)

+ b
)
, (1)

where φ : F28 → (F2)8 is an isomorphism of vector spaces and A ∈ (F2)8×8 and
b ∈ (F2)8 are the public parameters of the affine transformation. For complete-
ness, s−1 = 0 if s = 0. The key schedule function is mostly linear, except for the
application of the same S-box to up to four bytes of the round key.

2.4 The BBQ Signature Scheme

The BBQ signature scheme [dDOS19] follows the blueprint of Picnic [CDG+17],
except for two main differences: 1) While Picnic uses LowMC as a one-way
function (OWF), BBQ relies on the well-studied AES; 2) BBQ does not consider
AES as a binary circuit with AND and XOR gates, but rather as an arithmetic
circuit over F28 where the only non-linear operation is the S-box inversion.

The reason why AES naturally fits to be evaluated inside MPCitH, is that all
its operations can either be expressed as linear transformations or field operations
over F28 (as mentioned in Section 2.3). If one uses the MPCitH scheme that
was outlined in Section 2.2 over the field F28 , then only evaluating the S-boxes
requires communication between the parties (beyond obtaining shares of the

9

input). The S-box evaluation is therefore the only additional contribution to the
size of the signature.

The approach of BBQ for evaluating the S-box inside MPCitH is as follows:

1: A random multiplication triple (〈a〉, 〈b〉, 〈c〉) comes from preprocessing.
2: 〈s〉 is held by the parties.
3: 〈r〉 is sampled at random from F28 .
4: 〈t〉 ← 〈s〉 · 〈r〉 which is computed using (〈a〉, 〈b〉, 〈c〉).
5: t← Open(〈t〉).
6: 〈s−1〉 ← t−1 · 〈r〉 = 〈s−1 · r−1 · r〉.

This approach, in the ideal case, only communicates 4 field elements per S-
box: one field element for the preprocessed multiplication triple where only 〈c〉
is non-random, two for the multiplication 〈s〉 · 〈r〉 and one for the opening of 〈t〉.
Two crucial properties of this protocol are:

1. It requires that s is invertible for every S-box as a computation that branches
based on s being 0 or not would be much more costly.

2. It is necessary that r 6= 0, as the inversion does not work if r = 0.

The first drawback can be easily worked around, as shown in [dDOS19], by
restricting key generation to choose an AES key and input such that S-box
inputs are always non-zero. The authors show that this only reduces the key-
space by 1.1 to 2.9 bits for AES-128 and AES-256 (respectively).

3 Identification Scheme with Amortized Verification of
Inverses

In this section we present our novel technique for efficient amortized verification
of inverses in MPC in more detail. This technique builds upon the sacrificing-
based multiplication verification of [BN20], but improves upon their work in a
novel and interesting way, by adapting a recent polynomial-based technique for
verifying multiplications in distributed zero-knowledge proofs [BBC+19].

Our first observation is that we can replace the MPC-oriented inversion al-
gorithm by an MPCitH-friendly version instead. In BBQ, the parties in the
MPCitH first compute a masked version 〈t〉 of the input 〈s〉 to the S-box (i.e.
〈t〉 ← 〈s〉 · 〈r〉, then invert t in the clear and finally remove the mask. This
computes an inversion of 〈s〉 as one would do in regular MPC protocols, but it
does not take the additional knowledge of the prover into account. Namely, the
prover can directly inject a sharing of the inverse 〈t〉 = 〈s−1〉 into the protocol
execution. This is possible because in an MPCitH protocol, the prover knows
the evaluated circuit as well as all secret-shared values in advance. This also
removes the random value 〈r〉 that was used in the inversion algorithm before,
which is an advantage as BBQ required extra costs to ensure that this random
〈r〉 was non-zero in order for the inversion to be correct. However, the prover
could still share a wrong value for 〈t〉, so the MPCitH parties must now run a
checking procedure to ensure that the inverse values are correct.

After completing the circuit for evaluating AES, the parties now hold shares
for 2m values, where m denotes the number of S-boxes: the inputs 〈s1〉, . . . , 〈sm〉

10

and their corresponding alleged inverses 〈t1〉, . . . , 〈tm〉. These 2m values should
all pairwise multiply to 1, which can be verified using the standard multiplication
verification procedure that uses a random multiplication triple for each pair
〈s`〉, 〈t`〉, ` ∈ [m]. In the following we will show an alternative method to check
inverses that requires less communication, contributing to shorter signatures.
Here we will again exploit that the prover knows the entire secret inputs of the
MPCitH protocol and can provide additional, although possibly faulty, secret
inputs to the computation.

3.1 Polynomial-based Checking of Inverses

Consider a random polynomial S(x) ∈ F28 [x] of degree m that has S(`−1) = s`,
for all ` ∈ [m]. Similarly, consider such a polynomial T (x) ∈ F28 [x] with T (` −
1) = t`, also of degree m. We can construct these polynomials by interpolating
the m points (`, s`), and one extra, random point.

By defining the polynomial P = S · T of degree 2m, it holds that P (` −
1) = 1 for ` ∈ [m] if all the 〈ti〉 were correctly provided. All S(·), T (·), P (·)
are known to the prover at proof time. To perform the amortized test, observe
that the MPCitH parties (1) can compute shares of the polynomials S(·), T (·)
and P (·), which the prover will have committed to, without communication
using Lagrange interpolation, and (2) can check that P = S · T by receiving a
random value R from the verifier, locally evaluating the three polynomials at R,
jointly reconstructing P (R), S(R), T (R) and allowing the verifier to check that
P (R) = S(R) · T (R).

Both S(·), T (·) are already provided in the form of the shares 〈s`〉, 〈t`〉 and no
extra communication is necessary7 to interpolate these. For P (·), observe that
m of its evaluations can be hard-coded as equal to 1, as we want to achieve that
P (0) = · · · = P (m− 1) = 1. The proof therefore only has to communicate m+ 1
further evaluation points of P (·) in secret-shared form. The prover may cheat
doing so, but the multiplication test on a random R chosen by the verifier detects
such cheating behavior. The probability that this check fails to reveal cheating
when verifying P (·) can be bounded using the Schwartz–Zippel Lemma, which
we can use to bound the number of zeroes of the polynomial Q = P − S · T ,
which is non-zero only when P 6= S · T .

Lemma 1 (Schwartz–Zippel Lemma). Let Q(x) ∈ F[x] be a non-zero poly-
nomial of degree d ≥ 0. For any finite subset S of F, Pr

r
$←−S [Q(r) = 0] ≤ d

|S| .

In summary, in addition to the m injected inverses, the prover will additionally
have to provide the remaining m+ 1 points that define P (·) fully as part of the
proof, and will have to open S(R), T (R), P (R) to the verifier.

7 Both S(·), T (·) are actually defined by m shares and one share of a random value
only known to the prover, which will later simplify the simulation of the protocol
for its zero-knowledge property. This sharing of a random value can be obtained for
free in MPCitH.

11

3.2 Generalized Polynomial-based Checking

We now generalize the protocol from the previous subsection to reduce the num-
ber of field elements that need to be opened by the MPCitH parties. This gen-
eralization reduces the transcript size from around 2m elements to m+O(

√
m)

by instead checking O(
√
m) inner products of size

√
m. It is based on a zero-

knowledge proof from [BBC+19, Section 4.2] (also described in [BGIN19, Sec-
tion 4.1]).

The idea of the improved check is to first compute O(
√
m) random inner

products and use these to define O(
√
m) pairs of polynomials Sj(·) and Tj(·).

These are then used to define a single random polynomial P (·), still subjected
to a constraint based on the inverse relation, which is then checked against its
constituent polynomials as before. We also modify this test by lifting the ran-
dom polynomial evaluations to an extension field, which improves the soundness
bound from the Schwartz-Zippel lemma.

Let λ be a lifting parameter and let m = m1 ·m2 where m2 < 8λ. Fix an
injective homomorphism to lift shares from F28 to F28λ , which can be computed
locally by each of the parties of the MPCitH protocol. We also write f(k) for
a polynomial f(·) and an integer k, to mean f evaluated at the k-th element
of F28λ (according to a fixed ordering). The following procedure describes the
non-secret-shared verification protocol.
Given inputs s1, . . . , sm and t1, . . . , tm ∈ F28 :

1: Lift s1, . . . , sm and t1, . . . , tm to F28λ .
2: For j ∈ [m1], sample additional random points s̄j , t̄j ← F28λ .
3: Sample rj ← F28λ , for j ∈ [m1]. . Randomizing the inner products.
4: Compute s′j,k = rj · sj+m1k and write t′j,k = tj+m1k, for j ∈ [m1], k ∈

[0,m2 − 1]. Observe that when all siti = 1,

(
s′1,k · · · s′m1,k

) t′1,k
...

t′m1,k

 =
∑
j∈[m1]

rj for k ∈ [0,m2 − 1].

5: Define polynomials Sj(·), Tj(·) such that

Sj(k) = s′j,k, Tj(k) = t′j,k for k ∈ [0,m2 − 1],

Sj(m2) = s̄j , Tj(m2) = t̄j .

By definition each such polynomial has degree m2.
6: Let P =

∑
j Sj · Tj be of degree 2m2, where it is guaranteed that P (k) =∑

j rj , for k ∈ [0,m2 − 1] and j ∈ [m1].
7: Sample R← F28λ \ [0,m2 − 1]. . Schwartz–Zippel challenge.
8: Compute P (R) as well as Sj(R) and Tj(R), for j ∈ [m1], and verify whether
P (R) =

∑
j Sj(R) · Tj(R).

Secret-shared Checking. Since polynomial interpolation is linear, the parties
in the MPCitH protocol can interpolate the shares of the coefficients of poly-
nomials Sj(·) and Tj(·) from shares of s′j,k and t′j,k as well as sj , tj . This does

12

not require any communication as the challenges rj are public and sj , tj can
be freely generated by the MPCitH scheme. From this, each party can compute
their share of Sj(R) and Tj(R) for each j and then reveal it in order to perform
the check.

As mentioned above, the only non-linear part is the computation of the poly-
nomial P (·). Here the prover adjusts the shares for m2+1 values of P , as another
m2 values are already specified by the publicly known P (k) =

∑
j rj for each

k ∈ [0,m2 − 1], in the same way that it injects a correction value for the in-
verses. With those 2m2 + 1 shares, the parties locally interpolate shares of the
coefficients of P and then compute and reveal their shares of P (R).

In summary, each party Pi performs the following operations.

1: Lift s
(i)
1 , . . . , s

(i)
m and t

(i)
1 , . . . , t

(i)
m to F28λ .

2: For j ∈ [m1], sample s̄
(i)
j , t̄

(i)
j ← F28λ .

3: Receive challenges rj ∈ F28λ for j ∈ [m1].

4: Compute s
′(i)
j,k = rj · s(i)j+m1k

and write t
′(i)
j,k = t

(i)
j+m1k

for j ∈ [m1], k ∈
[0,m2 − 1].

5: Interpolate polynomials S
(i)
j (·) and T

(i)
j (·) such that:

S
(i)
j (m2) = s̄

(i)
j , T

(i)
j (m2) = t̄

(i)
j

and
S
(i)
j (k) = s̄

′(i)
j,k , T

(i)
j (k) = t̄

′(i)
j,k for k ∈ [0,m2 − 1].

6: Receive m2 + 1 shares P (i)(k), for k ∈ {m2, . . . , 2m2} (k = m2 is included as
parties cannot compute

∑
j s̄j · t̄j locally) from the prover. For k ∈ [0,m2−1],

if i = 1, set P (i)(k) =
∑
j rj ; if i 6= 1, set P (i)(k) = 0. Interpolate P (i) from

those 2m2 + 1 points.
7: Receive the challenge R ∈ F28λ \ [0,m2 − 1] from the verifier.

8: Compute P (i)(R), S
(i)
j (R) and T

(i)
j (R) and open all these 2m1 + 1 values.

9: Check that P (i)(R) =
∑
j∈[m1]

S
(i)
j (R) · T (i)

j (R).

Soundness Error of the Generalized Check. Assume that each party hon-
estly follows the protocol but there exists ` ∈ [m] such that s` · t` 6= 1. Since the
embedding into F28λ is an injective homomorphism, it must then also hold that
s` · t` 6= 1 over F28λ . Assuming that the above protocol succeeds, then one of the
following conditions must hold:

1. In Step 2, the values r1, . . . , rm1
were sampled such that

∑
j∈[m1]

Sj(k) ·
Tj(k) = 1 for k ∈ [0,m2 − 1].

2. In Step 6 a value R was chosen such that P (R) =
∑
j Sj(R) · Tj(R) while

P 6=
∑
j Sj · Tj .

For the first condition, by assumption we have that ∃j, k such that
∑
j rj =∑

j s
′
j,k · t′j,k while rj 6= s′j,k · t′j,k. By the choice of rj this will happen with

probability at most 2−8λ. In the second case, the polynomials on both sides are

13

of degree 2m2 and can have at most 2m2 points in common. By Lemma 1, the
probability of choosing such a value of R is at most 2m2/(2

8λ −m2).

The overall soundness error is therefore at most 2−8λ + 2m2/(2
8λ −m2).

Simulatability of the Generalized Check. We now construct a simulator
for the aforementioned protocol to argue that it does not leak any information.
The simulator obtains N − 1 shares of {s`, t`}`∈[m] as inputs, w.l.o.g. it misses
the N -th share. It first chooses r1, . . . , rm1

uniformly at random from F28λ and R
uniformly from the appropriate set.

For i ∈ [N − 1], it samples s̄
(i)
j and t̄

(i)
j as in the protocol and interpolates

S
(i)
j and T

(i)
j for j ∈ [m1]. It then samples Sj(R) and Tj(R) at random. It fixes

m pairs of shares {s(N)
` , t

(N)
` } arbitrarily, sets S

(N)
j (R) = Sj(R)−

∑N−1
i=1 S

(i)
j (R)

and similarly for T
(N)
j (R), and interpolates S

(N)
j and T

(N)
j using these values

(instead of sampling s̄
(N)
j and t̄

(N)
j at random). Because the uniform sampling

of s̄j and t̄j in the protocol imply a uniform distribution for Sj(R) and Tj(R),

the values produced by the simulator (including the opened shares S
(N)
j (R) and

T
(N)
j (R)), are identically distributed.

The simulator then computes the product polynomial P defined by the shared
Sj and Tj polynomials it interpolated before and honestly samples the m2 + 1
shares for each party. Instead of opening P (N)(R) honestly, the simulator com-
putes P (N)(R) = P (R) −

∑
i=1N − 1P (i)(R) and opens that instead. Because

P (R) is computed honestly from Sj(R) and Tj(R), the computed P (N)(R) is
distributed identically to an honest run of the protocol.

By construction, all opened values are consistent with the protocol defini-
tion and are perfectly indistinguishable from a real run. Furthermore, all secret-
shared values by linearity generate a correct transcript.

Communication Cost. Steps 1–4 and 6 are local given public knowledge of rj
and R. The only parts which add communication are Step 5, which introduces
8λ(m2 + 1) bits into the transcript unless P1 is opened (as injecting shares can
be done with P2, . . . ,PN sampling random shares and P1 receiving a correction
share), and Step 7, which always adds 8λ(2m1+1) bits. This gives a total average
overhead per S-box of 8λ

(
N−1
N (m2 + 1) + 2m1 + 1

)
/m bits.

For instance, in our concrete instantiation at the L1 security level (see Sec-
tion 6.1), we use m = 200, with N = 16 parties, λ = 4, m1 = 10 and m2 = 20
to obtain an overhead of 6.51 bits per S-box. This is significantly less than the
direct approach of checking with m MPC multiplications, which would require
around 16 bits per multiply (8 for the last party’s share of the multiplication
triple, and 8 for the unopened party’s broadcast value).

14

4 The Banquet Signature Scheme

In this section we present the Banquet signature scheme obtained by using the
zero-knowledge identification scheme from the previous section with the Fiat–
Shamir transform [FS87]. We state and prove its security theorem in Section 5.

At a high level, Banquet works exactly as previous MPCitH-based signatures,
like Picnic and BBQ. Given a key pair consisting of a random secret key sk = k
and a public key pk = (x, y) such that AESk(x) = y, and to sign a message µ
one generates a non-interactive zero-knowledge proof of knowledge of k in a way
that binds µ to the proof. More concretely, we start with a 7-round, interactive
identification scheme for proving knowledge of k, and compile this to a non-
interactive proof using the Fiat–Shamir transform. The verifier’s three random
challenges are generated using random oracles, with the message and public key
used as initial inputs to bind these to the signature.

Additionally, to sample the MPC parties’ randomness we use a deterministic
seed expansion function, Expand, which we instantiate using SHAKE. Each seed
s used as input to Expand defines a distinct random tape t, such that every call to
Sample(t) reads the next bits of the tape defined by t, keeping track of the current
position on the tape. As introduced in [KKW18], to reduce communication when
opening seeds that were randomly challenged, we generate all seeds as the leaves
of a binary tree derived from a master seed at the root. This allows N − 1 of N
seeds to be communicated by revealing only logN seeds.

Parameters. The scheme depends on the following values: the security parame-
ter κ, the total number of parties N in the underlying MPC protocol, the total
number of S-boxes m, the number of parallel repetitions τ , and m1, m2, and λ
be as described in the previous section.

Key Generation. Gen(1κ) samples k, x ← {0, 1}κ, computes AESk(x) = y, and
repeats this until there are no S-boxes in the computation of y with input 0. It
then sets sk = k and pk = (x, y), and returns (pk, sk).

The security of the key generation directly follows from the security analysis
in [dDOS19], which we review in Section 5.

We recall that for security reasons the key generation algorithm requires the
block-size and the key-size to be equal [CDG+17]. While this is true for AES-128,
this is not the case for AES-192 and AES-256. Two solutions to this problem
were proposed in [dDOS19]: the first one relies on the use of the Rijndael cipher
with 192-bit (resp. 256-bit) blocks and keys; the second on the combination of
two copies of AES-192 (resp. AES-256) in ECB mode. The latter solution has
the property that each secret key may have two corresponding public keys (more
details in Section 6.2). However, since we hash pk along with the message to be
signed, as shown in Figure 2, we have assurance that signatures are bound to a
unique public key.

Signature Generation and Verification Algorithm. The Sign(sk, pk, µ) algorithm
is formally described in Figures 1,2 and 3. We describe the protocol in phases and

15

We use e to index executions, i to index parties, and ` to index S-boxes.
Sign(sk, µ):
Phase 1: Committing to the seeds and the execution views of the parties.

1: Sample a random salt st
$←− {0, 1}2κ.

2: for each parallel execution e do

3: Sample a root seed: sde
$←− {0, 1}κ.

4: Compute parties’ seeds sd
(1)
e , . . . , sd

(N)
e as leaves of binary tree from sde.

5: for each party i do
6: Commit to seed: C

(i)
e ← Commit(st, e, i, sd

(i)
e).

7: Expand random tape: tape(i)
e ← Expand(st, e, i, sd

(i)
e)

8: Sample witness share: sk
(i)
e ← Sample(tape(i)

e).

9: Compute witness offset: ∆ske ← sk−
∑
i sk

(i)
e .

10: Adjust first share: sk
(1)
e ← sk

(1)
e +∆ske.

11: for each S-box ` do
12: For each party i, compute the local linear operations to obtain the

share s
(i)
e,` of the S-box input se,`.

13: Compute the S-box output: te,` =
(∑

i s
(i)
e,`

)−1

.

14: For each party i, sample the share of the output: t
(i)
e,` ← Sample(tape(i)

e).

15: Compute output offset: ∆te,` = te,` −
∑
i t

(i)
e,`.

16: Adjust first share: t
(1)
e,` ← t

(1)
e,` +∆te,`.

17: Broadcast each party’s share ct
(i)
e of the output.

18: Set σ1 ← (st, (C
(i)
e)i∈[N], (ct

(i)
e)i∈[N],∆ske, (∆te,`)`∈[m])e∈[τ].

Fig. 1. Signature scheme - Phase 1. Commitment to executions of AES.

give the rationale behind each one. The challenges h1, h2 and h3 are generated
using three random oracles H1, H2 and H3, respectively. The MPC-in-the-Head
computation is divided into two steps: the AES execution and then the verifica-
tion of the inverse injections.

In Phase 1 (Figure 1) the prover commits to τ executions of AES, generating
the first signature component σ1, which consists of a 2κ-bit salt st, commitments

to the seeds {C(i)
e }i∈[N], the injection of the secret key sk, the injection of the m

inverse values te,` and the broadcast of the output cte, for each execution e ∈ [τ]
and S-box ` ∈ [m]. These values suffice to uniquely determine the output values
of the distributed AES circuit. The first challenge, h1, is generated in Phase 2
(Figure 2) by hashing together σ1, the message µ and the public key pk. The
next phases are devoted to the verification of the AES executions. In particular,
in Phase 3 (Figure 2) the prover generates the commitments to the checking
polynomial Pe(·), for each execution e ∈ [τ], as described in Section 3.2, and
computes a challenge for them in Phase 4. Phases 5 and 6 (Figure 3) describe
the computation of the challenge for the committed checking polynomial and the
commitments to the views of the check openings for each execution, respectively.
Finally, Phase 7 outputs the signature σ.

16

Phase 2: Challenging the multiplications.

1: Compute challenge hash: h1 ← H1(µ, pk, σ1).
2: Expand hash: (re,j)e∈[τ],j∈[m1] ← Expand(h1) where re,j ∈ F28λ .

Phase 3: Committing to the checking polynomials.

1: for each execution e do
2: for each party i do
3: Lift s

(i)
e,`, t

(i)
e,` ↪→ F28λ , for ` ∈ [m].

4: for j ∈ [m1] do

5: Set s
′(i)
e,j,k ← re,j ·s(i)

e,j+m1k
and t

′(i)
e,j,k ← t

(i)
e,j+m1k

, for k ∈ [0,m2].

6: Sample additional random points: s̄
(i)
e,j , t̄

(i)
e,j ← Sample(tape(i)

e).

7: Define S
(i)
e,j(k) = s

′(i)
e,j,k and T

(i)
e,j (k) = t

′(i)
e,j,k for k ∈ [0,m2 − 1]

as well as S
(i)
e,j(m2) = s̄

(i)
e,j and T

(i)
e,j (m2) = t̄

(i)
e,j .

8: Interpolate polynomials S
(i)
e,j(·) and T

(i)
e,j (·) of degree m2 using

defined m2 + 1 points.

9: Compute product polynomial: Pe ←
∑
j∈[m1]

(∑
i S

(i)
e,j

)
·
(∑

i T
(i)
e,j

)
.

10: for each party i do

11: For k ∈ [0,m2 − 1]: P
(i)
e (k) =

{∑
j re,j if i = 1

0 if i 6= 1

12: For k ∈ {m2, . . . , 2m2}, sample P
(i)
e (k)← Sample(tape(i)

e).

13: for k ∈ {m2, . . . , 2m2} do

14: Compute offset: ∆Pe(k) = Pe(k)−
∑
i P

(i)
e (k).

15: Adjust first share: P
(1)
e (k)← P

(1)
e (k) +∆Pe(k).

16: For each party i, interpolate P
(i)
e using defined 2m2 + 1 points.

17: Set σ2 ← ((∆Pe(k))k∈{m2,...,2m2})e∈[τ]
.

Fig. 2. Signature scheme - Phases 2 and 3. Computation of randomized inner product
checking polynomials.

The verification algorithm Verify(pk, µ, σ) is described in Figure 4. It performs
similar computations to those made during generation of the signature, thereby
checking the consistency of N − 1 of the N parties in each of the τ instances.

Improvement to final check. It may be possible to save a minor amount of signa-
ture size by combining the check of the ce values (which should all be 0) into a
single random linear combination check. This would require lifting the ce values
into F2κ and generating τ random coefficients as part of the challenge during
Phase 4.

5 Security Proof

We prove Banquet is EUF-CMA-secure (unforgeability against chosen-message
attacks, Theorem 1) by first proving that Banquet is EUF-KO-secure (unforge-
ability against key-only attacks) in Lemma 2.

17

Phase 4: Challenging the checking polynomials.

1: Compute challenge hash: h2 ← H2(h1, σ2).
2: Expand hash: (Re)e∈[τ] ← Expand(h2) where Re ∈ F28λ \ [0,m2 − 1].

Phase 5: Committing to the views of the checking protocol.

1: for each execution e do
2: for each party i do
3: For j ∈ [m1], compute: a

(i)
e,j ← S

(i)
e,j(Re) and b

(i)
e,j ← T

(i)
e,j (Re).

4: Compute: c
(i)
e ← P

(i)
e (Re).

5: Open ce, and ae,j , be,j for j ∈ [m1].

6: Set σ3 ← (((a
(i)
e,j , b

(i)
e,j)j∈[m1], c

(i)
e)i∈[N])e∈[τ].

Phase 6: Challenging the views of the checking protocol.

1: Compute challenge hash: h3 ← H3(h2, σ3).
2: Expand hash: (̄ie)e∈[τ] ← Expand(h3) where īe ∈ [N].

Phase 7: Opening the views of the checking protocol.

1: for each execution e do
2: seedse ← {log2(N) nodes needed to compute sde,i for i ∈ [N] \ {̄ie}}.
3: Output σ ← (st, h1, h3, (seedse,C

(̄ie)
e ,∆ske, (∆te,`)`∈[m],

(∆Pe(k))k∈{m2,...,2m2}, Pe(Re), (Se,j(Re), Te,j(Re))j∈[m1])e∈[τ]).

Fig. 3. Signature scheme - Phases 4-7. Computation of the views of the randomized
check openings, challenging and opening of the views of the checking protocol.

Lemma 2. Let Commit, H1, H2 and H3 be modeled as random oracles, Expand
be modeled as a random function, and let (N, τ,m2, λ) be parameters for the
Banquet scheme. Let A be a probabilistic poly(κ)-time adversary against the
EUF-KO security of the signature scheme that makes Qc, Q1, Q2 and Q3 queries
to the respective oracles. Then there exists a probabilistic poly(κ)-time adver-
sary B against the OWF security of fx such that

AdvOWF
B (1κ) ≥ AdvEUF-KO

A (1κ)− ε(Qc, Q1, Q2, Q3),

with

ε(Qc, Q1, Q2, Q3) =
(τN + 1)(Qc +Q1 +Q2 +Q3)2

22κ
+ Pr[X + Y + Z = τ]

where X = maxq1∈Q1
{Xq1} with Xq1∼B(τ, 1/28λ), Y = maxq2∈Q2

{Yq2} with
Yq2 ∼ B(τ −X, 2m2/(2

8λ−m2))∀q2 and Z = maxq3∈Q3{Zq3} with Zq3 ∼ B(τ −
X−Y, 1/N)∀q3, where B(n, p) denotes the binomial probability distribution with
n samples each with probability p of success.

Remark 1. Due to the mix of different distributions, we do not express the second
term of ε(Qc, Q1, Q2, Q3) as a closed function; we will later compute parameters
τ,m2, κ and N such that ε is negligible in λ. This will then imply that if A has
a non-negligible advantage in the EUF-KO game with these parameters, then B
also has non-negligible advantage in the corresponding OWF game.

Proof. We build a probabilistic poly(κ)-time algorithm B which uses a EUF-KO
adversary A to compute a pre-image for fx.

18

Verify(pk, µ, σ) :

1: Parse σ ← (st, h1, h3, (seedse,C
(̄ie)
e ,∆ske, (∆te,`)`∈[m],

(∆Pe(k))k∈{m2,...,2m2}, Pe(Re), (Se,j(Re), Te,j(Re))j∈[m1])e∈[τ]).
2: Compute h′2 ← H2(h1, ((∆Pe(k))k∈{m2,...,2m2})e∈[τ]).
3: Expand hashes as (re,j)e∈[M],j∈[m1] ← Expand(h1), (Re)e∈[M] ← Expand(h′2)

and (̄ie)e∈[M] ← Expand(h3).
4: for each execution e do
5: Use seedse to compute sd

(i)
e for i ∈ [N] \ īe.

6: for each party i ∈ [N] \ īe do

7: Recompute C
(i)
e ← Commit(st, e, i, sd

(i)
e), tape(i)

e ← Expand(st, e, i, sd
(i)
e)

and sk
(i)
e ← Sample(tape(i)

e).

8: if i
?
= 1 then

9: Adjust first share: sk
(i)
e ← sk

(i)
e +∆ske.

10: for each S-box ` do
11: Compute local linear operations to obtain s

(i)
e,`.

12: Sample output share: t
(i)
e,` ← Sample(tape(i)

e).

13: if i
?
= 1 then

14: Adjust first share: t
(i)
e,` ← t

(i)
e,` +∆te,`.

15: Recompute output broadcast ct
(i)
e and missing ct

(̄ie)
e = ct−

∑
i 6=īe ct

(i)
e .

16: Do as in Phase 3, lines 3–8 to interpolate S
(i)
e,j , T

(i)
e,j for j ∈ [m1].

17: for k from 0 to m2 − 1 do

18: If i
?
= 1, set P

(i)
e (k) =

∑
j re,j ; otherwise set P

(i)
e (k) = 0.

19: for k from m2 to 2m2 do
20: Sample share: P

(i)
e (k)← Sample(tape(i)

e).

21: if i
?
= 1 then

22: Adjust first share: P
(i)
e (k)← P

(i)
e (k) +∆Pe(k).

23: Interpolate P
(i)
e and compute c

(i)
e ← P

(i)
e (Re).

24: For j ∈ [m1], compute a
(i)
e,j ← S

(i)
e,j(Re) and b

(i)
e,j ← T

(i)
e,j (Re).

25: Compute missing shares c
(̄ie)
e ← Pe(Re)−

∑
i 6=īe c

(i)
e and for j ∈ [m1]:

a
(̄ie)
e,j ← Se,j(Re)−

∑
i 6=īe

a
(i)
e,j and b

(̄ie)
e,j ← Te,j(Re)−

∑
i 6=īe

b
(i)
e,j

26: Set h′1 ← H1(st, ((C
(i)
e)i∈[N], (ct

(i)
e)i∈[N],∆ske, (∆te,`)`∈[m])e∈[τ]).

27: Set h′3 ← H3

(
h′2, (Pe(Re), (c

(i)
e)i∈[N],

(Se,j(Re), Te,j(Re), (a
(i)
e,j , b

(i)
e,j)i∈[N])j∈[m1])e∈[τ]

)
.

28: Output accept iff h′1
?
= h1, h′3

?
= h3 and for all executions e it holds that

Pe(Re)
?
=
∑
j Se,j(Re) · Te,j(Re).

Fig. 4. Verification algorithm.

19

Algorithm 1 Hc(qc = (st, e, i, sd)):

1: x
$←− {0, 1}2κ.

2: if x ∈ Bad then abort. . Check if x is fresh.

3: x→ Bad.
4: (qc, x)→ Qc.
5: Return x.

Algorithm 2 H1(q1 = (st, σ1)):

Read σ1 as ((C
(i)
e)i∈[N],∆ske, (∆te,`)`∈[m])e∈[τ].

1: for e ∈ [τ], i ∈ [N] do C
(i)
e → Bad.

2: for (e, i) ∈ [τ]× [N] : ∃ sd(i)
e : ((st, e, i, sd

(i)
e),C

(i)
e) ∈ Qc do

3: sk
(i)
e , (t

(i)
e,`)` ← Expand(sd

(i)
e).

4: if i
?
= 1 then sk

(i)
e ← sk

(i)
e +∆ske and (t

(i)
e,`)` ← (t

(i)
e,` +∆te,`)`.

5: (sk
(i)
e , (t

(i)
e,`)`)→ Tsh[q1, e, i].

6: for each e : ∀i, Tsh[q1, e, i] 6= ∅ do

7: ske ←
∑
i sk

(i)
e and (te,`)` ← (

∑
i t

(i)
e,`)`.

8: (ske, (te,`)`)→ Tin[q1, e].
9: x

$←− {0, 1}2κ.
10: if x ∈ Bad then abort.

11: x→ Bad.
12: (q1, x)→ Q1.
13: Return x.

The reduction B simulates the EUF-KO game using the random oracles Hc,
H1, H2 and H3 and query lists Qc,Q1,Q2 and Q3. In addition, B also maintains
three tables Tsh, Tin and Top to store the shares, inputs and openings that it is
able to recover from A’s queries to the random oracles. B also maintains a set
Bad to keep track of the outputs of all four random oracles.

Behavior of the reduction. The reduction B receives a OWF challenge (x,y) and
forwards it to A as the public key of the signature scheme. It lets A run and
answers its random oracle queries in the following way. (W.l.o.g., algorithms 1,
2, 3, and 4 only consider queries that are correctly formed, and ignore duplicate
queries.)

– Hc : When A queries the commitment random oracle, B records the query
to learn which commitment corresponds to which seed. See Algorithm 1.

– H1 : When A commits to seeds and sends the offsets for the secret key and
the inverse values, B checks whether the commitments were output by its
simulation of Hc. If any were for some e and i, then B is able to reconstruct
the shares for party i in execution e. If B was able to reconstruct every
party’s share for any e, then it can use the offsets included in σ1 to extract
the values used by A in that execution. See Algorithm 2.

20

Algorithm 3 H2(q2 = (h1, σ2)):

Read σ2 as (∆Pe(k))k,e.
1: h1 → Bad.

2: x
$←− {0, 1}2κ.

3: if x ∈ Bad then abort.

4: x→ Bad.
5: if ∃ q∗1 : (q∗1 , h1) ∈ Q1 then
6: (re,j)e,j ← Expand(h1) and (Re)e ← Expand(x).
7: for each e : Tin[q∗1 , e] 6= ∅ do
8: (Pe(Re), (Se,j(Re), Te,j(Re))j)e → Top[q2, e].
9: (q2, x)→ Q2.

10: Return x.

Algorithm 4 H3(q3 = (h2, σ3)):

1: h2 → Bad.

2: x
$←− {0, 1}2κ.

3: if x ∈ Bad then abort.

4: x→ Bad.
5: (q3, x)→ Q3.
6: Return x.

– H2 : When A commits to the checking polynomials, B checks whether the
challenge h1 that A uses is one output by its simulation of H1. If it is, then
B uses h1 and the newly sampled H2 response to expand the challenges and
extract the checking polynomials. See Algorithm 3.

– H3 : No extraction takes place during this simulation. See Algorithm 4.

When A terminates, B checks the Tin table for any entry where the extracted
ske is a valid secret key for the public key that it received. If one is, B wins the
secret key recovery game; if no entry is satisfactory, B outputs ⊥.

Advantage of the reduction. Given the behavior presented above, we have the
following by the law of total probability:

Pr[A wins] = Pr[A wins ∧ B aborts] + Pr[A wins ∧ B outputs ⊥]

+ Pr[A wins ∧ B outputs witness]

≤Pr[B aborts] + Pr[A wins | B outputs ⊥]

+ Pr[B outputs witness]. (2)

21

Given the way in which values are added to Bad, we have:

Pr[B aborts] = (#times an x is sampled) · Pr[B aborts at that sample]

≤ (Qc +Q1 +Q2 +Q3) · max |Bad|
22κ

= (Qc +Q1 +Q2 +Q3) · Qc + (τN + 1)Q1 + 2Q2 + 2Q3

22κ

≤ (τN + 1)(Qc +Q1 +Q2 +Q3)2

22κ
. (3)

Here Qc, Q1, Q2 and Q3 denote the number of queries made by A to each re-
spective random oracle.

We now analyze the probability of A winning the EUF-KO experiment con-
ditioned on the event that B outputs ⊥, i.e. that no suitable witness (that is,
pre-image to fx(·) = y) was found on the query lists.

Cheating in the first round. For any query q1 ∈ Q1, and its corresponding answer
h1 = (re,j)e∈[τ],j∈[m1], let G1(q1, h1) be the set of indices e ∈ [τ] of “good execu-
tions” where both Tin[q1, e] = (ske, (te,`)`∈[m]) is non-empty and the equations s′e,1k

...

s′e,m1k

(t′e,1k · · · t′e,m1k

)
=
∑
j∈[m1]

re,j for k ∈ {0, . . . ,m2 − 1} (4)

hold, where the s′e and t′e values are derived from ske, the extracted te,` values
and the challenge re,j values. For any such good execution e ∈ G1(q1, h1), since
B outputs ⊥, then ske cannot be a valid pre-image for fx. However, since A wins
nonetheless, then there must exist at least one ` ∈ [m] such that se,` ·te,` 6= 1; this
then implies that the challenge values re,j were sampled such that Equation (4)
held. This happens with probability at most 1/28λ.

As the response h1 = (re,j)e∈[τ],j∈[m1] is distributed uniformly at random
(assuming Expand is a random function), each e ∈ [τ] has the same independent
probability of being in G1(q1, h1), given that B outputs⊥. We therefore have that
#G1(q1, h1) |⊥∼ Xq1 where Xq1 = B(τ, 1/28λ). Letting (qbest1 , hbest1) denote the
query-response pair which maximizes #G1(q1, h1), we then have that

#G1(qbest1 , hbest1) |⊥∼ X = max
q1∈Q1

{Xq1}.

Cheating in the second round. For any query q2 = (h1, σ2) ∈ Q2, and its corre-
sponding answer h2 = (Re)e∈[τ], if there exists q1 such that (q1, h1) ∈ Q1, let
G2(q2, h2) be the set of indices e ∈ [τ] of “good executions” where Top[q2, e] =
(Pe(Re), (Se,j(Re), Te,j(Re))j∈[m1]) is non-empty, and it holds that

Pe(Re) =

m1∑
j=1

Se,j(Re) · Te,j(Re). (5)

22

If there does not exist such a q1, let G2(q2, h2) = ∅. Once again, for any such good
execution e ∈ G2(q2, h2), since B outputs ⊥ but A wins nonetheless, this implies
that either the challenges in the first round were such that Equation (4) held (in
which case any value of Re passes the check), or the challenge Re was sampled
such that Equation (5) held. Conditioning on the first event not happening,
Lemma 1 gives us that the second happens with probability at most 2m2

28λ−m2
,

given that h2 is distributed uniformly at random (assuming Expand is a random
function).

We therefore have that #G2(q2, h1) |⊥∧G1(q1,h1)=τ1∼ τ1 + Yq2 where Yq2 =

B(τ − τ1, 2m2/(2
8λ −m2)). By taking τ1 as a random variable, maximized by

(qbest1 , hbest1) and letting (qbest2 , hbest2) denote the query-response pair which
maximizes #G2(q2, h2) | ⊥ ∧#G1(qbest1 , hbest1), we then have that

#G2(qbest2 , hbest2) |⊥∼ X + Y,

where X is as above, Y = maxq2∈Q2{Yq2} and the Yq2 are independently and
identically distributed as B(τ −X, 2m2/(2

8λ −m2)).

Cheating in the third round. Similarly to the proof of the same stage in [Bd20],
each third round query q3 = (h2, σ3) that A makes to H3 can only be used in a
winning signature if there exists a corresponding query (q2, h2) ∈ Q2. Then for
each “bad” second-round execution e ∈ [τ] \ G2(q2, h2), either the verification
protocol failed, in which case A couldn’t have won, or the verification protocol
passed, despite Equation (5) not being satisfied. This implies that exactly one
of the parties must have cheated during the MPC execution of the verification
protocol. Less than one and the verification protocol would have failed; more
than one and the verification of the signature would have failed.

Since the third-round challenge h3 ∈ [N]τ is distributed uniformly at random
(assuming Expand is a random function]), the probability that this happens for
all such “bad” second-round executions e is(

1

N

)τ−#G2(q2,h2)

≤
(

1

N

)τ−#G2(qbest2 ,hbest2
)

.

The probability that this happens for at least one of the Q3 queries made to H3

is

Pr[A wins | #G2(qbest2 , hbest2) = τ2] ≤ 1−

(
1−

(
1

N

)τ−τ2)Q3

.

Finally conditioning on B outputting ⊥ and summing over all values of τ2, we
have that

Pr[A wins | ⊥] ≤ Pr[X + Y + Z = τ] (6)

where X and Y are as before and Z = maxq3∈Q3
{Zq3} where the Zq3 variables

are independently and identically distributed as B(τ −X − Y, 1/N).

23

Conclusion. Bringing (2), (3) and (6) together, we obtain the following.

Pr[A wins] ≤ (τN + 1)(Qc +Q1 +Q2 +Q3)2

22κ
+ Pr[X + Y + Z = τ]

+ Pr[B outputs witness]

This finally gives us the relation

AdvOWF
B,(f,x,y)(1

κ) ≥ AdvEUF-KO
A (1κ)− ε(Qc, Q1, Q2, Q3),

which concludes the proof.

Theorem 1. The Banquet signature scheme is EUF-CMA-secure, assuming that
Commit, H1, H2 and H3 are modelled as random oracles, Expand is a PRG
with output computationally εPRG-close to uniform, the seed tree construction is
computationally hiding, the (N, τ,m2, λ) parameters are appropriately chosen,
and the key generation function fx : sk 7→ pk is a one-way function.

Proof. Fix an attacker A. We define a sequence of games where the first corre-
sponds to A interacting with the real signature scheme in the EUF-CMA game.
Through a series of hybrid arguments we show that this is indistinguishable from
a simulated game, under the assumptions above. Let G0 be the unmodified EUF-
CMA game and let B denote an adversary against the EUF-KO game that acts
as a simulator of EUF-CMA game to A. (In the random oracle model: when A
queries one of its random oracles, B first checks if that query has been recorded
before; if so, then it responds with the recorded answer; if not, B forwards the
query to its corresponding random oracle, records the query and the answer it
receives and forwards the answer to A.). Let Gi denote the probability that A
succeeds in game Gi. At a high level, the sequence of games is as follows:

G0: B knows a real witness and can compute signatures honestly;
G1: B replaces real signatures with simulated ones which no longer use sk;

B then uses the EUF-KO challenge pk∗ in its simulation to A.

We note that AdvEUF-CMA
A = G0 = (G0−G1) +G1 and we obtain a bound on G0

by bounding first G0 − G1 and then G1

Hopping to game G1. When A queries the signing oracle, B simulates a signa-
ture σ by sampling a random witness, picking a party Pi∗ and cheating in the
verification phase and in the broadcast of the output shares cte

(i) such that the
circuit still outputs the correct AES ciphertext, and finally ensuring that the
values observed by A are sampled independently of the incorrect witness and
with the same distribution as in a real signature. It programs both the second
random oracle to return the Re values that it sampled, and also the third random
oracle to hide the party for which it has cheated in the verification and opening
phases.

We now argue that simulating the signatures as in G1 is indistinguishable
from signatures in G0. We list a series of (sub) game hops which begins with

24

G0, where the witness is known and signatures are created honestly, and ends
with G1, where signatures are simulated without using the witness. With each
change to B’s behavior, we give an argument as to why the simulation remains
indistinguishable, and quantify these below.

1. The initial B knows the real witness and can compute honest signatures as in
the protocol. It only aborts if the salt that it samples in Phase 1 has already
been queried. As its simulation is perfect, B is indistinguishable from the
real EUF-CMA game as long as it does not abort.

2. Before beginning, the next B samples h3 at random and expands it to obtain
(i∗e)e∈[τ]; these are the unopened parties, which B will use for cheating. It
proceeds as before and programs the random oracle H3 so that it outputs
h3 when queried in Phase 6. If that query has already been made, B aborts
the simulation.

3. In Phase 1, the next B replaces sd(i
∗)

e in the binary tree, for each e ∈ [τ], by
a randomly sampled one. This is indistinguishable from the previous hybrid
assuming that the tree structure is hiding.

4. The next B replaces all outputs of Expand(st, e, i∗, sd(i
∗)

e) by random out-
puts (independent of the seed). This is indistinguishable from the previous
reduction assuming that Expand is indistinguishable from a random function.

5. The next B replaces the commitments of the unopened parties C
(i∗)
e with

random values (i.e., without querying Commit).
6. Before starting Phase 3, the next B samples h2 at random and expands it to

obtain (Re)e∈[τ]; this will enable it to sample the checking values at random.
It then proceeds as before and programs the random oracle H2 to output h2
in Phase 4. If that query has already been made, B aborts the simulation.

7. In Phase 3, the next B interpolates S
(i)
e,j for i ∈ [N] \ {i∗}, samples the

values Se,j(Re) at random, computes S
(i∗)
e,j (Re) = Se,j(Re)−

∑
i 6=i∗ S

(i)
e,j and

interpolates S
(i∗)
e,j using k ∈ {0, . . . ,m2− 1}∪ {Re}. It does the same for the

T polynomials and computes Pe and the offsets according to the protocol. As
the uniform distribution of honestly generated Se,j(Re) and Te,j(Re) (opened
in Phase 5) comes from the uniform distribution of s̄e,j and t̄e,j given by the

random function (and which are hidden from A as sd(i
∗)

e is no longer used),
this is indistinguishable from the previous hybrid. The same holds for the
shares of party Pi∗ that are opened in Phase 5. The distribution of the ∆Pe
offsets is therefore also indistinguishable from a real signature as they are
computed honestly from indistinguishable elements. (At this stage the Pe
polynomials always satisfy the check since B is still using a correct witness.)

8. In Phase 5, the next B replaces c
(i∗)
e ← P

(i∗)
e (Re) with c

(i)
e ← Pe(Re) −∑

i 6=i∗ P
(i)
e (Re). This is indistinguishable because the P

(i)
e (Re) values, for i 6=

i∗, are computed honestly, and the Pe(Re) value is distributed identically to
an honest signature (because Se,j and Te,j are). From now on, the Schwartz–
Zippel check always passes, even if the product relation doesn’t hold, and
the distribution of everything that A can observe is indistinguishable from
an honest signature and independent of hidden values.

25

9. The final B replaces the real sk by a fake witness sk∗ and cheats on the

broadcast of party Pi∗ ’s output share ct
(i∗)
e such that it matches what is

expected, given theN−1 other shares. As sk(i
∗)

e is independent from the seeds
A observes, the distribution of ∆sk∗e is identical and A has no information

about sk∗. As Pi∗ is never opened, B’s cheating on ct
(i∗)
e can’t be detected.

We can conclude that B’s simulation of the signing oracle is indistinguishable and
that A behaves exactly as in the real EUF-CMA game unless an abort happens.

There are four points at which B could abort: if the salt it sampled has been
used before, if the commitment it replaces is queried, or if its queries to H2

and H3 have been made previously. Let Qst denote the number of different salts
queried during the game (by both A and B); each time B simulates a signature, it
has a maximum probability of Qst/2

2κ of selecting an existing salt and aborting.
Let Qc denote the number of queries made to Commit by A, including those
made during signature queries. Since Commit is a random oracle, and sd(i

∗)
e is a

uniformly random κ-bit value not used by B elsewhere, each time B attempts a
new signature, it has a maximum probability of Qc/2

κ of replacing an existing
commitment and aborting.

Similarly for H2, resp. H3, B has a maximum probability of Q2/2
2κ, resp.

Q3/2
2κ of aborting, where Q2 and Q3 denote the number of queries made to

each random oracle during the game. Note that B samples one salt, replaces τ
commitments and makes one query to both H2 and H3 for each signature query.

Therefore

G0 − G1 ≤ Qs ·
(
τ · εPRG + AdvHiding

Tree + Pr[B aborts]
)

where

Pr[B aborts] ≤ Qst/2
2κ +Qc/2

κ +Q2/2
2κ +Q3/2

2κ

= (Qst +Q2 +Q3)/22κ +Qc/2
κ .

Bounding G1. In G1, B is no longer using the witness and is instead simulating
signatures only by programming the random oracles; it therefore replaces the
honestly computed pk with and instance pk∗ of the EUF-KO game. We see that
if A wins G1, i.e. outputs a valid signature, then B outputs a valid signature in
the EUF-KO game, and so we have

G1 ≤ εKO ≤ εOWF + ε(Qc, Q1, Q2, Q3)

where the bound on advantage εKO of a EUF-KO attacker follows from Lemma 2.
By a union bound, we have that

AdvEUF-CMA
A ≤ εOWF + ε(Qc, Q1, Q2, Q3)

+Qs ·
(
τ · εPRG + AdvHiding

Tree +
Qst +Q2 +Q3

22κ
+
Qc
2κ

)
.

Assuming that Expand is a PRG, that the seed tree construction is hiding, that
fx is a one-way function and that parameters (N, τ,m2, λ) are appropriately
chosen implies that AdvEUF-CMA

A is negligible in κ.

26

Strong unforgeability. Our analysis uses the EUF-CMA definition and therefore
does not rule out the case that an attacker can find a new signature for a previ-
ously signed message (for instance, by mauling a signature output by the signer
in such a way that it remains valid on the same message). Intuitively, since the
intermediate seeds from the tree are the only part of the signature that the ver-
ifier does not hash directly during verification (the verifier only hashes the leaf
seeds of the tree), as a minimum we require that (i) it is difficult to find a set of
intermediate seeds in the tree that derive the same leaf seeds used in a signature,
and (ii) it is difficult to find a different seed that produces the same outputs when
input to Expand as a seed used in the signature. Since we use cryptographic hash
functions to derive seeds and to instantiate Expand, these requirements should
be met under the assumption that the hash function is 2nd-preimage resistant
(or is a random oracle). A formal proof of strong unforgeability is nevertheless
an interesting open question.

QROM Security. The quantum ROM is a stronger version of the ROM that
allows attackers to make superposition queries to the RO; this models attacks
on PQ primitives which make use of a quantum computer. As Banquet aims
to provide post-quantum security, whether our analysis holds in the QROM is
a natural question. The most promising approach seems to be the general re-
sults for multi-round Fiat–Shamir type signatures [DFM20,DFMS19], since our
current reduction makes essential use of the RO query history, ruling out the
“history-free” approach of [BDF+11]. However, in order to apply the QROM
EUF-CMA result [DFM20, Theorem 23] would require that we formulate Ban-
quet as Σ-protocol, and prove multiple properties about it, which is beyond
the scope of the current paper. Finally we note that the amount of assurance
provided by QROM for signature schemes is debatable, as there are no known
non-contrived schemes that are secure in the ROM, but insecure in the QROM.

Security of Key Generation. Recall that Gen(1κ) samples k, x ← {0, 1}κ, com-
putes AESk(x) = y, and repeats this until there are no S-boxes in the computa-
tion of y with input 0. It then sets sk = k and pk = (x, y), and returns (pk, sk).
First, while this use of rejection sampling is not constant-time, it does not reveal
any information about the final secret key as long as the individual sampling of
the values is constant-time. Next, we argue that choosing k from this subset K′
of all κ-bit keys K decreases security only by a negligible amount. Since key
generation is the same as in BBQ, the analysis in [dDOS19] applies. It is shown
that |K′|/|K| ≈ 1/3 under the assumption that S-box inputs are inpdependent,
and confirmed experimentally, so the size of the keyspace is reduced by about
1.5 bits. The authors then give a reduction, showing any (t, ε) attack on key

generation gives a (t, |K
′|
|K| ε) distinguishing attack on AES as a PRF.

Here we relate security of key generation to the security of AES as a one-way
function (i.e., key recovery given one plaintext-ciphertext pair). The security
experiment has a challenger sample a random key and input, send the input
and output to an attacker A who must output a key which maps the input to

27

the output. More formally, if AES is a OWF, then the following probability is
negligible for all polynomial time adversaries A:

Pr[x← {0, 1}n, k ← K, y = AESk(x), k′ = A(x, y) : y = AESk′(x)]

and similiarly for Banquet/BBQ key generation, where we replace K with K′.
Suppose A is an attacker for key generation with success probability ε. Then
we can construct a (rather trivial) OWF attack algorithm B(x, y), that simply
returns A(x, y). A is only guaranteed to succeed when k has no zero S-box inputs,
so when k does have one or more zero inputs we assume A fails. When k has
no zero S-box inputs, A succeeds with probability ε, as does B. Therefore, B

suceeds with probability |K
′|
|K| ε.

This analysis relies on |K
′|
|K| being non-negligible. This seems reasonable, since

if it was not the case, S-box inputs in AES would be non-negligibly biased toward
zero (over the choice of random keys and inputs).

6 Parameters, Implementation and Performance

We first describe how we chose parameters for Banquet, and give some options.
We then describe our implementation8 and the optimizations we use to improve
performance of Sign and Verify, which can be improved significantly over a direct
implementation of the scheme from Section 4. We then compare Banquet to some
other post-quantum signature schemes, and finally discuss some other features
of the design. In this section all times are given in milliseconds, by averaging over
100 runs, on an Intel Xeon W-2133 CPU @ 3.60GHz, unless noted otherwise.

6.1 Parameter Selection

The soundness error of the signature scheme from Section 4 depends on the
parameters (κ,N, λ,m1,m2, τ). Our analysis of Banquet is similar to the analysis
of the 7-round ID schemes in [Bd20] and the five-round schemes in [KZ20a]. We
can bound the probability of cheating by assuming that the attacker can cheat
by guessing any one of the challenges in a given parallel repetition. Let τ1 be
the number of repetitions for which the attacker will guess the first challenge,
and τ2 be the number for which she will guess the second challenge. Since the
attacker is successful in a repetition by being successful in any of the challenges,
the number of repetitions where the challenge must be guessed in the third round
is τ3 = τ − τ1 − τ2. The cost of the attack is given by

C = 1/P1 + 1/P2 + 1/P3

where Pi is the probability of correctly guessing τi sub-challenges in challenge
step i. We call a triple (τ1, τ2, τ3) an attack strategy. Our goal is to choose
parameters such that C > 2κ for all strategies.

8 The implementation is publicly available at https://github.com/dkales/banquet.

28

https://github.com/dkales/banquet

The first challenge space (Phase 2) has size 28λm1 , and the probability that
a given challenge allows cheating is 2−8λ (as shown in Section 3.2). Therefore,
the probability of guessing τ1 of τ challenges is

P1 =

τ∑
k=τ1

PMF(k, τ, 2−8λ) ,

where PMF is the probability mass function:

PMF(k, τ, p) =

(
τ

k

)
pk(1− p)τ−k

which gives the probability of getting exactly k successes in τ independent trials
each having probability p of success.

The second challenge space (Phase 4) has size 28λ −m2, and the probability
that a given challenge allows cheating is 2m2/(2

8λ − m2). The probability of
guessing τ2 of τ − τ1 challenges correctly is therefore

P2(τ2) =

τ−τ1∑
k=τ2

PMF(k, τ − τ1, 2m2/(2
8λ −m2)) .

The third challenge space (Phase 6) has size N , and the attacker must guess
the challenge in the remaining repetitions correctly, therefore

P3(τ3) = N−τ3 .

To choose parameters, we fix (κ,N, λ,m1,m2), then start with τ = 1, and
increase it, at each step checking the attack costs for all possible strategies
(τ1, τ2, τ3). When we reach τ where the attack cost exceeds 2κ for all strategies,
we output τ as the number of repetitions required for κ-bit security. Since τ is
always less than 100, and τ3 is fixed once τ1 and τ2 are chosen, using a script to
perform this exhaustive search is practical.

Hashing and PRG. We use the SHAKE extensible output function (XOF) both
as a hash function and a PRG. As a hash function, we use SHAKE with 2κ-bit
digests for computing commitments and the challenge digests. As a PRG, we use
SHAKE to expand each party’s seed to a random tape, and to expand the chal-
lenge digests to larger values. We use SHAKE128 at the L1 security level, and
SHAKE-256 at the higher security levels. In our current implementation, the cost
of hashing was not dominating the runtime so we did not investigate alternative,
potentially faster, functions. When compared to other MPCitH-based signature
schemes (such as BBQ and Picnic3), because Banquet does not have a prepro-
cessing phase, the total number of MPC instances is much lower. Therefore,
Banquet requires much less calls to SHAKE for commitments and expanding
random seeds than BBQ and Picnic3.

29

m2 1 4 8 13 16 26 32 52 104 416

λ = 6 225.8 76.8 52.8 44.4 42.2 39.8 40.8 43.3 54.1 129.4

λ = 8 278.0 89.2 58.8 48.2 45.4 42.4 42.4 45.4 58.8 151.8

Table 2. Signature size estimates (in kB) for varying values of m2 for the L3 security
level with m = 416, N = 64 and λ ∈ {6, 8}.

Choice of m1,m2. We found that choosing m1 ≈
√
m gave good performance in

practice. For example at L1, when m = 200, we chose m1 = 10, and m2 = 20.
The signature size and runtime does not change significantly for small changes
in mi (e.g., m1 = 8, m2 = 25 is about the same), but signature sizes increase as
we move m1 further away from

√
m. If m happened to have few divisors, none

near
√
m we remark that it is possible to “pad” the number of S-boxes with

public values in order to make a better choice of (m1,m2). In the parameter sets
we present in this paper this was not necessary. Table 2 shows some options for
m2 and the resulting signature size for the L3 security level.

Number of parties. Increasing N allows us to decrease signature size, but in-
creases the cost of signing and verification. The choices of N we found interest-
ing are powers of two from 16 to 256, with 64 being a sweet spot on the curve.
Our search started at these powers of two, but often we were able to decrease N
slightly without increasing τ , which improves sign and verify times.

Choice of λ. We generated parameters for λ = 2, 3, 4, 5, 6 so that field arithmetic
happens in fields of size 16 to 48 bits, which are convenient for processor word
sizes, and these values provide sufficient soundness. We benchmarked multiple
parameter sets with λ = 4 and λ = 6, and in general λ = 6 is slightly faster,
but has slightly larger signatures (about 0.5-1KB larger). Table 3 shows the
differences. For L1, λ = 4 was always about the same or better than λ = 6 so
Table 3 only shows this option. At L3 the difference between λ = 4, 6 is more
evident, and λ = 6 becomes the better choice as N increases, and at L5 we used
λ = 6, however on platforms where field arithmetic with λ = 8 is efficient, this
option may also be worth investigating (For λ = 8, the reducing polynomial does
not fit into a 64-bit register, requiring additional workarounds).

L3 and L5 Parameters. As in the BBQ scheme, scaling the Banquet design to
the 192 and 256-bit security levels presents a challenge because the block size
of AES is limited to 128 bits. Simply using AES-256 with 128-bit outputs does
not provide 256-bit security; intuitively, in this case there are a large number
of 256-bit keys that produce the same ciphertext for any fixed plaintext, and
finding any one of them allows an attacker to create a forgery.

BBQ explores two options for higher security parameters. The first is to use
the Rijndael cipher, which has parameter sets with 192 and 256-bit block sizes,
and the second is to make two calls to AES-192 or AES-256 in ECB mode (using
two different plaintext blocks), which we refer to as AES-192x2 and AES-256x2
respectively.

30

Scheme N λ τ Sign (ms) Verify (ms) Size (bytes)

AES-128

16 4 41 6.36 4.86 19776
16 6 37 5.91 4.51 20964
31 4 35 8.95 7.46 17456
31 6 31 8.19 6.76 18076
57 4 31 14.22 12.30 15968
57 6 27 12.45 10.75 16188

107 4 28 24.15 21.71 14880
107 6 24 21.13 18.96 14784
255 4 25 51.10 46.88 13696
255 6 21 43.81 40.11 13284

AES-192x2

16 4 62 17.25 13.15 51216
16 6 57 16.52 12.50 53936
31 4 53 25.82 21.66 45072
31 6 47 24.00 19.89 45624
64 4 46 43.03 38.00 40240
64 6 40 39.07 34.15 39808

116 4 42 69.37 62.68 37760
116 6 36 61.95 55.55 36704
256 4 38 135.29 124.50 35088
256 6 32 119.01 108.53 33408

AES-256x2

16 4 84 27.78 21.67 83488
16 6 75 25.71 19.88 84610
31 4 72 41.40 35.20 73888
31 6 63 37.67 31.76 73114
62 4 63 67.99 60.33 66688
62 6 54 60.79 53.39 64420

119 4 56 112.62 102.52 61088
119 6 48 100.66 90.76 58816
256 4 50 213.58 196.27 56160
256 6 43 190.58 174.70 54082

Table 3. Performance metrics of different parameter sets for Banquet. All instances
for AES-128 have (m,m1,m2) = (200, 10, 20) for AES-192x2 we have (416, 16, 26) and
for AES-256x2 we have (500, 20, 25).

The Rijndael option has 80 fewer S-boxes at the 192-bit level, and we estimate
that Banquet signatures with Rijndael would be ≈ 2KB shorter. At L5 however,
two calls to AES-256 has 60 fewer S-boxes, as the Rijndael key schedule is more
expensive. Since the difference is small, we use only AES at all three levels.

Public-key uniqueness. As noted in [dDOS19], the ECB construction trivially
has two public keys for each secret key, where the plaintext and ciphertext blocks
in the public key are swapped. Since the Banquet design includes the public key
as an input to the challenge computation (prepending the public key to the
signed message), this ensures that the verifier is using the same public key as
the signer.

31

6.2 Implementation and Optimizations

We have implemented Banquet in C++ in order to determine the running time
of sign and verify operations. We began with a direct implementation of the
scheme, as presented in Section 4, where all field and polynomial operations were
done with the NTL library9. However, sign and verify times were on the order
of multiple seconds, due to the cost of the polynomial operations in Phase 3.

As a first optimization, note that when interpolating a set of points (xi, yi),
the xi values are fixed, therefore, we can precompute the Lagrange coefficients,
and save computation later. However, we can avoid most interpolation alto-
gether. Rather than computing the per-party shares of the polynomials S(i), T (i),
by interpolating shares of points, the prover can first reconstruct the points from
the shares and interpolate them to get S, T and P (in unshared form). Then in
Phase 4, the shares of points previously used to interpolate S(i), T (i) are used to
compute (a(i), b(i)). Applying this technique to polynomials S and T (and P in
a similar fashion) reduces the number of interpolations from Nm1τ to m1τ (of
polynomials of degree m2), while for P , the number drops from Nτ to τ inter-
polations (of degree 2m2 +1). We can reduce this further, observing that in each
of the τ instances, the polynomials S, T are defined using the same set of points,
except for the additional randomizing points s̄, t̄ (and a constant random mul-
tiplier for S). We therefore interpolate each of these only once for all instances,
and then adjust to the correct polynomial in each instance by adding a multi-
ple of the Lagrange polynomial corresponding to the last point. Incorporating
this into the computation of P , we do 2m1 interpolations in total to compute
P , however, some of the steps in the protocol still require the evaluation of the
polynomials S(i), T (i) at the point Re. For this calculation, we also do not need
to interpolate the polynomials, but instead evaluate the Lagrange coefficients at
the common evaluation point Re beforehand, reducing the needed work from a
full interpolation to a single inner product.

Taken together, these optimizations reduced the time of sign and verify by
more than 30x, to be on the order of 100ms. Finally, we replaced NTL with a ded-
icated field arithmetic implementation optimized for our application (avoiding
dynamic memory allocation, and other options NTL has to be flexible) and the
small binary fields that we are working with. This reduced the runtime by a fur-
ther factor of 4x. However, we have not invested the resources to ensure that our
implementation runs in constant time, some parts of the implementation may be
susceptible to timing and/or memory access leaks. In our final implementation,
we make use of hardware instructions for binary field multiplication (PCLMUL)
and the AES hardware instructions (AES-NI) whenever possible, although the
structure of the MPC execution does not allow a straightforward application of
the AES instructions due to the injection of the inverse values in the protocol.
However, we can still use small tricks like implementing the MixColumns layer
by a trifold application of the inverse MixColumns instruction (for the AES Mix-
Columns matrix it holds that M = (M−1)3), giving us a speedup of about 10%
compared to a naive implementation.

9 https://shoup.net/ntl/

32

https://shoup.net/ntl/

At L1, the final implementation (for N = 57, τ = 31, λ = 4) spends about
3% of the time on computing the MPC evaluation of the AES circuit(s), 38%
on finite field arithmetic, 31% on hashing, and about 25% on allocating/copying
memory.

6.3 Performance

In Table 4, we compare the proof size of Banquet with BBQ [dDOS19], and a
Picnic-like signature scheme with a binary circuit for AES based on the KKW
protocol [KKW18]. Our Banquet instances provide much smaller signatures than
all previous MPCitH-based signatures using AES. We cannot compare the per-
formance here since no implementation is available for BBQ or AES Bin. However,
we can estimate the performance of BBQ and AES Bin based on the implementa-
tion of Picnic, where a large part of the signing and verification cost is comprised
of similar operations such as the seed tree generation, hashing of messages and
computation of the pre-processing phase. The only difference is that the LowMC
circuit is replaced by the AES circuit, but again, the structure of the MPC op-
erations does not allow straightforward use of AES hardware instructions. In
addition, since the internal states of the parties are larger due to the larger cir-
cuit of AES, we expect most of the hashing and seed expansion to take slightly
longer. Overall, we would estimate the performance of a highly optimized imple-
mentation of BBQ or AES Bin to match the performance of Picnic2 instances,
however with significantly larger signatures.

In Table 5 we compare the signature size and signing/verification times for
Banquet to other post-quantum signature schemes: Picnic2 and Picnic3 [KZ20b],
the previous and latest version of Picnic (based on KKW and LowMC), respec-
tively, and SPHINCS+ [BHK+19]. At the L1 security level, our Banquet imple-
mentation can sign a message in 6.36ms and verify it in 4.86ms. Compared to
Picnic3 this corresponds to a slowdown of factor of only 1.2x, while the signa-
ture size is about 50% larger than that of Picnic3. However, different parameter
sets for Banquet can reduce its signature size at the cost of slower signing and
verification speeds. When comparing to SPHINCS+, Banquet can offer faster
signing speeds and smaller signatures, however SPHINCS+ verification is faster.
At the L3 and L5 security levels, the relative performance of Picnic3 and Ban-
quet remains similar: our 16-party Banquet instances are about 1.6x slower than
Picnic3 with signatures that are about 50% larger. Banquet signing speeds are
still comparable to SPHINCS+, however SPHINCS+ signatures are smaller.

6.4 Other Variants

Reduced round AES. Using the full 10 rounds of AES-128 arguably provides
excessive security margin against key recovery attacks in the restricted attack
setting applicable to Banquet. A forger that attacks the AES instance used in
Banquet key generation must recover an AES secret key given only a single
plaintext-ciphertext pair (the Banquet public key). It may thus be reasonable
to assume that AES reduced to 7 rounds provides 128 bits of security in this

33

Protocol N M τ Size (bytes)

AES Bin 64 343 27 51 876

BBQ 64 343 27 31 568

Banquet 16 - 41 19 776

107 - 24 14 784

255 - 21 13 284

AES Bin 64 570 39 149 134

BBQ 64 570 39 86 888

Banquet 16 - 62 51 216

116 - 36 36 704

256 - 32 33 408

AES Bin 64 803 50 233 696

BBQ 64 803 50 137 670

Banquet 16 - 84 83 488

119 - 48 58 816

256 - 43 54 082

Table 4. Comparison of signature sizes. N is the number of parties used in the MPC,
M is the total number of MPC instances (when preprocessing is used), and τ is the
number of online executions (equal to the number of parallel repetitions in Banquet).
The rows are grouped by security level in order L1, L3, L5.

restricted setting. With 7-round AES, m1 = 10, m2 = 14, Banquet signatures
with parameters (N,λ, τ) (64, 4, 31) are 13.36KB, with (128, 5, 25) are 12.10KB
and with (256, 5, 22) are 11.01KB. As there are fewer parallel repetitions and
polynomials of smaller degree we can expect faster sign and verify operations
as well. The goal of this paper was to construct PQ signatures using only stan-
dardized primitives, so we did not explore this further; however it appears to be
an interesting direction for future work.

Interactive Identification The signature scheme of Section 4 may be used as
an interactive protocol between a prover and verifier, where the prover runs
phases 1, 3 and 5, while the verifier runs phases 2, 4 and 6. For phase 2, the
prover sends a commitment to σ1, and the verifier responds with a random
bitstring h1. Similarly, in phase 4, and 6 the prover sends commitments to σ2, σ3
(respectively) and the verifier responds with random bitstrings h2, h3.

Let p1, p2 and p3 denote the probability of guessing the first, second or
third challenge (respectively). Recall that p1 = 2−8λ, p2 = m2/(2

8λ −m2) and
p3 = 1/N . The soundness error of the interactive protocol is

ε = p1 + (1− p1)p2 + (1− p1)(1− p2)p3

since a dishonest prover wins if: either she gets the first challenge right, or not
the first but the second or neither the first nor the second but the third. We can
reduce the soundness error to ετ by running τ parallel repetitions.

To target t bits of interactive security we choose τ so that ετ < 2−t. Table
6 gives some of the costs when t = 40. We see that Banquet needs very few

34

Protocol N M τ Sign (ms) Ver (ms) Size (bytes)

Picnic2 64 343 27 41.16 18.21 12 347

16 252 36 10.42 5.00 13 831

Picnic3 16 252 36 5.33 4.03 12 466

SPHINCS+-fast - - - 14.42 1.74 16 976

SPHINCS+-small - - - 239.34 0.73 8 080

Banquet 16 - 41 6.36 4.86 19 776

107 - 24 21.13 18.96 14 784

255 - 21 43.81 40.11 13 284

Picnic2 64 570 39 123.21 41.25 27 173

16 420 52 29.85 11.77 30 542

Picnic3 16 419 52 11.01 8.49 27 405

SPHINCS+-fast - - - 19.05 2.82 35 664

SPHINCS+-small - - - 493.17 1.12 17 064

Banquet 16 - 62 17.25 13.15 51 216

116 - 36 61.95 55.55 36 704

256 - 32 119.01 108.53 33 408

Picnic2 64 803 50 253 71.32 46 162

16 604 68 61.09 21.19 52 860

Picnic3 16 601 68 18.82 13.56 48 437

SPHINCS+-fast - - - 38.71 2.89 49 216

SPHINCS+-small - - - 310.37 1.46 29 792

Banquet 16 - 84 27.78 21.67 83 488

119 - 48 100.66 90.76 58 816

256 - 43 190.85 174.70 54 082

Table 5. Comparison of signature sizes and run times for various MPCitH-based signa-
ture schemes and SPHINCS+ (using “sha256simple” parameter sets). N is the number
of parties, M is the total number of MPC instances (when preprocessing is used), and
τ is the number of online executions (equal to the number of parallel repetitions in
Banquet). The rows are grouped by security level in order L1, L3, L5.

parallel repetitions, and can use a very small field size λ = 2. When compared
to the Picnic3 ID scheme (details in [KZ20b, §7]), the communication costs with
16 parties are about the same, and then are less with Banquet as N increases. A
similar tradeoff could be made with Picnic3, which also requires less time. Finally,
the reduced number of roundtrips make Picnic easier to fit into existing flows of
network protocols. That said, the performance of Banquet remains competitive
in this setting, and it has a more conservative security assumption.

Acknowledgments

Cyprien Delpech de Saint Guilhem and Emmanuela Orsini have been supported
in part by the Defense Advanced Research Projects Agency (DARPA) under
Contract � HR001120C0085, by CyberSecurity Research Flanders under ref-

35

Scheme N Rep. Prover (ms) Verifier (ms) Communication (bytes)

Banquet 16 11 1.94 1.44 4 452

23 9 2.06 1.60 3 804

55 7 3.15 2.66 3 092

109 6 4.70 4.16 2 760

Picnic3 16 (72, 12) 1.73 1.33 4 070

16 (48, 16) 1.16 0.92 4 750

Table 6. Benchmarks of interactive identification schemes at security level L1. All
Banquet parameters have m1 = 10, m2 = 20 and λ = 2. The column “Rep” gives
the number of parallel repetitions τ used in Banquet, and (M, τ) the number of MPC
instances and online executions in Picnic3.

erence number � VR20192203, and by ERC Advanced Grant ERC-2015-AdG-
IMPaCT.
Carsten Baum and Peter Scholl have been supported by the Defense Advanced
Research Projects Agency (DARPA) under Contract � HR001120C0085. Baum
has been additionally supported in part by the European Research Council
(ERC) under the European Unions’s Horizon 2020 research and innovation pro-
gramme under grant agreement � 669255 (MPCPRO), and Scholl by a starting
grant from Aarhus University Research Foundation.
Daniel Kales has been supported in part by the European Unions’s Horizon
2020 research and innovation programme under grant agreement � 871473
(KRAKEN).

Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of any
of the funders. The U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright annotation
therein.

36

References

AHIV17. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkita-
subramaniam. Ligero: Lightweight sublinear arguments without a trusted
setup. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 2087–2104. ACM Press, Oc-
tober / November 2017.

ARS+15. Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. Ciphers for MPC and FHE. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume
9056 of LNCS, pages 430–454. Springer, Heidelberg, April 2015.

BBC+19. Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval
Ishai. Zero-knowledge proofs on secret-shared data via fully linear PCPs.
In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part III, volume 11694 of LNCS, pages 67–97. Springer, Heidelberg, August
2019.

BCR+19. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P. Ward. Aurora: Transparent succinct ar-
guments for R1CS. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128. Springer,
Heidelberg, May 2019.

Bd20. Ward Beullens and Cyprien de Saint Guilhem. LegRoast: Efficient post-
quantum signatures from the Legendre PRF. In Jintai Ding and Jean-
Pierre Tillich, editors, Post-Quantum Cryptography - 11th International
Conference, PQCrypto 2020, pages 130–150. Springer, Heidelberg, 2020.

BDF+11. Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian
Schaffner, and Mark Zhandry. Random oracles in a quantum world. In
Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume
7073 of LNCS, pages 41–69. Springer, Heidelberg, December 2011.

Beu20. Ward Beullens. Sigma protocols for MQ, PKP and SIS, and Fishy signature
schemes. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part III, volume 12107 of LNCS, pages 183–211. Springer, Heidelberg, May
2020.

BFH+20. Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthuramakrishnan
Venkitasubramaniam, Tiancheng Xie, and Yupeng Zhang. Ligero++: A
new optimized sublinear IOP. In CCS, pages 2025–2038. ACM, 2020.

BGIN19. Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Practical fully secure
three-party computation via sublinear distributed zero-knowledge proofs.
In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, pages 869–886. ACM Press, November 2019.

BHK+19. Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen,
Joost Rijneveld, and Peter Schwabe. The SPHINCS+ signature framework.
In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, pages 2129–2146. ACM Press, November
2019.

BN20. Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge argu-
ments for arithmetic circuits and their application to lattice-based cryp-
tography. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and
Vassilis Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages
495–526. Springer, Heidelberg, May 2020.

37

CDG+17. Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha.
Post-quantum zero-knowledge and signatures from symmetric-key prim-
itives. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 1825–1842. ACM Press, Oc-
tober / November 2017.

CFM+20. A. Casanova, J.-C. Faugère, G. Macario-Rat, J. Patarin, L. Perret, and
J. Ryckeghem. GeMSS. Technical report, National Institute of Standards
and Technology, 2020. available at https://csrc.nist.gov/projects/

post-quantum-cryptography/round-3-submissions.
dDOS19. Cyprien de Saint Guilhem, Lauren De Meyer, Emmanuela Orsini, and

Nigel P. Smart. BBQ: Using AES in picnic signatures. In Kenneth G.
Paterson and Douglas Stebila, editors, SAC 2019, volume 11959 of LNCS,
pages 669–692. Springer, Heidelberg, August 2019.

DFM20. Jelle Don, Serge Fehr, and Christian Majenz. The measure-and-reprogram
technique 2.0: Multi-round fiat-shamir and more. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172
of LNCS, pages 602–631. Springer, Heidelberg, August 2020.

DFMS19. Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security
of the Fiat-Shamir transformation in the quantum random-oracle model.
In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part II, volume 11693 of LNCS, pages 356–383. Springer, Heidelberg, Au-
gust 2019.

DG19. Luca De Feo and Steven D. Galbraith. SeaSign: Compact isogeny signa-
tures from class group actions. In Yuval Ishai and Vincent Rijmen, edi-
tors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 759–789.
Springer, Heidelberg, May 2019.

DKL+18. Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium: A
lattice-based digital signature scheme. IACR TCHES, 2018(1):238–268,
2018. https://tches.iacr.org/index.php/TCHES/article/view/839.

DLMW15. Itai Dinur, Yunwen Liu, Willi Meier, and Qingju Wang. Optimized inter-
polation attacks on LowMC. In Tetsu Iwata and Jung Hee Cheon, edi-
tors, ASIACRYPT 2015, Part II, volume 9453 of LNCS, pages 535–560.
Springer, Heidelberg, November / December 2015.

DS05. Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polyno-
mial signature scheme. In John Ioannidis, Angelos Keromytis, and Moti
Yung, editors, ACNS 05, volume 3531 of LNCS, pages 164–175. Springer,
Heidelberg, June 2005.

DST19. Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich. Wave:
A new family of trapdoor one-way preimage sampleable functions based
on codes. In Steven D. Galbraith and Shiho Moriai, editors, ASI-
ACRYPT 2019, Part I, volume 11921 of LNCS, pages 21–51. Springer,
Heidelberg, December 2019.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987.

GMO16. Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster
zero-knowledge for Boolean circuits. In Thorsten Holz and Stefan Savage,

38

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://tches.iacr.org/index.php/TCHES/article/view/839

editors, USENIX Security 2016, pages 1069–1083. USENIX Association,
August 2016.

GMR88. Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A digital signature
scheme secure against adaptive chosen-message attacks. SIAM J. Comput-
ing, 17(2):281–308, 1988.

GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In Richard E. Ladner
and Cynthia Dwork, editors, 40th ACM STOC, pages 197–206. ACM Press,
May 2008.

IKOS07. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In David S. Johnson and
Uriel Feige, editors, 39th ACM STOC, pages 21–30. ACM Press, June 2007.

KKW18. Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-
interactive zero knowledge with applications to post-quantum signatures.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,
editors, ACM CCS 2018, pages 525–537. ACM Press, October 2018.

KRR+20. Daniel Kales, Sebastian Ramacher, Christian Rechberger, Roman Walch,
and Mario Werner. Efficient FPGA implementations of LowMC and Picnic.
In Stanislaw Jarecki, editor, CT-RSA 2020, volume 12006 of LNCS, pages
417–441. Springer, Heidelberg, February 2020.

KZ20a. Daniel Kales and Greg Zaverucha. An attack on some signature schemes
constructed from five-pass identification schemes. In Stephan Krenn, Haya
Shulman, and Serge Vaudenay, editors, CANS 20, volume 12579 of LNCS,
pages 3–22. Springer, Heidelberg, December 2020.

KZ20b. Daniel Kales and Greg Zaverucha. Improving the performance of the Picnic
signature scheme. IACR TCHES, 2020(4):154–188, 2020. https://tches.
iacr.org/index.php/TCHES/article/view/8680.

LIM20. Fukang Liu, Takanori Isobe, and Willi Meier. Cryptanalysis of full LowMC
and LowMC-M with algebraic techniques. Cryptology ePrint Archive, Re-
port 2020/1034, 2020. https://eprint.iacr.org/2020/1034.

Lyu12. Vadim Lyubashevsky. Lattice signatures without trapdoors. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 738–755. Springer, Heidelberg, April 2012.

Nat20. National Institute of Standards and Technology. Round 3 Submissions for
the NIST Post-Quantum Cryptography Project. https://csrc.nist.gov/
Projects/post-quantum-cryptography/round-3-submissions, accessed
11-11-2020, 2020.

PFH+20. Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirch-
ner, Vadim Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor
Seiler, William Whyte, and Zhenfei Zhang. FALCON. Technical re-
port, National Institute of Standards and Technology, 2020. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions.

RST18. Christian Rechberger, Hadi Soleimany, and Tyge Tiessen. Cryptanalysis
of low-data instances of full LowMCv2. IACR Trans. Symm. Cryptol.,
2018(3):163–181, 2018.

Sho94. Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th FOCS, pages 124–134. IEEE Computer Society
Press, November 1994.

39

https://tches.iacr.org/index.php/TCHES/article/view/8680
https://tches.iacr.org/index.php/TCHES/article/view/8680
https://eprint.iacr.org/2020/1034
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

ZCD+19. Greg Zaverucha, Melissa Chase, David Derler, Steven Goldfeder, Clau-
dio Orlandi, Sebastian Ramacher, Christian Rechberger, Daniel Slamanig,
Jonathan Katz, Xiao Wang, and Vladmir Kolesnikov. Picnic. Techni-
cal report, National Institute of Standards and Technology, 2019. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-2-submissions.

40

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

	Banquet: Short and Fast Signatures from AES
	Introduction
	Preliminaries
	Identification Scheme with Amortized Verification of Inverses
	The Banquet Signature Scheme
	Security Proof
	Parameters, Implementation and Performance

