
A Side-Channel Attack on a Masked
IND-CCA Secure Saber KEM

Kalle Ngo1, Elena Dubrova1, Qian Guo2 and Thomas Johansson2

1 Royal Institute of Technology (KTH), Stockholm, Sweden
{kngo,dubrova}@kth.se

2 Lund University, Lund, Sweden
{qian.guo,thomas.johansson}@eit.lth.se

Abstract. In this paper, we present the first side-channel attack on a first-order masked
implementation of IND-CCA secure Saber KEM. We show how to recover both the
session key and the long-term secret key from 16 traces by deep learning-based power
analysis without explicitly extracting the random mask at each execution. Since the
presented method is not dependent on the mask, we can improve success probability
by combining score vectors of multiple traces captured for the same ciphertext. This
is an important advantage over previous attacks on LWE/LWR-based KEMs, which
must rely on a single trace. Another advantage is that the presented method does
not require a profiling device with deactivated countermeasure, or known secret
key. Thus, if a device under attack is accessible, it can be used for profiling. This
typically maximizes the classification accuracy of deep learning models. In addition,
we discovered a leakage point in the primitive for masked logical shifting on arithmetic
shares which has not been known before. We also present a new approach for secret
key recovery, using maps from error-correcting codes. This approach can compensate
for some errors in the recovered message.
Keywords: Public-key cryptography · post-quantum cryptography · Saber KEM ·
LWE/LWR-based KEM · side-channel attack · power analysis · deep learning

1 Introduction
Public-key cryptographic schemes in current use depend on the intractability of specific
mathematical problems such as integer factorization or the discrete logarithm problem.
However, it is known that when large-scale quantum computers become a reality, factoring
and discrete log can be efficiently solved using the Shor algorithm [Sho99]. Even if it will
take many years until large-scale quantum computers are available, the need for long term
security (what we protect today must remain secure also in 10 years from now) makes this
an issue that needs immediate attention.

In response to this situation, the National Institute of Standards and Technology
(NIST) started a few years ago a project for standardizing post-quantum cryptographic
primitives (NIST PQ standardization project). The candidate primitives in this project
rely on problems that are not known to be solvable by a quantum computer. The two most
common areas for such problems are lattices problems and decoding problems for error
correcting codes. In round 1, security was the main focus in evaluation, whereas round 2
considered implementation aspects to a larger extent. The project recently entered round
3, where it is expected that security in relation to side-channel attacks will have a larger
focus.

As mentioned, lattice-based cryptography is perhaps the most promising areas in post-
quantum crypto. The remaining candidates in round 3 are split into two subsets, the finalists

mailto:{kngo,dubrova}@kth.se
mailto:{qian.guo,thomas.johansson}@eit.lth.se

2 A Side-Channel Attack on a Masked IND-CCA Secure Saber KEM

and the alternates. Among the finalists for the primitive key encapsulation mechanism
(KEM), 3 out of 4 finalists are lattice-based (and one more among the alternates).

Among lattice-based schemes one may further split into several categories: NTRU-based
schemes with finalist NTRU [C+20]; Learning With Errors (LWE)-based schemes with
finalist Kyber [S+20]; and the Learning With Rounding (LWR)-based schemes with finalist
Saber [D+20]. The hardness in these problems comes from inserting unknown noise into
otherwise linear equations.

Side-channel attacks were introduced by Kocher [KJJ99] and are today considered
as the main threat against implementations of cryptographic algorithms, in particular
for applications in embedded devices. Side-channel attacks exploit information obtained
from physically measurable alternative channels and the most common ones are timing
measurements and the measured power consumption of a device. Side-channel attacks and
the corresponding countermeasures have been a major area of research for many years now,
often targeting cryptographic standards. A more recent sub-area is the investigation of
side-channel attacks for post-quantum cryptography. This is getting increasing attention
in the research community, in particular in connection with the NIST PQ standardization
project. The analysis and protection against side-channel attacks for the round 3 finalist
candidates is an urgent area to explore.

The first and most basic form of side-channel analysis and protection is obtained
by considering the timing channel, simply measuring the execution time of software
implementations of the cryptographic algorithms. The general protection method is to
make implementations such that they all run in constant time. This is today a standard
assumption for software implementations. The timing channel can be extended to consider
cache-timing attacks, where time variation due to memory management in the executing
device is considered. A typical example of an exploit is the use of look-up tables.

Even with constant time implementations and avoiding implementation weaknesses
such as the use of look-up tables, a software implementation is still vulnerable to attacks
if power measurements from the CPU can be used. Additional protection measures need
to be considered and the main tools are such techniques as masking and shuffling.

A fully side-channel protected implementation of a lattice-based cryptosystem was first
to proposed in [RRVV15] followed by [RdCR+16], based on masking. It should be noted
that masking involves doing linear operations twice, whereas non-linear operations calls for
more complex solutions which decrease the speed even more. The masked implementation
in [RRVV15] increases the number of CPU cycles on an ARM Cortex-M4 by a factor more
than 5 compared to a non-protected implementation.

Whereas these protection attempts consider Chosen-Plaintext Attack (CPA)-secure
lattice schemes, it is more interesting to consider to secure primitives designed to withstand
Chosen-Ciphertext Attacks (CCA). CCA secure primitives are usually obtained through
a transform and a CPA secure primitive. The most common transformation is the
Fujisaki-Okamoto (FO) transform or some variation of it [HHK17]. The CCA-transform
is itself susceptible to side-channel attacks and should be masked [RRCB20]. Examples
of recent masked implementations are: [OSPG18] of a KEM similar to NewHope; and
[BBE+18, MGTF19, GR19] on different lattice-based signature schemes.

Narrowing in on the NIST round 3 finalists, only the candidate Saber has an associated
protected software implementation available [BDK+20]. Saber is a Module-LWR-based
KEM that is a finalist in the third round of the NIST PQ standardization project. LWR
means that noise is added through rounding instead of adding explicit error terms as for
LWE.

In [BDK+20] the authors construct a first-order masked implementation of the Saber
CCA-secure decapsulation algorithm that comes with an overhead factor of only 2.5
compared to the unmasked implementation. It is claimed that this side-channel secure
version can be built with relatively simple building blocks compared to other candidates,

Kalle Ngo, Elena Dubrova, Qian Guo and Thomas Johansson 3

resulting in a small overhead for side-channel protection. The masked implementation
of Saber is based on masked logical shifting on arithmetic shares and a masked binomial
sampler. The work includes experimental validation of the implementation to confirm
suppression of side-channel leakage on the Cortex-M4 general-purpose processor.

Side-channel attacks on the unprotected implementations of NIST PQ standardization
project candidates have been considered in some recent papers. In [SKL+20] a message
recovery attack (session key recovery) was described using a single trace on the unprotected
encapsulation part of some of the round 3 candidates. In [RRCB20] side-channel attacks
on several round 2 candidates were described. In [XPRO] unprotected Kyber was attacked
as a case study, using an EM side-channel approach. In particular, a mechanism of turning
a message recovery attack to a secret key recovery attack was proposed, giving a secret key
recovery using e.g. 184 traces for 98% success rate. In [GJN20] similar ideas for timing
attacks were considered.

In the very recently posted paper [RBRC20]1, the authors improve the key recovery
attacks on unprotected implementations of three NIST PQ finalists, including Saber.
They also discuss how to attack masked implementations by attacking shares individually.
However, no actual attack on masked Saber is performed and because only a single trace
is available for each unknown mask value, the success rate in message bit recovery for such
a two-step approach may be far from 100%.

Contributions: In this paper, we present the first side-channel attack on a masked
implementation of IND-CCA secure Saber KEM. It does not require a profiling device
with deactivated countermeasure as in previous attacks on masked implementations of
LWE/LWR-based KEMs [RBRC20, SKL+20]. We show how to recover both the session
key and the long-term secret key, by deep learning-based power analysis using a small
number of traces without explicitly extracting the random mask at each execution. Since
the presented method is independent of the mask, we can do error correction by capturing
multiple traces for the same input. This is an important advantage over the attacks
in [RBRC20, SKL+20] which must succeed from a single trace. The independence of the
mask also makes it possible to use the device under attack for capturing traces for the
profiling stage, if it is accessible for a sufficiently long time. This typically maximizes
classification accuracy of deep learning models created at the profiling stage. We also
present a new approach for secret key recovery, using maps from error-correcting codes.
This approach can compensate for some errors in the recovered message.

The remainder of this paper is organized as follows. In Section 2 we give the necessary
background both on Saber and on the use of deep learning in side-channel attacks. In
Section 3 we describe the main part of the work, which is a message recovery attack on
the decryption/decapsulation algorithm. In Section 4 we subsequently show how an attack
recovering the long-term secret key can be done, using the message recovery attack from
the previous section. Section 5 concludes the paper and describes future work.

2 Background
This section provides background information on the Saber algorithm, the masked imple-
mentation of Saber from [BDK+20], profiled side-channel attacks, and Test Vector Leakage
Assessment (TVLA).

2.1 SABER algorithm
Saber [D+20] is a finalist candidate in the NIST PQ standardization project, where the
security is based on the hardness of the Module Learning with Rounding problem (MLWR).

1The design of the attack and most of the experimental work in this paper were done before the posting
of [RBRC20].

4 A Side-Channel Attack on a Masked IND-CCA Secure Saber KEM

Saber.PKE.KeyGen()

1: seedA ← U({0, 1}256)
2: A = gen(seedA) ∈ Rl×lq

3: r = U({0, 1}256)
4: s = βµ(Rl×1

q ; r)
5: b = ((AT s + h) mod q)� (εq− εp) ∈
Rl×1
p

6: return (pk .= (seedA,b), sk .= s)

Saber.PKE.Dec(s, (cm,b′))

1: v = b′T (s mod p) ∈ Rp
2: m′ = ((v + h2 − 2εp−εT cm) mod p)�

(εp − 1) ∈ R2
3: return m′

Saber.PKE.Enc((seedA,b),m; r)

1: A = gen(seedA) ∈ Rl×lq

2: if r is not specified then
3: r = U({0, 1}256)
4: end if
5: s′ = βµ(Rl×1

q ; r)
6: b′ = ((As′ + h) mod q)� (εq − εp) ∈
Rl×1
p

7: v′ = bT (s′ mod p) ∈ Rp
8: cm = ((v′ + h1 − 2εp−1m) mod p) �

(εp − εT) ∈ RT
9: return (c .= (cm,b′))

Figure 1: Description of Saber.PKE from [D+20].

It starts with an IND-CPA secure encryption scheme, Saber.PKE, and then presents an
IND-CCA secure key encapsulation mechanism (KEM), Saber.KEM, which is transformed
from Saber.PKE through a version of the FO transform. Algorithms Saber.PKE and
Saber.KEM are described in Fig. 1 and 2, respectively.

We now introduce some notations used in the description of Saber. Let Zq denote the
ring of integers modulo a positive integer q and Rq the quotient ring Zq[X]/(Xn + 1).
Saber sets n = 256. The rank of the module is denoted by l and it increases for a higher
security level.

In Saber, the positive integers q, p, and T are chosen to be a power of 2, i.e., q = 2εq ,
p = 2εp , and T = 2εT , respectively. We use x← χ(S) to denote sampling from χ, if χ is a
distribution over a set S. The notation S can be omitted, i.e., we write x← χ, if there is
no ambiguity.

Let U denote the uniform distribution and βµ the centered binomial distribution with
parameter µ, where µ is an even positive integer. Thus, the samples of βµ lie in the interval
[−µ/2, µ/2] and its probability mass function is P [x|x← βµ] = µ!

(µ/2+x)!(µ/2−x)!2
−µ. We

use βu(Rl×kq ; r) to generate a matrix in Rl×kq where the coefficients of polynomials in Rq
are sampled in a deterministic manner from βµ using seed r.

The functions F , G, and H are hash functions used, where F and H are implemented
using SHA3-256, and G is implemented using SHA3-512. The algorithms also employ an
extendable output function gen to generate a pseudorandom matrix A ∈ Rl×lq from a seed
seedA. This extendable output function is implemented using SHAKE-128.

The bitwise right shift operation is denoted by � and can be extended to polynomials
and matrices by applying it coefficient-wise. Saber also includes three constants to efficient
implement rounding operations by a simple bit shift, i.e., two constant polynomials
h1 ∈ Rq and h2 ∈ Rq with all coefficients set to 2εq−εp−1 and 2εp−2 − 2εp−εT−1 + 2εq−εp−1,
respectively, and one constant vector h ∈ Rl×1

q with each polynomial set equal to h1.
Three parameter sets (see Table 1) are proposed in the round 3 Saber document, i.e.,

LightSaber, Saber, and FireSaber, aiming for the security levels of NIST-I, NIST-III,
and NIST-V, respectively. These parameter sets achieve decryption failure probabilities
bounded by 2−120, 2−136, and 2−165, respectively. For a more detailed description of the
different parts of Saber, we refer to the design document [D+20].

Kalle Ngo, Elena Dubrova, Qian Guo and Thomas Johansson 5

Saber.KEM.KeyGen()

1: (seedA,b, s)← Saber.PKE.KeyGen()
2: pk = (seedA,b)
3: pkh = F(pk)
4: z = U({0, 1}256)
5: return (pk .= (seedA,b), sk .=

(z, pkh, pk, s))

Saber.KEM.Decaps((z, pkh, pk, s),c)

1: m′ = Saber.PKE.Dec(s, c)
2: (K̂ ′, r′) = G(pkh,m′)
3: c′ = Saber.PKE.Enc(pk,m′; r′)
4: if c = c′ then
5: return K = H(K̂ ′, c)
6: else
7: return K = H(z, c)
8: end if

Saber.KEM.Encaps((seedA,b))

1: m← U({0, 1}256)
2: (K̂, r) = G(F(pk),m)
3: c = Saber.PKE.Enc(pk,m; r)
4: K = H(K̂, c)
5: return (c,K)

Figure 2: Description of Saber.KEM from [D+20].

Table 1: Proposed parameters of round-3 Saber.
l n q p T µ security pfail

LightSaber 2 256 213 210 23 10 NIST-I 2−120

Saber 3 256 213 210 24 8 NIST-III 2−136

FireSaber 4 256 213 210 26 6 NIST-V 2−165

2.2 Masked Saber KEM
Masking is a well-known countermeasure against power/EM analysis [CJRR99].

First-order masking protects against attacks leveraging information in the first-order
statistical moment. A first-order masking partitions any sensitive variable x into two
shares, x1 and x2, such that x = x1 ◦ x2, and executes all operations separately on the
shares. The operator “◦” depends on the type of masking, e.g. it is “+” is arithmetic
masking and “⊕” in Boolean masking.

Carrying out operations on the shares x1 and x2 prevents leakage of side-channel
information related to x as computations do not explicitly involve x. Instead, x1 and
x2 are linked to the leakage. Since the shares are randomized at each execution of
the algorithm, they are not expected to contain exploitable information about x. The
randomization is usually done by assigning a random mask r to one share and computing
the other share as x− r for arithmetic masking or x⊕ r for Boolean masking.

A challenge in masking lattice-based cryptosystems is the integration of bit-wise
operations with arithmetic masking which requires methods for secure conversion between
masked representations. Saber can be efficiently masked due to specific features of its
design: power-of-two moduli q, p and T , and limited noise sampling of LWR. Due to the
former, modular reductions are basically free. The latter implies that only the secret key s
has to be sampled securely. In contrast, LWE-based schemes also need to securely sample
two additional error vectors.

Masking duplicates most linear operations, but requires more complex routines for non-
linear operations. The first-order masked implementation of Saber presented [BDK+20]

6 A Side-Channel Attack on a Masked IND-CCA Secure Saber KEM

uses a custom primitive for masked logical shifting on arithmetic shares and an adapted
masked binomial sampler from [SPOG19]. A particular attention is devoted in [BDK+20]
to the protection of the decapsulation algorithm, Saber.KEM.Decaps(), since it involves
operations with the long-term secret key s.

2.3 Profiled side-channel attacks
A profiled side-channel attack is performed in two stages: profiling and attack. Profiling
can be done by creating a template [APSQ06, CPM+18, HGA+19], or training a model,
e.g. an artificial neural network [MPP16, CDP17, KPH+19, BFD20].

If artificial neural networks are used, then at the profiling stage a network is trained
to learn the leakage “profile” of the target device for all possible values of the sensitive
variable. The training is done using a large number of traces captured from the profiling
device, which are labelled according to the selected leakage model (e.g. Hamming weight,
Hamming distance, identity, etc). Afterwards, at the attack stage, the trained network is
used to classify traces captured from the device under attack (which may be the same or
different from the profiling device).

2.4 Test vector leakage assessment
The Test Vector Leakage Assessment (TVLA) introduced by Goodwill et al. [GJJR11] is a
popular statistical technique which is used as a metric for evaluating side-channel leakage
and as a tool for feature extraction from side-channel measurements [RJJ+18, RRCB20,
SKL+20].

TVLA applies the Welch’s t-test to find differences between two sets of side-channel
measurements. The t-test takes a sample from each of the two sets and establishes whether
they differ by assuming a null hypothesis that the means of two sets are equal.

The TVLA of two sets of measurements T0 and T1 is carried out as follows:

TV LA = µ0 − µ1√
σ2

0
n0

+ σ2
1
n1

where µi, σi and ni stand for mean, standard deviation and cardinality of the set T i, for
i ∈ {0, 1}. The null hypothesis is rejected with a confidence of 99.9999% only if the absolute
value of the t-test score is greater than 4.5 [GJJR11]. A rejected null hypothesis means
that the two data sets are noticeably different and thus might leak some information.

In this work, we use TVLA for a posteriori analysis of side-channel measurements.

3 Message recovery attack
First, we present an attack which recovers a message from traces captured during the
execution of Saber.KEM.Decaps() by the device under attack. Later, in Section 4.2, we
show how both the long-term secret key can be extracted from a few recovered message.

3.1 Main idea
Side-channel attacks aiming to extract a secret S from a set of side-channel measurements
T captured from a masked implementation of an algorithm A face two problems:

1. How to find points in T which leak information about S?

2. How to recover S without knowing the value of the mask at each execution of A?

Kalle Ngo, Elena Dubrova, Qian Guo and Thomas Johansson 7

Messages m
generated at

random

Corresponding
ciphertexts

c =
Saber.PKE.Enc(pk,m;r)

Training
traces

m[j] = 1

...

.

...
...

Labels =
jth bit of m

Model Nj

PROFILING STAGE

m[j] = 0

m[j] = 1

m[j] = 0

r[j]m[j]r[j]

Test traces

σ𝑝 = 1

p[m[j]=0]

p[m[j]=1]
...

...
jth bit of
m = Saber.PKE.Dec(s,c)

Model Nj
ATTACK STAGE

Ciphertexts
c

r[j]m[j]r[j]

Device under
attack

Device under
attack

Figure 3: Profiling and attack stages of the presented message recovery attack.

3.1.1 Finding leakage points

The attacks on non-masked implementations [RRCB20, SKL+20] solve the problem (1) by
identifying leakage points in side-channel measurements using, for example, TVLA [GJJR11],
or Correlation Power Analysis (CPA) [BCO04]. However, such an approach does not apply
to masked implementations because the value of the random mask at each execution of A
is unknown.

Previous works addressing masked LWE/LWR-based KEMs [RBRC20, SKL+20] suggest
to solve the problem (1) by first deactivating the masking countermeasure, or fixing the
mask to a constant, and then finding leakage points as in the non-masked case. However, in
order to deactivate the countermeasure, or fix the mask, one requires the implementation
source code of the algorithm under attack. The source code may be proprietary. In
addition, a modified source code may be optimized differently by the compiler due to the
changes made to deactivate the countermeasure. This might change the shape of power
traces, as we show in Section 3.5.4.

We solve the problem (1) using a deep learning method which works without explicitly
extracting the random mask at each execution. We first hypothesize an approximate
location of the leakage point in a trace based on knowledge of the algorithm under attack
and through experience gained in power analysis of its non-masked implementations. Then,
we verify each hypothesis by training a deep learning model on an interval of trace covering
the selected point. If the model learns with a high accuracy, the point is assumed to leak.
Otherwise, we shift the interval window and repeat the training. If all shift attempts fail,
the hypothesis is rejected.

3.1.2 Recovering message without knowing the mask

In the previous work on LWE/LWR-based KEMs, the problem (2) is addressed by ei-
ther constructing a template [RBRC20], or training a deep learning model [SKL+20] on
power/EM traces from a profiling device in which the masking countermeasure is deacti-
vated, or the mask r is fixed to a constant. Profiling aims to distinguish the difference
between cases when a message bit value of “0” is processed at the leakage point; from the
case when a message bit takes the value of “1”.

8 A Side-Channel Attack on a Masked IND-CCA Secure Saber KEM

During the attack, traces captured from a device under attack are given as input to
the template/model to separately recover the jth bit of the shares m ⊕ r and r, for all
j ∈ {0, 1, . . . , 255}. Finally, the message is computed as m = r ⊕ (m⊕ r). Note that such
two-phase attacks must recover the message from a single power/EM trace because a new
random mask r is generated for each execution of the algorithm.

We show that it is possible to train an accurate deep learning model capable to recover
message bits from a masked LWE/LWR-based KEM directly, without explicitly knowing
or manipulating the value of the mask. At the profiling stage, a model for the bit j, Nj , is
trained on traces containing jth bits of both shares, m[j]⊕ r[j] and r[j], and labelled by
the value of the message bit m[j] (see Fig. 3). At the attack stage, the model Nj takes
an interval of trace containing m[j] ⊕ r[j] and r[j], and performs processing equivalent
to recognizing their values from the shape of power traces and doing a logic operation,
XOR, on them. A similar strategy is used in [MPP16] for extracting the secret key from a
masked implementation of AES except that we use the message bit values as a leakage
model, while in [MPP16] the Hamming weight of S-Box output is used as a leakage model.

Another difference is that, since public-key encryption is performed using the public key,
for LWE/LWR-based KEMs we can pre-compute a set of ciphertexts corresponding to any
set of messages (random or chosen). Therefore, if the device under attack is accessible, we
can use it to capture training traces for the profiling stage. This is clearly not possible in the
case of symmetric encryption algorithms since they use the secret key for both encryption
and decryption. Using the device under attack for profiling is advantageous because the
deep learning model’s classification accuracy does not deteriorate due to differences in
training and test traces caused by manufacturing process variation [WBFD19].

An advantage of our attack over the two-phase attacks on masked LWE/LWR-based
KEMs [RBRC20, SKL+20] is that we can improve message recovery probability by com-
bining score vectors of multiple traces captured for the same ciphertext. The two-phase
attacks must rely on a single trace.

3.2 Assumptions
We assume that the adversary knows that the device under attack implements the Saber
algorithm and has physical access to the device under attack to capture power traces. We
consider two scenarios:

1: The access time is sufficient to capture both, training traces for the profiling stage
and test traces for the attack stage. In this case, the device under attack can be
used for profiling.

2: The access time is sufficient to capture test traces for the attack stage only. In this
case, a different device, identical to the device under attack is required for profiling.

3.3 Trace acquisition
Next, we describe equipment for trace acquisition and how leakage points are located.

3.3.1 Equipment

Our measurement setup is shown in Fig. 4. It consists of the ChipWhisperer-Lite board,
the CW308 UFO board and CW308T-STM32F4 target board.

The ChipWhisperer is a hardware security evaluation toolkit based on a low-cost open
hardware platform and an open-source software [New]. The ChipWhisperer-Lite board can
be used to measure power consumption and control the communication between the target
device and the computer. The power is measured over the shunt resistor placed between
the power supply and the target device. ChipWhisperer-Lite uses a synchronous capture

Kalle Ngo, Elena Dubrova, Qian Guo and Thomas Johansson 9

Figure 4: Equipment for trace acquisition.

method which greatly improves the synchronization of traces and reduces the required
sample rate and the data storage. The maximum sampling rate of ChipWhisperer-Lite
board is 105 MS/sec and the buffer size is 24,400 samples.

The CW308 UFO board is a generic platform for evaluating multiple targets [CW3].
The target board is plugged into a dedicated U connector.

The target board CW308T-STM32F4 contains a 32-bit ARM Cortex-M4 CPU with
STM32F415-RGT6 device. The device is programmed to the C implementation of masked
Saber from [BDK+20]. The implementation is compiled with arm-none-eabi-gcc using
the highest compiler optimization level -O3 (recommended default) which is typically the
most difficult to break by side-channel analysis [SKL+20].

The target board is run at 24 MHz and sampled either at 24 MHz (1 pt/clock cycle),
or at 96 MHz (4 pt/clock cycle) depending on the experiment.

3.3.2 Locating leakage points

In previous work, a number of vulnerabilities were discovered in the non-masked LWE/LWR-
based PKE/KEMs [ACLZ20, SKL+20, RRCB20, RBRC20]. One is Incremental-Storage
vulnerability resulting from an incremental update of the decrypted message in memory
during message decoding [RBRC20]. The decoding function (line 2 of Saber.PKE.Decryt()
at Fig. 1) iteratively maps each polynomial coefficient into a corresponding message bit,
thus computing the decrypted message one bit at a time.

It was observed in [RBRC20] that, in a non-masked implementations of the decoding
function (see indcpa_kem_dec() at Fig. 6), there are two points containing exploitable
Incremental-Storage vulnerability. The first one is at line 8 of indcpa_kem_dec() where
the message bits m[j] are computed and stored in a 16-bit memory location v[i] in an
unpacked fashion. Since v[i] can take only two possible values, 0 or 1, an attacker can
recover the message bit m[j] by distinguishing between 0 and 1. The second point, located
at line 4 of POL2MSG() procedure where the decoded message bits are packed into a byte
array in memory.

By examining the masked implementation of the decoding function from [BDK+20]
shown as indcpa_kem_dec_masked() in Fig. 6, we can see that the same procedure
POL2MSG() as in indcpa_kem_dec() is used for packing the decrypted message shares. As
we demonstrate in Section 3.5, Incremental-Storage vulnerability can still be exploited with
our deep learning approach despite the message being partitioned into shares. Furthermore,
we found that poly_A2A(), which is a primitive designed in [BDK+20] for masked logical
shifting on arithmetic shares, also contains a point with an exploitable Incremental-Storage

10 A Side-Channel Attack on a Masked IND-CCA Secure Saber KEM

1 byte

32-byte mask

(d)

(c)

(b)

(a)

32-byte message XORed with mask

Figure 5: Locating POL2MSG(): (a) The initial part of Saber.KEM.Decaps() sampled 1
pt/clock cycle with decimation 15; (b) Zoomed part of (a) sampled 1 pt/clock cycle with
decimation 1; (c) Part of (b) representing two POL2MSG() executions sampled 4 pt/clock
cycle with decimation 1; (d) Zoomed part of (c) containing the first 15 bytes of message
XORed with mask.

Kalle Ngo, Elena Dubrova, Qian Guo and Thomas Johansson 11

void indcpa_kem_dec(char *sk,
char *ct, char m[])
uint16_t v[N];
uint16_t sksv[K][N];

1: BS2POLVECq(sk,sksv);
2: SABER_un_pack(&ct, v);
3: for (i = 0; i < N; ++i) do
4: v[i] = h2-(v[i]«(EP-ET));
5: end for
6: VectorMul(ciphertext,sksv,v);
7: for (i = 0; i < N; ++i) do
8: v[i] = (v[i]&(P-1))»(EP-1);
9: end for

/* pack decrypted message */
10: POL2MSG(v,m);

void POL2MSG(uint16_t *v, chair *m)
1: for (j = 0; j < BYTES; j++) do
2: m[j] = 0;
3: for (i = 0; i < 8; i++) do
4: m[j] = m[j]|(v[8*j+i]«i);
5: end for
6: end for

void indcpa_kem_dec_masked(uint16_t
sksv1[], uint16_t sksv2[], char
*ct, char m1[], char m2[])
uint16_t pksv[K][N];
uint16_t v1[N]={0}, v2[N]={0};

1: SABER_un_pack(&ct,v1);
2: for (i = 0; i < N; i++) do
3: v1[i] = h2-(v1[i]«(EP-ET));
4: end for
5: BS2POLVEC(ct,pksv,P);
6: InnerProd(pksv,sksv1,P-1,v1);
7: InnerProd(pksv,sksv2,P-1,v2);
8: poly_A2A(v1,v2);
9: POL2MSG(v1,m1);

10: POL2MSG(v2,m2);

void poly_A2A(uint16_t A[N],
uint16_t R[N])
uint32_t A, R;

1: for (i = 0; i < N; i++) do
2: A = A[i]; R = R[i];
3: ... /* processing */
4: A[i] = A; R[i] = R;
5: end for

Figure 6: C code of non-masked and masked implementations of Saber.PKE.Dec()
from [BDK+20].

vulnerability. This leakage point was not known before.
First we explain how we located the position of POL2MSG() in traces. Fig. 5(a) shows

a trace representing the initial part of Saber.KEM.Decaps(). The trace is obtained by
averaging 50,000 traces captured for random ciphertexts. Since POL2MSG() packs the
message bits into a byte array, we expect its trace to look like a block of repeating, similar
patterns. The segment of Fig. 5(a) marked by two red lines is a possible candidate. Fig. 5(b)
shows its zoomed version. By further zooming into the interval of Fig. 5(b) marked by the
red lines, we can distinguish 64 repeating patterns representing the processing of bytes.
Fig. 5(d) gives a more detailed view of one byte processing; it takes 196 samples.

Since poly_A2A() is executed immediately before POL2MSG(), we can hypothesize it is
located in the interval between the points 4,000 and 15,000 in Fig 5(b).

Next we describe how we used deep learning to check if these two intervals contain
exploitable leakage points.

3.4 Profiling and attack stages
Let m = {m1,m2, . . . ,mt}, where mi ∈ {0, 1}256, for i ∈ {1, . . . , t}, be a set of messages
selected at random. Let c = {c1, c2, . . . , ct}, be the set of corresponding ciphertexts ci =
Saber.PKE.Enc(pk,mi; ri). Let Ti ∈ Rl be a trace captured from the profiling device Dpro

during the execution of Saber.KEM.Decaps() with ci as input, where l is the trace size.
A pseudocode in Fig. 7 describes the profiling and attack stages of the presented

message recovery attack. At the profiling stage, a neural network model Nj : Rl → I2,
where I = {x ∈ R | 0 ≤ x ≤ 1}, is trained for a selected message bit j. A network Nj
maps a trace Ti ∈ Rl into a score vector Sj,i = Nj(Ti) ∈ I2 whose elements sj,i,k represent

12 A Side-Channel Attack on a Masked IND-CCA Secure Saber KEM

ProfilingStage(Dpro, t, l, j) /* # of training traces t, trace size l, bit position j */
1: m = {mi ∈ {0, 1}256 | mi is selected at random, ∀i ∈ {1, . . . , t}}
2: c = {ci ∈ {0, 1}34816 | ci = Saber.PKE.Enc(pk,mi; ri),∀i ∈ {1, . . . , t}}
3: T = {Ti ∈ Rl | Ti ⇐ Dpro[Saber.KEM.Decaps(ci)], ∀i ∈ {1, . . . , t}}
4: Lj = {lj(Ti) ∈ {0, 1} | lj(Ti) = mi[j],∀i ∈ {1, . . . , t}}
5: Train Nj : Rl → I2 on (T , Lj)
6: return Nj

AttackStage(Datt,Nj , d, l)
1: Select c ∈ {0, 1}34816

2: for each i ∈ {0, 1, . . . , d} do
3: T̂ = {T̂i ∈ Rl | T̂i ⇐ Datt[Saber.KEM.Decaps(c)], ∀i ∈ {1, . . . , d}}
4: end for
5: for each i ∈ {0, 1, . . . , d} do
6: Sj,i = Nj(T̂i)
7: mi[j] = arg max

k∈{0,1}
sj,i,k

8: end for
9: m[j] = majdi=1 mi[j]

10: return m[j]

Figure 7: Description of the profiling and attack stages of the presented message recovery
attack on masked Saber PKE; Dpro is the profiling device and Datt is the device under
attack (can be the same instance).

Table 2: The MLP architecture used in the message recovery attack; l = 7,000 and 600 for
POL2MSG() and poly_A2A() leakage points, respectively.

Layer type (Input, output) shape # Parameters
Batch Normalization 1 (l, l) 28000
Dense 1 (l, 4) 28004
Batch Normalization 2 (4, 4) 16
ReLU (4, 4) 0
Dense 2 (4, 2) 10
Softmax (2, 2) 0
Total parameters: 56,030
Trainable parameters: 42,022

the probability that the jth bit of mi, mi[j], is equal to k = {0, 1} in trace Ti. We use the
multilayer perceptron (MLP) architecture listed in Table 2.

To train a network Nj , each trace Ti in the training set T is assigned a label lj(Ti) =
mi[j], for i ∈ {1, . . . , t}. We use 70% of the set T for training and 30% for validation.
Categorical cross-entropy is used as a loss function. No input normalization is applied.
Nadam optimizer (an extension of RMSprop with Nesterov momentum) with the learning
rate 0.0001 and numerical stability constant epsilon=1e-08 is used. The training is carried
out for a maximum of 100 epochs with batch size 10 and early stopping.

Since the MLP architecture in Table 2 is very simple, the training time is short, e.g.
for |T | = 100, 000 and trace size l = 7, 000, training a model takes less than 5 minutes on
average on a quad-core 4.0 GHz PC.

At the attack stage, d traces T̂ = {T̂1, . . . , T̂d} are captured from the device under
attack Datt for the same ciphertext c. To recover a message bit m[j], the model Nj is used
to compute score vectors Sj,i = Nj(T̂i) for every i ∈ {0, 1, . . . , d}. The most likely value of

Kalle Ngo, Elena Dubrova, Qian Guo and Thomas Johansson 13

Figure 8: Three CW308T-STM32F4 boards used in the experiments.

m[j] is the decided for each trace T̂i as

mi[j] = arg max
k∈{0,1}

sj,i,k

and d results are combined by majority voting as

m[j] = majdi=1 mi[j]

where majdi=1 stands for a d-ary majority operation.

3.5 Experimental results
In the experiments, we use three CW303 ARM devices shown in Fig. 8. The device D1
for profiling and all three devices for testing. One can see that D1 and D2 look similar.
They are acquired from the same chip vendor. The device D3 is visually different from the
others, it is acquired from a different chip vendor. We test on multiple boards to investigate
how the classification accuracy of the models trained on D1 is affected by manufacturing
process variation. It is known to be an issue for advances technologies [WBFD19].

Using the equipment and the method described in Section 3.3, we captured from D1 a
large set of traces T of size 100,000 for training the MLP models. We also captured from
each of D1, D2 and D3 a smaller set of traces T̂ of size 1,000 for testing the models.

Throughout the section, we use pj and pj,d to denote the probability to recover a specific
message bit j ∈ {0, . . . , 255} from a single trace and n traces, respectively. Similarly, we
use pm and pm,d to denote the probability to recover a complete message from a single
trace and d traces, respectively.

3.5.1 Single-trace attack

1. Using POL2MSG() leakage point Table 3 lists expected probabilities to recover a
message bit m[j] from a single trace from a test set T̂ using the MLP model Nj trained
on the 7,000-point interval shown in Fig. 9, for j ∈ {0, . . . , 7} and |T̂ | = 1, 000. The size
l = 7, 000 is chosen by dividing the trace in Fig. 9 by the number for shares, dividing the
result by the number of bytes in one share, and adding to the share size the byte size plus
some safety margin.

As expected, the models Nj best classify the test traces captured from the same device
as the one used for profiling, D1. For D2 the difference in the classification accuracy is
1.2% on average. For D3 it is to 2.7% on average.

We can also see that the expected message recovery probabilities differ for different
bits. The bit m[7] is the most difficult. To understand the reasons for this, we perform a
posteriori TVLA analysis described in Section 3.5.3.

14 A Side-Channel Attack on a Masked IND-CCA Secure Saber KEM

32-byte mask 32-byte mask XORed with message

7000-pt interval for training and testing

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 310 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 310 1 2 3 4 5 6 7 8 9

Figure 9: The 7,000-point trace used as an input to Nj for all j ∈ {0, . . . , 7} in the attack
using POL2MSG() leakage point sampled 4 pt/clock cycle.

Table 3: Probability pj to recover m[j] from a single trace using POL2MSG() leakage point.
Device p0 p1 p2 p3 p4 p5 p6 p7 average
D1 0.998 0.998 0.993 0.992 0.989 0.988 0.985 0.953 0.987
D2 0.994 0.989 0.986 0.959 0.978 0.962 0.985 0.945 0.975
D3 0.984 0.985 0.988 0.963 0.972 0.991 0.975 0.819 0.960

average 0.992 0.990 0.989 0.971 0.979 0.980 0.982 0.906 0.974

2. Using poly_A2A() leakage point Table 3 lists expected probabilities to recover a
message bit m[j] from a single trace from a test set T̂ using the MLP model Nj trained
on the 600-point interval shown in Fig. 10, for j ∈ {0, . . . , 7} and |T̂ | = 1, 000. The size
l = 600 is selected by dividing the interval shown in Fig. 10 by the number of bytes and
adding to the result some safety margin.

We can see that poly_A2A() leaks less than POL2MSG(). Another difference is that, for
poly_A2A(), the expected probabilities for all bits except m[0] are similar. The bit 0 is
more difficult to recover. However, later in Section 3.5.3 we show that m[0] is a special
case for the byte 0. For other bytes, m[0] is not different from the rest.

Clearly, it is possible to exploit both leakage points simultaneously by combining score
vectors of the corresponding models.

3.5.2 Multiple-trace attack

If classification errors are mutually independent, the probability to recover a message bit j
from d traces captured for the same ciphertext can be estimated as [Dub13, p. 64]:

pj,d =
d∑

i=dd/2e

(
d
i

)
pij(1− pj)d−i,

where pj is the probability to recover a message bit j from a single trace and d is odd.
Assuming that the expected probabilities for the other message bytes are the same

as the ones for the first byte, the probability to recover a 256-bit message from d traces
can be computed as pm,d = (

∏7
j=0 pj,d)32. Table 5 lists the minimal number of traces d

required to achieve pm,d > 99.9% for D1, D2 and D3, respectively, for the case when both
leakage points are used simultaneously.

Kalle Ngo, Elena Dubrova, Qian Guo and Thomas Johansson 15

600-pt interval for training and testing

Figure 10: The 600-point trace used as an input to Nj for all j ∈ {0, . . . , 7} in the attack
using poly_A2A() leakage point sampled 1 pt/clock cycle.

Table 4: Expected probability to recover a message bit from a single trace using poly_A2A()
leakage point.

Device p0 p1 p2 p3 p4 p5 p6 p7 average
D1 0.845 0.970 0.959 0.905 0.948 0.960 0.953 0.972 0.939
D2 0.828 0.962 0.942 0.945 0.920 0.919 0.950 0.950 0.927
D3 0.848 0.900 0.941 0.884 0.949 0.905 0.914 0.947 0.911

average 0.840 0.944 0.947 0.912 0.939 0.928 0.939 0.956 0.926

Table 5: Probability pm,d to recover a 256-bit message from d traces captured for the same
ciphertext.

Device d pm,d

D1 9 0.99921
D2 11 0.99955
D3 11 0.99961

3.5.3 A posteriori TVLA analysis

To understand why some bits are more difficult to extract than others, we perform a
posteriori TVLA analysis of side-channel measurements. This section shows results for the
first byte of the share m⊕ r.

For each j ∈ {0, . . . , 7}, we partition the training set T into two sets containing traces
in which mi[j]⊕ ri[j] = k when ci is applied as input:

Tk = {Ti ∈ T | mi[j]⊕ ri[j] = k},

for k ∈ {0, 1} and i ∈ {1, . . . , t}, where ri[j] denotes jth bit of the mask ri.
Fig. 11 shows the results. Fig. 12 shows zoomed intervals [100:600] and [11100:11500]

of Fig. 11 representing the processing of the first byte of the share m⊕ r by poly_A2A()
and POL2MSG(), respectively.

From the t-test results we can see that overall POL2MSG() leaks greater than poly_A2A().
This is also apparent from Tables 3 and 4. For POL2MSG(), the shape of t-test plots is
different for every bit of a byte (see Fig. 13). Possibly the peaks represent the storage of
the decoded message bit m[j] into a byte array in memory and the addition (OR) of the
current content of the byte array with the following 7− j bits, j ∈ {0, . . . , 7}. Note that
our method of labelling training traces is “memoryless”, a label for Nj is determined by
the bit m[j] only and not by the bits m[0], . . . , [j − 1] already stored in the byte array

16 A Side-Channel Attack on a Masked IND-CCA Secure Saber KEM

Figure 11: The t-test results for the first byte of the share m⊕ r.

Figure 12: The intervals [100:600] and [11100:11500] of Fig. 11 representing the processing
of the first byte of the share m⊕ r by poly_A2A() and POL2MSG(), respectively.

Figure 13: The t-test results for POL2MSG() leakage point separately for each bit.

by the time j is processed, as in [RBRC20]. While we might be losing in classification
accuracy for m[7], we need to train eight models only to recover all bits of a byte. In the
Hamming weight based-method [RBRC20], 44 templates are required to recover all bits of
a byte.

Tables 6 and 7 compare sum of squared pairwise t-differences (SOST) values of the
first four bytes of the share m⊕ r for POL2MSG() and poly_A2A() leakage points. We can
see that, on average, SOST of different bytes do not differ significantly. The byte 0 is more
difficult than other bytes for POL2MSG(). The bit 0 of byte 0 is a specially difficult case for
poly_A2A().

Kalle Ngo, Elena Dubrova, Qian Guo and Thomas Johansson 17

Table 6: SOST of the first 4 message bytes for POL2MSG().
byte 0 byte 1 byte 2 byte 3 average

bit 0 224.5 407.4 550.3 425.4 401.9
bit 1 266.3 386.1 493.8 385.6 382.9
bit 2 185.9 237.5 218.1 214.1 213.9
bit 3 293.4 211.4 236.8 307.5 262.2
bit 4 224.6 206.3 177.4 255.5 215.9
bit 5 189.8 177.9 185.8 187.8 185.3
bit 6 135.6 225.8 180.5 136.9 169.7
bit 7 117.3 118.8 109.5 107.9 113.3

average 204.6 246.4 269.0 252.5 243.1

Table 7: SOST of the first 4 message bytes for poly_A2A().
byte 0 byte 1 byte 2 byte 3 average

bit 0 51.34 78.04 77.19 76.40 70.74
bit 1 77.70 76.96 79.38 77.54 77.90
bit 2 74.66 78.60 79.16 77.13 77.39
bit 3 79.17 79.73 76.34 77.00 78.06
bit 4 79.69 79.24 75.95 74.31 77.30
bit 5 80.24 79.09 76.45 77.32 78.27
bit 6 79.57 79.71 75.25 79.51 78.51
bit 7 78.47 78.61 76.23 78.55 77.96

average 75.10 78.75 76.99 77.22 77.02

3.5.4 Effect of masking countermeasure deactivation

In this section, we show a recompiled reference source code of masked Saber, in which
masking countermeasure is deactivated, may produce very different power traces from the
original source code.

The trace shown in Fig.9 represents two consecutive executions of POL2MSG() in
indcpa_kem_dec_masked() without any modifications. The trace in Fig.14 represents two
consecutive executions of POL2MSG() in indcpa_kem_dec_masked() with the mask fixed
to 0. We can see that, in the latter case, one execution of POL2MSG() is twice as short
than in the former. As a result, a model trained on traces in Fig. 14 is likely to fail in
recovering the message from the traces in Fig. 9.

Traces in the two cases differ because the compiler applied a different optimization
strategy due to the changes made to deactivate the countermeasure.

4 Recovering the long-term secret key
The session key can be derived directly from the recovered message and the public key.
In this section, we show how to recover the long-term secret key using maps from error-
correcting codes.

For IND-CCA-secure lattice-base schemes, [RRCB20] proposes a secret key recovery
attack through the analysis of recovered messages; this approach however assumes that
the message is perfectly recovered. Perfect message recovery is not trivial. The previous
solutions to achieve a very high message recovery probability by using multiple traces
might require a large number of traces in a combination with masking.

We next describe a new secret key recovery attack that compensates for the errors in

18 A Side-Channel Attack on a Masked IND-CCA Secure Saber KEM

32-byte mask fixed to 0 32-byte message XORed with mask

Figure 14: The execution of POL2MSG() with the mask fixed to 0 sampled 4 pt/clock cycle.

the recovered message. We start with a basic version that is optimized in terms of the
sample complexity, i.e., the required number of traces. This basic version may encounter a
large failure probability if the success probability in the message-recovery attack is low.
We thus propose novel improvements using error correcting codes and other observations
to reduce the noise occurring in the process of recovering the secret bits.

We focus on LightSaber, observing that the other two parameter sets (see Table 1) can
be attacked in a similar manner.

4.1 The basic version of secret key recovery
Following the basic idea in [RRCB20], we prepare ciphertexts (cm,b′) where cm =
k0
∑255
i=0 x

i ∈ RT and b′ = (k1, 0) ∈ R2×1
p . Then, the decryption algorithm computes

m′ = ((b′T (s mod p) + h2 − 2εp−εT cm) mod p)� (εp − 1) ∈ R2.

Thus, the i-th bit in m′, denoted by m[i], is a function of the tuple (k0, k1, s[i]), where
s[i] is the i-th coefficient in the secret s. Let the constant H be 2εp−2−2εp−εT−1 +2εq−εp−1.
The decryption algorithm computes

m[i] = ((k1 · (s[i] mod p) +H − 2εp−εT k0) mod p)� (εp − 1). (1)

If we use the message-recovery attack described in the previous section to recover the
message bit m[i], then partial secret information of s[i] is known. Using the decision table
as shown in Table 8, we could recover the first 256 positions of s with four queries, when
perfect message recovery is assumed. Then we could prepare ciphertexts (cm,b′) where
cm = k0

∑255
i=0 x

i ∈ RT and b′ = (0, k1) ∈ R2×1
p to recover the remaining 256 positions of

s. In summary, one needs eight traces for LightSaber.

Kalle Ngo, Elena Dubrova, Qian Guo and Thomas Johansson 19

Table 8: Chosen pairs of (k1, k0) to determine s[i] based on m[i] for LightSaber without
error correction. (X: m[i] = 1; O: m[i] = 0)

Secret (k1, k0)
Coeff. (60,2) (191,6) (303,3) (532,2)
-5 X X O O
-4 X X X X
-3 X X X O
-2 X O O X
-1 X O X O
0 X O X X
1 O X O O
2 O X O X
3 O O X X
4 O O O O
5 O O O X

Table 9: Chosen pairs of (k1, k0) to determine s[i] based on m[i] for LightSaber with
[8, 4, 4]2 extended Hamming codes. (X: m[i] = 1; O: m[i] = 0)

Secret (k1, k0)
Coeff. (143,2) (219,1) (542,2) (956,1) (286,2) (365,1) (453,2) (35,1)
-5 O X O O X O X X
-4 O O X O X X O X
-3 X O O O O X X X
-2 X X X O O O O X
-1 X X O O X X O O
0 X O X O X O X O
1 O O O O O O O O
2 O O O X X X X O
3 O X X X X O O O
4 X X O X O O X O
5 X O X X O X O O

This attack version works in the most optimistic setting. In the real case, the attack
success probability could be very low, given an insufficient success probability in the
message recovery attack. For instance, as shown in Table 4, the lowest probability of
recovering one message bit for a D3 device is only 0.947, resulting in a probability of 0.804
for recovering a single position in the secret key. Thus, the chance of getting all the secret
coefficients correct is negligible.

4.2 New improvements
We now describe the improved key-recovery attack, consisting of three novel techniques.

Employing extended Hamming codes. The [8, 4, 4]2 extended Hamming codes with code
length 8, dimension 4, and minimum distance 4 can correct one error and detect
the event that two errors occur. We design a new decision table shown in Table 9,
mapping the secret coefficient s[i] to a codeword of the [8, 4, 4]2 extended Hamming
code. We will show that the error correcting capability of this [8, 4, 4]2 extended
Hamming code is sufficient for our attack; one may need to employ low-rate codes
with larger minimum distance if a less accurate message-recovery is assumed.

20 A Side-Channel Attack on a Masked IND-CCA Secure Saber KEM

Mapping a secret coefficient to various message bits. Since the leakage quality varies
for different bits in a message byte (see Table 6), we could map a secret coefficient
to several message bits to reduce the largest error probability for recovering such
a coefficient. We prepare ciphertexts (cm,b′) where cm = k0

∑255
i=0 x

i ∈ RT and
b′ = (k1x

j , 0) ∈ R2×1
p for the j-th trace with 0 ≤ j ≤ 7.

The decryption algorithm computes

m[i] =
{

((k1 · (s[i− j] mod p) +H − 2εp−εT k0) mod p) � (εp − 1) if i ≥ j,

(−(k1 · (s[i− j + 256] mod p) +H − 2εp−εT k0) mod p) � (εp − 1) otherwise.

Thus, the decision table in Table 9 can be employed to recover s[i] for i ∈ [0, 1, .., 248]
and similar approaches for i ∈ [256, 257, .., 504], where recovering each s[i] is connected
to recovering eight consecutive message bits with different index modulo 8. For
simplicity, we could mark the 14 positions of s[i] for i ∈ [249, 250, .., 255] or i ∈
[505, 506, .., 511] as erasures and recover them in a later step.

Using lattice reduction algorithms for post-processing. Since the connection between
the public key and the secret key, i.e.,

b = ((AT s + h) mod q)� (εq − εp) ∈ Rl×1
p ,

is publicly known, one could employ a post-processing step with lattice reduction
algorithms to fully recover the secret key s.

Now we assume for a restricted adversary model with a D3 device (see Section 3.5),
so the adversity has limited access to the targeted device. For the j-th bit in a message
byte, we use the leakage point POL2MSG() or poly_A2A() that maximizes the probability
pj from a single trace for j ∈ {0, 1, .., 7}. The notation pj is defined in Section 3.5. We
know from Table 3 and 4 that

(p0, p1, .., p7) = (0.984, 0.985, 0.988, 0.963, 0.972, 0.991, 0.975, 0.947).

Similar to the assumption in Section 3.5.2, we assume that the expected probabilities
for the other message bytes are not worse than the ones for the first byte. Since we
connect each s[i] to the recovery of eight consecutive message bits with different index
modulo 8, the probabilities of having less than one error, two errors, and no less than three
errors are 0.9856, 0.0138, and 0.0006, respectively. With the [8, 4, 4]2 extended Hamming
codes, one error can be corrected and two errors can be detected with the corresponding
secret coefficient marked as an erasure; only the last case will introduce an erroneous
secret coefficient. We only need to recover 512 − 14 = 498 positions, so the expected
number of failures of recovering s[i] is about 498 × 0.0006 ≈ 0.3. We also have about
14 + 498× 0.0138 < 21 positions marked as erasures, but we know the coefficients are small
since they are generated from the centered binomial distribution βµ. The resulting lattice
problem is easy to solve since the dimension of the new lattice is quite small.

In summary, one could recover the long-term key using only 16 traces even from a D3
device which is different from the profiling one.

Note that the improved key-recovery attack from noisy messages has significance beyond
evaluating the security of masked Saber. We leave the investigation of its wide applications
for future work.

5 Conclusion
We presented a side-channel attack on a masked implementation of Saber which recovers
the session key and the long-term secret key using 16 traces for LightSaber. Our approach

Kalle Ngo, Elena Dubrova, Qian Guo and Thomas Johansson 21

has several advantages over previously proposed ones, including a possibility to increase
success probability by analyzing multiple traces and using the device under attack for
profiling. We discovered a previously unknown leakage point in the primitive for masked
logical shifting on arithmetic shares. We also described a new approach for secret key
recovery which can compensate for some errors in the recovered message.

Future work includes assessing higher-order masking schemes and combined ones, as well
as designing deep learning-resistant countermeasures for LWE/LWR-based PKE/KEMs.

6 Acknowledgments
We are indebted to the authors of [BDK+20] who generously shared with us their source
code of the masked Saber. The first and second authors would also like to thank Can
Aknesil and Yang Yu for their help with scripts and experiments.

This work was supported in part by the Swedish Civil Contingencies Agency (Grants No.
2020-11632), the Swedish Research Council (Grants No. 2018-04482 and 2019-04166), the
Swedish Foundation for Strategic Research (Grant No. RIT17-0005) and the Wallenberg
Autonomous Systems and Software Program (WASP).

References
[ACLZ20] D. Amiet, A. Curiger, L. Leuenberger, and P. Zbinden. Defeating NewHope

with a single trace. In International Conference on Post-Quantum Cryptogra-
phy, pages 189–205. Springer, 2020.

[APSQ06] C. Archambeau, E. Peeters, F. X. Standaert, and J. J. Quisquater. Template
attacks in principal subspaces. In Cryptographic Hardware and Embedded
Systems, pages 1–14, 2006.

[BBE+18] Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Benjamin
Grégoire, Mélissa Rossi, and Mehdi Tibouchi. Masking the GLP lattice-
based signature scheme at any order. In Jesper Buus Nielsen and Vincent
Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, Part II,
volume 10821 of Lecture Notes in Computer Science, pages 354–384, Tel Aviv,
Israel, April 29 – May 3, 2018. Springer, Heidelberg, Germany.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors,
Cryptographic Hardware and Embedded Systems, pages 16–29. Springer, 2004.

[BDK+20] Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep
Balasch, and Ingrid Verbauwhede. A side-channel resistant implementation
of SABER. Cryptology ePrint Archive, Report 2020/733, 2020. https:
//eprint.iacr.org/2020/733.

[BFD20] Martin Brisfors, Sebastian Forsmark, and Elena Dubrova. How deep learning
helps compromising USIM. In Proc. of the 19th Smart Card Research and
Advanced Application Conference (CARDIS’2020), Nov. 2020.

[C+20] C. Chen et al. Ntru algorithm specifications and supporting documen-
tation. https://csrc.nist.gov/projects/postquantum-cryptography/round-3-
submissions, 2020.

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neural
networks with data augmentation against jitter-based countermeasures. In

https://eprint.iacr.org/2020/733
https://eprint.iacr.org/2020/733

22 A Side-Channel Attack on a Masked IND-CCA Secure Saber KEM

Cryptographic Hardware and Embedded Systems – CHES 2017, pages 45–68,
2017.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. To-
wards sound approaches to counteract power-analysis attacks. In Advances in
Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 15-19, 1999, Proceedings, volume
1666 of Lecture Notes in Computer Science, pages 398–412. Springer, 1999.

[CPM+18] Giovanni Camurati, Sebastian Poeplau, Marius Muench, Tom Hayes, and
Aurélien Francillon. Screaming channels: When electromagnetic side channels
meet radio transceivers. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages 163–177, 2018.

[CW3] CW308 UFO Target. https://wiki.newae.com/CW308_UFO_Target.

[D+20] J. D’Anvers et al. Saber algorithm specifications and supporting docu-
mentation. https://csrc.nist.gov/projects/postquantum-cryptography/round-3-
submissions, 2020.

[Dub13] Elena Dubrova. Fault-Tolerant Design. Springer, 2013.

[GJJR11] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A testing
methodology for sideâĂŘchannel resistance validation. In NIST Mon-Invasive
Attack Testing Workshop, 2011.

[GJN20] Qian Guo, Thomas Johansson, and Alexander Nilsson. A key-recovery timing
attack on post-quantum primitives using the Fujisaki-Okamoto transforma-
tion and its application on FrodoKEM. In Daniele Micciancio and Thomas
Ristenpart, editors, Advances in Cryptology – CRYPTO 2020, Part II, volume
12171 of Lecture Notes in Computer Science, pages 359–386, Santa Barbara,
CA, USA, August 17–21, 2020. Springer, Heidelberg, Germany.

[GR19] François Gérard and Mélissa Rossi. An efficient and provable masked imple-
mentation of qtesla. In International Conference on Smart Card Research
and Advanced Applications, pages 74–91. Springer, 2019.

[HGA+19] C. Hoffman, C. Gebotys, D. F. Aranha, M. Cortes, and G. AraÃžjo. Circum-
venting uniqueness of XOR arbiter PUFs. In 2019 22nd Euromicro Conference
on Digital System Design (DSD), pages 222–229, 2019.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis
of the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin,
editors, TCC 2017: 15th Theory of Cryptography Conference, Part I, volume
10677 of Lecture Notes in Computer Science, pages 341–371, Baltimore, MD,
USA, November 12–15, 2017. Springer, Heidelberg, Germany.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Annual international cryptology conference, pages 388–397. Springer, 1999.

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Hanjalic.
Make some noise. Unleashing the power of convolutional neural networks for
profiled side-channel analysis. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2019(3):148–179, May 2019.

https://wiki.newae.com/CW308_UFO_Target

Kalle Ngo, Elena Dubrova, Qian Guo and Thomas Johansson 23

[MGTF19] Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque.
Masking Dilithium - efficient implementation and side-channel evaluation. In
Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti Yung,
editors, ACNS 19: 17th International Conference on Applied Cryptography and
Network Security, volume 11464 of Lecture Notes in Computer Science, pages
344–362, Bogota, Colombia, June 5–7, 2019. Springer, Heidelberg, Germany.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
cryptographic implementations using deep learning techniques. In Claude
Carlet, M. Anwar Hasan, and Vishal Saraswat, editors, Security, Privacy,
and Applied Cryptography Engineering, pages 3–26, Cham, 2016. Springer
International Publishing.

[New] NewAE Technology Inc. Chipwhisperer. https://newae.com/tools/
chipwhisperer.

[OSPG18] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu.
Practical CCA2-secure masked Ring-LWE implementations. IACR Transac-
tions on Cryptographic Hardware and Embedded Systems, 2018(1):142–174,
2018. https://tches.iacr.org/index.php/TCHES/article/view/836.

[RBRC20] Prasanna Ravi, Shivam Bhasin, Sujoy Sinha Roy, and Anupam Chattopadhyay.
On exploiting message leakage in (few) nist pqc candidates for practical
message recovery and key recovery attacks. Cryptology ePrint Archive, Report
2020/1559, 2020. https://eprint.iacr.org/2020/1559.

[RdCR+16] Oscar Reparaz, Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren,
and Ingrid Verbauwhede. Additively homomorphic ring-lwe masking. In
Post-Quantum Cryptography, pages 233–244. Springer, 2016.

[RJJ+18] P. Ravi, B. Jungk, D. Jap, Z. Najm, and S. Bhasin. Feature selection methods
for non-profiled side-channel attacks on ecc. In 2018 IEEE 23rd International
Conference on Digital Signal Processing (DSP), pages 1–5, 2018.

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam
Bhasin. Generic side-channel attacks on CCA-secure lattice-based PKE and
KEMs. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems, 2020(3):307–335, 2020. https://tches.iacr.org/index.php/TCHES/
article/view/8592.

[RRVV15] Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Ver-
bauwhede. A masked ring-lwe implementation. In International Workshop
on Cryptographic Hardware and Embedded Systems, pages 683–702. Springer,
2015.

[S+20] P. Schwabe et al. Crystals-kyber algorithm specifications and supporting doc-
umentation. https://csrc.nist.gov/projects/postquantum-cryptography/round-
3-submissions, 2020.

[Sho99] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

[SKL+20] Bo-Yeon Sim, Jihoon Kwon, Joohee Lee, Il-Ju Kim, Taeho Lee, Jaeseung Han,
Hyojin Yoon, Jihoon Cho, and Dong-Guk Han. Single-trace attacks on the
message encoding of lattice-based kems. Cryptology ePrint Archive, Report
2020/992, 2020. https://eprint.iacr.org/2020/992.

https://newae.com/tools/chipwhisperer
https://newae.com/tools/chipwhisperer
https://tches.iacr.org/index.php/TCHES/article/view/836
https://eprint.iacr.org/2020/1559
https://tches.iacr.org/index.php/TCHES/article/view/8592
https://tches.iacr.org/index.php/TCHES/article/view/8592
https://eprint.iacr.org/2020/992

24 A Side-Channel Attack on a Masked IND-CCA Secure Saber KEM

[SPOG19] Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Güneysu. Effi-
ciently masking binomial sampling at arbitrary orders for lattice-based crypto.
In Dongdai Lin and Kazue Sako, editors, Public-Key Cryptography – PKC
2019, pages 534–564, Cham, 2019. Springer International Publishing.

[WBFD19] Huanyu Wang, Martin Brisfors, Sebastian Forsmark, and Elena Dubrova. How
diversity affects deep-learning side-channel attacks. In 2019 IEEE Nordic
Circuits and Systems Conference (NORCAS): NORCHIP and International
Symposium of System-on-Chip (SoC), pages 1–7, 2019.

[XPRO] Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, and David Oswald. Magnify-
ing side-channel leakage of lattice-based cryptosystems with chosen ciphertexts:
The case study of kyber. Technical report, Cryptology ePrint Archive, Report
2020/912, 2020. https://eprint. iacr. org âĂę.

	Introduction
	Background
	SABER algorithm
	Masked Saber KEM
	Profiled side-channel attacks
	Test vector leakage assessment

	Message recovery attack
	Main idea
	Assumptions
	Trace acquisition
	Profiling and attack stages
	Experimental results

	Recovering the long-term secret key
	The basic version of secret key recovery
	New improvements

	Conclusion
	Acknowledgments

