
Error Term Checking: Towards Chosen
Ciphertext Security without Re-encryption

Jan-Pieter D’Anvers and Emmanuela Orsini and Frederik Vercauteren

imec-COSIC KU Leuven
Kasteelpark Arenberg 10 - bus 2452, 3001 Leuven, Belgium

janpieter.danvers@esat.kuleuven.be,emmanuela.orsini@esat.kuleuven.be,

frederik.vercauteren@esat.kuleuven.be

Abstract. Chosen ciphertext security for lattice based encryption schemes
is generally achieved through a generic transformation such as the Fujisaki-
Okamoto transformation. This method requires full re-encryption of the
plaintext during decapsulation, which typically dominates the cost of the lat-
ter procedure. In this work we show that it is possible to develop alternative
transformations specifically designed for lattice based encryption schemes.
We propose two novel chosen ciphertext transformations, ETC1 and ETC2,
in which re-encryption is replaced by checking the error term of the input ci-
phertext. We show that our new ciphertext validity check can be securely ap-
plied to lattice based encryption schemes under specific conditions. For the
NIST post-quantum standardization candidate Threebears we show a speed-
up for decapsulation of up to 37.4%. Moreover, as our method only changes
the validation check during decapsulation, it is fully backwards compatible
with existing implementations of the Fujisaki-Okamoto transformation.

1 Introduction

With the threat of quantum computers breaking the existing public key in-
frastructure, the development of replacement schemes that are secure against
quantum computers is of paramount importance. These so called post-quantum
cryptographic schemes have experienced an increased interest from both academia
and industry in recent years. This interest has been further stimulated by the
announcement of the NIST post-quantum standardization cryptography pro-
cess [NIS16]. In the wake of this announcement several replacements for the
current encryption and authentication schemes were proposed. At the moment
of writing we are in the third round of this standardization process. One of the
most practical and versatile families of quantum-safe primitives is based on hard
problems on lattices, also known as lattice-based cryptography [Reg05,LPR10].

Public key encryption schemes directly derived from lattice problems typically
only provide security against chosen-plaintext attacks. More advanced attackers
that are capable of submitting chosen ciphertexts for decryption have been shown
to be able to break these encryption schemes [JJ00,HNP+03,GN07,Flu16] For
this reason, these schemes are often compiled to a chosen ciphertext secure key
encapsulation mechanism (KEM) using a generic transformation based on the

Fujisaki-Okamoto (FO) transformation [FO13,Den03]. Classical and quantum
secure versions of this transformation have been proposed with increasingly
tighter security bounds in [TU16,HHK17,AOP+17,JZC+18,SXY18,BHH+19].

Decapsulation of a ciphertext in a FO compiled primitive roughly consists
of two parts: decryption of the ciphertext into the message which was used as a
random seed during encryption, and re-encryption of the plaintext into the valid
ciphertext. The legitimacy of the input ciphertext is then checked by comparing
the input ciphertext with the regenerated valid one.

While this is a generic off-the-shelf procedure that works for a wide range
of encryption schemes, it can be rather expensive if the cost of re-encryption is
higher than the cost of decryption. This is typically the case for schemes based
on the learning with errors problem. The generic nature of this transformation
also means that specific properties of the underlying encryption primitive are
completely ignored. However, for other families of encryption schemes there
exist specifically designed transformations exploiting properties of the underlying
encryption that outperform the standard FO transformation, as is for example
the case in RSA-OAEP+ [BR95,Sho01].

Our Contribution. Our goal is to show it is possible to design chosen ci-
phertext transformations tailored for lattice based cryptography by taking into
account specific properties of the underlying encryption scheme. We propose a
novel methodology to design chosen ciphertext secure KEMs out of lattice based
encryption schemes and reduce the cost of validating an input ciphertext by
replacing the generic check using a complete re-encryption of the ciphertext by
a faster alternative.

Our approach is based on checking the validity of the error term, which is the
consolidation of the noise introduced by both parties as a result of the learning
with errors (LWE) paradigm. As such, the error term is a combination of the
secret terms of the two communicating parties which makes it hard to predict.
We argue that for some lattice based schemes it is hard, or sometimes even
impossible, to construct a non-valid ciphertext with the same error term as
the corresponding valid ciphertext of the same message.

Using this observation we develop two new chosen ciphertext transformations
and bound their security. Our transformation relies on a new computational prob-
lem: Search Inner Product from Mod-LWE (SIP-LWE), in which an adversary
is given l Mod-LWE samples (AAA,bbb :=AAAsss+eee) and is challenged to generate a new
pair (aaa∗,bbb∗) where bbb∗ is the inner product of aaa∗ and the secret key sss, i.e. bbb∗=aaaT∗ sss.
Note that is equivalent to generating a Mod-LWE sample (or reusing a given
one) with zero error. We also consider the special case where bbb∗ is required to
be 000, i.e. the problem now becomes generating a vector aaa∗ that is orthogonal to
sss. We denote this as the SIP0-LWE problem. We discuss the hardness of both
problems, and show that for some parameter settings it is hard or even impossible
for an adversary to distinguish the outcome of our transformation from a generic
transformation with re-encryption.

Our transformation avoids the regeneration of the uniformly random pub-
lic element of the public key Mod-LWE sample. Furthermore it changes the

2

number and the nature of the polynomial multiplications that are needed for
the validity check. We show that we can securely apply these transformations
to some encryption schemes accepted to the second round of the NIST Post
Quantum Standardization Process, such as ThreeBears [Ham19], LAC [LLJ+19]
and NewHope [PAA+19]. In particular for Threebears we implement our trans-
formation and show it achieves a speedup of up to 37.4% over the generic FO
transformation. Our transformation does not impact the communication between
the parties or the encapsulation procedure, and can thus be used interchangeably
with implementations based on the original NIST specifications. We conclude
by noting that also the NTRU NIST post-quantum standardization process sub-
mission [ZCH+19], proposes a decapsulation algorithm that avoids re-encryption.
However, their technique is fundamentally different from ours.

Paper Overview. After some preliminaries and security definitions in Sec-
tion 2, we will give a general description of Mod-LWE encryption schemes in
Section 2.3 and a discussion of the Fujisaki-Okamoto transformation in Section 2.4.
In Section 3 we introduce the SIP-LWE and SIP0-LWE problem, which are used
to construct two new transformations in Section 4. A comparison between the
Fujisaki-Okamoto transformation and our newly introduced transformations
is made in Section 5, including an implementation on the NIST submission
ThreeBears.

2 Preliminaries

Let Zq be the ring of integers modulo q and let R denote a ring, typically of the
form Zq or Zq[X]/(Xn+1). Rl1×l2 will denote the ring of l1 by l2 matrices over R.
Matrices will be written in uppercase bold letters, while vectors and ring elements
will be written in lowercase bold letters. Let b·e denote rounding to the closest inte-
ger and extend this notation coefficient-wise for matrices, vectors and polynomials.

Let x← χ denote sampling x according to a distribution χ, which can be
written more formally as x←χ(R) to emphasize that x∈R. We can extend this
operation coefficient-wise as x←χ(Rl1×l2), where each coefficient of x∈Rl1×l2
is sampled from the distribution χ. We denote by x←χ(R;r) sampling x pseu-
dorandomly according to the given seed r.

Let χ be a discrete distribution over a sample space S, the min-entropy of
χ is a measure of how predictable the distribution is.

Definition 1. Let χ be a discrete distribution. The min-entropy of χ is defined as:

H∞(χ)=−log(max
x

Pr[x|x←χ]).

We recall a basic property of min-entropy.

Proposition 1. Let χ1 and χ2 be two independent distributions, then:

H∞(χ1+χ2)≥max(H∞(χ1),H∞(χ2))

3

2.1 Cryptographic Definitions

A public-key encryption scheme PKE consists of three PPT algorithms (KeyGen,
Enc, Dec). The key generation algorithm KeyGen takes as input a security param-
eter 1n and generates a public/secret key-pair (pk,sk); the encryption algorithm
Enc outputs a ciphertext c when given the public key pk and a message m∈M,
where M is the message space; and the decryption algorithm Dec uses the secret
key sk and a ciphertext c to retrieve a message m∗ or a failure message ⊥. Looking
ahead, we will sometimes make explicit the randomness used for encrypting by
writing c :=Enc(pk,m;r), where r∈R and R denotes the randomness space. A
PKE scheme is said to be δ-correct if:

E

[
max
m∈M

Pr[Dec(sk,c) 6=m :c←Enc(pk,m)]

]
≤δ,

where the expectation is taken over (pk,sk)←KeyGen and the randomness of the
encryption procedure Enc(pk,m). The scheme is perfectly correct if δ=0.

We recall some basic security definitions for PKE schemes.

Definition 2 (OW-CPA). Let PKE be a public-key encryption scheme with
message spaceM. We define the OW-CPA advantage of an adversary A as follows:

Adv
ow-cpa
PKE (A)=Pr

[
m=m∗ :

(pk,sk)←KeyGen(); m←M;
c←Enc(pk,m); m∗←AEnc(pk,c);

]
.

Definition 3 (IND-CPA). Let PKE be a public-key encryption scheme with
message space M. We define the IND-CPA advantage of an adversary A as
follows:

Adv
ind-cpa
PKE (A)=

∣∣∣∣∣∣∣∣Pr

b=b∗ :

(pk,sk)←KeyGen();
m0,m1←A(pk),m0,m1∈M;
b←{0,1};cb←Enc(pk,mb);

b∗←AEnc(pk,cb)

− 1

2

∣∣∣∣∣∣∣∣.
A key encapsulation mechanism (KEM) consists of three algorithms (KeyGen,

Encaps, Decaps). The key generation algorithm KeyGen generates a key pair
(pk,sk), the encapsulation algorithm Encaps generates a ciphertext c and a key
k on input the public key pk, and the decapsulation algorithm Decaps, on input
the secret key sk and an encapsulation c, outputs a key k′.

Similarly to above, the KEM is said to be δ-correct if:

Pr[Decaps(sk,c) 6=k : (c,k)←Encaps(pk)]≤δ.

The IND-CCA security notion for a KEM is given below, where ADecaps signifies
that the adversary A is given access to a decapsulation oracle, with the restriction
that the input ciphertext is not the challenge ciphertext c.

4

Definition 4 (IND-CCA). Let KEM be a key encapsulation mechanism with
key space K. We define the IND-CCA advantage of an adversary A as:

Advind-ccaKEM (A)=

∣∣∣∣∣∣∣∣Pr

b′=b :

(pk,sk)←KeyGen();
b←U({0,1});

(c,k0)←Encaps(pk);k1←K;
b′←ADecaps(pk,c,kb);

− 1

2

∣∣∣∣∣∣∣∣.
For our security proof, we will also need a measure of the entropy of a function.

To this end we now extend the definition of γ-uniformity introduced by Fujisaki
and Okamoto [FO13] to any pseudorandom function f that takes as input a public
key pk, a secret key sk and a message m, and uses r as a seed for its randomness.
The γ-uniformity gives a measure of how predictable the output of f is for a ran-
dom seed r. The min-entropy of an encryption function f(pk,sk,m;r) is defined as:

γ(pk,sk,m) :=−log

(
max
y∈Y

Pr
r∈R

[y=f(pk,sk,m;r)]

)
.

We say that f is γ-spread if for every (pk,sk)←KeyGen() and for every m∈M,
γ(pk,sk,m)≥γ.

2.2 Module Learning with Errors

The Module Learning with Errors (Mod-LWE) problem generalizes both the
Learning with Errors (LWE) problem introduced by Regev [Reg05] and Ring
Learning with errors (Ring-LWE) [SSTX09,LPR10] problem. Here we recall both
its decision and search variant.

Definition 5. Let l be a positive integer, R a ring, and χs and χe two probabil-
ity distributions on R with limited variance. Generate the secret elements sss and
eee following the distributions χs(R

l×1) and χe(R
l×1) respectively, and generate

the public element AAA uniformly from U(Rl×l). Denote with L the distribution of
Mod-LWE samples (AAA,AAAsss+eee) generated using the aforementioned procedure.

– The Decision Mod-LWE problem is to distinguish a Mod-LWE sample (AAA,bbb)←
L from a uniformly random sample (AAA,uuu)←U(Rl×l×Rl×1). More formally,
we define the advantage of an adversary A against this problem as:

AdvdecisionMod-LWE(A)=P

c=c∗ :

AAA←U(Rl×l); sss←χs(R
l×1);

eee←χe(R
l×1); bbb0 =AAAsss+eee;

bbb1←U(Rl×1); c←U({0,1});
c∗←A(AAA,bbbi);

.
– The Search Mod-LWE problem consists of finding the secret sss from a Mod-

LWE sample (AAA,bbb)←L. The advantage of an adversary A against this problem
is defined as:

AdvsearchMod-LWE(A)=P

sss=sss∗ :
AAA←U(Rl×l);sss←χs(R

l×1);
eee←χe(R

l×1);bbb=AAAsss+eee;
sss∗←A(AAA,bbb);

.
5

Note that the Ring-LWE hard problem is a specific case of the Mod-LWE
problem where l=1.

2.3 Mod-LWE Based Encryption.

We now describe a PKE scheme based on Mod-LWE. Let R be a ring and gen
a deterministic function that expands a seed seedAAA∈{0,1}lm to a uniformly dis-
tributed matrix AAA∈Rl×l. Let χs and χe be two distributions over R with limited
variance, andM={0,1}lm and R={0,1}lr be the message and randomness space
respectively.

Let encode be a function that encodes m ∈M into a ring element yyy, and
decode be a function that takes a ring element yyy′=yyy+eeetot, where eeetot is a small
ring element in some sense, and that outputs m′∈M which equals m with high
probability. Typically, when working in the polynomial ring R=Zq[X]/(XN+1),
encode interpretes m as a ring element where the ith coefficient of the polynomial
is the ith bit of m. The output of the encode function is then computed as
yyy=bq/2·mc; on the contrary, the decode function computes m′=b2/q ·yyy′e and
returns the bitstring interpretation of m′.

We also define two more functions compress and decompress that “compress”
and “decompress” a ring element vvv′m∈R respectively. This procedure introduces
an error uuu, which can be calculated as follows:

uuu=vvv′m−decompress(compress(vvv′m))

.
More precisely, given a ring R= Zq[X]/(XN +1), compression is typically

done by rounding off lower significant bits. In this case, for p<q, compression
and decompression can be defined as follows:

compress(vvv′m)=bp/q ·vvv′me
decompress(vvv′m)=bq/p·vvv′me

Using the aforementioned functions and parameters, a PKE can be constructed
as defined in Figure 1.

Looking ahead, we notice that when truthfully executing the encryption
scheme, the difference between vvv′d and vvv can be calculated as:

vvv′d−vvv=decompress(compress(vvv′m))−bbb′Tsss
=vvv′m+uuu−sss′TAAAsss−eee′Tsss
=sss′TAAAsss+sss′Teee+eee′′+encode(m)+uuu−sss′TAAAsss−eee′Tsss
=sss′Teee−eee′Tsss+eee′′+uuu+encode(m).

Therefore, the decryption is correct if the error term eeetot =sss′Teee−eee′Tsss+eee′′+uuu
is small in some scheme-dependent sense. If the error term eeetot is too large a
decryption failure will occur. If the PKE scheme is δ-correct, this happens with
probability at most δ, which is typically lower then 2−128.

6

PKE.KeyGen()

1. seedAAA←U({0,1}lm)
2. AAA :=gen(seedAAA)∈Rl×l

3. sss←χs(Rl×1)
4. eee←χe(Rl×1)
5. bbb :=AAAsss+eee
6. pk :=(bbb,seedAAA)
7. sk :=(sss,eee)
8. return (pk,sk)

PKE.Enc(pk=(bbb,seedAAA),m;r)

1. AAA :=gen(seedAAA)∈Rl×l

2. sss′←χs(Rl×1;r)
3. eee′←χe(Rl×1;r)
4. eee′′←χe(R1×1;r)
5. bbb′ :=AAATsss′+eee′

6. vvv′ :=bbbTsss′

7. vvv′m :=vvv′+eee′′+encode(m)
8. vvv′c :=compress(vvv′m)
9. return c :=(vvv′c,bbb

′)

PKE.Dec(sk,c)

1. vvv :=bbb′Tsss
2. vvv′d :=decompress(vvv′c)
3. m :=decode(vvv′d−vvv)
4. return m

Fig. 1: Mod-LWE-based PKE

2.4 Fujisaki-Okamoto Transformation

As detailed in the introduction, the encryption scheme described in the previous
section (Section 2.3) is not secure against chosen ciphertext attacks. To achieve
IND-CCA security, typically the PKE scheme is transformed into a KEM using
a post-quantum variant [TU16,HHK17,JZC+18,SXY18,BHH+19]of the Fujisaki-
Okamoto (FO) [FO13] transformation. This is a general technique which is valid
for any encryption scheme, and thus not necessarily optimized for lattice based
schemes.

The key generation function KEMFO.KeyGen generates the public key and
secret key as in PKE.KeyGen, but includes an additional uniformly random value
w∈M in the secret key, which is used during the decapsulation of a non-valid
ciphertext. Let G :M×Rl×1→R and H :M×C→K be two hash functions mod-
eled as random oracles. Then the functions Encaps and Decaps can be constructed
as given in Figure 2, respectively.

KEMFO.Encaps(pk)

1. m←U({0,1}lm)
2. r :=G(m,pk)
3. c :=PKE.Enc(pk,m;r)
4. K :=H(m,c)
5. return (c,K)

KEMFO.Decaps(sk=(sss,eee,w),pk=(bbb,seedAAA),c=(vvv′c,bbb
′))

1. m :=PKE.Dec(sk,c) // decrypt

2. r :=G(m,pk)
3. c :=PKE.Enc(pk,m;r) // re-encrypt

4. if c=c // check ciphertexts

5. return K :=H(m,c)
6. else
7. return K :=H(w,c)

Fig. 2: IND-CCA secure KEM FO 6⊥

7

In essence, the FO transformation during the decapsulation phase checks
whether a valid ciphertext c was submitted, by re-encrypting the decrypted
message m to the ciphertext c, and by subsequently checking whether the result
matches the submitted ciphertext c. For the rest of the paper we will denote with
· variables that are regenerated based on the decrypted message m. The cost of
this re-encryption is typically dominated by the generation of the matrix AAA and
(l+1)l multiplications of elements in R.

There are two main variants of this transformation: explicit rejection, denoted
FO⊥, where ⊥ is returned when the validation check fails, and implicit rejection,
denoted with FO 6⊥, where a pseudorandom value is returned on a failing check.
In this paper we will focus on the latter as it is the version generally used in the
relevant NIST schemes. In the rest of the paper we will sometimes use FO to refer
to FO 6⊥. It should be noted that our methodology can also be applied to FO⊥.

The IND-CCA security of this transformation can be bound using Theorem 3.1
and Theorem 3.3 of Hofheinz et al. [HHK17] as follows:

Theorem 1 (PKE OW-CPA
ROM⇒ KEM IND-CCA). Given a δ-correct PKE, for

any classical adversary A against the IND-CCA security of KEMFO issuing at most
qD queries to the decapsulation oracle and at most qG and qH queries to the random
oracles G and H respectively, there exists a OW-CPA adversary B against PKE
such that:

Advind-ccaFO (A)≤qH/2lm +qGδ+(qG+1)Advow-cpa
PKE (B),

where the running time of A is not much higher than the running time of B.

3 SIP-LWE

The core idea underlying our new IND-CCA secure transformations is as follows:
when truthfully executing the algorithm, vvv′d−vvv equals the term sss′Teee−eee′Tsss+
eee′′+uuu+ encode(m), which we will denote by zzz. Instead of performing a full
re-encryption and verification of the ciphertext, our new transformation will
simply check whether vvv′d−bbb′Tsss=zzz.

To bound the security of our two new transformations, we rely on a new
computational problem that we call Search Inner Product from Mod-LWE problem
(SIP-LWE). In the SIP-LWE problem, the adversary is asked to generate a vector
aaa∗ and a ring element bbb∗, where bbb∗ should be the inner product of aaa∗ and the
secret sss of the Mod-LWE samples, i.e. aaaT∗ sss=bbb∗. A special case of the SIP-LWE
problem is where bbb∗=000, i.e. the adversary has to generate a vector aaa∗ that is
orthogonal to sss; we denote this restricted problem as SIP0-LWE. Note that the
SIP-LWE problem can also be viewed as generating a Mod-LWE sample with
zero error term (aaa∗,bbb∗=aaaT∗ sss).

We will show that the security of the newly introduced ETC1 and ETC2 trans-
formations can be bound by the hardness of the two variants of the SIP-LWE
problem. Intuitively, an adversary that tries to break the security of the ETC1

8

transformation wants to adapt vvv′d and bbb′ so that vvv′d−bbb′Tsss=zzz. We will show that
this boils down to finding an aaa∗, bbb∗, perturbation to bbb′ and vvv′d, so that:

(vvv′d+bbb∗)−(bbb′+aaa∗)
′Tsss=sss′Teee−(eee′+aaa∗)

Tsss+eee′′+uuu+bbb∗

equals the original error term:

zzz=sss′Teee−eee′Tsss+eee′′+uuu.

One can see from equating these error terms that this challenge can be rephrased
as generating a pair (aaa∗,bbb∗) so that bbb∗=aaaT∗ sss. In case of the ETC2 transformation,
there are additional checks in place that force bbb∗= 0 so that an adversary has
to find aaaT∗ sss=0.

3.1 The SIP-LWE problem

The central tool of our transformations is the SIP-LWE problem, which is formally
defined as follows:

Definition 6 (SIP-LWE problem). Let l be a positive integer,R be an arbitrary
ring and χs,χe be two distributions on R. Let sss← χs(R

l×1), eee← χe(R
l×1) and

AAA←U(Rl×l) sampled uniformly at random. The Search Inner Product from Mod-
LWE problem (SIP-LWER,l,χs,χe

) problem consists of finding a non-zero vector
aaa∗∈Rl and a ring element bbb∗∈R such that aaaT∗ sss=bbb∗, where sss is the secret of the l
given Mod-LWE samples (AAA,AAAsss+eee). The advantage of an adversary A is defined
below:

AdvSIP-LWE
R,l,χs,χe

(A)=P

aaaT∗ sss=bbb∗
and
aaa∗ 6=0

:
sss←χs(R

l×1); eee←χe(R
l×1)

AAA←U(Rl×l); bbb :=AAAsss+eee;
(aaa∗,bbb∗)←A(AAA,bbb)

.
Definition 7 (SIP0-LWE problem). The SIP0-LWE problem is the SIP-LWE
problem with the extra restriction that a solution is valid only when bbb∗=000.

Notice, since any solution to the SIP0-LWE problem is a valid solution to the
SIP-LWE problem by setting (bbb∗=0), it is clear that

AdvSIP0-LWE
R,l,χs,χe

(A)≤AdvSIP-LWE
R,l,χs,χe

(A),

so to get an upper bound it suffices to analyze the SIP-LWE problem. However,
in specific cases, the SIP0-LWE problem is much harder than the SIP-LWE
problem, to the extent that it is impossible to solve, as we now illustrate.

Hardness of rank one SIP(0)-LWE. First, consider the hardness of the rank
one SIP0-LWE problem, which challenges an adversary to find a non-zero ring
element aaa∗ ∈R such that aaa∗sss= 0. This clearly is only solvable when sss is non-
invertible, since if sss is invertible, the equation would imply aaa∗=0 which is not
a valid solution. We therefore conclude that for invertible sss, rank one SIP0-LWE

9

simply has no solution, and thus the advantage of any adversary is 0. Note that
this holds for all rings, in particular also for NTT rings (i.e. where f(x) splits
completely modulo q) when one restricts to invertible secrets sss.

Similarly, it is easy to see that solving rank one SIP-LWE when R is a field,
is equivalent to solving the Search-Mod-LWE problem: indeed, any non-zero aaa∗
and element bbb∗ such that aaa∗sss=bbb∗, immediately gives sss=bbb∗aaa

−1
∗ .

3.2 Solving the SIP-LWE problem

The SIP-LWE problem asks to find a vector aaa∗ with known inner product bbb∗,
i.e. aaaT∗ sss=bbb∗, given additional information about sss via the l Mod-LWE samples.
We first describe three simple approaches that already result in lower bounds
on AdvSIP-LWE

R,l,χs,χe
(A), and show how they can be generalised depending on the

structure of the ring R.
The first approach is to simply solve the Search Mod-LWE problem first to re-

cover sss, and to return a random vector aaa∗ together with bbb∗=aaaT∗ sss, which shows that

AdvSIP-LWE
R,l,χs,χe

(A)≥AdvSearch-Mod-LWE
R,l,χs,χe

(B),

for all adversaries B.
A second approach to solving the SIP-LWE problem is to use the given

Mod-LWE samples to derive a solution: since we have a description of χe we
can select the most likely ring element ccc that would have be sampled from χe(R)
(typically this will be the zero element), and return as solution (aaa,bbb−ccc), where
(aaa,bbb) is one of the given Mod-LWE samples. This immediately shows that

AdvSIP-LWE
R,l,χs,χe

(A)≥2−H∞(χe(R)).

In particular, this shows that the SIP-LWE problem is easy for typical instances
where the ring R is rather small (and thus the rank l is large), e.g. like in standard
LWE.

The third approach is to make a similar reasoning on χs, by ignoring the
given Mod-LWE samples, and choosing a vector δδδi which has all zeros expect
for a one in position 0<i≤ l, and guessing the i-th secret key element sssi as the
most likely element ddd to be sampled from χs(R). The proposed solution then is
(δδδi,ddd) which gives the lower bound

AdvSIP-LWE
R,l,χs,χe

(A)≥2−H∞(χs(R)).

Note that these two approaches show that for small rings R (e.g. typically
encountered when the rank l is large) , the SIP-LWE problem is in fact easy.

Exploiting the structure of R. Depending on the structure of the ring R
the above approaches can be generalised to factors of R. For simplicity we as-
sume that R is of the form Zq[X]/(f(X)) with q a prime and f(X) a monic
polynomial of degree d which is square-free modulo q. Let the factorisation of

10

f(X) be
∏t
i=1fi(X) with fi irreducbile over Zq[X], then the Chinese remainder

theorem says that R ∼= R1× ···Rt with Ri = Zq[X]/(fi(X)), and since the fi
are irreducible the Ri are now fields. Furthermore, for each i we also have the
projection map πi, which maps R into Ri by killing off all other components
Rj . In particular, this projection map is simply multiplication by the Lagrange
multiplier λi=ui(x)·(ui(x)−1 mod fi(x)) where ui(x)=f(x)/fi(x).

If an adversary can solve SIP-LWE for the ring R, then it is clear by using
the projection map πi that any solution for R implies a solution for SIP-LWE

in Ri with induced secret key and error distributions χ
(i)
s = χs(R) mod fi(x)

and χ
(i)
e =χe(R) mod fi(x). However, the converse is also true: any solution to

SIP-LWE in Ri can immediately be lifted to a solution for R. It suffices to take
the vector aaa∗ (resp. bbb) to be zero on all components Rj 6=Ri, and equal to the
solution found for Ri in component i.

We can thus repeat the above three approaches but now for Ri and the

induced secret key and error distributions χ
(i)
s and χ

(i)
e , which shows that

AdvSIP-LWE
R,l,χs,χe

(A)≥max

AdvSearch-Mod-LWE

R,l,χ
(i)
s ,χ

(i)
e

(B),

2−H∞(χ(i)
s (R)),

2−H∞(χ(i)
e (R))

i=1,...,t

. (1)

Remark 1. Note that in general the distributions χ
(i)
s (and χ

(i)
e) can be quite

intricate, and if |Ri| is small compared to |R| both will be indistinguishable
from uniform random as shown in [Pei16, Theorem 5.2]. In this case Search-Mod-LWE

R,l,χ
(i)
s ,χ

(i)
e

essentially reduces to guessing the secret part in Ri, and thus is the same
as the first approach. In all cases, we have that the min entropy of both is
upper bounded by the min entropy of the uniform distribution on Ri, i.e.

H∞(χ
(i)
∗) ≤ deg(fi) · log2 q, for ∗ = e or s. This shows that solving SIP-LWE

is easy for rings with q and deg(fi) small enough, simply by solving it in a factor
Ri (corresponding to guessing the answer in Ri).

An important example are rings R of the form Zq[X]/(XN +1) with q an
NTT-friendly prime, in particular, XN+1 splits completely modulo q in linear
factors. Using the Chinese remainder theorem, we see that R∼=R1×···×RN with
Ri = Zq[X]/(X−αi) and αi the roots of XN +1 modulo q. Since deg(fi) = 1,

we therefore conclude that the min entropy of χ
(i)
s and χ

(i)
e are upper bounded

by log2q, which is tiny compared to the min entropy of χs(R) and χe(R) itself.
Again this shows that SIP-LWE is easy for such rings.

Remark 2. Instead of using the smallest factors Ri as done above, it is also
possible to reduce the SIP-LWE problem modulo larger factors, i.e. to reduce
modulo any divisor g(x)|f(x) mod q. For the first two approaches, i.e. guessing
part of the secret or error, the goal is to get the entropy of χ∗(R) mod g as
small as possible, so it does not make sense to use larger factors. Furthermore,
for properly instantiated Mod-LWE problems as described in [Pei16], reducing
the Search-Mod-LWE problem into a smaller factor does not make the problem
easier, so for the third approach it does not make sense to do so.

11

Hard instances of SIP-LWE. We have showed that SIP-LWE can only be
hard for rings R that have no small factors (including the ring R itself) and
when Search-Mod-LWE is hard for R (which implied hardness when reduced into
smaller factors).

Due to the existence of easy instances that depend on how f(x) splits modulo
q, it is tempting to apply modulus switching and solve the problem modulo
some q′ such that f(x) splits completely modulo q′ for instance, and then lift
the solution back to the original q. To see that this approach cannot work in
general, it suffices to consider the rank one case: assume the orginal q is such
that R is a field, then we know that SIP-LWE in this case is at least as hard as
Search-Mod-LWE, so if modulus switching would work, it immediately results
in an attack on Search-Mod-LWE (which we assumed to be hard).

Although we have no proof (except for the rank one case) that the lower
bound in (1) is in fact tight, we will assume this to be the case for the instances
we consider in the remainder of the paper. In particular, we will only apply our
transformation to instances of low rank and where the ring R has no small factors,
e.g. R a field. Determining the exact hardness of SIP-LWE however remains an
open problem.

A discussion of the hardness of SIP(0)-LWE of several practical schemes is
given in subsection 5.2.

4 Error Term Checking

Here we describe our two new chosen ciphertext transformations and relate their
security to the hardness of the SIP-LWE and SIP0-LWE problems.

4.1 Error Term Checking 1

Using the fact that vvv′d − vvv = sss′Teee− eee′Tsss+ eee′′ +uuu+ encode(m), we propose a
new transformation to transform an OW-CPA secure PKE into an IND-CCA
secure KEM. The KEMETC1.KeyGen and KEMETC1.Encaps function are identical
to the functions in the original KEMFO. During the decapsulation the input vvv′c
is completely recalculated and checked as in the original FO transformation, but
bbb′ is not recalculated and is instead checked using the error term equation. The
new decapsulation function is given in Figure 3.

The security of this transformation can be bound similarly to the FO trans-
formation, using an additional term that involves the hardness of the SIP0-LWE
problem. Furthermore, the γ spread of PKE.Enc is replaced by the γ spread
of the KEMETC1.GenET, which can be lower bounded by the min-entropy of the
generation χe(R

1×1
q ;·) using Proposition 1. This lower bound is typically high

enough so that the term is negligible in comparison to the other terms. The main
idea behind the proof is to follow the proof of the FO transformation, with an
additional game where the difference between the FO transformation and ETC1

transformation is bound. The full proof is given in Appendix A. A sketch of the
proof in the QROM model, which uses an analogous adaptation from the FO
proof in the quantum random oracle model, can be found in Appendix C.

12

KEMETC1.Decaps(sk=(sss,eee,w),
pk=(bbb,seedAAA),c=(vvv′c,bbb

′))

1. m :=PKE.Dec(sk,c)) // decrypt

2. r :=G(m,pk)
3. (vvv,vvv′c) :=KEMETC1.GenET(sk,pk,m;r)
4. if bbb′Tsss=vvv and vvv′c =vvv′c
5. then return K :=H(m,c)
6. else return K :=H(w,c)

KEMETC1.GenET(sk=(sss,eee),
pk=(bbb,seedAAA),m;r)

1. sss′←χs(R1×l
q ;r)

2. eee′←χe(R1×l
q ;r)

3. eee′′←χe(R1×1
q ;r)

4. vvv′=bbbTsss′

5. vvv′m =vvv′+eee′′+encode(m)
6. vvv′c :=compress(vvv′m)
7. zzz :=sss′eee−eee′sss+eee′′+encode(m)
8. vvv :=vvv′m−zzz
9. return (vvv,vvv′c)

Fig. 3: IND-CCA secure KEMETC1

Theorem 2. Given a δ-correct PKE, for any classical adversaryA against the IND-
CCA security of KEMETC1 issuing at most qD queries to the decapsulation oracle and
at most qG and qH queries to the random oracles G and H respectively, there exists
a classical adversary B against the SIP0-LWE problem and a classical adversary
C against the OW-CPA security of the underlying encryption scheme such that:

Advind-ccaETC1 (A)≤qH/2lm +qD2−γ+qGδ+qDqGAdv
SIP0-LWE
R,l,χs,χe

(B)+(qG+qH)Advow-cpa
pke (C),

where γ is the spread of the function KEMETC1.GenET(), and where the running time
of A is not much higher than the running time of C or B.

4.2 Error Term Checking 2

For schemes where compression of vvv′m during encryption is not lossy, i.e. uuu=0, it is
possible to improve the efficiency of the ETC1 transformation. We will denote this
transformation with ETC2. During KEMETC2.Decaps we only check the validity of
the error term, and do not recompute the values vvv′c or vvv′. This makes the imple-
mentation more efficient than the ETC1 transformation. The security of the new
transformation can be bounded by the SIP-LWE problem. The proof of this theo-
rem proceeds analogous to the proof of the ETC1 transformation and is given in Ap-
pendix B. A sketch of the proof in the QROM model can be found in Appendix C.

KEMETC2.Decaps(sk=(sss,eee,w),
pk=(bbb,seedAAA),c=(vvv′c,bbb

′))

1. m :=PKE.(sk,c)) // decrypt
2. r :=G(m,pk)
3. ∆vvv :=KEMETC2.GenET(sk,pk,m;r)

4. if vvv′−bbb′Tsss==∆vvv
5. then return K :=H(m,c)
6. else return K :=H(w,c)

KEMETC2.GenET(sk=(sss,eee),
pk=(bbb,seedAAA),m;r)

1. sss′←χs(R
1×l
q ;r)

2. eee′←χe(R
1×l
q ;r)

3. eee′′←χe(R
1×1
q ;r)

4. zzz :=sss′eee−eee′sss+eee′′
5. ∆vvv :=encode(zzz,m)

6. return ∆vvv

Fig. 4: IND-CCA secure KEMETC2

13

Theorem 3. For any classical adversary A against the IND-CCA security of
KEMETC2 issuing at most qD queries to the decryption oracle and at most qG and
qH queries to the random oracles G and H respectively, there exists a classical
adversary B against the SIP-LWE problem and a classical adversary C against the
IND-CPA security of the underlying encryption scheme such that:

Advind-ccaETC2 (A)≤qH/2lm +qD2−γ+qGδ+qDqGAdvSIP-LWE
R,l,χs,χe

(B)+(qG+qH)Advow-cpa
pke (C)

where γ is the spread of the function KEMETC2.GenET(), and where the running time
of A is not much higher than the running time C or B.

5 Applications

In this section we will compare the efficiency of KEMETC1 and KEMETC2 with the
original KEMFO. We will first make an overall comparison between the KEMs and
discuss the applicability of KEMETC1 and KEMETC2 on several NIST post-quantum
standardization candidates, after which we apply the ETC2 transformation to the
NIST post-quantum standardization candidate Threebears.

5.1 Comparison to FO

In any of the three transformations, the PKE decryption is performed first, after
which the secret terms sss′,eee′,eee′′ are recalculated as in the encryption.

KEMFO proceeds by recalculating both bbb′ and vvv′c. Recalculating bbb′ requires
the regeneration of the matrix AAA and l2 multiplications of elements in R, while
the recalculation of vvv′ costs l multiplications of elements in R. Note that the
generation of AAA and polynomial multiplications are typically the most costly
operations in lattice-based encryption schemes.

KEMETC1 does recalculate vvv′c but does no longer calculate bbb′. Thus it gets rid
of the regeneration of AAA and the l2 multiplications of elements in R. Instead it
requires 2·l multiplications of elements in R, with the difference that the newly
introduced multiplications use only small elements as generated by the distribu-
tions χs and χe, a fact that could be used to further speed up the process using
specific multiplication algorithms that require small coefficients (e.g. [CHK+20]),
or using the fact that modular reductions could become obsolete.

KEMETC2 gets rid of both the calculation of bbb′ and vvv′c, and replaces them with
2·l multiplications of small elements in R. Table 1 gives an overview of the main
operations in PKE.Dec and the additional operations introduced by following the
FO and the ETC1 transformation respectively.

5.2 Applicability on NIST submissions

To be able to apply the ETC1 or ETC2 transformation, the underlying encryption
scheme needs to meet specific criteria: the relevant SIP-LWE problem needs to
be a hard problem and the encryption scheme should fit the description as given

14

PKE.Dec KEMFO KEMETC1 KEMETC2

genA(seedA) 0 1 0 0
mult l (l+1)·l 3·l 2·l

Imultbig l (l+1)·l 1·l 0
Imultsmall 0 0 2·l 2·l

Table 1: Operations needed for PKE.Dec and additional operations needed for
FO, ETC1 and ETC2 transformations.

in Figure 1. Specifically, the ETC1 transformation requires that the SIP0-LWE
problem with parameters R,l,χs and χe similar to the encryption scheme is hard.
Moreover, there should not be any compression of the public key element bbb or
the ciphertext element bbb′. The conditions for applying ETC2 are more strict: the
relevant SIP-LWE problem should be hard and there should be no compression
of the public key bbb or ciphertext elements bbb′ and vvv′.

The hardness of the SIP-LWE problem is discussed in subsection 3.1. For
schemes where R is a field, SIP-LWE and SIP0-LWE are hard if the distribution
χs has enough min-entropy. This is the case for Threebears [Ham19]. If R splits in

multiple subrings the entropy of χ
(i)
s and χ

(i)
e is a measure for the hardness of the

SIP-LWE problem. As remarked in subsection 3.1, this implies that schemes that
use NTT rings, such as NewHope [PAA+19] or Kyber [BDK+18] are typically not
fit for usage of the ETC1 or ETC2 transformations. For Saber [DKRV18] the entropy
in the subrings is also too low for SIP-LWE to be secure. In case of LAC [LLJ+19],
the ring Z251[X]/(X1024 + 1) splits in only 2 subrings which should keep the
entropy of χs in the subrings high enough to make the SIP-LWE problem hard.

An exceptional case occurs when l=1, in which case the SIP0-LWE problem
is unsolvable if sss is invertible as discussed in subsection 3.1. This means that the
ETC1 transformation can be applied to NewHope if during key encapsulation sss
is forced to be invertible. Experimentally, we observed that the probability of
a randomly generated sss being invertible is 91.4%, by generating 214 polynomials
sss and checking them for invertibility.

Public key and ciphertext compression is relatively common in lattice-based
schemes. All discussed schemes do compression of the ciphertext term vvv′ and are
thus not eligible to use in the ETC2 transformation. However, the first version of
LAC did only a slight compression of the vvv′ in which one of the coefficients of vvv′

was not communicated. In this case, removing this compression would be enough
to allow usage of ETC2. Interesting future work could be to look at adapting the
ETC2 transformation to schemes that use compression.

5.3 Case study: Threebears

The Threebears cryptosystem by Hamburg [Ham19] is a Post-Quantum KEM
accepted to the second round of the NIST Post-Quantum Cryptography Stan-

15

R l ETC1 ETC2 SIP0-LWE SIP-LWE
hard? hard?

Threebears Z23120−21560−1 2-4 3 7 3 3

LAC Z251[X]/(X1024+1) 1 3 (3)† 3 3

NewHope Z12289[X]/(X1024+1) 1 (3)∗ 7 (3)∗ 7

† For LAC without compression.
∗ If non invertible secrets are rejected.

Table 2: Overview of applicability of ETC1 and ETC2 transformation on selection
of NIST round 2 candidates.

dardization process. It consists of three schemes: BabyBear, MamaBear and
PapaBear, listed in order of increasing security.

The security of Threebears is based on the Integer-LWE problem [Chu17],
which is a mathematical hard problem that is similar to the Mod-LWE problem. In
Threebears the ring R is isomorphic to ZN , where N is the prime 23120−21560−1,
and l is a value ranging from 2 to 4 depending on the security level. The secrets
are generated by sampling polynomials in the ring Zq[X]/(X312−X156−1) with
coefficients according to a distribution with small variance. These polynomials
are then converted to an element of R by substituting X = q= 210. For a full
description of Threebears we refer to the NIST submission package [Ham19].

We implemented1 a KEMETC1 version of ThreeBears based on the original code
provided by Hamburg2 starting from the ‘opt cache’ optimized version of Three-
Bears, which caches the full secret key. In our implementation, KeyGen is changed
only slightly to save eee, Encaps is not changed and Decaps is rewritten following
the KEMETC1 specifications. We did not optimize the multiplications procedure to
account for the fact that some multiplications are between small elements in R,
which could boast an interesting future speedup.

In Table 3 we compare the KEMFO implementation with our KEMETC1 implemen-
tation. The tests were performed on an Intel(R) Core(TM) i7-10510U processor.
We can see that the key generation takes slightly longer for ETC1 compared with
FO, which is due to the additional operations to save eee. The encryption phase
remains the same in both transformations, which is reflected in the timings. The
main speedup comes during the decapsulation, where we can observe a significant
difference in timing. We observe a 12.7%,29.7% and 37,4% speedup of the full
decapsulation for BabyBear, MamaBear and PapaBear respectively. This is in
line with the results of table 1 as l increases for higher security levels.

1 The code can be found at anonymised
2 https://sourceforge.net/projects/threebears/; commit [f4ce0e]

16

https://sourceforge.net/projects/threebears/

BabyBear MamaBear PapaBear
FO ETC1 FO ETC1 FO ETC1

KeyGen 25 25 51 53 73 76
Encaps 36 35 59 58 88 88
Decaps 47 41 74 52 107 67

Table 3: Timing (µs) for the different versions of ThreeBears.

6 Conclusion and Future Work

In this paper we showed that it is possible to design specific chosen ciphertext
transformations for lattice based encryption schemes that outperform generic
transformations. We presented two new transformations to compile an IND-CPA
secure encryption scheme into an IND-CCA secure KEM. As opposed to generic
transformations such as FO, our transformations, ETC1 and ETC2, are specifically
designed with lattice based encryption schemes in mind. These new transforma-
tions change the way ciphertexts are checked during decapsulation, removing
the need for the reconstruction of the public matrix AAA and changing the nature
and number of polynomial multiplications. For the NIST Round 2 candidate
Threebears we have shown that our method speeds up the decapsulation with up
to 37.4% for the highest security parameters. Importantly, ETC1 and ETC2 do not
change the communication between both parties and can thus be used without
changing the specifications of already designed algorithms.

At the moment, the conditions to apply the ETC1 and ETC2 transformations
are strict, which means that they can only be employed to a subset of lattice
based schemes. It would be interesting future work to look into expanding the
support of these specific transformations to a wider set of lattice based schemes.

Acknowledgements

The authors would like to thank Alice Pellet–Mary, Léo Ducas and Chris Peikert
for their valuable insights into the security of the SIP-LWE problem.

This work was supported in part by CyberSecurity Research Flanders with ref-
erence number VR20192203, the Research Council KU Leuven grants C16/15/058
and C14/18/067, the SRC grant 2909.001, the Horizon 2020 ERC Advanced Grant
(695305 Cathedral) and the ERC Advanced Grant ERC-2015-AdG-IMPaCT.

References

AHU19. Andris Ambainis, Mike Hamburg, and Dominique Unruh. Quantum security
proofs using semi-classical oracles. In CRYPTO 2019, Part II, pages 269–295,
2019.

AOP+17. Martin R. Albrecht, Emmanuela Orsini, Kenneth G. Paterson, Guy Peer, and
Nigel P. Smart. Tightly secure ring-LWE based key encapsulation with short
ciphertexts. In ESORICS 2017, Part I, pages 29–46, 2017.

17

ARU14. Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum attacks
on classical proof systems: The hardness of quantum rewinding. In 55th
FOCS, pages 474–483, 2014.

BDK+18. J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehle. Crystals - kyber: A cca-secure
module-lattice-based kem. In 2018 IEEE European Symposium on Security
and Privacy (EuroS P), pages 353–367, 2018.

BHH+19. Nina Bindel, Mike Hamburg, Kathrin Hövelmanns, Andreas Hülsing, and
Edoardo Persichetti. Tighter proofs of CCA security in the quantum random
oracle model. In TCC 2019, Part II, pages 61–90, 2019.

BR95. Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In
EUROCRYPT’94, 1995.

CHK+20. Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer,
Gregor Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. Ntt multiplication for
ntt-unfriendly rings. Cryptology ePrint Archive, Report 2020/1397, 2020.
https://eprint.iacr.org/2020/1397.

Chu17. Gu Chunsheng. Integer version of ring-LWE and its applications. Cryptology
ePrint Archive, Report 2017/641, 2017. http://eprint.iacr.org/2017/641.

Den03. Alexander W. Dent. A designer’s guide to KEMs. In 9th IMA International
Conference on Cryptography and Coding, pages 133–151, 2003.

DKRV18. Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik
Vercauteren. Saber: Module-LWR based key exchange, CPA-secure encryption
and CCA-secure KEM. In AFRICACRYPT 18, pages 282–305, 2018.

Flu16. Scott Fluhrer. Cryptanalysis of ring-LWE based key exchange with
key share reuse. Cryptology ePrint Archive, Report 2016/085, 2016.
http://eprint.iacr.org/2016/085.

FO13. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. Journal of Cryptology, (1):80–101, 2013.

GN07. Nicolas Gama and Phong Q. Nguyen. New chosen-ciphertext attacks on
NTRU. In PKC 2007, pages 89–106, 2007.

Ham19. Mike Hamburg. Three Bears. Technical report, National Institute of Standards
and Technology, 2019. available at https://csrc.nist.gov/projects/post-
quantum-cryptography/round-2-submissions.

HHK17. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis
of the Fujisaki-Okamoto transformation. In TCC 2017, Part I, pages 341–371,
2017.

HNP+03. Nick Howgrave-Graham, Phong Q. Nguyen, David Pointcheval, John Proos,
Joseph H. Silverman, Ari Singer, and William Whyte. The impact of
decryption failures on the security of NTRU encryption. In CRYPTO 2003,
pages 226–246, 2003.

JJ00. Éliane Jaulmes and Antoine Joux. A chosen-ciphertext attack against NTRU.
In CRYPTO 2000, pages 20–35, 2000.

JZC+18. Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma.
IND-CCA-secure key encapsulation mechanism in the quantum random
oracle model, revisited. In CRYPTO 2018, Part III, pages 96–125, 2018.

JZM19. Haodong Jiang, Zhenfeng Zhang, and Zhi Ma. Tighter security proofs for
generic key encapsulation mechanism in the quantum random oracle model.
In Post-Quantum Cryptography - 10th International Conference, PQCrypto
2019, pages 227–248, 2019.

18

https://eprint.iacr.org/2020/1397
http://eprint.iacr.org/2017/641
http://eprint.iacr.org/2016/085
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

KSS+20. Veronika Kuchta, Amin Sakzad, Damien Stehlé, Ron Steinfeld, and Shifeng
Sun. Measure-rewind-measure: Tighter quantum random oracle model
proofs for one-way to hiding and CCA security. In Anne Canteaut and Yuval
Ishai, editors, Advances in Cryptology - EUROCRYPT 2020 - 39th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part III, volume
12107 of Lecture Notes in Computer Science, pages 703–728. Springer, 2020.

LLJ+19. Xianhui Lu, Yamin Liu, Dingding Jia, Haiyang Xue, Jingnan He, Zhenfei Zhang,
Zhe Liu, Hao Yang, Bao Li, and Kunpeng Wang. LAC. Technical report, Na-
tional Institute of Standards and Technology, 2019. available at https://csrc.
nist.gov/projects/post-quantum-cryptography/round-2-submissions.

LPR10. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In EUROCRYPT 2010, pages 1–23, 2010.

NC11. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information: 10th Anniversary Edition. Cambridge University
Press, USA, 10th edition, 2011.

NIS16. Submission Requirements and Evaluation Criteria for the Post-Quantum
Cryptography Standardization Process, 2016.

PAA+19. Thomas Poppelmann, Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas,
Antonio de la Piedra, Peter Schwabe, Douglas Stebila, Martin R. Albrecht,
Emmanuela Orsini, Valery Osheter, Kenneth G. Paterson, Guy Peer, and
Nigel P. Smart. NewHope. Technical report, National Institute of Standards
and Technology, 2019. available at https://csrc.nist.gov/projects/post-
quantum-cryptography/round-2-submissions.

Pei16. Chris Peikert. How (not) to instantiate ring-lwe. In SCN, volume 9841 of
Lecture Notes in Computer Science, pages 411–430. Springer, 2016.

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In 37th ACM STOC, pages 84–93, 2005.

Sho01. Victor Shoup. Oaep reconsidered. In Proceedings of the 21st Annual
International Cryptology Conference on Advances in Cryptology, CRYPTO
’01, page 239–259, Berlin, Heidelberg, 2001. Springer-Verlag.

SSTX09. Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient
public key encryption based on ideal lattices. In ASIACRYPT 2009, pages
617–635, 2009.

SXY18. Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure
key-encapsulation mechanism in the quantum random oracle model. In
EUROCRYPT 2018, Part III, pages 520–551, 2018.

TU16. Ehsan Ebrahimi Targhi and Dominique Unruh. Post-quantum security of
the Fujisaki-Okamoto and OAEP transforms. In TCC 2016-B, Part II, pages
192–216, 2016.

Unr14. Dominique Unruh. Revocable quantum timed-release encryption. In
EUROCRYPT 2014, pages 129–146, 2014.

ZCH+19. Zhenfei Zhang, Cong Chen, Jeffrey Hoffstein, William Whyte, John M.
Schanck, Andreas Hulsing, Joost Rijneveld, Peter Schwabe, and Oussama
Danba. NTRUEncrypt. Technical report, National Institute of Standards and
Technology, 2019. available at https://csrc.nist.gov/projects/post-

quantum-cryptography/round-2-submissions.

Zha12. Mark Zhandry. Secure identity-based encryption in the quantum random
oracle model. In CRYPTO 2012, pages 758–775, 2012.

19

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

A Security proof of Theorem 2

Proof. The main idea of the proof is to transform the IND-CCA game for the
ETC1 transform into the IND-CCA game of the FO transform using a game
hopping technique. An overview of the games can be found in Figure 5.

Game G0: Let A be an adversary against the IND-CCA security of the KEM
constructed using the ETC1 transformation, KEMETC1. Then by definition, the first
game G0 is the same as the IND-CCA security game of KEMETC1, or:

|Pr[GA0 =1]− 1

2
|=Advind-cca

ETC1 (A). (2)

Game G1: In game G1 we introduce the oracle H′ which is hidden for the ad-
versary and which replaces a query H(w,.) during the decapsulation. The oracle
H is changed so that on a query where m=w the QUERYH flag is raised and
the game aborts. These changes remain unnoticed until the adversary queries
H(w,.). As w is drawn from the uniform distribution over strings with lm bits,
and considering a maximum of qH queries to the oracle H, we get:

|Pr[G1 =1]−Pr[G0 =1]|≤qH/2lm . (3)

Game G2: In Game G2, the validity check in the decapsulation oracle is per-
formed by checking previous queries to the random oracle G. It accepts the
check if there exists a previous query (m,r) to the random oracle such that
(bbb′sss,vvv′c)=KEMETC1.GenET(sk,pk,m;r).

If the ciphertext is accepted in G2, then G was queried in m returning r and
together with the fact that:

(bbb′sss,vvv′c)=KEMETC1.GenET(sk,pk,m;r),

we know that the ciphertext will also be accepted in G1. If the ciphertext is
accepted in G2, then it is not accepted in G1 if and only if the random or-
acle G was not queried in m. As the ciphertext still has to fulfill (bbb′sss,vvv′c) =
KEMETC1.GenET(sk,pk,m;G(m)), the probability of finding a difference between
both games is smaller than 2−γ , with γ the spread of the function KEMETC1.GenET(sk,pk,m;r).
From this it follows that:

|Pr[G2 =1]−Pr[G1 =1]|≤qD2−γ , (4)

with qD the number of decapsulation oracle queries.

Game G3: In Game G3, we don’t check if m=m anymore. Remember that during
decapsulation the message is calculated as m :=decode(vvv′d−vvv), and due to the
checks we know that:

vvv=bbb′Tsss=vvv′m−zzz and vvv′d=decompress(compress(vvv′m)),

20

Game G0-G3.

1. (pk,sk)←KeyGen()
2. w←U({0,1}lm)
3. m∗←U({0,1}lm)
4. r∗ :=G(m∗) // G0-G4

5. r∗ :=U({0,1}lr) // G5

6. c∗ :=PKE.Enc(pk,m∗;r∗)
7. k0 :=H(m∗,c∗) // G0-G4

8. k0←K // G5

9. k1←K
10. b←U({0,1})
11. b′←ADecaps,H,G(pk,c∗,kb)
12. return b=b′

H(m,c):

1. if: ∃K : (m,c,K)∈LH

2. return K
3. K←K
4. if: m=w // G1-G5

5. QUERYH := true // G1-G5

6. abort // G1-G5

7. if: m=m∗ and c=c∗// G5

8. CHAL := true // G5

9. abort // G5

10. LH :=LH∪(m,c,K)
11. return K

Decaps(sk=(sss,eee),pk=(bbb,seedAAA),c=(vvv′c,bbb
′)):

1. t :=(bbb′sss,vvv′c) // G0-G3

2. m :=PKE.Dec(sk,c) // G0-G2

3. r :=G(m,pk) // G0−G1

4. if: t=KEMETC1.GenET(sk,pk,m;r) // G0−G1

5. if: ∃(m,r)∈LG and m=m and t=KEMETC1.GenET(sk,pk,m;r)// G2

6. if: ∃(m,r)∈LG and t=KEMETC1.GenET(sk,pk,m;r) // G3

7. if: ∃(m,r)∈LG :c=PKE.Enc(pk,m,r) // G4

8. if: m=w // G1-G5

9. return K :=H′(c) // G1-G5

10. return K :=H(m,c)
11. else:
12. return K :=H(w,c) // G0

13. return K :=H′(c) // G1-G5

G(m):

1. if: ∃r : (m,r)∈LG

2. return r
3. if: m=m∗ // G5

4. CHALG := true // G5

5. abort // G5

6. r←U({0,1}lr)
7. LG :=LG∪(m,r)
8. return r

Fig. 5: Games G0 to G6 as used in the proof of theorem 2

21

and thus we can write difference vvv′d−vvv as:

sss′eee−eee′sss+eee′′+uuu+encode(m).

This is exactly the error condition as as discussed in section 2.3. The prob-
ability of failure is defined as δ, and thus finding a failing ciphertext using qG
queries to the oracle G has a probability bound by qGδ, which results in:

|Pr[G3 =1]−Pr[G2 =1]|≤qGδ. (5)

Game G4: In Game G4, the validity check using the error term is replaced by
the validity check of the FO transformation.

If a check in game G4 is accepted, then c was correctly generated and therefore
the check in game G3 will be accepted. The only way to differentiate between
both games is thus finding a ciphertext that is accepted in game G3 and rejected
in game G4, and thus we can say that distinguishing both games is as least as
hard as submitting a ciphertext query that differentiates both games.

We construct an adversary B that uses the adversary A capable of generating
such a differentiating query to solve the SIP0-LWE problem. The decapsulation
oracle is constructed as in Figure 6. As long as there is no differentiating query,
the Decaps function as given in Figure 6 perfectly mimics the Decaps in both G3

and G4. If A submits a differentiating ciphertext cdiff that is resolved differently
in both games, we keep on replying with the same decapsulation algorithm to the
adversary A until he returns a value b′, even though the calculations from this
point are no longer relevant for B as the differentiating query is already in the list
LD. Note that B doesn’t know when a differentiating ciphertext has been queried.

If the adversary was able to differentiate between both games, he queried a
differentiating ciphertext and with a probability of at least 1/qD, the ciphertext

c=(v̂vv′c,b̂bb
′
) drawn from the decapsulation list LD in line 9 is this differentiating

ciphertext cdiff . If this happens there is a probability 1/qG that (m′,r′) drawn
in line 10 is the pair (m′,r′) so that:

(bbb′sss,vvv′c)=KEMETC1.GenET(sk,pk,m′;r′).

This means that:

(v̂vv′c,b̂bb
′
) 6=PKE.Enc(pk,m′;r′),

due to the check rejection in G4 and:

vvv′c=v̂vv′c and bbb′sss=vvv′m−zzz= b̂bb
′
sss,

due to the acceptance in G3, where (bbb′,vvv′c) := PKE.Enc(pk,m′;r′). From this we

can say that bbb′ 6= b̂bb
′

and that (bbb′−b̂bb′)sss=0, thus solving the SIP0-LWE problem.
Overall this means that if A can distinguish between the games, B can con-

struct a solution to the SIP0-LWE problem with probability 1/qDqG and therefore:

|Pr[G4 =1]−Pr[G3 =1]|≤qDqGAdvSIP0-LWE
R,l,χs,χe

(B).

22

B(pk=(bbb,seedAAA)):

1. m∗←U({0,1}lm)
2. r∗ :=G(m∗)
3. c∗ :=PKE.Enc(pk,m∗;r∗)
4. k0 :=H(m∗,c∗)
5. k1←K
6. b←U({0,1})
7. w←U({0,1}lm)
8. b′←ADecaps(pk,·),H,G(pk,c∗,kb)

9. v̂vv′c,b̂bb
′
←LD

10. m′,r′←LG

11. vvv′c,bbb
′ :=PKE.Enc(pk,m′,r′)

12. return bbb′−b̂bb′

H(m,c):

1. if: ∃K : (m,c,K)∈LH

2. return K
3. K←K
4. if: m=w
5. QUERYH := true
6. abort
7. LH :=LH∪(m,c,K)
8. return K

Decaps(pk=(bbb,seedAAA),c=(vvv′c,bbb
′)):

1. LD :=LD∪(vvv′c,bbb
′)

2. if: ∃(m,r)∈LG :c=PKE.Enc(pk,m,r)
3. if: m=w
4. return K :=H′(c)
5. return K :=H(m,c)
6. else:
7. return K :=H′(c)

G(m):

1. if: ∃r : (m,r)∈LG

2. return r
3. r←U({0,1}lr)
4. LG :=LG∪(m,r)
5. return r

Fig. 6: Adversary B against the SIP0-LWE game

Game G5: In Game G5 we change oracle H to raise the CHAL flag and abort
on the query (m∗,c∗), and the oracle G to raise the CHAL flag and abort on the
query m∗. After this game both keys are uniformly random from the point of
view of the adversary, hence:

Pr[G5]=
1

2
.

We construct an adversary C against the OW-CPA security of PKE as given
in Figure 7. During this game, Lm is a list of queried m values. If the CHAL flag
is raised, the adversary has queried on the message m∗, which implies m∗∈Lm,
and C can return m=m∗, and thus:

|Pr[G5 =1]−Pr[G4 =1]|≤(qH+qG)Advow-cpa
PKE (C).

B Security proof of Theorem 3

Proof. The proof essentially proceeds analogous to the proof of Theorem 2. The
only difference is in the discussion of Game G3 and Game G4. We will therefore
only detail these steps.

23

C(pk=(bbb,seedAAA),c∗):

1. w←U({0,1}lm)
2. k←K
3. b′ :=ADecaps(pk,·),H,G(pk,c∗,k)
4. m′ :=LH

5. return m′

H(m,c):

1. if: ∃K : (m,c,K)∈LH

2. return K
3. Lm :=Lm∪m
4. K←K
5. if: m=w
6. QUERYH := true
7. abort
8. LH :=LH∪(m,c,K)
9. return K

Decaps(pk=(bbb,seedAAA),c=(vvv′c,bbb
′)):

1. if: ∃(m,r)∈LG :c 6=PKE.Enc(pk,m,r)
2. if: m=w
3. return K :=H′(c)
4. return K :=H(m,c)
5. else:
6. return K :=H′(c)

G(m):

1. if: ∃r : (m,r)∈LG

2. return r
3. Lm :=Lm∪m
4. r←U({0,1}lr)
5. LG :=LG∪(m,r)
6. return r

Fig. 7: Adversary C against the OW-CPA

Game G3: As in previous proof, we don’t check if m=m anymore. Remember
that during decapsulation the message is calculated as m :=decode(vvv′−vvv), vvv′−vvv
is exactly the term checked during decapsulation. Therefore we have:

m :=decode(sss′eee−eee′sss+eee′′+uuu+encode(m)),

which results in the same bound as for the proof of Theorem 2:

|P [G2 =1]−P [G1 =1]|≤qGδ. (6)

Game G4: In Game G4, the validity check of ETC2 is replaced by the validity
check of the FO transformation. As discussed in the proof of Theorem 2, the
only difference between Game G3 and Game G4 can be observed if an adversary
submits a ciphertext that is accepted in Game G3, but is non-valid in Game G4.

We use an adversary A to construct an adversary B against the SIP-LWE
problem, as given in Figure 8, where H, G and decaps are as given in Figure 6.
As in the proof of ETC1, if the adversary A has found a difference between both
games, one of the ciphertexts in the list LD is a differentiating query cdiff , which
has a corresponding (m̂′,r̂′) in LG so that:

(v̂vv′c,b̂bb
′
) 6=PKE.Enc(pk,m̂,r̂),

due to the check rejection in G4 and:

bbb′sss−vvv′c=zzz= b̂bb
′
sss−v̂vv′c,

24

B(pk=(bbb,seedAAA)):

1. m∗←U({0,1}lm)
2. r∗ :=G(m∗)
3. c∗ :=PKE.Enc(pk,m∗;r∗)
4. k0 :=H(m∗,c∗)
5. k1←K
6. b←U({0,1})
7. w←U({0,1}lm)
8. b′←ADecaps(pk,·),H,G(pk,c∗,kb)

9. v̂vv′c,b̂bb
′
←LD

10. m′,r′←LG

11. vvv′c,bbb
′ :=PKE.Enc(pk,m′,r′)

12. return (bbb′−b̂bb′,vvv′c−v̂vv′c)

Fig. 8: Adversary B against the SIP-LWE game

due to the acceptance in G3, where (bbb′,vvv′c) :=PKE.Enc(pk,m′;r′).
We know that c 6= ĉ as the ciphertext ĉ would have been accepted in G4

otherwise, and thus or bbb′ 6= b̂bb
′
, or vvv′ 6= v̂vv′. In the latter case, the check of Game

G3 still needs to be fulfilled and thus bbb′ 6= b̂bb
′
. The adversary can thus construct a

solution to the SIP-LWE problem by outputting aaa∗ :=bbb′−b̂bb
′
6=0 and bbb∗ :=vvv′−v̂vv′,

and we can conclude:

|P [G4 =1]−P [G3 =1]|≤qDqGAdvSIP-LWE
R,l,χs,χe,qD (B).

The rest of the proof proceeds identically to the proof of Theorem 2.

C ET Transformation in the Quantum Random Oracle
Model

In this section we discuss the security of our ET transformation in the Quantum
Random Oracle model (QROM), where a quantum IND-CCA adversary against
KEMET can call the hash functions on a superposition of queries. We refer to
[NC11] for basic on quantum computing. We give an high level description of the
security proof using the semi-classical oracle technique introduced by Ambainis
et al. [AHU19].

First we recall the following fundamental results.

Lemma 1 (Simulating the random oracle, [Zha12]). Any quantum algo-
rithmAmaking q quantum queries to a random oracleO can be efficiently simulated
by a quantum algorithm B which has the same output distribution but makes no
queries.

In particular it was shown in [Zha12], that is enough to simulate and answer
random queries with evaluations of 2q-wise independent functions, given that q is
the number of queries to the oracle O. In particular, we have the following lemma.

25

Lemma 2 ((Preimage search in a random function, [ARU14], Lemma
37). Let γ∈ [0,1]. Let Z be a finite set. Let N1 :Z→{0,1} be the function defined
as follows. For each z,{

N1(z)=1 with probability pz (pz≤γ),

N1(z)=0 otherwise .

Let N2 such that ∀z,N2(z)=0. If an oracle algorithm A makes at most q quantum
queries then

|Pr[b=1:b←AN1]−Pr[b=1:b←AN2]|≤2q
√
γ.

In particular, the probability of A finding a z such that N1(z)=1 is at most 2q
√
γ.

In the classical ROM setting, reductions simulate the random oracle so to
learn the adversary’s queries. However, in the quantum setting, this is no longer
trivial as measuring or recording queries would change the adversary’s state.

A very useful tool, used to solve the problem of reprogramming random oracles,
is the One-way to hiding technique (OW2H). There are essentially three different
versions of the OW2H lemma, the original formulation introduced in [Unr14],
the semi-classical OW2H lemma [AHU19] that we use in this section, and the
double-sided version [BHH+19,KSS+20] which allows to achieve tighter bounds.
In particular, Kuchta et al. [KSS+20] presented a new version of the double sided
OW2H lemma, which does not suffer from the square root loss in the reduction
that we can find in previous works. A complete and detailed security proof of
our ET transformation in the QROM using this new methodology is orthogonal
to the main result of this current paper and is therefore left to future work.

Proof strategy. Given a δ-correct PKE, to bound the advantage of any adversary
A against the IND-CCA security of KEMET we proceed according to a standard
game hoping technique, following the same proof strategy described in [JZM19].

Let A be an adversary against the IND-CCA security of KEM, issuing at most
qD classical queries to the decapsulation oracle Decaps , at most qG queries to
G and at most qH queries to H. Given (pk,sk) and m∈M, let

Rgood :={r∈R :PKE.dec(sk,PKE.Enc(pk,m;r))=m}.

Let ΩG be the set of all functions G :M→R. Let G′ be a random function
such that G′(m) is sampled according to the uniform distribution in Rgood.

Moreover, let δ(pk,sk,m) = |Rbad(pk,sk,m)|
|R| , δ(pk,sk) = maxm∈Mδ(pk,sk,m) and

δ=E[δ(sk,pk)], where the expectation is taken over (pk,sk)←PKE.Gen. Let ΩH
and ΩH′ be the set of all functions H :M×C→K and H ′ :C→K, respectively.

The first three games proceed exactly as in the proof of [JZM19]. In particular,
Game G0 is exactly the IND-CCA security game of KEMET (Figure 9); in Game
G1, we change the Decaps oracle so that H ′(c) is returned instead of H(w,c),
when c is an invalid encapsulation. In Game G2, we replace G by G′←ΩG′ , that
samples from Rgood uniformly at random.

26

Game G0

1. (pk,sk)←KeyGen()
2. G←ΩG

3. H ′←ΩH′ , H̄←ΩH

4. w←U({0,1}lm)
5. m∗←U({0,1}lm)
6. r∗ :=G(m∗)
7. c∗ :=PKE.Enc(pk,m∗;r∗)
8. k0 :=H(m∗,c∗)
9. k1←K
10. b←U({0,1})
11. b′←AH,G,Decaps(pk,c∗,kb)
12. return b=b′

Decaps
(sk=(sss,eee),pk=(bbb,seedAAA),c=(vvv′c,bbb

′)):

1. t=(bbb′sss,vvv′c)
2. m :=PKE.Dec(sk,c)
3. r :=G(m,pk)
4. if: t=KEMET.GenET(sk,pk,m;r)
5. return K :=H(m,c)
6. else:
7. return K :=H(w,c)

H(m,c)

1. return H(m,c)

Fig. 9: Game G0 - IND-CCA security of KEMET

In Game G3, we replace the check in the Decaps oracle, so that the error
term is replaced by the FO validity check, and then use the SIP0-LWE problem
to bound the advantage of A to distinguish between G2 and G3. In the next game,
Game G4, we change H so that if the adversary queries it on input (m,c) such
that g(m)=PKE.Enc(pk,m;G(m))=c, the response will be H1(c)=H1◦g(m).

The rest of the proof will essentially proceed like in [JZM19], by applying the
OW2H lemma to reprogram the random oracle.

27

	Error Term Checking: Towards Chosen Ciphertext Security without Re-encryption

