
Grades of Trust in Multiparty Computation?

Jaskaran V. Singh1 and Nicholas Hopper2

University of Minnesota,
Minneapolis, MN, USA

1singh882@umn.edu
2hopper-nj@cs.umn.edu

Abstract. Secure Multiparty Computation involves a protocol between
parties with an aim to produce a computed result just as a trusted party
would produce if the parties provided their inputs to it. The trusted
party in conventional computation is replaced with ”un-trusted” par-
ties in Secure Multiparty Computation. We first show that this existing
binary definition of trust is inadequate. Real world is rife with dispar-
ities, that which produce a perceivable trust gradient between the par-
ticipants. Conventional MPC models do not take this into account and
rather provide security guarantees based on the thresholds of the num-
ber of corrupted parties. The thresholds are supposed to cover for some
of the parties turning out to be corrupt. Often, with the knowledge of
prior probability of a party being corrupt, we can do better if we allot
weight to each party based on how trusted we perceive it to be. Our
paper explores this idea and our contributions towards it are three folds.
First, we introduce the Graded Trust model where each party essentially
has a ”trust grade” assigned to it in the protocol based on the prior of it
being corrupt. Second, we present a method for protocol translation and
execution by by simulating players. Lastly, we present a discussion on
the philosophy behind graded trust, and the potential benefits for large
scale public MPC systems.

Keywords: Multiparty Computation, Trust, Player Simulation

1 Introduction

Secure Multiparty Computation (MPC or SMPC) is a class of protocols that
allows participants to compute a function jointly on their respective inputs and
obtain an output without revealing the inputs itself.

An MPC solution to a problem is required to have a set of certain properties:-
(1) privacy (only the end result should be revealed), (2) correctness (output
generated at the end of the protocol should be correct, at least for the honest
parties), (3) fairness (output is revealed to the corrupted parties iff output is
revealed to honest parties), (4) independence of inputs (inputs from any pair of

? This research has been funded by the National Science Foundation (Grant No.
1814753 and 1815757)

2 Singh and Hopper

corrupted party and an honest party should be independent of each other), (5)
guaranteed output delivery (corrupted parties cannot block honest parties from
receiving output).

[Yao86] introduced the world to the general notion of a secure function.
[GMW87] presented a cryptographic secure protocol (adversary is considered
polynomial bounded) played between N parties with the adversary controlling
t parties, that tolerates t < N/2 passively corrupt parties and t < N/3 actively
corrupt parties. Furthermore, [BOGW88] provided a protocol for achieving per-
fect security (that is, the protocol considers information theoretic setting) with
the same bounds for number of corrupted parties as [GMW87]. This conclusion
was also independently reached by [CCD88].

MPC has been shown to have potential application in many popular areas
of interest like Auctions [NPS99], Machine learning [LJLA17,GSB+17,MZ17]
[NWI+13], Genomic Data Processing [CWB18,AAHMA16], contact discovery
[LYCL13], satellite collision prevention [HLOW16]. MPC has also been suc-
cessfully Deployed for Danish sugar beets auction [BCD+09], Boston women’s
workforce council wage equity study[BLV17], student success [BKK+] and Key
Management [ABL+18].

Large Scale Public MPC. In the recent times, there has been research
[CGH+18,CGG+,BHZ+18,BGG+20] exploring to use MPC in a setting involv-
ing large number of participants, potentially as a collective societal computation
for common good. Such a system by design ensures that the door of participation
always remains open. That is, parties are free to join and leave the computation
as they wish. Barriers are kept low as to ensure more participation. Systems
such as Fluid MPC [CGG+] that provide threshold based security guarantees,
are vulnerable to a Sybil attack [Dou02] − the adversary spawning enough par-
ticipants to breach a certain threshold and compromise the security guarantees
it provides. Recent trends in MPC research hint towards a lot of interest being
generated in large scale participation models but any discussion on regulating
the effect of potentially adversarial participants has been absent. The challenge
we face is to find out if we can do better than this in a setting where (1) we are
sure that a one or multiple parties are more likely to be corrupt than others, and
(2) we either don’t want to reject participation of such parties by design (such
as in case of large scale MPC).

1.1 Trust

The common way to describe a Multiparty Computation is to first imagine
a trusted party which obtains inputs from all the other parties to produce a
computed result. This party is then replaced by un-trusted parties performing
secure computation with each other to produce the final result without knowing
what the inputs were (apart from their own, of course).

We first seek to redefine the meaning of trust in MPC. We will shortly make a
case for the notion of trust grade which allows each party in the computation to

Grades of Trust in Multiparty Computation 3

have a quantified level of trust associated with it. The trust in a particular party
would be inversely proportional to the perceived threat of that party turning
out to be corrupt.

Moving on, in a real world scenarios it is rare to trust (or distrust) every party
equally. For example, in the use case of an auction, the auctioning company can
be trusted more than some bidders or the sellers. In the case of a Banking ser-
vice, the Bank can be trusted more than some of the clients in a computation
involving multiple clients and the bank. The underlying factor behind this belief
is that Auction companies or banks have more to lose if the knowledge of them
cheating leaks out, than they gain from cheating. While other participants are
generally under no such restraint. Also, these organizations are usually under
formal ethical scrutiny. In the same sense, a person that has been a client of
the firm since a long time can be trusted more than a client who has just re-
cently signed contract. This hinges on the thought that a successful long time
relationship leads increases trust.

This, however comes with a caveat that a party should not be assumed to be
trusted to the extent where extracting secrets and/or manipulating the output
is trivial for it. For example, in a setting involving computation between bank
and it’s many clients, the bank can be trusted more than individual clients, but
the trust should not let the bank exceed a threshold that allows it to view the
private inputs on it’s own, or worse, manipulate the output since then it becomes
pointless to have a multiparty computation.

The Graded Trust model. So, the fundamental question that the previous
discussion in this paper boils down to is − can there be an MPC model that can
take into account the perceived threat differentials between the parties? That is,
can a higher trusted party have higher weight in the protocol, enough to prevent
a lower several lower trusted parties (acting collusive) to surpass the security
threshold (which is also adjusted for additional weight assigned to the parties).

This question is extremely important in the context of Large Scale MPC
models where the system is generally designed to accommodate volunteers from
the public, with little oversight of who participates. This can prove to be ex-
tremely problematic in the case where an adversary with significant resources
spawns multiple nodes/parties and overcomes the security thresholds, as dis-
cussed previously.

A great example of such a large scale public system is the Tor Network
[DMS04] that allows for any entity to join the network and contribute towards
privacy preserving and censorship free internet. However, Tor Network’s open-
ness towards accepting new volunteers can easily prove to be harmful for it’s users
if the volunteers turn out to be bad actors, particularly nation-state adversaries
with huge resources who can mount Sybil Attacks [WELF16]. Towards this, the
network employs consensus weight: a numeric value that assigned to each node
that throttles the bandwidth of traffic passing through it, thus preventing sybil
attacks.

4 Singh and Hopper

Taking inspiration from Tor, we build the Graded Trust Model and our paper
presents a key piece in the puzzle towards resilient large scale MPC deployments.
We start by introducing the notion of graded trust that allows one to lay down
policies that if satisfied completely or partially allows the parties to earn trust
grades. A higher trusted party can then have more weight in the computation
than lower trusted party. This makes it possible to neutralize the potential neg-
ative influence of supposed malicious parties, thus allowing the adversary to not
obtain the required thresholds to compromise the security guarantees of MPC
protocols.

Apart from containing the influence of the adversary, our model also makes
MPC more inclusive by allowing greater number of parties to participate, even
those who otherwise wouldn’t have been allowed to be a part of the computation.
This is in contrast with the traditional MPC models that are binary in their
approach towards participation: either you are a participant or you are not.
Graded trust means graded participation, which is similar to Tor’s census weight
mechanism− a volunteer’s effective bandwidth is throttled by certain parameters
that indicate how trusted they are. More trusted participants get more job in
the system, or the editorial policies of online wiki pages where almost everyone is
allowed to participate, but newer editors have to work towards gaining positive
reputation within the community to gain higher access levels and powers like
other and established editors.

Our model relies on making a party simulate one or multiple virtual parties
(equal to their trust grade) so as to let the number of potentially honest parties
off-balance the potentially corrupt parties. This however incurs additional costs,
particularly communication cost. We use the example setting of BGW protocol
being played between the parties to present the communication cost associated
with our model.

1.2 Background on BGW protocol

One of the most fundamental MPC techniques is the Ben-Or, Goldwasser, Widger-
son (BGW) protocol. This protocol builds upon Shamir’s Secret Sharing Scheme
[Sha79] to provide Secure Multiparty Computation. In the semi-honest (honest
but curious) setting with point-to-point channels, BGW provides perfect secu-
rity as long as the passive adversary controls less than half of the parties (i.e
t < N/2,). For an active adversary, perfect security is achieved only if t < N/3.

The communication complexity of the protocol computing a Circuit with |C|
multiplication gates is O(|C|.N4) in the best case when the parties are expected
to stick to the protocol, while in the worst case the communication complexity
is O(|C|.N6) when some number (strictly less than the threshold) of the parties
deviate from the protocol due to being malicious or simply malfunctioning. It’s
important to note that the above complexities are for a setting that only allows
for point to point channels, rather than broadcast channels.

Grades of Trust in Multiparty Computation 5

1.3 Related Work

Player Simulation and General Adversary Structure. The notion of ad-
versary structure [HM00] introduced by Hirt et al involves defining the security
of a MPC protocol not in terms of thresholds, but as sets of parties that the
protocol is secure against if they turn out to be corrupt.

This involves, grouping together a set of participants and having them sim-
ulate a single party by executing an MPC within themselves. This allows for
various combinations of parties to be grouped together, and the adversarial in-
fluence to be compensated for by the non-corrupt parties in the sub-protocol, or
if more than a threshold of parties are corrupt in the group, the simulated party
is essentially corrupt, but the adversarial influence of many corrupt parties is
limited to a few number of simulated parties.

1.4 Outline

We introduce some preliminary ideas and definitions in §2. §3 presents the the
graded trust model where we first put forth the notions of trust grade and
trust structure and the related ideas. We also present the trust structure award
protocol. §4 deals with converting a conventional MPC protocol to protocols
in the graded trust model, and it’s execution. §5 provides an analysis of the
additional communication costs that our model carries. §6 Provides a discussion
related to our paper and makes a case of using our model in the real world. §7
deals with discussing the potential future work based on our paper.

2 Preliminary

Before laying down our model, we present some important concepts and defini-
tions, few of which utilize UC Framework [Can20] introduced by Canetti.

Definition 1. An interactive turing machine (ITM) µ is an extension of the
classical turing machine that allows the machine to interact with it’s environment
during the protocol execution. Every ITM is denoted by the symbol µ, where µ =
(ID, C, µ̃). Here, ID is the identity string of the ITM, C is the communication
set, i.e, the machines allowed for communication, and µ̃ is the protocol to be
executed by the ITM.

Our realization of the ITM has the following tapes:

– Identity tape: This tape contains a string that is used to uniquely identify
an ITM in a system of ITMs. This tape is read only, meaning that µ itself
cannot change the contents on this tape. The contents of this tape are set
externally by the Environment.

– Input tape: The externally writable input tape receives a string of input
from other ITMs or the environment.

– Output tape: µ writes the output message to this tape to be read by other
ITMs or the environment.

6 Singh and Hopper

– Backdoor tape: The standard backdoor tape is an externally writable

tape that is used by µ to receive corrupting input from the adversary. This
tape is only accessible to the adversary.

– Activation tape: This tape indicates to the reader whether µ is active or
not. Consists of string active and inactive when the ITM is active and
not active, respectively.

Operator Party. An operator party (or simply, a party) in our model is the
machine responsible for carrying out the MPC protocol with other parties to
produce the computed result. An operator party has the responsibility to operate
virtual parties (as defined shortly).

Definition 2. We define an operator party p to be essentially an Interactive
Turing Machine (ITM) in the UC Framework where an ITM is a tuple p =
(ID, C, µ̃) where ID represents the Identity of the machine, C is the set of com-
munication lines with other machines and µ̃ is the program that the machine is
tasked with executing.

Virtual Party. A virtual party is essentially a party operated by the operator
party as it’s sub machine. Practically, the virtual party is a simulated party.
Each operator party can have multiple virtual parties, but a virtual party can
have only one operator. A virtual party can be corrupt if and only if it’s operator
party is corrupt.

Definition 3. A virtual party is a tuple v = (ID′, C ′, µ̃′) where µ′ is a sub
machine of µ, with identity ID’ and a communication set C ′.

While we define an ITM with the set of tapes as listed, but not every ITM
makes use of all the tapes defined. µ for a party makes use of all tapes, while µ′

does not see any use for the backdoor tape (as we discuss shortly).

Definition 4. A protocol (π) in the UC Framework is defined as the algorithm
designed to be executed by all ITMs.

An Important thing to note here is that the algorithm actually executed by
different ITMs may by different according to their roles in the system, but we
include all of those sets of algorithms under the very broad notion of a protocol,
in some sense like a union of algorithms. Hence, we can say that the there only
one protocol π in execution on all ITMs, while the execution of some (or all)
ITMs may be distinct.

3 Graded Trust Model

Although we’ve mentioned trust grade before, we need to formalize it and present
trust structure that builds upon trust grades to provide an overall view of how
much is each party trusted in comparison to others. Then, we move on to dis-
cussing how the trust structure is assigned to a set of parties.

Grades of Trust in Multiparty Computation 7

µ = (ID,C, µ̃)Backdoor Tape

Activated Tape

Activated Tape

Out1Inp1 Inp2Out2

...

Out1 Inp1 InpnOutn

µ′
1 = (ID ′

1, C, µ̃
′) µ′

n = (ID ′
n, C, µ̃

′)...

...

Fig. 1: The interaction between µ representing a party and it’s sub-machines µ′

representing it’s virtual parties

Definition 5. Trust Grade. The Trust Grade τi of a party pi is a natural
number representing the quantum of trust in that party during the protocol exe-
cution.

We consider the Trust Grade to be a natural number (including zero) but it
does not have to be necessarily. Any entity that has comparison and summation
operation defined over it can be used in place of a natural number. However,
using natural number are more intuitive for this task, and easier to deal with
than the alternatives.

If τi > τj we say that pi is more trusted than pj (or pj is less trusted than
pi). Likewise if τi = τj , we say that pi and pj are equally trusted.

We reserve τi = 0 for parties that are proven corrupt, as opposed to other
parties that are speculatively corrupt for which we reserve τi > 0. Proven corrupt
parties should ideally barred from participating in the protocol, which is why a
zero trust grade would ensure that the party practically has no weight during
the protocol execution. It is also easy to see that τi = 1 is the minimum trust
grade that is assigned to any party that is a part of the protocol.

The upper bound on the Trust Grade for a party is given by the adjusted
security threshold. We will go into the details of it shortly.

Definition 6. Trust Structure. Trust structure T is a mapping from a Party
to a trust grade. Formally,

T : pi → τi

The trust structure can be thought of as a table of parties and the corre-
sponding trust grades assigned to them.

8 Singh and Hopper

3.1 Trust Structure Award Mechanism

While we have discussed the idea of trust structure, we did not detail how is the
trust structure going to be assigned to a set of parties. The basic idea is to have a
public document designed by a special entity called the Administrator that lists
points that each party could earn on the bases of certain security requirements
fulfilled. The parties make their Trust Parameters public, which can then be
assessed to assigned trust structure to that set of parties. The important point
to note is that a party or a dealer (which we will describe shortly) can drop out
of executing the MPC protocol if they are not satisfied with the trust structure
assigned.

Trust Policy. The Trust Policy is set of requirements that will eventually be
used to assign appropriate trust grade to a Party if it fulfills a subset of require-
ments. We assume that the Trust Policy is available publicly as a Document
before the start of the MPC protocol. We also envision that in practise, the
Trust Policy would be designed after consultation with the all the stakeholders
(participants in the protocol).

Trust Parameter. In response to each policy requirement, parties produce a
Trust Parameter which is a publicly verifiable piece of information about the
Party. Trust parameters are then used to assign trust grades to the parties. For
example, the policy requirement can allow parties situated in certain regions of
the world known for liberal cyber laws (say, Switzerland) to earn higher trust for
it. In this example, each party provides it’s IP address − a piece of information
that is publicly verify-able. This piece of information is a Trust Parameter.

Administrator. We introduce the Administrator M as an entity that designs
and publishes the Trust Policy, assess the Trust Parameters supplied by each
of the parties and assigns trust structure to them. The job of providing Trust
Grades to the parties can easily be automated if the policy requirements can be
quantified.

Dealer. A Dealer in a MPC scheme is a special party that provides correlated
randomness to other (non-dealer) parties. The dealer also goes by the name
client. It supplies shares of it’s input to each of the parties, usually via a secret
sharing scheme and then those parties are given the responsibility of carrying
out the computation to produce result. The set of dealers are denoted by D.

Adversary We consider the adversary to corrupt the parties statically − the set
of corrupt parties are fixed right at the beginning of the protocol, even before the
Trust Structure is assigned. We use PA to denote the set of corrupted parties.

Grades of Trust in Multiparty Computation 9

Sentient Entities. We can bunch the Administrator, Dealers and Parties into
one category that we call sentient entities. Sentience here does not have the deep
connotation that it does in Philosophy, but rather just a way to describe that each
of these entities have their own subjective view about the computation and in
specific, their own view of the extent of adversarial influence on the computation.
The sentient entity will have to make value judgements, particularly assigning
trust structure to the parties, and for the parties and dealers to see if they are
satisfied with the trust structure assigned by the Administrator. We denote a
sentient entity by ξ ∈M+ P +D.

Definition 7. Ideal Setting. We define ideal setting to be a setting where no
party is more likely to be corrupt than the other. Mathematically,

Pr[pi ∈ PA] = Pr[pj 6=i ∈ PA]

Conventional MPC models assume the ideal setting. However, different par-
ties owing to the differences in their operational parameters have varied chances
of being corrupted by the adversary. Say, statistically it is known that 3 out of
10 nodes that join a the computation in temporal proximity to one another are
corrupt (that is, part of a sybil attack by the adversary). This means, a node that
joins the computation with such a characteristic is going to be corrupt with 30%
chance. This perceived truth (by a sentient entity) is based on their statistical
observations. It may be less accurate than the ground truth.

Definition 8. Ground Truth. Ground Truth Gi is the realistic probability of
a party pi being corrupt by the adversary A. Formally, we state:

Gi = Pr[pi ∈ PA]

Definition 9. Perceived Truth. Perceived Truth Cξi is the probability of a
party pi being corrupt by the adversary A, as perceived by ξ. In formal terms,

Cξi = Prξ[pi ∈ PA]

Ground truth is the actual probability of a party being corrupt, as opposed
to the perceived truth.

ξ assigns trust structure T ξ using the perceived truth Cξ. The trust grade of
a party is inversely proportional to the perceived truth. It is not important here
to describe the exact mapping between perceived truth and the corresponding
trust structure. We leave this job for the implementation of this model to decide.

Definition 10. Adversary’s Gain. The adversary’s Gain is the number of
parties (weighted by their trust grades) the adversary is able to corrupt, as ex-
pected by ξ.

Gξ =
∑
ti∈T ξ

τi · Cξi

10 Singh and Hopper

Threshold. For an MPC protocol to be successful, the number of corrupt par-
ties must stay under a certain threshold. To take an example, consider the BGW
protocol where the passive-adversary should control less than N/2 parties for the
protocol to be secure against it. Since in our model, we have adjusted the weight
of the parties in accordance to how trusted they are, we also need to adjust the
security thresholds. So in our model, the passive adversary should control less
than

∑
i τi/2 parties. The general rule to transform security thresholds is that

the number of parties originally should be replaced with the sum of the trust
grades.

SATISFY(). Each sentient entity in our protocol has a personal view of the ad-
versary’s capabilities, However, trust structure TM is assigned to a set of parties
by the Administrator. It is natural that some parties and dealers would have a
differing view than the Administrator. This is where they execute SATISFY(GM, Gξ).
Although, we envision the heuristic to be defined by the implementation, roughly
it should check if GM < Gξ. That is, the Administrator’s trust structure is fare’s
better than the ξ’s Structure in containing the adversary. A weaker heuristic
may let the GM > Gξ, but with the condition that GM < τ ′. That is, Admin-
istrator’s trust structure is expected to perform worse than ξ’s trust structure
in containing the adversary, but at least the corrupted parties do not cross a
weaker threshold τ ′. The party may also want to check if enough Trust Grade
has been assigned to itself.

Protocol 1. Trust Grade Award Protocol πt

The protocol πt is executed in presence of an initial Environment ITM E , parties
P, Administrator M, and dealer(s) D.

1. E invokes P, D, and M.
2. M formulates Trust Policy Document and sends it to P and D.
3. Each party in P send Trust Parameters to other parties in P, M and D.
4. M formulates trust structure TM and sends it to P and D.
5. Each ξ ∈ P + D execute SATISFY(GT , Gξ). If SATISFY executed by some
ξ outputs ⊥, the ξ outputs ⊥ and exits the protocol. The remaining ξ would
have TM at the end of the protocol.

3.2 Model

Consider an MPC scheme with Parties P = {p1, p2, ...pn} that is A-secure for
|PA| ≤ c. That is, the scheme is A-secure only if the cardinality of the set of
corrupt parties PA is less than the threshold c.

Conventional MPC models do not differentiate between parties, in the sense
that all parties are supposed to be functional and honest with equal probability,
but in case some turn out to be corrupt, there are thresholds to take care of
them. So as long as the number of corrupt parties remain under the threshold,

Grades of Trust in Multiparty Computation 11

the computation is guaranteed to be secure except for incurring higher compu-
tational or communication costs. One way to look at this from the prism of the
Graded Trust Model is that for each Party pi, τi = 1. This egalitarian state can
be called ideal. What makes it ideal is that no party is less trusted than other.
This is not considering the entities barred from participation on the ground of
not being trusted at all. The adversary is supposed to be able to corrupt all
parties with equal chances (alternatively, the parties shall turn out to be honest
with equal chances), though the total parties corrupt shall still stay below a
certain threshold as guaranteed to be secure by the scheme.

Like most things ideal in thought, this scenario is far from real life. With
prior information hinting at a party probably being corrupt, we can do much
better.

We begin by assigning trust structure T to the set of parties. That is, each
Party pi ∈ P gets a corresponding Trust Grade ti obtained by executing πt.

A setting in which one or more parties are trusted less than the others is
considered by us as a non-ideal state, and Graded Trust Model attempts to
correct for this giving lower trusted Parties lesser weight in the protocol. Towards
this purpose we introduce a set of Virtual Parties Vi for a Party pi, where
|Vi| = ti. The higher the Trust Grade, the more Virtual Parties a Party is
allowed to operate. Since higher trusted parties are allowed to operate higher
number of virtual parties, it means that the protocol would eventually have more
higher trusted Parties, which would counter the negative influence of the lower
trusted Parties.

An Example. Consider an instance of BGW protocol being played between 4
parties: p1, p2, p3 and p4, which is actively-secure for threshold N/2 = 2. Say,
the Administrator’s perceived truth is as shown in the table below. The Ad-
ministrator then assigns trust grades to the parties as also shown in the table
below.

Party CM τ

p1 0.2 2
p2 0.5 1
p3 0.1 2
p4 0.4 1

The Parties and the Dealers execute the SATISFY functionality to decide if
they want to continue with the proposed trust structure. If they continue, they
are allowed to operate a number of virtual parties in accordance with the Trust
Structure. Here, p1 and p3 (which are assigned 2 virtual parties each) are trusted
more than p2 and p4 (which are assigned one virtual party each). In the original
setting the threshold was N/2, meaning that at most one party can be corrupt
and yet the protocol be successful. After assigning trust structure, the threshold
is updated to be 3, which allows for the adversary to corrupt parties in any one el-
ement of the set Z = {{p1}, {p2}, {p3}, {p4}, {p1, p2, }, {p3, p4}, {p2, p3}, {p1, p4}},
without affecting the protocol since the combined weight of parties in any one

12 Singh and Hopper

element of this set does not exceed 2. As shown in Fig.2, each party pi operates
a set of τi virtual parties {vi1, vi2, ...viτi}.

p3

p1 p2

p4

(a)

v31 v32

v12v11 v21

v41

p1 p2

p3

p4

(b)

Fig. 2: (a) represents a classical MPC model of a protocol between 4 parties,
each of which is trusted equally. (b) shows our model of graded trust between
the parties. Not shown in the figure for the sake of simplicity is the fact that each
virtual party has a connection to every other virtual party, indirectly through
their respective operator parties.

4 Protocol Transformation and Execution

This section describes the transformation of a standard protocol µ0 with con-
ventional notion of trust to µ in our model for a trust structure T . Roughly,
the transformation takes into consideration the Trust Grade of each Party and
allows it to simulate a number of Parties equal to it’s Trust Grade. Then, we
describe the protocol execution.

Grades of Trust in Multiparty Computation 13

4.1 Setting

We consider a protocol π with the set of all Parties P = {p1, ...pi...pn} and a
trust structure T . The set Vi is the set of virtual parties of pi with trust grade
ti.

We assume that either the trust structure for the particular setting is agreed
upon beforehand by all the Parties, Dealers and the administrator in the protocol
or they together execute πt to obtain it.

We assume that either the parties communicate with each other through a
broadcast channel or a pairwise channels authenticated with Public Key Infras-
tructure (PKI). As far as communication between an operator and it’s Virtual
Parties is concerned, that does not necessarily require any special setup since
virtual parties can be operated on the same machine as the operator party.

4.2 Party Translation

All communication in our Model happens between virtual parties which are in
some cases operated by different operator parties, and in other cases operated
by the same operator party. We need a way to route messages between these
virtual parties. The first step towards this is to divide up parties in domains we
term as Party Space. We then need to map parties in one space to the parties in
the other space, and towards this we make use of the Party Map.

Party Space. Each party (virtual or not) in our protocol operates in an abstract
container called the Party Space, denoted by S. Essentially, a party space S is
the set of all Parties operating in that domain. All operator parties exist in Party
space Sp, while all virtual parties operated by pi, including pi itself exist in Svi .
Notice that, pi exists in the intersection of Svi and Sp. It’s easy to see that,

S = Sp ∪
⋃
i

Svi

{pi} = Sp ∩ Svi

Definition 11. Party Map. Party Map ψ is a map from a Party in Sp and a
string destination-id to a Party in Svi . Formally,

ψ : Sp × destination-id→ Svi

In a similar fashion we define,

Definition 12. Inverse Party Map. Inverse party space map ψ−1 maps a
Party in Svi and a string destination-id to a Party in Sp. That is,

ψ−1 : Svi × destination-id→ Sp

14 Singh and Hopper

Both party map and inverse party map are essentially implemented as routing
tables contained with the operator parties. Whenever an operator party receives
a message from it’s virtual party (a subroutine), it looks up who the message is
addressed to (the destination-id string) and applies ψ to it to obtain the op-
erator party that this message needs to be relayed to. In the same way, when this
message reaches the respective operator party, it uses ψ−1 to send the message
to the correct virtual party.

4.3 Protocol Translation

The process of Protocol Translation involves parsing through the protocol spec-
ification and inserting the role of the virtual parties. Essentially, the protocol
translator reads the protocol specification line by line and replaces the instruc-
tions with references to a party with one or more instruction(s) having references
to the respective virtual parties of that party if they exist.

Definition 13. Protocol Translation. Protocol Translation Γ is a mapping
defined as,

Γ : π0 × P × T → π × P × V × ψ

We input the original protocol along with a set of parties and the trust
structure into the protocol translation and get a modified protocol with the
same set of parties, set of virtual parties operated by each of those parties and
the a mappings ψ (and ψ−1, since it can be deduced from ψ) between parties
and their virtual parties.

We use the notation π0 to denote the an MPC protocol in the conventional
models, while translated protocol in graded trust model is denoted by π which
overall performs the same functionality but accounts for the added virtual par-
ties.

We present an example in Fig.3 where a simple MPC protocol µ0 with equal
trust is translated into a protocol µ with graded trust and roles for virtual
parties. Each instruction concerning a particular party is translated into a list of
multiple instructions of the same kind but involving the virtual parties of that
party.

4.4 Execution of a Operator Party

In §3 we described party and virtual party in our model using UC Framework.
While virtual parties are a subroutine of their respective parties, they differ
subtly from traditional notion of subroutine in UC Framework in that they are
not expected to only communicate with their operator party. They can indirectly
communicate with any party, including all the virtual parties, even those being
operated by other operator parties.

The operator party is supposed to sit between it’s virtual parties and the
outside world. We introduce a modification to the conventional write operation
of the ITMs. In addition to the message field, the ITMs are required to also

Grades of Trust in Multiparty Computation 15

...

share.send(pi)
...

share.receive(pi)
...

func.compute(pi)
...

π0 for pi

(a)

...

share.send(vi1)
share.send(vi3)

...

share.receive(vi1)
share.receive(vi3)

...

func.compute(vi1,v
i
2,...v

i
n)

...

π for pi

(b)

Γ

Fig. 3: (a) shows a traditional MPC protocol for pi with conventional notion of
trust. (b) shows the protocol for pi translated into our model.

supply source-id and destination-id which are the IDs of the sender and
receiver ITMs respectively. Operator parties effectively play the role of routers
in our model.

We confine the adversary to only corrupt the operator party. That is, if an
adversary wants to corrupt a virtual party, it needs to corrupt it’s correspond-
ing operator party. In the same sense, if any adversary is able to corrupt the an
operator party, it can then corrupt all of it’s virtual parties, since in practice we
envision virtual parties as processes on the operator party’s machine.

FUNCTIONALITY 1. Operator Party FPi

Protocol π is executed in presence of an adversary A and an initial environment
E . Let FPi be the functionality of pi. PA is the set of parties corrupted by A.
Common Input: Trust structure T
Relaying messages from Svi to Sp

1. E invokes each party in P, V and FPi . E sets the control function of these
ITMs to π, and writes a unique ID to the identity tape for each of them. E
inserts active on the activation tape for P, V and FPi .

2. pi ∈ P reads string (source-id, destination-id, message) from the
output tape of vj .

3. If pi ∈ PA then pi reads content of backdoor tape. Either pi halts, out-
putting ⊥, or this string replaces the contents read from vj .

4. pi ∈ P obtains pj through ψ(destination-id)= pj and writes (source-id,
destination-id, message) to input tape of pj .

Relaying messages from Sp to Svi
FPi functions as in (2), (3) and (4) above but with a slight modification that it
reads from the output tape of pj and if honest, intends to write it to input tape
of vk = φ(destination-id). Otherwise if corrupt, it halts or replaces content
from pj with that read from backdoor tape.

16 Singh and Hopper

5 Communication Complexity

As in before, consider that BGW protocol is being played out between parties
P = {p1, p2, ...pn}. Each Party pi operates a set of virtual parties Vi. Let |V|
=

∑
i |Vi| be the total number of virtual parties in operation. The setup only

considers point to point authenticated channels between the operator parties.
The circuit C evaluated by the parties has |C| number of multiplication gates.

The case in which each party adheres to the protocol is called an opti-
mistic case and the cost associated with it is optimistic cost. If any some parties
(bounded by the respective threshold) deviate from the protocol is called a pes-
simistic case and the cost associated with it Pessimistic cost. The latter requires
extra communication to correct for the deviation from the protocol, but other-
wise produces the same result as the former.

It is known that the cost[AL17] of BGW protocol consisting of N parties is
O(N4) and O(N6) in the optimistic and pessimistic case respectively. One may
think of our model as |V| independent machines communicating with each other
through communication lines, towards realizing the goal of the BGW protocol.
It is simple to see that the communication cost for our model would be adjusted
for the amount of new (virtual) parties we add, as summarized by the table
below.

Cost π0 π
Optimistic Cost O(|C|.|P|4) O(|C|.|V|4)
Pessimistic Cost O(|C|.|P|6) O(|C|.|V|6)

While the above mentioned complexity holds true in theoretical sense, but
we envision that practically the virtual parties that would belong to a particular
operator party wouldn’t necessarily have to communicate over communication
line like they do for virtual parties not operated by their own operator party. For
example, pi might be simulating the virtual parties on it’s machine. In that case,
the cost of communication between two virtual parties being simulated would
be zero.

Cost π0 π
Optimistic Cost* O(|C|.|P|4) O(|C|.(|V|4 − (

∑
i |Vi|4))

Pessimistic Cost* O(|C|.|P|6) O(|C|.(|V|6 − (
∑
i |Vi|6))

6 Discussion

As we have mentioned earlier, we envision that our work will likely find it’s
use in large scale (public) MPC deployments described in §1. In some ways,
such a system shares it’s philosophy with democracy. A democratic system has
the goal of making collective decisions with the use of (anonymous) voting.
This democratic process of decision making and conventional MPC schemes are
similar in that they adhere to the principle of one person one vote owing to
egalitarianism.

Grades of Trust in Multiparty Computation 17

It is easy to see why Democracy like most other ideas has had it’s fair share of
criticism from the time of ancient Greeks to modern day. A popular argument is
that Democracy is vulnerable to to careful social engineering of at least a major-
ity of population, particularly those who are uninitiated in matters that require
voting. In this aspect, democracy again shares this characteristic with traditional
MPC schemes in that the adversary has to target a certain threshold count of
the most vulnerable parties, since MPC schemes offer security guarantees only
upto a certain threshold.

A common solution prescribed for the perils of traditional democracies is the
distribution of votes based on certain prerequisites. While, this may be a naive
idea considering the common held ethics of voting, in §8.1 and §8.2 we show
that allowing parties to have weights (or Trust Grades, as we call them) based
on fulfilment of certain criteria is a step in the right direction.

6.1 Graded Trust MPC as an instrument of inclusive
computation/decision making

Although, MPC protocols are designed to be resilient to at most a certain number
of parties (less than the threshold), but there has been no notion of a particular
party probably being corrupt. It has been left onto the MPC administrator (or
parties collectively) to decide on who gets to be a participant.

We believe that this practice excludes entities who are willing but cannot
participate due to constraints (such as lack of latest secure hardware, proprietary
operating system, etc). Instead of barring them to participate, arrangements can
be made for them in the MPC system where they are allowed to participate, but
have less weight compared to others in the computation owing to lower trust.
This is an effective middle ground between inclusiveness and security/privacy.

6.2 Graded Trust MPC as a incentive in the right direction

If a party’s trust grade is tied to the number of requirements it fulfils, such
a practice in a public MPC deployment can have a positive side effect that
gaining trust within the system can be an incentive and encouragement for the
public parties to comply with the latest security practices (laid down by the
Administrator).

7 Future Work

In this paper, while we have presented the Graded Trust Model, we shy away
from constructing an MPC system based on it. A challenge remains to chose wor-
thy Trust Policies and deriving appropriate Grades from the Trust Parameters
supplied in answer to those Trust Policies.

With the emerging models of Large scale (public) MPC systems, graded
trust can also prove to be very useful there, as discussed before. Such large scale
systems require parties to have the ability to connect and disconnect with the

18 Singh and Hopper

ongoing computation, without effecting the end result. This produces a challenge
for the threshold based security definitions and an opportunity to employ our
model, but work needs to be done to figure out how exactly to re-calculate trust
after every epoch.

Our paper does not discuss the Malicious Administrator scenario. The Trust
Policy in our model is set by the Administrator. This is troublesome it provides
the Administrator with power to influence the protocol indirectly by adjusting
the Trust policies in favor of the adversary. A naive solution may be to allow
the parties to together come up with Trust Policies. We call it naive because
this solution is vulnerable to sybil attacks − An adversary just has to spawn a
number (greater than a threshold) of nodes to set it’s desired policies.

Our model only considers a static adversary, while a stronger model of mobile
adversary may exist. It remains a challenge to develop a model where the adver-
sary decides on corrupting a party after the trust structure has been declared
by the Administrator.

References

[AAHMA16] Md Momin Al Aziz, Mohammad Z Hasan, Noman Mohammed, and Dima
Alhadidi. Secure and efficient multiparty computation on genomic data.
In Proceedings of the 20th International Database Engineering & Appli-
cations Symposium, pages 278–283, 2016.

[ABL+18] David W Archer, Dan Bogdanov, Yehuda Lindell, Liina Kamm, Kurt
Nielsen, Jakob Illeborg Pagter, Nigel P Smart, and Rebecca N Wright.
From keys to databases—real-world applications of secure multi-party
computation. The Computer Journal, 61(12):1749–1771, 2018.

[AL17] Gilad Asharov and Yehuda Lindell. A full proof of the bgw protocol for
perfectly secure multiparty computation. Journal of Cryptology, 30(1):58–
151, 2017.

[BCD+09] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler,
Thomas P. Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus
Nielsen, Kurt Nielsen, Jakob Pagter, Michael I. Schwartzbach, and Tomas
Toft. Secure multiparty computation goes live. In Roger Dingledine and
Philippe Golle, editors, Financial Cryptography and Data Security, 13th
International Conference, FC 2009, Accra Beach, Barbados, February 23-
26, 2009. Revised Selected Papers, volume 5628 of Lecture Notes in Com-
puter Science, pages 325–343. Springer, 2009.

[BGG+20] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo
Krawczyk, Chengyu Lin, Tal Rabin, and Leonid Reyzin. Can a public
blockchain keep a secret? In Rafael Pass and Krzysztof Pietrzak, edi-
tors, Theory of Cryptography - 18th International Conference, TCC 2020,
Durham, NC, USA, November 16-19, 2020, Proceedings, Part I, volume
12550 of Lecture Notes in Computer Science, pages 260–290. Springer,
2020.

[BHZ+18] Assi Barak, Martin Hirt, Eth Zurich, Lior Koskas, and Yehuda Lindell.
An End-to-End System for Large Scale P2P MPC-as-a-Service and Low-
Bandwidth MPC for Weak Participants *. ACM SIGSAC Conference on
Computer & Communications Security, 18:18, 10 2018.

Grades of Trust in Multiparty Computation 19

[BKK+] Dan Bogdanov, Liina Kamm, Baldur Kubo, Reimo Rebane, Ville Sokk,
and Riivo Talviste. Students and Taxes: a Privacy-Preserving Study Using
Secure Computation. Proceedings on Privacy Enhancing Technologies,
2016(3):117–135.

[BLV17] Azer Bestavros, Andrei Lapets, and Mayank Varia. User-centric dis-
tributed solutions for privacy-preserving analytics. Commun. ACM,
60(2):37–39, 2017.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computation.
In Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing, STOC ’88, page 1–10, New York, NY, USA, 1988. Association
for Computing Machinery.

[Can20] Ran Canetti. Universally composable security. J. ACM, 67(5):28:1–28:94,
2020.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty uncon-
ditionally secure protocols (abstract) (informal contribution). In Carl
Pomerance, editor, Advances in Cryptology – CRYPTO’87, volume 293
of Lecture Notes in Computer Science, page 462, Santa Barbara, CA,
USA, August 16–20, 1988. Springer, Heidelberg, Germany.

[CGG+] Arka Rai Choudhuri, Aarushi Goel, Matthew Green, Abhishek Jain, and
Gabriel Kaptchuk. Fluid MPC: Secure Multiparty Computation with
Dynamic Participants. Technical report.

[CGH+18] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi,
Yehuda Lindell, and Ariel Nof. Fast large-scale honest-majority MPC for
malicious adversaries. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 10993 LNCS, pages 34–64. Springer Verlag, 2018.

[CWB18] Hyunghoon Cho, David J Wu, and Bonnie Berger. Secure genome-wide
association analysis using multiparty computation. Nature biotechnology,
36(6):547–551, 2018.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The
second-generation onion router. In Matt Blaze, editor, Proceedings of the
13th USENIX Security Symposium, August 9-13, 2004, San Diego, CA,
USA, pages 303–320. USENIX, 2004.

[Dou02] John R. Douceur. The sybil attack. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 2429, pages 251–260. Springer Verlag,
2002.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to prove all
NP-statements in zero-knowledge, and a methodology of cryptographic
protocol design. In Andrew M. Odlyzko, editor, Advances in Cryptology
– CRYPTO’86, volume 263 of Lecture Notes in Computer Science, pages
171–185, Santa Barbara, CA, USA, August 1987. Springer, Heidelberg,
Germany.

[GSB+17] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack
Doerner, Samee Zahur, and David Evans. Privacy-preserving distributed
linear regression on high-dimensional data. Proc. Priv. Enhancing Tech-
nol., 2017(4):345–364, 2017.

[HLOW16] Brett Hemenway, Steve Lu, Rafail Ostrovsky, and William Welser. High-
precision secure computation of satellite collision probabilities. In Lecture

20 Singh and Hopper

Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2016.

[HM00] Martin Hirt and Ueli M. Maurer. Player simulation and general adversary
structures in perfect multiparty computation. J. Cryptol., 13(1):31–60,
2000.

[LJLA17] Jian Liu, Mika Juuti, Yao Lu, and N. Asokan. Oblivious neural network
predictions via minionn transformations. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Se-
curity, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017,
pages 619–631. ACM, 2017.

[LYCL13] Ming Li, Shucheng Yu, Ning Cao, and Wenjing Lou. Privacy-preserving
distributed profile matching in proximity-based mobile social networks.
IEEE Transactions on Wireless Communications, 12(5):2024–2033, 2013.

[MZ17] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable
privacy-preserving machine learning. In 2017 IEEE Symposium on Secu-
rity and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017, pages
19–38. IEEE Computer Society, 2017.

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auc-
tions and mechanism design. In Proceedings of the 1st ACM conference
on Electronic commerce, pages 129–139, 1999.

[NWI+13] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan
Boneh, and Nina Taft. Privacy-preserving ridge regression on hundreds
of millions of records. In 2013 IEEE Symposium on Security and Privacy,
SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 334–348. IEEE
Computer Society, 2013.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, 1979.

[WELF16] Philipp Winter, Roya Ensafi, Karsten Loesing, and Nick Feamster. Iden-
tifying and characterizing sybils in the tor network. In 25th {USENIX}
Security Symposium ({USENIX} Security 16), pages 1169–1185, 2016.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th Annual Symposium on Foundations of Computer Sci-
ence, Toronto, Canada, 27-29 October 1986, pages 162–167. IEEE Com-
puter Society, 1986.

