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Abstract

In this paper, we computationally analyze Passkey Entry in its entirety as a crypto-
graphic authenticated key exchange (AKE) – including user-protocol interactions that
are typically ignored as out-of-band. To achieve this, we model the user-to-device chan-
nels, as well as the typical device-to-device channel, and adversarial control scenarios in
both cases. In particular, we separately capture adversarial control of device displays
on the initiating and responding devices as well as adversarial control of user input
mechanisms using what we call a CYBORG model. The CYBORG model enables real-
istic real-world security analysis in light of published attacks on user-mediated protocols
such as Bluetooth that leverage malware and device displays. In light of this, we show
that all versions of Passkey Entry fail to provide security in our model. Finally, we
demonstrate how slight modifications to the protocol would allow it to achieve stronger
security guarantees for all current variants of passkey generation, as well as a newly pro-
posed twofold mode of generation we term Dual Passkey Entry. These proof-of-concept
modifications point to improved design approaches for user-mediated protocols. Finally,
this work points to categories of vulnerabilities, based on compromise type, that could
be exploited in Bluetooth Passkey Entry.

Keywords: Bluetooth · Authenticated Key Exchange · CYBORG Protocols · Secure
Connections · Secure Simple Pairing · Passkey Entry · Computational Analysis

1 Introduction

In traditional cryptographic protocols, user authentication is achieved via a trusted third
party such as a certificate authority. However, in some settings, such as the Internet of
Things (IoT), a reliable connection to such an authority cannot be guaranteed, and in some
lightweight cases certificates cannot be used or reliably updated. Such protocols instead
rely on the human user to affirm the identities of communicating parties via an out-of-band
(OOB) channel, usually via the user inputting a PIN code or password. Among these is the
Bluetooth protocol [10]. Naturally, if we assume a perfectly secure OOB channel, analysis
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of the direct device-to-device communication is simplified, and consequently the approach
was sensible in the earlier days of protocol design and analysis. Assuming that an adversary
cannot effect such channels is no longer realistic, as demonstrated by recent attacks leveraging
malware to target the user interface, as well as more established social engineering attacks.
Notably the Tap ‘n Ghost attack [33], which specifically targets Bluetooth devices, refutes
the idea that user communications should be ignored in protocol analysis. As a result, it is
critical to analyze the protocols in their entirety, accounting for both user interaction and
device-to-device communication – namely, the cyborg protocol.

Leading authenticated key exchange (AKE) models do not capture user-to-device (UtD)
attacks due to the sole focus on device-to-device (DtD) communications. However user-
oriented attacks arise precisely from adversarial control of the UtD channel, or from a com-
bination of control on UtD and DtD channels. While models capturing the UtD channel
in the analysis of authentication protocols have emerged [18, 23], there has been a lack of
such modeling for key exchange until now despite the standarized use of such protocols in
practice. This is in stark contrast to the widespread implementation and standardization of
AKE protocols employing the UtD channel [10,25].

We model adversarial abilities against key exchange on what is normally the OOB channel.
As noted before, Tap ’n Ghost is one attack which focuses heavily on vulnerabilities in the
(previously assumed to be perfect) OOB channel. The attack is notable as it is a two-pronged
assault on a user interface (without actively attacking device memory itself). The attacker
first executes a Tag-based Adaptive Ploy, which forces a pop-up to display on a user’s device,
and then activates a Ghost Touch Generator, which spoofs touches on unwanted areas of
the screen, to force pairing with a corrupted device. Thus, the attack requires adversarial
ability to create messages to be sent to a user from a device, and adversarial ability to modify
communications back from the user to the device (see Figure 1). We reference the Tap n’
Ghost attack as an illustrative example throughout, but it is not the only attack leveraging
the UtD communication channel. Touchloggers [12, 16], the StrandHogg vulnerability [24],
social engineering, and shoulder-surfing attacks also fall into this category. All such attack
vectors are systematically accounted for in our CYBORG model.

Bluetooth’s Passkey Entry [10] generates and shares a random value (a passkey) via the
user to effectively achieve entity authentication via the user mediation. Passkey Entry was
primarily designed for pairing when at least one device has a keyboard but not a numerical
display, such as a Bluetooth keyboard attempting to pair with a modern computer. In that
case, a user could input a computer-displayed passkey into the keyboard for pairing. However,
recently Passkey Entry has seen additional application when both devices have numerical
keyboard and display capability, such as the manual pairing method between an Apple Watch
and iPhone [3]. Bluetooth itself has enjoyed a long history of design advances [9, 36] and
analysis [14, 15, 32, 41], as well as published attacks [1, 2, 8, 22, 31, 33]. The Secure Simple
Pairing mechanism, first published in Bluetooth v2.1 and updated to Secure Connections
in v4.2, allowed for flexibility by providing four methods of authenticated key exchange
dependent on device input/output (IO) capabilities: Just Works, Numeric Comparison, Out-
of-Band, and Passkey Entry. Of these, Numeric Comparison and Passkey Entry both rely
on the user playing an active role in an authenticated key exchange (AKE). While Numeric
Comparison has been analyzed computationally [32, 41], Passkey Entry has until now not
received a detailed analysis. This raises the question, as a cyborg protocol, is Bluetooth
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Passkey Entry secure and, if so, under what conditions?

Figure 1: Tap ‘n Ghost. Adversary uses a Tag-based Adaptive Ploy to display a message
from device A to the user requesting to pair to a malicious device Eve. When the user denies
this request, a Ghost Touch Generator corrupts the input and forces acceptance by device A.
These actions map to a ShowUser query and ControlUser query, respectively, in the CYBORG
model.

We address this question, presenting a computational analysis of Bluetooth Basic Rate
/ Extended Data Rate (BR/EDR) versions 2.1–5.2 Passkey Entry (henceforth abbeviated
Passkey Entry). The analysis applies to Passkey Entry under either the Secure Simple Pairing
or Secure Connections Bluetooth security framework, and is based on transcript matching
as part of entity authentication. To achieve this, we first present a computational CYBORG
AKE model, capturing adversaries capable of exploiting user-to-device transmissions. Our
CYBORG model systematically covers all combinations of adversarial ability to create and
modify messages from the device to the user and vice versa. As a result, our analysis not only
demonstrates potential insecurities in Passkey Entry, but clarifies under which conditions it
is secure.

1.1 Attacking User-to-Device Communications.

Social engineering and shoulder-surfing are well-accepted techniques for targeting user-device
communication, but recent attacks on the UtD channel of cyborg-style protocols extend
well beyond these and lead us to a baseline classification of attack vectors. For example,
Touchloggers [12] attempt to mimic the role of keyloggers by logging a user’s presses on a
screen and then predicting the buttons that were pressed. The StrandHogg vulnerability
[24] functions by disguising malware as legitimate apps for the user to interact with and
unknowingly allow a hacker to compromise their device. Summarizing known attacks, we
have the following four baseline attack vectors over the UtD channel: compromise of the
communication channel from the initiating device to the user (type iu), the responding
device to the user (type ru), the user to the initiating device (type ui), and the user to the
responding device (type ur). We illustrate these attacks in Fig. 2. We use these classifications
to model adversarial capabilities by allowing for combinations of adversarial ShowUser and
ControlUser queries in Section 3.
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Figure 2: Visual depiction of the baseline four possibilities of user compromise (CompUser-
freshness) where the adversary is allowed to corrupt only one direction of the user-to-device
channel at a time, denoted by a red dashed line. We use the abbreviations CompUser[iu],
CompUser[ru], CompUser[ui], and CompUser[ur] to describe the various attack scenarios.

For an example, consider how these combinations capture the Tap n’ Ghost attack: This
attack involves compromising communications between a single device and the user; both
from the device to the user and from the user to the same device. Thus, we can model
this attack as a simultaneous combination of either both a type iu and type ui compromise
(CompUser[iu,ui]), if the initiating device is being targeted, or a type ru and type ur compro-
mise (CompUser[ru,ur]), if the responding device is being targeted. Initiator and responder
roles become important depending on the protocol and attack, such as in Initiator-Generated
Passkey Entry where only the initiator displays a string to the user. In our model, this cor-
relates to both a ShowUser query and a ControlUser query, as shown in Figure 1.

We allow for 16 different security frameworks (plus one to model the null case where
the adversary gains no additional capabilities on the UtD channel) based on the possible
combinations of the four baseline types {iu, ru, ui, ur} in Fig. 2. All of these combinations are
distinct due to the various forms that cyborg protocols may take. For example, Passkey Entry
has three modes based on how the passkey is generated: by the initiating device, responding
device, or the user. The effects of adversary action against a device display depends on the
initiator/responder role of the device in question. Allowing for all possible combinations
therefore enables analysis to not only adapt itself based on the protocol being investigated,
but also pinpoint the exact circumstances under which a protocol fails to maintain security.
This is especially useful information for those looking to assess where to devote security
resources. If a protocol provides weak security against attacks afflicting the initiator device,
for example, but is resistant to attacks against a responder device, then developers and
system administrators can plan and make design choices accordingly to limit vulnerability.
Thus, analysis in our model can assist in limiting zero-day attacks against devices employing
cyborg protocols.
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1.2 Previous Work on Passkey Entry.

Figure 3: Table depicting levels of CYBORG security in the uncompromised (UncUser) and
compromised user (CompUser[x]) settings achieved by the Passkey Entry protocol (Section 4),
as well as Secure Hash Modification (SHM) Passkey Entry and Dual Passkey Entry (Sec-
tion 6). Dual Passkey Entry is provably secure under all variants of the CYBORG security
model (Section 3). All other versions of Passkey Entry were found to be insecure under the
definitions not depicted. X depicts proven secure in this work, X∗ depicts provably secure
by implication, and X depicts insecure.

Passkey Entry is the primary version of Bluetooth authenticated key exchange employed
when two devices want to pair and at least one does not have display capability [10]. In-
formally, it functions by having two devices exchange/receive a passkey for a user-to-device
channel and proceed to commit to each bit of said passkey sequentially. This sequential con-
struction, first proposed in [27], was devised to prevent offline dictionary attacks [39], such
as those that plague legacy versions of Bluetooth authenticated key exchange.

Although Passkey Entry complicates an offline dictionary attack by committing to each bit
of the passkey sequentially, it is more susceptible to other types of eavesdropping attacks [31].
Other investigations into the security of Passkey Entry have been largely ad-hoc [4, 31, 40],
involving exploits in the re-use of random values across multiple executions of the protocol. A
notable attack applicable to Passkey Entry outside of this construction is the Fixed Coordinate
Invalid Curve Attack [8], which exploits devices not verifying the y-coordinate of a received
Elliptic Curve Diffie-Hellman (ECDH) public key to insert an erroneous value and trivially
compute the agreed upon DH key. Research has been conducted on the use of short, user-
authenticated strings (i.e. a passkey no more than 20 bits long) for the authentication of a
Diffie-Hellman key [21,30,42], which demonstrated that security of such schemes is achievable
in certain models and mainly dependent on the length of the passkey.

Other published attacks against Bluetooth pairing that use auxiliary mechanisms to com-
promise device communications include the BT–Niño–MITM attack [22], Bluetooth Imper-
sonation AttackS (BIAS) [1], and Key Negotiation of Bluetooth (KNOB) [2]. BT–Niño–
MITM exploits the un-authenticated exchange of IO capabilities to force a downgrade to
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Just Works for pairing, a protocol which Bluetooth acknowledges provides no protection
against active adversaries [10]. Although BT–Niño–MITM was originally published in re-
gards to Bluetooth BR/EDR v2.1-3, the attack remains current and recommendations to
alleviate this vulnerability [22] include setting mandatory pairing methods for devices and
displaying messages to the user confirming the pairing method desired. BIAS and KNOB
both affect the Bluetooth BR/EDR v2.1-5.0 standardization and apply strictly to resumption
after successful pairing.

The above attacks are relevant when discussing the holistic security of Bluetooth, yet
these attacks do not address the underlying security achieved by Passkey Entry. While it
is possible to require ephemeral passkeys in keeping with Bluetooth’s recommendation, and
verification of the y-coordinate of the ECDH public key, these changes alone do not provide
guarantees of security, as a systematic analysis of Passkey Entry is lacking. Furthermore, the
above mentioned analyses all treat user-to-device communications as secure OOB channels
and disallow adversary actions on such channels – an assumption falsified by attacks like Tap
‘n Ghost, Touchloggers, etc.

1.3 Modeling User-mediated Protocols.

Including user interaction in analysis saw early work in the symbolic setting, including an
analysis of Bluetooth Numeric Comparison [15]. The user as a central component of the model
was first introduced in the symbolic setting under the concept of ceremonies [20]. Ceremonies
capture the intuition that there is no out-of-band communication, whether through the user,
network, or other devices; all possible network communications, user to device interaction,
displays, etc., can affect security. These ideas were later used for a second analysis of Nu-
meric Comparison, which expanded adversarial capabilities over the user-to-device channel
to include Eavesdrop and Spoof [14].

Using the user-to-device channel to exchange short, authenticated passkeys between de-
vices saw security investigation under a computational setting by Peyrin and Vaudenay [37].
Although the user-to-device channel was considered as a secure OOB channel outside of ad-
versarial attack abilities in that research, the user was included as an active participant with
the ability to pick random numbers or compare values. Vaudenay [42] extended these mod-
eling choices in a subsequent investigation of user-mediated protocols using passkeys where
the adversary was allowed to delete, replay, or delay messages on the OOB channel, but not
modify or create them. Thus, such modeling would not capture attacks such as Tap n’ Ghost,
as message modification is out-of-scope and channels. Notably, the user-device channels were
also treated in a combined way, vs. allowing separate action on each device. Vaudenay’s ad-
versarial construction was also mirrored in Laur and Nyberg’s security analysis of the MANA
IV protocol, a precursor to Numeric Comparison [30]. We expand on these initial analyses
by also giving the adversary the capability to modify and create user-to-device messages
dependent on the CYBORG security framework in use, as well as systematically considering
separate adversarial action for the variants of the user-to-device channel.

Recent research in the computational setting [18,23] incorporates user–device interaction
in the analysis of authentication protocols. The 3-Party Possession User Mediated Authen-
tication (3-PUMA) model, presented in [23], provided a computational model to capture
communications sent over both the device-to-device channel and the user-to-device chan-
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nels. That model was later adapted to allow for the adversarial queries ShowUser and
ControlUser [18] and used to analyze entity authentication in Signal under the Mediated
Epoch Three-Party Authentication (META) computational model. These queries capture
adversarial ability to show erroneous information to the user (e.g. via malware on the device)
as well as input erroneous information from the user (e.g. via modeling social engineering).
These models form the foundation for our development of the CYBORG model.

While previous work focused on authentication protocols, we introduce a framework for
the analysis of cyborg key exchange. Our key exchange framework is in keeping with other
prominent standard AKE models [7, 13, 26, 29] where matching participant transcripts are
required. We further add user modeling components from [18, 23]. Additionally, we extend
earlier models for finer-grained analysis of the user-to/from-device channel security for in-
dividual devices and sessions, by separating out specific adversarial categories as shown in
Figure 2.

Figure 3 summarizes our results, showing the security of the original Passkey Entry
protocol in our model under all protocol variants (Initiator-Generated Passkey, Responder-
Generated Passkey, and User-Generated Passkey) and all adversarial channel control variants
(rows). Furthermore, the security of Bluetooth under our two proposed protocol modifica-
tion variants is also shown (columns 4-7). While Dual Passkey Entry with Secure Hash
Modification is the strongest protocol in our model, it also requires the most changes to
the underlying protocol, and may not be feasible if both devices do not possess both input
and output capabilities. Thus we demonstrate how even a minor change to the protocol can
enable Passkey Entry to provide some security under a CYBORG adversary (columns 4-6).

1.4 Contributions

We build on research of user-mediated protocols with an analysis of Passkey Entry, and
summarize our results in Fig. 3. Specifically,

• we provide the first security framework in computational analysis for cyborg AKEs
supporting adversarial modification and creation of user-to-device messages, where the
user is an active participant in protocol execution.

• we provide the first systematic separation of all variants of adversarial capabilities
against user-to-device channels.

• we conduct the first computational analysis of Passkey Entry for Bluetooth BR/EDR,
under either Secure Simple Pairing or Secure Connections. This analysis comprehen-
sively covers all protocol variants, where the passkey is initiator-generated, responder-
generated, or user-generated.

• we show that basic protocol modifications can improve the security of Passkey Entry in
the CYBORG model, even to the point of full CYBORG security. This highlights the
usability of the model, as well as the fine-grained clarity it provides to the conditions
of protocol security.

The paper organization proceeds as follows: Section 2 introduces the Bluetooth Passkey
Entry protocol per specification. The CYBORG model, including freshness conditions to
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capture various adversarial capabilities, is introduced in Section 3. In Section 4 we analyze
all variants of Passkey Entry in the CYBORG model. Finally, in Section 5 we present two
modifications of Passkey Entry, requiring different degrees of protocol changes and show, in
Section 6 the corresponding security analyses of the modified variants.

2 Passkey Entry Protocol

In this section we present the Passkey Entry protocol adapted to fit within below mathemat-
ical definitions and a diagram for reference in Figure 4.

2.1 Relevant Variables

Variables used in Passkey Entry are described as follows:

• A ∈ {0, 1}48: The Bluetooth device address / identity of device of A.

• btlk: a fixed 16 bit ASCII string label for LK.

• Ca ∈ {0, 1}128: 128 bit tag from device A, the commitment value.

• DHKey ∈ {0, 1}256: Ephemeral DH key.

• Ea ∈ {0, 1}128: 128 bit tag from device A, the check value.

• IOcapA ∈ {0, 1}24: The IO capability of device A.

• LK ∈ {0, 1}128: A device’s session key, the link key.

• HMAC: a hash-based message authentication code algorithm.

• Na ∈ {0, 1}128: A nonce generated from device A.

• P : generator point for elliptic curve employed.

• PKa = (PKax, PKay) ∈ {0, 1}256 × {0, 1}256: a bit representation of the ephemeral
public key of device A for an elliptic curve DH key agreement. We write PKax for the
x-coordinate and PKay for the y-coordinate.

• r ∈ {0, . . . , 9}6: A 6-digit, decimal value, the passkey.

• SKa ∈ {0, 1}255: Ephemeral secret key of Device A.

Bluetooth’s specification requires that Na be sampled fresh for every execution of Passkey
Entry, and recommends the same for SKa, r. In this analysis we assume SKa, Na, and r are
fresh values. We impose this restriction not only to simplify analysis but also because Passkey
Entry with long-term DH keys allows for potential forward secrecy issues, as only long-term
secrets would factor into session key generation, and long term passkeys allows for MitM
attacks [31].
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Figure 4: Passkey Entry. Phase 0 takes place before execution of the protocol; A, B, IOcapA,
and IOcapB are distributed amongst the devices during this phase. Phase 2, steps 6-8, are
version dependent as labeled (for initiator-generated passkey, responder-generated passkey,
and user-generated passkey), all other steps are version independent.
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We state the actual bit lengths for the relevant variables as required under either BR/EDR
Secure Simple Pairing or Secure Connections Passkey Entry. Secure Simple Pairing utilizes
the P-192 elliptic curve while Secure Connections uses P-256 [34]. Both modes use SHA-
256 [35] for the hash function and HMAC-SHA256 [28] for the MAC. Also note that DHKey
is computed as the x-coordinate of [SKa]PKb where [·]· is used to symbolize elliptic curve
point multiplication. We require PKay as part of the public key, by way of validation checks
to prevent the attack described in [8].

IO capability not only determines the version of Bluetooth AKE (Numeric Comparison,
Just Works, Out-of-Band, and Passkey Entry), but also, for Passkey Entry, how the passkey
is generated (by the initiating device, the responding device, or the user). Passkey Entry
requires a display output on no more than one device; in the case of a user-generated passkey,
no device display is required. Thus, Passkey Entry can cover a wider variety of device pairings
than other Bluetooth pairing modes, such as a wireless keyboard and a computer.

2.2 Protocol Phases

Phase 0: Init and IOcap Exchange.

This phase is not explicitly listed in the Bluetooth v5.2 specification and is not a phase of
the Passkey Entry protocol as presented therein; however, it encompasses a variety of steps
performed over an insecure channel before pairing commences including the sharing of data
essential to the protocol. This includes device discovery for the sharing of identities (A and
B), IO capabilities (IOcapA and IOcapB), and initialization of a connection.

Phase 1: Public Key Exchange.

The purpose of Phase 1 is to generate a shared key via an ECDH key agreement. To accom-
plish this, the public keys of devices A and B are exchanged in steps 2 and 3, and the shared
key DHKey is calculated in steps 5a and 5b.

Phase 2: Authentication Stage 1.

Phase 2 handles authentication through the passkey and has three versions.

• Initiator-Generated Passkey Entry (PE-IG). The initiating device randomly samples
the passkey r, transmits it to the user, and the user transmits it to the responding
device.

• Responder-Generated Passkey Entry (PE-RG). The responding device randomly sam-
ples the passkey r, transmits it to the user, and the user transmits it to the initiating
device.

• User-Generated Passkey Entry (PE-UG). The user randomly samples the passkey r
then sends it to both the initiating and responding devices.

The devices then proceed to authenticate knowledge of r one bit at a time, for 20 bits of r
in sequence. The HMAC Vfy algorithm outputs a verification bit, v ∈ {0, 1}. If v1 = 0 or
v2 = 0, the protocol is aborted.
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Phase 3: Authentication Stage 2.

This phase completes entity authentication, binding commitment of the user authenticated
passkey to the Phase 1 knowledge shared key, DHKey.

Phase 4: Link Key Calculation.

The purpose of this phase is the calculation of the link key, LK, and completion of this phase
concludes Passkey Entry.

3 CYBORG Security Model

In this section we present the CYBORG security model as a synthesis of past security models
addressing both cyborg-type protocols [14, 18,23] and AKEs in general [7, 13,26,29].

There are two main methods of identifying communicating sessions within a model:
matching conversations (as introduced in [7]) and session identifiers. While matching conver-
sations capture the concept of agreement over the entirety of the communication transcript,
session identifiers usually only cover a partial transcript. Due to the usual lightweight na-
ture of cyborg protocols (e.g. in that no certificates are not used) as well as the potential
for lightweight cryptographic algorithms used on the subsequent channel (as appropriate for
IoT use), detecting any adversarial interference is especially important. Thus, a variant of
matching conversations is appropriate to this model.

However, this is problematic when investigating cyborg protocols, since messages sent over
the UtD channel do not present an obvious method for inclusion in device transcripts. There-
fore, we present a hybridization of matching conversations and session identifiers, termed
session identifiers with user, a CYBORG analogue of matching conversations. We extract
relevant messages sent over both UtD and DtD channels that match between devices.

We extend standard device-device partnering with user-device partnering. Both forms of
partnering play a key role in the construction of the various freshness definitions (Defini-
tions 3.8 and 3.10 to 3.11), which we leverage to describe the varying attack scenarios an
adversary may mount.

3.1 Participant Model

3.1.1 Sessions

We define a session to be a single instance of a protocol and write πAs to refer to the s-th
session for participant A where A ∈ ID ∪ {U}. Let ID be the set of all possible device
identities and U be the identity of the user. We only allow one user identity in keeping with
reasons discussed in Section 3.1.3 and [23]. We set no limit on the number of sessions a single
participant can have running at any one time with any other participant.

3.1.2 Devices

We utilize session oracles to capture the participation of a device A ∈ ID in a specific session,
and describe the internal state of A as a tuple of the following values:
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• skey ∈ K ∪ {⊥}. This variable holds device A’s completed session key for the session
where K is the associated keyspace.

• state ∈ {0, 1}∗ ∪ {⊥}. This variable holds other secret state information.

• role ∈ {initiator, responder,⊥}. This variable holds device A’s role.

• pid ∈ ID \ {A}. This variable holds the identifier for the partner device.

• sidu ∈ {0, 1}∗ ∪ {⊥}. This variable holds the current session identifier.

• δ ∈ {accept, reject, ∗}. This variable holds the specific result of the session either
acceptance, rejection, or no decision, respectively.

At the creation of the s-th session for device A, the session oracle πAs is initiated to
(skey, state, role, pid, sidu, δ) = (⊥,⊥,⊥,⊥,⊥, ∗). For session acceptance, we require the fol-
lowing:

δ = accept ⇐⇒ skey 6= ⊥ .

3.1.3 Users

The user in the CYBORG protocol is assumed to be honest, whereby honest means that the
user executes its function exactly as described by the protocol specification, and is modeled
via session oracles, where each session oracle πUj maintains the following state:

• Two device-session pair identifiers device1 = (A, s) and device2 = (B, t), where A,B ∈
ID and A 6= B.

3.1.4 Partnering

Session identifiers with user follow the concept of matching conversations, albeit with tran-
scripts requiring only information that both devices hold.

Definition 3.1 (Session Identifiers with User). Let two session oracles, πAs and πBt , execute
an authenticated key exchange protocol, Π, mediated by a user session oracle, πUj and let
the following tuple of messages be the ordered transcript of all messages sent/received by πAs
over the course of Π:

(msg1, . . . ,msgn) ,

where msgk, is the k-th message sent/received in sequential order. Then we define the session
identifier, denoted sidu, as the following subsequence of (msg1, . . . ,msgn) pre-appended by
an optional msg0:
for 1 ≤ k ≤ n, we append msgk to πAs .sidu if any of the below criteria are met:

1. msgk is sent by πAs to πBt , or

2. msgk is received by πAs from πBt , or

3. msgk is sent by πAs to πUj and πUj sends msgk to πBt , or
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4. msgk is received by πAs from πUj and πUj received msgk from πBt , or

5. msgk is received by πAs from πUj and πUj sends msgk to πBt .

Information exchanged prior to protocol execution for use within may optionally be pre-
appended to sidu as a fixed msg0.

Remark. The above definition follows closely to matching conversations, with two alterations:
1) we remove information sent between one device and the user which cannot be expected to
be held by the other device, and 2) we allow additional information from prior to the protocol
run. The second case captures pre-shared data that is common in user-mediated protocols,
such as Input/Output capabilities (IOcap) in Bluetooth. While traditional network protocols
such as TLS share capabilities during the protocol run, such as available ciphersuites, such
mutually held data may be defined externally to the protocol in the lightweight user-mediated
setting.

Definition 3.2. We say that a session identifier πAs .sidu with length l ≥ 1 is a prefix of πBt .sidu
if all values in πAs .sidu match and are in the same order as the first l messages in πBt .sidu.

Definition 3.3 (Matching Sessions). We say that a device, A, at session s has matching session
identifiers with device B at session t if

• πAs .sidu = πBt .sidu where A receives the last message(s), or

• πBt .sidu is a prefix of πAs .sidu where A sends the last message(s).

This is a variant of the standard asymmetric definition for (prefix) matching session
identifiers because we must account for the instance where a device sends the last message
and accepts, but the adversary deletes this message en route to its intended recipient.

Definition 3.4 (Device-Device Partnering). We say sessions πAs and πBt are partnered if
πAs .pid = B, πBt .pid = A, πAs .role 6= πBt .role, and A and B have matching session identi-
fiers.

Definition 3.5 (User-Device Partnering). If πUj .device1 = (A, s) or πUj .device2 = (A, s), then
we say that πUj and πAs are partnered.

User sessions are opaque to device sessions. Consequently, if the user is partnered with
two device sessions, we assume that the device sessions always send messages to the correct
partnered user session. We also require that a device session cannot be partnered with more
than one user session, as can be expected in normal user interactions during device pairing.
In the case of devices executing concurrent sessions, the user can still distinguish sessions
since we assume that ephemeral passkeys will be used.

3.2 Adversarial Model

3.2.1 Communication Channels.

In this section we look to explicitly define the capabilities of an adversary in regards to
messages sent over the two communication channels used: device-to-device (DtD) and user-
to-device (UtD).
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Definition 3.6 (Device-to-Device Channel). An adversary may read, replay, delete, or modify
any message sent between device oracles πAs , π

B
t and we call this the DtD channel.

Definition 3.7 (User-to-Device Channel, Without Eavesdropping). An adversary may replay
or delete any message sent between a device oracle πAs and user oracle πUj , but may not
modify, to include the intended destination, create, nor read any message. We call this the
UtD channel (UtD).

Our definition for the DtD channel allows the adversary full control over communications
sent between devices. However, we do restrict the adversary’s capability to affect communi-
cations over the UtD channel. We disallow read, modify, and create capabilities under normal
operation, and restrict these to cases of device or user compromise, modeled via adversar-
ial access or queries. Ultimately the difference inherent to how users interact with devices
over the UtD channel necessitates stronger attack capabilities not privy to the typical active
attacker when compared to the DtD channel. Lastly, we note that allowing eavesdropping
over the UtD channel is often protocol dependent as some protocols require secrecy on that
channel (e.g. in Passkey Entry or ATM pin codes), while others do not (e.g. Bluetooth
Numeric Comparison).

3.2.2 Adversarial Queries.

We now present a list of queries for the adversary to use when interacting with Passkey Entry
participants.

• SendDevice(πAs ,msg). The adversary can use this query to send a message msg to the
given session oracle. The session oracle will then act on msg as the protocol specifies
and any response will be returned to the adversary. If msg = (start, B) for B ∈ ID,
a non-protocol specific special initiation message, is the first message the given session
oracle has received then it will set role = initiator and pid = B and output the first
protocol message. This allows the adversary to initiate a protocol run between two
identities. Else, if the first message a device session oracle receives does not consist of
the non-protocol specific special initiation message and comes from B ∈ ID, then the
oracle sets pid = B, role = responder, and executes the protocol as intended in the role
of the responder.

• SendUser(πUj ,msg). The adversary can use this query to send a message msg to the
given user session oracle πUj . The session oracle will then act on msg as the protocol
specifies and any response will be returned to the adversary. If msg = (start, (πAs , π

B
t ))

for A,B ∈ ID, a non-protocol specific special initiation message, is the first message
the given session oracle has received, then U first checks if πAs or πBt were ever part
of a received msg = (start, ·) message for any session πUj′ . If so, the session outputs ⊥.
Else, the session sets device1 = (A, s) and device2 = (B, t). Else, if the first message
received by πUj does not consist of such a start message, the session oracle outputs ⊥.
The session oracle will then execute the protocol in the role of the user as intended
with the given device identities.

• StateReveal(πAs ). The adversary may use this query to obtain access to the session state
information state.
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• KeyReveal(πAs ). The adversary may use this query to obtain access to the session key
skey.

• ShowUser(πAs ). This query outputs ⊥. After this query, the adversary can modify or
create any UtD message sent from the given device to the user within πAs .

• ControlUser(πUj , A). This query outputs ⊥. After this query, the adversary can modify
or create any UtD message sent from the user U to the device A of the current session.

• Test(πAs ). This query may only be asked once throughout the game. If πAs .δ 6= accept,

this query returns ⊥. Else, it samples b
$← {0, 1}, and sets k ← πAs .skey if b = 1 and

k
$← {0, 1}λ otherwise. The query outputs kb.

These queries were developed to model compromise of a device or a user in keeping with
modeling real-world attacks. The SendDevice, StateReveal, KeyReveal, and Test queries are
typical variants used to model the adversary’s ability to control the experiment and com-
promise a device’s internals via side-channel or malware. SendUser is needed to allow the
adversary to initialize user session oracles and also to give him the ability to send messages
to the user as desired. The two queries, ShowUser and ControlUser, are included to give the
adversary the ability to compromise the UtD channel. ShowUser models the adversary gain-
ing control over a device and inducing it to send messages to the user, via malware-induced
pop-ups for example. Meanwhile the ControlUser query gives the adversary the ability to
affect messages input to the device from the user, such as from a Ghost Touch Generator
or social engineering. The ShowUser and ControlUser queries are also restricted in effect to
specific sessions. This is done to capture the idea that adversary compromise of the UtD
channel can have a time-sensitive nature.

3.2.3 User and Device Freshness.

Typically, freshness has only been defined with respect to devices. This made sense when
only devices engaged in the action of the protocol, but with the advent of cyborg protocols
it becomes necessary to define freshness for device and user session oracles. The uncom-
promised setting enables us to test the baseline security of the protocol, which restricts the
adversary’s use of both device and user-oriented queries. In the compromised user setting, the
adversary gains varying abilities to issue combinations of ShowUser and ControlUser queries.
The freshness types ([iu], [ru], [ui] and [ur] are depicted visually in Figure 2). We define a
corresponding device freshness that is used to assess key indistinguishability in the security
experiment, wherein the adversary may not reveal device secrets; the adversary has much
more liberty to reveal device secrets when attempting to break authentication.

Definition 3.8 (Device Freshness). We say that a device session oracle πAs is fresh in the un-
compromised setting (UncUser-fresh) and fresh under compromised user type [x] (CompUser[x]-
fresh) unless any of the following hold:

• the adversary issues a StateReveal(πAs ) query, or

• if there exists a session oracle πBt partnered with πAs and the adversary issues a
StateReveal(πBt ) query, or
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• the adversary has issued a KeyReveal(πAs ) query, or

• if there exists a session oracle, πBt , partnered with πAs and the adversary issues a
KeyReveal(πBt ) query.

The freshness conditions whereby we restrict adversarial reveals on both the target device
session and a partnered device session is in keeping with precedent. The restriction of ad-
versarial queries on a device partnered with the same user oracle is analogous to restricting
corruption of the intended partner’s long-term keys. Cyborg key exchange protocols rely on
the user to authenticate devices in the same vein as a Certificate Authority authenticates
devices in typical AKE; thus, we rely on the user’s authentication of the intended partner to
limit reveals.

Definition 3.9 (User Freshness under No Compromise). We say that a session oracle πUj is
fresh in the uncompromised setting (UncUser-fresh) unless any of the following hold:

• the adversary has issued a ShowUser(πAs ) query before the last UtD message is sent and
received between πUj and πAs according to the protocol, where πUj is partnered with πAs ,
or

• the adversary has issued a ControlUser(πUj , A) query before the last UtD message is sent
and received between πUj and πAs according to the protocol, where πUj is partnered with
πAs .

We now focus on the freshness scenario under user compromise, which replaces the tra-
ditional view of the user as a perfect OOB channel (i.e. an uncompromised user).

Definition 3.10 (User Freshness under Compromise Type iu and ru). We say that a session
oracle πUj for U and session j is fresh under compromised user, type iu (resp. type ru),
denoted CompUser[iu]-fresh (resp. CompUser[ru]-fresh) unless

• the adversary has issued a ShowUser(πAs ) query before the last UtD message is sent and
received between πUj and πAs according to the protocol, where πUj is partnered with πAs ,
and

– (if CompUser[iu] :) πAs .role = responder

– (if CompUser[ru] :) πAs .role = initiator

or

• the adversary has issued a ControlUser(πUj , A) query before the last UtD message is sent
and received between πUj and πAs according to the protocol, where πUj is partnered with
πAs .

Definition 3.11 (User Freshness under Compromise Type ui and ur). We say that a session
oracle πUj for U and session j is fresh under compromised user, type ui (resp. type ur),
denoted CompUser[ui]-fresh (resp. CompUser[ur]-fresh) unless
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• the adversary has issued a ShowUser(πAs ) query before the last UtD message is sent and
received between πUj and πAs according to the protocol, where πUj is partnered with πAs ,
or

• the adversary has issued a ControlUser(πUj , A) query before the last UtD message is sent
and received between πUj and πAs according to the protocol, where πUj is partnered with
πAs , and

– (if CompUser[ui] :) πAs .role = responder

– (if CompUser[ur] :) πAs .role = initiator

We restrict the adversary from making ShowUser and ControlUser queries dependent on
the role of the device session, such that only one UtD channel may be compromised in each
type (denoted in red/dashes in Figure 2). This decision allows us to focus on the exact
circumstances under which a protocol breaks.

Definition 3.12 (User Freshness under Compromise Type Combinations). Let X be a non-
empty subset of the set {iu, ru, ui, ur}; we refer to the set X with the label string x con-
structed from the elements of X in sequential order. We then say that a session oracle πUj for
U and session j is termed fresh under compromised user, type x (CompUser[x]-fresh) unless
the adversary issues a single query which breaks CompUser[xi]-freshness simultaneously for
all xi ∈ X.

Note that a session oracle’s freshness must be assessed per query under CompUser[x]-
fresh; said query must break freshness for the session oracle in all the elements of the set
X individually. This structuring of CompUser[x]-fresh is needed so we can capture more
advanced attacks that an adversary may mount. Using only select definitions from among
Definitions 3.10 to 3.11 we would be unable to capture the “Tap ‘n Ghost” attack as it
involves the corruption of the communication channels both from a device to the user and
vice versa. However, we can model this using the CompUser[iu,ui]-fresh. In a CompUser[iu,ui]-
fresh environment, the adversary would be allowed to issue both a ShowUser and a ControlUser
query so long as both involved the initiating device; and similarly in a CompUser[ru,ur]-fresh
environment for the responding device. We list out all the types of CompUser[x]-fresh that
are possible under Definitions 3.10 to 3.12:

[iu], [ru], [ui], [ur], [iu, ru], [iu, ui], [iu, ur], [ru, ui], [ru, ur], [ui, ur],

[iu, ru, ui], [iu, ru, ur], [iu, ui, ur], [ru, ui, ur], [iu, ru, ui, ur] .

3.3 CYBORG Security Experiment

In light of all previous definitions, we now present the CYBORG security experiment for the
reader.

Definition 3.13. We define the CYBORG-type security experiment for a PPT adversarial
algorithm A against a cyborg key exchange protocol Π, and interacting with a challenger via
all previously defined adversarial queries in the EXPCYBORG-type

Π,A,ηp,ηs experiment, where ηp is the
maximum number of device participants and ηs is the maximum number of sessions for any
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participant. We say that the adversary A wins the experiment with the challenger outputting
1 if any of the following conditions hold for type ∈ {UncUser,CompUser}.

1. Correctness (correct):
there exists two type-fresh and partnered device oracles πAs and πBt where:

• πAs and πBt are both partnered with the type-fresh user oracle πUj , and

• πAs .δ 6= accept, or

• πBt .δ 6= accept.

2. Entity Authentication (auth):
there exists a type-fresh session oracle πAs where:

• πAs .δ = accept with intended partner pid = B and

• πAs is partnered with the type-fresh user oracle πUj , and

• if πUj is also partnered with πBt , A has not issued a StateReveal(πBt ) query while
πAs .δ 6= accept, and

• there does not exist a unique session oracle at B that is partnered with πAs .

3. Key Indistinguishability (key-ind):
at some point in the experiment A issued a Test(πAs ) query on a type-fresh session oracle
πAs , where

• πAs .δ = accept with intended partner pid = B, and

• πAs is partnered with a type-fresh user oracle πUj , and

• if πUj is also partnered with πBt , A has not issued a StateReveal(πBt ) query while
πAs .δ 6= accept, and

• there exists an oracle πBt′ partnered with πAs , and

• at some subsequent point in the experiment A responds with its guess b, where
Pr[b = b] ≥ 1/2 where b is the randomly sampled bit from the associated Test
query.

Else, the challenger outputs 0. We denote the adversary A winning the experiment and
the challenger outputting 1 as:

EXPCYBORG-type
Π,A,ηp,ηs (λ) = 1 .

We define the advantage for the PPT adversarial algorithm A in the above experiment to
be:

AdvCYBORG-type
Π,A,ηp,ηs (λ) := Pr[EXPCYBORG-type

Π,A,ηp,ηs (λ) = 1] .

Definition 3.14. If there exists a negligible function negl(λ) such that for all PPT adversaries
A interacting according to the CYBORG-type experiment, it holds that:

AdvCYBORG-type
Π,A,ηp,ηs (λ) ≤ negl(λ) ,

then we say that the protocol Π is CYBORG-type-secure.
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The above definition presents a change from META in that we require two partnered
oracles to imply acceptance, as captured by correct. This is a reasonable assumption when
acceptance is not conditioned by a concluding user input.

4 Analysis of Passkey Entry

In this section we present the initial results of our analysis of Passkey Entry under the
CYBORG security model and show that all versions of Passkey Entry fail to meet any
version of CYBORG security. For Inititiator/Responder-Generated Passkey Entry, this is
because the first 19 generated nonces are not authenticated in Phase 3, which leads to an
adversarial forgery based off a single bit guess and consequently failure of session matching.
Meanwhile, User-Generated Passkey Entry fails to achieve CYBORG security because role
agreement is not guaranteed through protocol execution.

We define the session-state information for all versions of Passkey Entry and a given
session oracle πAs as:

πAs .state = (SKa, r, Na,1, . . . , Na,20) ,

where all values are as defined in Section 2. We capture all randomly generated information
a device considers secret in the session-state. Although nonces are made public in the course
of the protocol, they are included here as they are used as secret keys before such disclosure.

Since all versions of Passkey Entry are susceptible to passkey re-use attacks [31], the
passkey r must be generated as an ephemeral secret. This presents a unique modeling
challenge. If generated by a device, the passkey may be derived from the same source of
randomness as other ephemeral keys or nonces. If generated by a user however, this is not
the case. In this scenario, it becomes necessary to operate under the assumption that the
user has some means of random number generation either via a keyfob or other source.

First we define the session identifier for all versions of Passkey Entry from a correctly
executed session involving an initiating device, e.g. A, and responding device, e.g. B, as
described in Section 3.1.4:

sidu := ((A,B, IOcapA, IOcapB), PKa, PKb, r, Ca,1, . . .

. . . , Cb,1, Na,1, Nb,1, . . . , Ca,20, Cb,20, Na,20, Nb,20, Ea, Eb).

Note that identities are shown as an example above, and A may be either an initiating device
or responding device in the following analysis, specified where appropriate.

Theorem 4.1. Initiator-Generated and Responder-Generated Passkey Entry are
not CYBORG-UncUser-secure.

Proof. We prove Theorem 4.1 via a counter-example by describing how an adversary can
entice a device to accept maliciously in the Initiator-Generated Passkey Entry case. The
case of Responder-Generated Passkey Entry follows similarly.

Let A be an adversarial algorithm against the CYBORG-UncUser security of Initiator-
Generated Passkey Entry. The adversary first issues a SendDevice(πAs , (start, B)) to initiate a
protocol run between devices A and B, and a SendUser(πUj , (start, (π

A
s , π

B
t ))) query to initiate
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the associated user oracle. The adversary then allows the protocol to progress through step
8. At this point, A then makes a guess re,i for the bit value of ra,i used by the initiating
device to construct Ca,i where 1 ≤ i ≤ 19. A then randomly samples a new nonce Ne,i

and calculates a new tag Ce,i = HMAC(Ne,i, PKax‖PKbx‖re,i). When device A attempts to
send Ca,i to device B in step 12, the adversary replaces this value with Ce,i, and similarly
replaces Na,i with Ne,i in step 14. If we have that ra,i = re,i, then device B’s verification in
step 15 will succeed; A will then take no further actions and allow the protocol to proceed
to completion. This will lead to both πAs and πBt accepting but they will not have matching
session identifiers since they will disagree on the values for Ca,i and Na,i and A succeeds in
breaking auth. Since A’s guess of ra,i is correct with probability one-half, we have that

AdvCYBORG-UncUser
PE-IG,A,ηp,ηs (λ) ≥ 1

2
.

In User-Generated Passkey Entry an adversary can mount a “role confusion” attack on
the pairing devices (illustrated in Figure 5 and described in the proof of Theorem 4.2 below).
This attack leads to both devices accepting although neither actually pairs with the other.
Similar attacks have been previously shown on other protocols [5].

Theorem 4.2. User-Generated Passkey Entry is not CYBORG-UncUser-secure.

Proof. Let A be an adversarial algorithm against the CYBORG-UncUser security of User-
Generated Passkey Entry. A first issues a SendUser(πUj , (start, (π

A
s , π

B
t ))) to initiate the user

for a protocol run between devices A and B. A then issues both a SendDevice(πAs , (start, B))
and a SendDevice(πBt , (start, A)) query. A will then function as an intermediary between the
session oracles πAs and πBt , which both run the protocol in the role of the initiating device.
After both device A and B exchange their public keys through the adversary, they will be
ready to accept the passkey from the user. The user inputs a passkey into both devices
according to the protocol (note that the device session role is opaque to the user). A then
simply relays all relevant protocol messages between device A and device B in keeping with
the description of User-Generated Passkey Entry. At the conclusion of the above attack, we
have that A has won the CYBORG-UncUser security experiment by breaking auth, since πAs
and πBt have both accepted but there does not exist a paired UncUser-fresh session oracle for
either device, due to role disagreement.

In summary, all versions of Passkey Entry do not meet any level of CYBORG security.
Even though Passkey Entry was originally developed to prevent offline dictionary attacks by
using 20 commitments (one commitment for each bit of the passkey), it allows for breaks
in auth. Note that the proof in Theorem 4.1 can also be used as a counter-example for
User-Generated Passkey Entry insecurity.
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Figure 5: Role confusion attack on User-Generated Passkey Entry that results in two devices,
both in the initiator role, accepting. Adversary shown by dashes.

5 Modified Passkey Entry

In this section we present two modified Passkey Entry protocol variants (see Figure 6). With
these modifications, Passkey Entry can achieve complete CYBORG security (see analysis in
Section 6). We demonstrate these modifications as a proof-of-concept that CYBORG security
is achievable with interaction from both devices and full transcript validation.
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Modifications were made with the goal of introducing minimal change to the protocol,
as well as restricting most changes to Phase 2 in keeping with the requirements for modular
construction of Bluetooth protocols.

• Secure Hash Modification (SHM): This modification requires the addition of a
collision-resistant hash function, H, with a 128-bit output length (in keeping with the
specified nonce length).

– Concatenate and hash all of a device’s previously generated nonces to form Na and
Nb (steps 8c and 8d). Na and Nb replace Na,20 and Nb,20 in all further Phases. This
ensures computation of the check values Ea and Eb rely on all generated nonces.
It also prevents the bit guessing attack described in the proof of Theorem 4.1.

– Include device role in the computation of Na and Nb. Each device declares their
role and the assumed role of their partner in the hash computation over Na, Nb

using the labels init and resp for the initiator and responder respectively. This
protects against the role confusion attack described in the proof of Theorem 4.2.

– Include both IOcap variables in the computation of Ea and Eb. This ensures
authentication of both IOcap capabilities.

• Dual Passkey Entry (DPE): This modifcation requires the initiator and responder
to both possess a numerical display and numerical input capabilities.

– Each device generates a passkey and shares this value via the user. The initiator
relays its passkey ra to the responder through the user, followed similarly by the
responder with rb. This prevents display output and/or input compromise.

Dual Passkey Entry’s reliance on device’s possessing both numerical displays and keypad
entry is more in line with the requirements for Numeric Comparison, which requires both
devices to have both numerical displays and binary inputs. Traditional Passkey Entry in
comparison requires a display and entry mechanism on respective, instead of both, devices
(for Initiator Generated and Responder Generated Passkey Entry), or only requires entry
mechanisms on both (for User Generated Passkey Entry). This begs the question of whether
simply using Numeric Comparison would be a viable alternative vice a new protocol. Al-
though we do not devote a full analysis to Numeric Comparison under the CYBORG model
due to space constraints, observation suggests that Numeric Comparison would not achieve
full CYBORG security. In particular, Numeric Comparison requires identical and predictable
binary user inputs on both devices (to confirm whether two displayed values match [10]). Un-
der CompUser[ui] and/or CompUser[ur] freshness definitions the adversary could modify the
user confirmation/denial message to allow a MitM attack to advance regardless of matching
in the actual values displayed.

The SHM falls very closely to techniques used in other protocols and brings Passkey Entry
more in line with accepted techniques for protecting against downgrades. For example, TLS
1.3 [38] computes the Finished message over exchanged ciphersuites, thereby ensuring that
both parties agree to exchanged capabilities. However, while this change adds authenticity
against transcript modification during Phase 2 of the protocol, it does not prevent a more
direct downgrade; namely, if the IOcap was changed to Just Works, the Passkey Entry
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Figure 6: Dual Passkey Entry with Secure Hash Modification. Dual Passkey Entry (DPE)
is depicted with the modifications in blue, where both devices generate passkeys.The Secure
Hash Modification (SHM) is depicted green and can be used in conjunction with DPE or
any version of Passkey Entry. Under this modification all nonces are hashed into the new
values Na, Nb for subsequent use. Devices also declare assumed roles, using the strings init
and resp, and both IOcap variables are used in the computation of Ea, Eb.

protocol would not be completed at all. In terms of overhead, the SHM notably adds only
one hash computation per party. In comparison, Passkey Entry already requires 21 HMAC
computations and 21 HMAC verifications per party.

In contrast, DPE demonstrates a straightforward analogue to certificate usage. Passkey
Entry is uni-directional in the user receipt and relay of the passkey; one can think of it
as similar to a server-only certificate. DPE in comparison is bi-directional, analogous to
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certificates on both sides. Some cases of lightweight devices without suitable I/O capabilities
exist where DPE may not be possible. However, for such cases where mutual authentication
is unachievable, the results of Section 4 and shown in Fig. 3 provide particular guidance.
Namely, by demonstrating which compromise scenarios are fatal to the protocol in Fig. 3,
manufacturers and end users gain insight on the device that is most in need of protection
(i.e. dependent on the device that is generating a passkey) and under what conditions.

6 Analysis of the Modified Protocol

The following analysis covers all four versions of Passkey Entry (Initiator-Generated, Responder-
Generated, User-Generated, and Dual) with the Secure Hash Modification (signified by the
“SHM” prefix) under both security environments defined in the CYBORG model: uncompro-
mised user (UncUser) and compromised user (CompUser). For CompUser, each version of the
SHM Passkey protocol is analyzed under each of our four baseline definitions of compromised
user scenarios (Definitions 3.10 to 3.11). We operate under the definitions for session-state
and the sidu described in Section 4.

Initiator-Generated Passkey

We start with results for the SHM Initiator-Generated Passkey Entry protocol as follows,
covering all variants under the CYBORG security model.

Theorem 6.1. SHM Initiator-Generated Passkey Entry is

• CYBORG-UncUser-secure under
the EC-sym-ssPRF-ODH and EC-DDH assumptions, the sec-pre of H, and the SUF-CMA
security of HMAC.

• CYBORG-CompUser[x]-secure for

[x] ∈ {[ru], [ui], [ru, ui]} .

• not CYBORG-CompUser[x]-secure for

[x] ∈{[iu], [ur], [iu, ru], [iu, ui], [iu, ur], [ru, ur], [ui, ur],

[iu, ru, ui], [iu, ru, ur], [iu, ui, ur], [ru, ui, ur],

[iu, ru, ui, ur]} .

The proofs for the above theorems can be found in Appendix C.1. We provide a proof
sketch for the CYBORG-UncUser setting here, which serves as the basis for other proof
variants in the positive results (for negative results, counter-examples are also shown in
Appendix C.1).

Proof Sketch. The proof of this theorem involves a series of game hops between an adversarial
PPT algorithm A and the challenger. We denote the adversarial advantage of a specific game
as Advi, for the i-th game hop.

24



Game 0. This game is equivalent to the original security experiment. Thus we have
Adv0 = AdvCYBORG-UncUser

PE-IG,A,ηp,ηs (λ).
Game 1. In this game we abort if two session oracles ever generate the same ephemeral

DH key, SK, of length µ. Thus we have Adv1 ≥ Adv0 − (ηpηs)
2 · 2-µ.

Game 2. In this game we abort if we ever have nonce collision, and there are 20 nonces
generated each session. Thus we have Adv2 ≥ Adv1 − 400 · (ηpηs)2 · 2-λ.

Game 3. In this game we abort if a passkey, r, is ever re-used. Thus we have Adv3 ≥
Adv2 − (ηpηs)

2 · 2-|r|.
Game 4. In this game we the guess the target session oracle, πAs , and its partner, πBt ,

uniformly at random, and abort if A does not attempt to win against this guessed pair. Thus
we have Adv4 ≥ (ηpηs)

-2 · Adv3.
We then continue by game-hopping dependent on whether A attempts to win by breaking

correct, auth, or key-ind. Thus we have Adv4 = Advcorrect
4 + Advauth

4 + Advkey-ind
4 .

Advantage against correct. This step is straightforward.
Advantage against auth.
Game 5. In this game we abort if A succeeds in forging the DH public keys PKa, PKb.

To forge public keys, A must guess all 20 bits of the passkey r. Accounting for πAs in the
initiator and responder roles, we have Advauth

5 ≥ Advauth
4 − 2-(|r|−1).

Game 6. In this game we replace DHKey = [SKa]PKb = [SKb]PKa with the uniformly

random value D̃HKey. By the EC-DDH assumption, A is unable to distinguish this change.
Thus, we have Advauth

6 ≥ Advauth
5 − AdvEC-DDH

B1 (λ).
We continue the proof by first separating two sub-cases based on the test session’s role:

initiator (C1) or responder (C2). Thus we have Advauth
6 = Advauth,C1

6 + Advauth,C2

6 .
Case 1: πAs .role = initiator.

Game 7. In this game we abort if A succeeds in forging

Eb = HMAC(D̃HKey, Nb‖Na‖ra‖IOcapB‖B‖A), Nb, B, or IOcapB, and thereby getting
A to accept maliciously. We bound this ability by the SUF-CMA security of HMAC. Thus
we have Advauth,C1

7 ≥ Advauth,C1

6 − AdvSUF-CMA
HMAC,B2(λ).

Game 8. In this game we abort if A succeeds in forging any of B’s nonces or B’s
role, causing A to accept maliciously. From Game 7 we have that A does not succeed in
forging Nb. This lets us bound this ability by the sec-pre security of H. Thus we have
Advauth,C1

8 ≥ Advauth,C1

7 − Advsec-pre
H,B3 (λ).

By Game 8 we have matching sidu (A cannot forge Ca,i, Cb,i due to the correctness of
HMAC), πAs .pid = B, πBt .pid = A, πAs .role 6= πBt .role. Thus via Definition 3.4 our session
oracles are partnered and we have Advauth,C1

8 = 0 .
Case 2: πAs .role = responder. This case follows as in Case 1.

Advantage against key-ind.
Game 5. In this game we replace LK = HMAC(DHKey, Na‖Nb‖btlk‖A‖B) (if πAs .role =

initiator) with the uniformly random value L̃K. By the hardness of the EC-sym-ssPRF-ODH
assumption, A is unable to distinguish this change. Thus we have Advkey-ind

5 ≥ Advkey-ind
4 −

AdvEC-sym-ssPRF-ODH
HMAC,B4 (λ), accounting for πAs in either the initiator or responder role.

Since the session key of our test oracle is now uniformly random, we conclude
Advkey-ind

5 = 0.
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Combining all game hops and adversarial cases, we have

AdvCYBORG−UncUser
PE-IG,A,ηp,ηs (λ) ≤ (ηpηs)

2 ·
( 1

2µ
+

400

2λ
+

3

2|r|
+ AdvEC-DDH

B1 (λ)+

2 · (AdvSUF-CMA
HMAC,B2(λ) + Advsec-pre

H,B3 (λ) + AdvEC-sym-ssPRF-ODH
HMAC,B4 (λ)

)
.

The above proof demonstrates the CYBORG security of Initiator-Generated Passkey
Entry in the UncUser setting, conditioned on the security of the underlying algorithms as
well as nonce length, passkey length, etc. Still, per Passkey Entry specification, the passkey
has length |r| = 20. Consequently, this result demonstrates that the actual security level is
below the simple guessing ability for 20 bits.

Since a EC-sym-ssPRF-ODH is a PRF-based security notion (detailed in Appendix A)
and as such may not appear as a typical MAC security assumption, we comment here on
related work regarding the PRF security of HMAC [28]. HMAC was shown to be a PRF
so long as its underlying hash function was a PRF [6]. It has also been shown that HMAC
satisfies a strong notion of PRF-ODH security under the random oracle model [11]. Thus
the EC-sym-ssPRF-ODH security assumption for HMAC is not out-of-scope.

Responder-Generated Passkey

Analysis results for the SHM Responder-Generated Passkey Entry protocol are as follows,
covering all variants under the CYBORG security model. For proof details, see Appendix
C.2.

Theorem 6.2. SHM Responder-Generated Passkey Entry is

• CYBORG-UncUser-secure under
the EC-sym-ssPRF-ODH and EC-DDH assumptions, the sec-pre of H, and the SUF-CMA
security of HMAC.

• CYBORG-CompUser[x]-secure for

[x] ∈ {[iu], [ur], [iu, ur]} .

• not CYBORG-CompUser[x]-secure for

[x] ∈{[ru], [ui], iu, ru], [iu, ui], [ru, ui], [ru, ur], [ui, ur],

[iu, ru, ui], [iu, ru, ur], [iu, ui, ur], [ru, ui, ur],

[iu, ru, ui, ur]} .

User-Generated Passkey

Analysis results for the SHM User-Generated Passkey Entry protocol are as follows, covering
all variants under the CYBORG security model. For proof details, see Appendix C.3.

Theorem 6.3. SHM User-Generated Passkey Entry is
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• CYBORG-UncUser-secure under
the EC-sym-ssPRF-ODH and EC-DDH assumptions, the sec-pre of H, and the SUF-CMA
security of HMAC.

• CYBORG-CompUser[x]-secure for

[x] ∈ {[iu], [ru], [iu, ru]}.

• not CYBORG-CompUser[x]-secure for

[x] ∈{[ui], [ur], [iu, ui], [iu, ur], [ru, ui], [ru, ur], [ui, ur],
[iu, ru, ui], [iu, ru, ur], [iu, ui, ur], [ru, ui, ur],

[iu, ru, ui, ur]}.

Dual Passkey

Analysis results for the SHM Dual Passkey Entry protocol are as follows, covering all variants
under the CYBORG security model. For proof details, see Appendix C.4.

Theorem 6.4. SHM Dual Passkey Entry is CYBORG-CompUser[iu,ru,ui,ur]-secure under the
EC-sym-ssPRF-ODH and EC-DDH assumptions, the sec-pre of H, and the SUF-CMA security
of HMAC.

Implications

SHM Passkey Entry achieved similar security across all versions, with variations only in
the CompUser[x] setting. The various results give insight into the type of attacks Passkey
Entry in its current construction can defend against. Mainly gaining control of the device
display used to generate the passkey, or the device input of the passkey receiver is fatal to
protocol security. This holds true for all current versions of Passkey Entry and points to
the motivation behind DPE, namely that by having both devices generate a passkey, there
is always a part of the “whole” passkey that the adversary cannot replace, regardless of the
device’s initiator/responder role. By Bluetooth specification, secrecy on the UtD channel is
essential (reflected in the CYBORG model); thus, while the adversary can forge one r value,
it may not read either one.

With both devices generating passkeys, the adversary cannot leverage its corruption
queries to gain knowledge of the target session’s passkey(s). We note that these security
guarantees do not allow for eavesdropping, which is reasonable under Passkey Entry require-
ments. This shows that one can create protocols achieving a greater of degree of security
than current methods with minimal increases in user involvement, and reasonable to device
requirements. With the integrity of at least one of the passkeys ensured (by the fact that
each device generates a passkey), devices can successfully authenticate the DH key exchange.
As proven in Theorem 6.4, Dual Passkey Entry maintains CYBORG security in spite of the
adversary having the full capability to modify UtD messages and without requiring the user
to generate random numbers.
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7 Conclusion

Human interaction in protocols presents an intriguing challenge for analysis, encompassing
the two-sided issues of human-device teaming down to the cryptographic level. Although
Passkey Entry in its current construction fails to meet our measure of a secure cyborg key
exchange under any variant, we showed how minor modifications improved its capability to
achieve a robust level of security. Furthermore, we introduced SHM Dual Passkey Entry,
which provably provides defense against the combined and advanced attacks already in ex-
istence that exploit corruption of displayed messages to users and user inputs to devices
simultaneously.

The Secure Hash Modification presents a minor change that is reflective of normative
practice in other real-world protocols, which do not rely on human interaction. We have
shown that even such a minor change enables security under some CYBORG variants. The
results, summarized in Fig. 3, provide user and manufacturer guidance in the use of an SHM-
modified Passkey Entry. In particular, although full CYBORG security cannot be achieved,
other variants can be.

Our results are not only relevant in the security they establish and design indications for
such success, but also in the classes of CYBORG insecurity they demonstrate for Passkey
Entry. For example, from Fig. 3 it is clear that a range of attacks exist on Passkey Entry in
its current form. Notably, as shown in the table, Passkey Entry cannot be protected from
the Tap n’ Ghost attack even under SHM (CompUser[iu,ui] and CompUser[ru,ur]). Using this
work, any attack that can leverage a device display input/output according to the categories
we have shown, gains a blueprint for successful execution.
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A Security Assumptions

We present relevant security properties of hash functions and hash-based message authentica-
tion codes that will prove consequential to our analysis of Passkey Entry. We also introduce
relevant Diffie-Hellman (DH) problems to our analysis.

Definition A.1. A message authentication code (MAC) over (M = {0, 1}m, K = {0, 1}k,
T = {0, 1}t) where M is the set of all possible messages, K is the set of all possible keys,
and T is the set of all possible tags, to be the tuple of algorithms (Kgn,MAC,Vfy) defined
as follows:

• Kgn(1λ)
$→ K: A probabilistic key generation algorithm that takes as input 1λ where

λ is the security parameter, and outputs a key, K ∈ K.

• MAC(K,msg)
$→ tag: A deterministic hash-based message authentication algorithm

that takes as input a key K ∈ K and a message msg ∈M, and outputs a tag, tag ∈ T .
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• Vfy(K,msg, tag) → v: A deterministic verification algorithm that takes as inputs a
key K ∈ K, a message msg ∈ M, and a tag tag ∈ T , and outputs a verification bit,
v ∈ {0, 1}.

We also require for the correctness of a message authentication code MAC that Vfy(K,msg, tag) =
1 iff MAC(K,msg) = tag, for all msg ∈M, K ∈ K, and tag ∈ T .

Second-Preimage Resistance

Definition A.2. Let H be a hash function and A a PPT adversary. We define the Second-
Preimage Resistance (sec-pre) of H as such: given msg ∈ {0, 1}∗ and hash value such that
H(msg) = hash, A cannot find a second-preimage, msg′ ∈ {0, 1}∗, such that msg′ 6= msg and
H(msg′) = hash with more than negligible probability. We denote A’s advantage in breaking
sec-pre of H as Advsec-pre

H,A .

SUF-CMA of a MAC

In Figure 7 we display the security game for strong unforgeability under chosen message
attack (SUF-CMA) in algorithmic notation. This experiment models an attacker’s ability
to break the unforgeability of a MAC by forging a new message or a new tag of a known
message-tag pair that verifies correctly.

EXPSUF-CMA
MAC,A (λ):

1: K
$← Kgn(1λ)

2: win← 0, S ← ∅
3: AMAC(·),MAC.Vfy(·)()
4: return win

MAC(msg):

1: tag← MAC(K,msg)
2: S ← S ∪ {(msg, tag)}
3: return tag

MAC.Vfy(msg, tag):

1: v← Vfy(K,msg, tag)
2: if (v = 1) ∧ ((msg, tag) /∈ S) then
3: win← 1
4: return win from exp.
5: end if
6: return v

Figure 7: Security experiment for strong unforgeability under chosen message attack
(SUF-CMA) of a message authentication code algorithm MAC = (Kgn,MAC,Vfy) and ad-
versary A.

Definition A.3. We define the adversarial advantage against the SUF-CMA experiment de-
scribed in Figure 7 for a PPT adversary A against a message authentication code MAC to
be:

AdvSUF-CMA
MAC,A (λ) := Pr[EXPSUF-CMA

MAC,A (λ) = 1] .

Definition A.4. We say that some message authentication code MAC is SUF-CMA-secure if
the advantage for any PPT adversaryA interacting according to the experiment EXPSUF-CMA

MAC,A (λ)
is upper bounded by some negligible function negl(λ):

AdvSUF-CMA
MAC,A (λ) ≤ negl(λ) .
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EC-DDH Assumption

Definition A.5. Let E be an elliptic curve over the field Fq with generator point P of order n.
Let A be a PPT adversary. We state the Elliptic Curve Decisional DH (EC-DDH) assumption

as such: given access to E, P , and knowledge of aP and bP for a, b
$← Fq and a, b < n, A

cannot distinguish abP from cP , for c
$← Fq and c < n, with more than negligible probability.

We use AdvEC-DDH
A to write A’s advantage in breaking the EC-DDH assumption.

EC-sym-ssPRF-ODH Assumption

The PRF-ODH was originally introduced in [26], and later modified [17,19]. Other PRF-ODH
assumption variants were analyzed in [11], with the sym-ssPRF-ODH assumption of [19] being
a variant thereof. We present to the sym-ssPRF-ODH assumption of [19] below, but for Elliptic
Curve (EC) Diffie–Hellman vs. standard Diffie–Hellman.

Definition A.6. Let E be an elliptic curve over the field Fq with generator point P of order
n. Let PRFλ : E × {0, 1}∗ → {0, 1}λ be a psuedorandom function with keys in E, input
strings in {0, 1}∗, and output strings in {0, 1}λ. Let A be a PPT adversary. Elliptic Curve
symmetric generic single-single PRF Oracle DH assumption (EC-sym-ssPRF-ODH) is defined
as follows:

1. The challenger samples a, b
$← Fq uniformly at random with a, b < n, computes aP and

bP , and provides (E,P, aP, bP ) to A.

2. Eventually, A issues the challenge query x∗ ← {0, 1}∗.

3. The challenger samples b
$← {0, 1} uniformly at random and sets y0 ← PRFλ(abP, x)

if b = 0, and y1 ← {0, 1}λ otherwise. The challenger returns yb to A.

4. A may issue a single query to the oracles, EC-ODHa and EC-ODHb, handled as follows:

• EC-ODHa(S, x): Challenger returns ⊥ if S /∈ E or if (S, x) = (bP, x∗), otherwise it
returns y ← PRFλ(aS, x).

• EC-ODHb(T, x): Challenger returns ⊥ if T /∈ E or if (T, x) = (aP, x∗), otherwise
it returns y ← PRFλ(bT, x).

5. Eventually, A outputs the bit guess b, and wins the experiment if b = b.

We define the adversarial advantage in the EC-sym-ssPRF-ODH experiment as

AdvEC-sym-ssPRF-ODH
PRFλ,A (λ) := Pr[b = b]− 1

2
,

and we say that the EC-sym-ssPRF-ODH assumption holds if

AdvEC-sym-ssPRF-ODH
PRFλ,A (λ) ≤ negl(λ) .
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B Association between User Compromise Types

We begin by presenting Theorem B.2, which will prove useful as a framework in future proofs
within the compromised user setting.

Lemma B.1. Let X and Y be non-empty subsets of {iu, ru, ui, ur} such that X ⊆ Y with labels
x and y respectively. If a session oracle πUj is CompUser[x]-fresh, then it is also CompUser[y]-
fresh.

Proof. Let Π be a cyborg key exchange protocol, and let A be a PPT adversary against the
CYBORG-CompUser[x] security of Π. If some user session oracle, πUj , is CompUser[x]-fresh
then we must have that A never issued a single query that broke CompUser[xi]-freshness simul-
taneously for all xi ∈ X over the course of the CYBORG-CompUser[x] security experiment

by Definition 3.12. This means that for every query issued by A, πUj must have met the
definition for CompUser[xi]-fresh for some xi ∈ X. Since X ⊆ Y , then we also have that πUj
must have met the definition for CompUser[yi]-fresh for some yi ∈ Y for every query issued
by A. Thus, A never issued a single query that broke CompUser[yi]-freshness simultaneously

for all yi ∈ Y and we have that πUj is also CompUser[y]-fresh.

Theorem B.2. Let X and Y be non-empty subsets of {iu, ru, ui, ur} such that X ⊆ Y with
labels x and y respectively, and let Π be a cyborg key exchange protocol. If Π is not CYBORG-
CompUser[x]-secure, then it is not CYBORG-CompUser[y]-secure.

Proof. Let Π be a cyborg key exchange protocol, and let A be a PPT adversary that breaks
the CYBORG-CompUser[x] security of Π. We then construct a second adversary, B, against
the CYBORG-CompUser[y] security experiment. The challenger starts the experiment and
forwards the protocol flows of Π toA and usesA’s responses. By the success ofA, Lemma B.1,
and Definition 3.12, we have CompUser[y] freshness and the success of B. Therefore we have
that

Adv
CYBORG-CompUser[x]
Π,A,ηp,ηs (λ) ≤ Adv

CYBORG-CompUser[y]
Π,B,ηp,ηs (λ) .

C SHM Passkey Entry Proofs

We restate Theorem 6.1–Theorem 6.3 and provide their proofs.
Using Theorem B.2, we advance analysis incrementally introducing more allowable com-

binations of user compromise until we reach an environment where the protocol breaks. At
such a point, all subsequent definitions of the compromised user setting where the break
persists can then be addressed as a corollary.

C.1 SHM Initiator-Generated Passkey Proofs

Theorem (6.1 part 1). SHM Initiator-Generated Passkey Entry is CYBORG-UncUser-secure
under the EC-sym-ssPRF-ODH and EC-DDH assumptions, the sec-pre of H, and the SUF-CMA
security of HMAC.
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Proof. The proof of this theorem involves a series of game hops between an adversarial PPT
algorithm A and the challenger. We denote the adversarial advantage of a specific game as
Advi, for the i-th game hop.

Game 0 This game is equivalent to the original security experiment:

Adv0 = AdvCYBORG-UncUser
PE-IG,A,ηp,ηs (λ) ,

where λ is the security parameter, ηp is a bound on the number of participants, and ηs is a
bound on the number of sessions a participant can run.

Game 1 This game is equivalent to the previous except we raise the event abort, end
the experiment, and output zero if there ever exists two session oracles that generate the
same ephemeral key, SK, in Phase 1. If session keys ever repeat, then A could execute a
StateReveal query on the second session to recover SK and compute DHKey. We have that:

Adv1 ≥ Adv0 −
(ηpηs)

2

2µ
.

where µ is the length of SK.

Game 2 This game is equivalent to the previous except we raise the event abort, end the
experiment, and output zero if there ever exists a nonce collision in the experiment. This
prevents trivial guesses of passkey bits and lets us assume all nonces are generated fresh.
There are 20 nonces generated in each session, therefore, we have that:

Adv2 ≥ Adv1 −
400(ηpηs)

2

2λ
.

Game 3 This game is equivalent to the previous security experiment except we raise the
event abort, end the experiment, and output zero if a passkey is ever reused. Since the
passkey is inherently revealed during the completion of the Passkey Entry protocol, re-use of
this value would allow A to break auth or key-ind with probability 1. Since only one passkey
is generated each session we have that:

Adv3 ≥ Adv2 −
(ηpηs)

2

2|r|
,

where |r| is the length of the passkey r.

Game 4 This game is equivalent to the previous security experiment except we guess the
session oracles executing the protocol, the test session πAs and its partner πBt , and abort if A
does not try to win against this guessed pair. Thus,

Adv4 ≥
1

(ηpηs)2
· Adv3 .

We then continue by case dependency on if A attempts to win by breaking correct, auth,
or key-ind.

Adv4 = Advcorrect
4 + Advauth

4 + Advkey-ind
4 .
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Advantage against correct Since session oracles with matching session identifiers are guar-
anteed to accept by the correctness of Passkey Entry, we have that:

Advcorrect
4 = 0 .

Advantage against auth

Game 5 We continue with Advauth
4 . Since we have the requirement that πAs remains fresh,

we will abort the experiment if A issues a StateReveal, KeyReveal, ShowUser, or ControlUser
queries such that πAs or the partnered user session, πUj , are no longer UncUser-fresh. If πUj is
also partnered with πBt , we abort if A issues a StateReveal(πBt ) query while πAs 6= accept. We
raise the event abort, end the experiment, and output zero if A succeeds in replacing PKb.

In order to replace PKb, and therefore get πAs to accept maliciously, A must guess all
|r| bits of the passkey r, allowing it to recalculate the commitment under a nonce key of its
choice. Accounting for πAs in either an initiator or responder role, we have

Advauth
5 ≥ Advauth

4 − 1

2|r|−1
.

Game 6 We replace DHKey with a uniformly random value D̃HKey = cP for c
$← Fq

where Fq is the finite field over which we define our elliptic curve E and P is a generator for
E. Suppose that the adversary can distinguish between this and the previous game. Then
we can construct a new adversary, B1, solving the DDH problem, as from the previous game
hop we have that Diffie-Hellman shares aP = PKa, and bP = PKb have been exchanged.

The challenger proceeds as before, but replaces the DHKey with a uniformly random

value D̃HKey = cP , which is used for both partners. Algorithm B1 receives as input

(E,P, aP, bP, cP ) where aP = PKa, bP = PKb, and cP = D̃HKey. The EC-DDH as-
sumption therefore implies

Advauth
6 ≥ Advauth

5 − AdvEC-DDH
B1 (λ) .

We continue the proof by separating two sub-cases based on the test session’s role: initiator
(C1) or responder (C2):

Advauth
6 = Advauth,C1

6 + Advauth,C2

6 .

Case 1 πAs .role = initiator.

Game 7 This game is equivalent to the previous security experiment except we raise the
event abort, end the experiment, and output zero if the adversary succeeds in forging the
tag Eb or any of Nb, IOcapB, or B in the message used to compute Eb.

We bound the abort condition by constructing the adversary, B2, against the SUF-CMA

security of HMAC. The challenger sets the MAC key to D̃HKey, and B2 uses the oracle MAC
to compute tags. B2 calls MAC(Nb‖Na‖ra‖IOcapB‖IOcapA‖B‖A), which returns the tag Eb
(r, Nb,i, and Na,i are all public at this point in the protocol). B2 then gives the message-tag
pair (Nb‖Na‖ra‖IOcapB‖IOcapA‖B‖A,Eb) to A. If A is able to forge a new tag, call it Ewin,
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such that MAC.Vfy(Nb‖Na‖ra‖IOcapB‖IOcapA‖B‖A,Ewin) = 1, or a new message, call it
msgwin, by forging at least one of Nb, IOcapB, and B, such that MAC.Vfy(msgwin, Eb) = 1,
then B2 can win the SUF-CMA experiment with the winning message-tag pair. Thus we have

Advauth,C1

7 ≥ Advauth,C1

6 − AdvSUF-CMA
HMAC,B2(λ) .

Game 8 This game is equivalent to the previous security experiment except we raise the
event abort, end the experiment, and output zero if the adversary succeeds in forging any
of B’s nonces or B’s role, causing A to accept maliciously.

From Game 7 we have that A does not succeed in forging Nb. Thus if A succeeds in
forging any nonce Nb,i or B’s role, we use the success of A to construct a new adversary,
B3, against the second-preimage resistance of the hash function. Per the sec-pre experiment,
B3 is given the message-hash pair (Nb,1‖ . . . ‖Nb,20‖roleb, Nb) by A (note that all Nb,i nonces
are public at this point in the protocol), where the nonces are as sampled by πBt and Nb =
H(Nb,1‖ . . . ‖Nb,20‖roleb). By our abort condition, A is able to forge at least one nonce N ′b,i
or B’s role. B3 uses the new sequence N ′b,1‖ . . . ‖N ′b,20‖role

′
b as its guess at a second-preimage

for Nb. By the success of A we have that H(N ′b,1‖ . . . ‖N ′b,20‖role
′
b) = Nb. Thus we have

Advauth,C1

8 ≥ Advauth,C1

7 − Advsec-pre
H,B3 (λ) .

By Game 8, the adversary can only succeed in breaking auth by forging a commitment
value, Ca,i or Cb,i. However, the correctness of HMAC ensures Ca,i or Cb,i against forgery for
all i since the messages and keys used to compute them are fixed from previous game hops.
We therefore have matching sidu, πAs .pid = B, πBt .pid = A, πAs .role 6= πBt .role telling us our
session oracles are partnered via Definition 3.4. Thus,

Advauth,C1

8 = 0 .

Case 2 πAs .role = responder. This case follows similarly to Case 1.
Combining our previous probability statements for the two sub-cases above we have:

Advauth ≤ 1

2|r|−1
+ AdvEC-DDH

B1 (λ) + 2 · (AdvSUF-CMA
HMAC,B2(λ) + Advsec-pre

H,B3 (λ)) .

Advantage against key-ind In this case we assume that

Game 5 We now bound Advkey-ind
4 . Since we have the requirement that πAs remains fresh,

we will abort the experiment if A issues a StateReveal, KeyReveal, ShowUser, or ControlUser
queries such that πAs or the partnered user session, πUj , are no longer UncUser-fresh. If πUj is
also partnered with πBt , we abort if A issues a StateReveal(πBt ) query while πAs 6= accept.

Suppose that A can correctly distinguish the provided key as real or random. Then
we can construct a new adversary, B4, solving the EC-sym-ssPRF-ODH problem as fol-
lows. B4 receives as input (E,P, aP, bP ) where P is a generator of our elliptic curve group,
aP = PKa, and bP = PKb. B4 then issues the challenge query x = (Na‖Nb‖btlk‖A‖B)
(if πAs .role = initiator and x = (Nb‖Na‖btlk‖B‖A) otherwise) also using values as cho-
sen by our test and partner oracles. The challenger then randomly samples b and sets
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LK ← HMAC(DHKey, Na‖Nb‖btlk‖A‖B) if b = 1 and LK
$← {0, 1}λ otherwise. The

challenger then returns LKb to B4. The challenger also allots one-time access to the
left and right HMAC oracles for computation of Ea and Eb. At this point, B4 can
simulate all other flows between our test session and partner session. If we have that
LKb = HMAC(DHKey, Na‖Nb‖btlk‖A‖B), then the view of A when interacting with this
game is identical to Game 4. Similarly, the view of A when interacting with this game is

identical to Game 5 if LKb
$← {0, 1}λ. Thus by the success of A in distinguishing Game 4

and Game 5, we have the success of B4. With πAs as either the initiator or responder, we
have:

Advkey-ind
5 ≥ Advkey-ind

4 − AdvEC-sym-ssPRF-ODH
HMAC,B4 (λ) .

Since the session key of our test oracle is now uniformly random, we also conclude:

Advkey-ind
5 = 0 .

We now combine all probability statements to arrive at our final security reduction:

AdvCYBORG−UncUser
PE-IG,A,ηp,ηs (λ) ≤ (ηpηs)

2 ·
( 1

2µ
+

400

2λ
+

3

2|r|
+ AdvEC-DDH

B1 (λ)+

2 · (AdvSUF-CMA
HMAC,B2(λ) + Advsec-pre

H,B3 (λ)) + AdvEC-sym-ssPRF-ODH
HMAC,B4 (λ)

)
.

Per the Passkey Entry specification, |r| = 20.

Theorem (6.1 part 2). SHM Initiator-Generated Passkey Entry is CYBORG-CompUser[x]-
secure for

x ∈ {[ru], [ui] [ru, ui]} .

Proof. This proof follows from a triviality. In all three of the above listed CYBORG-
CompUser[x] security environments, the adversary gains the capability to issue queries that
allow him to compromise a UtD channel(s) that is/are not employed in Initiator-Generated
Passkey Entry. Therefore, these settings reduce to the CYBORG-UncUser setting, which was
proven secure in Theorem 6.1.

Lemma C.1. SHM Initiator-Generated Passkey Entry is not CYBORG-CompUser[iu]-secure.

Proof. We proceed via counter-example. Let A be an adversarial algorithm against the
CYBORG-CompUser[iu] security of the Initiator-Generated Passkey Entry protocol. A first

issues a SendDevice(πAs , (start, B)) query and a SendUser(πUj , (start, (π
A
s , π

B
t ))) query to initiate

protocol participants. A then issues a ShowUser(πAs ) query and proceeds with a MitM attack
as follows:

• Phase 0 proceeds as normal.

• In Phase 1: A impersonates πAs to πBt .

• In Phase 2:
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– A generates the passkey and sends it to the user.

– Since A issued a ShowUser(πAs ) query, he may modify the value r shown to the
user. We denote this new passkey re.

– The user forwards re to πBt per the protocol specification.

• Phase 3 and 4 proceed according to the protocol, with A impersonating πAs .

• πBt sets πBt .δ = accept.

At the conclusion of the above attack we have that A is PPT algorithm winning the
CYBORG-CompUser[iu] security experiment by breaking auth.

Lemma C.2. SHM Initiator-Generated Passkey Entry is not CYBORG-CompUser[ur]-secure.

Proof. This proof runs similarly to the one described in Lemma C.1 with a few changes.
Instead of issuing a ShowUser(πAs ) query, A issues a ControlUser(πUj , B) query. This allows
him to modify the passkey of r to re on input to πBt .

Theorem (6.1 part 3). SHM Initiator-Generated Passkey Entry is not CYBORG-CompUser[x]-
secure for

[x] ∈{[iu], [ur], [iu, ru], [iu, ui], [iu, ur], [ru, ur], [ui, ur],

[iu, ru, ui], [iu, ru, ur], [iu, ui, ur], [ru, ui, ur],

[iu, ru, ui, ur]} .

Proof. By Lemmas C.1 and C.2 we have that Initiator-Generated Passkey Entry is not
CYBORG-CompUser[x] for x ∈ {[iu], [ur]}. Therefore, we have that Initiator-Generated
Passkey Entry is not CYBORG-CompUser[x] secure for X ⊆ {iu, ru, ui, ur} where at least
one of iu or ur is an element of X, by applying Theorem B.2.

C.2 SHM Responder-Generated Passkey Proofs

Theorem (6.2 part 1). SHM Responder-Generated Passkey Entry is CYBORG-UncUser-secure
under the EC-sym-ssPRF-ODH and EC-DDH assumptions, the second pre-image resistance of
H, and the SUF-CMA security of HMAC.

Proof. This proof follows similarly to Theorem 6.1. This is due to the fact that the adversary
is unable to exploit how the passkey is exchanged between the devices, regardless of which
device generated the value, in the CYBORG-UncUser environment.

Theorem (6.2 part 2). SHM Responder-Generated Passkey Entry is CYBORG-CompUser[x]-
secure for

x ∈ {[iu], [ur], [iu, ur]} .

Proof. This proof follows from a triviality. In all three of the above listed CYBORG-
CompUser[x] security environments, the adversary may compromise UtD channels that are
not employed in SHM Responder-Generated Passkey Entry. Therefore, these settings reduce
to the CYBORG-UncUser setting, which was proven secure in Theorem 6.2.
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Figure 8: Depiction of adversarial attack (singular actions shown in red) against SHM
Initiator-Generated Passkey Entry under the CYBORG-CompUser[iu] security experiment,
discussed in Lemma C.1. Similar vulnerabilities also affect Responder-Generated and User-
Generated Passkey Entry. Any instance where the communication flow “jumps” over a device
line is done to illustrate adversarial inability to read the message.
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Lemma C.3. SHM Responder-Generated Passkey Entry is not CYBORG-CompUser[ru]-secure.

Proof. This proof runs similarly to the one described for Lemma C.1, but with A in the
responder role and B as initiator.

Lemma C.4. SHM Responder-Generated Passkey Entry is not CYBORG-CompUser[ui]-secure.

Proof. This proof runs similarly to the one described in Lemma C.1 with a few changes.
Instead of issuing a ShowUser(πAs ) query, the adversary A issues a ControlUser(πUj , A) query.
This allows him to modify the passkey of r to re on input to πAs .

Theorem (6.2 part 3). SHM Responder-Generated Passkey Entry is not CYBORG-CompUser[x]-
secure for

[x] ∈{[ru], [ui], [iu, ru], [iu, ui], [ru, ui], [ru, ur], [ui, ur],

[iu, ru, ui], [iu, ru, ur], [iu, ui, ur], [ru, ui, ur],

[iu, ru, ui, ur]} .

Proof. By Lemmas C.3 and C.4 we have that SHM Responder-Generated Passkey Entry is
not CYBORG-CompUser[x] for [x] ∈ {[ru], [ui]}. Therefore, we have that SHM Responder-
Generated Passkey Entry is not CYBORG-CompUser[x] secure for X ⊆ {iu, ru, ui, ur} where
at least one of ru or ui is an element of X by applying Theorem B.2.

C.3 SHM User-Generated Passkey Proofs

Theorem (6.3 part 1). SHM User-Generated Passkey Entry is CYBORG-UncUser-secure un-
der the EC-sym-ssPRF-ODH and EC-DDH assumptions, the second pre-image resistance of H,
and the SUF-CMA security of HMAC.

Proof. This proof follows similarly to Theorem 6.1. This is due to the fact that the adversary
is unable to exploit how the passkey is exchanged between the devices, regardless of which
device generated the value, in the CYBORG-UncUser environment.

Theorem (6.3 part 2). SHM User-Generated Passkey Entry is CYBORG-CompUser[x]-secure
for

[x] ∈ {[iu], [ru], [iu, ru]}.

Proof. This proof follows from a triviality. In all three of the above listed CYBORG-
CompUser[x] security environments, the adversary may compromise UtD channels that are
not employed in SHM User-Generated Passkey Entry. Therefore, these settings reduce to the
CYBORG-UncUser setting, which was proven secure in Theorem 6.2.

Lemma C.5. SHM User-Generated Passkey Entry is not CYBORG-CompUser[ui]-secure.

Proof. This proof runs similarly to the one described in Lemma C.4.

Lemma C.6. SHM User-Generated Passkey Entry is not CYBORG-CompUser[ur]-secure.

Proof. This proof runs similarly to the one described in Lemma C.2.
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Theorem (6.3 part 3). User-Generated Passkey Entry is not CYBORG-CompUser[x]-secure
for

[x] ∈{[ui], [ur], [iu, ui], [iu, ur], [ru, ui], [ru, ur], [ui, ur],
[iu, ru, ui], [iu, ru, ur], [iu, ui, ur], [ru, ui, ur],

[iu, ru, ui, ur]}.

Proof. By Lemmas C.5 and C.6 we have that SHM User-Generated Passkey Entry is not
CYBORG-CompUser[x] for [x] ∈ {[ui], [ur]}. Therefore, we have that SHM User-Generated
Passkey Entry is not CYBORG-CompUser[x]-secure for X ⊆ {iu, ru, ui, ur} where at least
one of ui or ur is an element of X, by applying Theorem B.2.

C.4 SHM Dual Passkey Proofs

Theorem (6.4). SHM Dual Passkey Entry is CYBORG-CompUser[iu,ru,ui,ur]-secure under the
EC-sym-ssPRF-ODH and EC-DDH assumptions, the second pre-image resistance of H, and
the SUF-CMA security of HMAC.

Proof. The proof of this theorem follows closely to that of Theorem 6.1 part 1, but with the
following alterations. Following the proof of Theorem 6.1, let Advi denote the i-th game hop
in the same series of games between an adversarial PPT algorithm A and the challenger.

Advantage against auth

Game 5 We continue with Advauth
4 . Since we have the requirement that πAs remains fresh,

we will abort the experiment if A issues StateReveal() or KeyReveal queries such that πAs is no
longer CompUser[iu,ru,ui,ur]-fresh. This implies that A may issue ControlUser queries involving

the partnered user oracle πUj as desired, since we are under CompUser[iu,ru,ui,ur] environment

πUj remains fresh regardless of adversarial action. Similarly A may issue ShowUser queries at
will. Thus A is only limited on the UtD channel by its inability to read valid values ra and
rb.

If πUj is also partnered with πBt , we abort if A issues a StateReveal(πBt ) query while
πAs 6= accept. We raise the event abort, end the experiment, and output zero if A succeeds
in replacing PKb.

Note A may issue either a ShowUser(πBt ) or ControlUser(πUj , B) query to forge the passkey
rb of the would-be partner. In order to replace PKb, theAmust guess all |r| bits of the passkey
ra, allowing it to recalculate the commitment under a nonce key of its choice. Accounting
for πAs in either the initiator and responder role, we have

Advauth
5 ≥ Advauth

4 − 1

2|r|−1
.
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