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Abstract. In this paper, we present the complete analysis of Huff curves
for implementing isogeny-based cryptography. In this regard, we first in-
vestigate the computational cost of the building-blocks when compression
functions are used for Huff curves and presented an additional formula
on Huff curves for implementing isogeny-based cryptography. From our
implementation, the performance of Huff-SIDH and Montgomery-SIDH
is almost the same, and Huff-CSIDH is 6.4% faster than Montgomery-
CSIDH but 4% slower than Hybrid-CSIDH. The result of our work shows
that the Huff curve can be quite practical for implementing isogeny-based
cryptography but has some limitations.
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1 Introduction

Quantum-resistant cryptosystems based on isogenies were first proposed by Cou-
veignes [13] and later rediscovered by Stolbunov [25], which are currently called
as the CRS scheme. However, not only the quantum sub-exponential attack ex-
ists for the scheme [8], but the scheme was also inefficient for practical use. After
the introduction of the Supersingular Isogeny Diffie-Hellman (SIDH) by De Feo
and Jao [18], the isogeny-based cryptography gains back its attention. Due to the
non-commutative structure of the endomorphism ring of supersingular curves,
SIDH resists the attack proposed in [8]. Additionally, instead of relying on the
discrete logarithm problems where the intractability assumption of the problem
is broken by Shor’s algorithm, the security relies on the problem of finding an
isogeny between two given isogenous elliptic curves over a finite field, which is
known to have quantum-exponential complexity. The Supersingular Isogeny Key
Encapsulation (SIKE), a key encapsulation mechanism based on SIDH, was sub-
mitted as one of the candidates to the NIST PQC standardization project [1],
and is currently an alternative candidate of Round 3.



Recently, the CRS scheme was revisited by De Feo, Kieffer, and Smith in [14],
and independently by Castryck et al. in [7]. The advantage of the CRS scheme
is that CCA-secure encryption can be constructed so that a non-interactive key
exchange can be obtained. In [14], they modernized the parameter selection in the
CRS schemes for better performance and presented an efficient way to compute
the CRS group action. The CRS scheme was further optimized by Castryck
et al. in [7]. In [7], they proposed CSIDH (Commutative SIDH), which solves
the parameter selection problem of the CRS schemes by using supersingular
elliptic curves defined over F,. Currently, the full key exchange of CSIDH at a
128-bit security level requires approximately 80ms, which is slower than SIDH.
However, the vital aspect of CSIDH is that a relatively efficient digital signature
scheme than SIDH can be constructed based on CSIDH [4]. CSI-FiSh [4] offers
a practical digital signature scheme that requires 390ms to sign a message. For
isogeny-based cryptography, this was a significant result, which facilitated the
construction of various cryptographic primitives through elliptic curve isogenies.
To summarize, SIDH and CSIDH have their own advantages, and their common
disadvantage is that the performance is slower than any other quantum-resistant
algorithm.

The implementation of isogeny-based cryptography involves complicating
isogeny operations in addition to the standard elliptic curve arithmetic over
a finite field. Regarding the isogeny operations, the degree of an isogeny used
in the cryptosystem depends on the prime chosen for the scheme. The SIDH-
based algorithms use the prime p of the form p = ¢5*¢%° f £ 1, where ¢4 and {p
are coprime to each other. The £4 and ¢p corresponds to the degree of isoge-
nies used in the scheme. Since the complexity of computing isogenies increases
as the degree increases, isogenies of degree 3- and 4- were mostly considered
for implementation. The CSIDH-based algorithms use the prime p of the form
p=4lly--- L, —1, where {; are odd-primes. Similarly, as ¢; are degrees of isoge-
nies used in the scheme, demands for an efficient odd-degree isogeny formula have
increased after the proposal of CSIDH. In [10], Costello and Hisil proposed an
efficient way to compute arbitrary odd-degree isogenies on Montgomery curves.
Classical ways for computing f-isogeny requires O(é) field operations. In [3],
Bernstein et al. proposed the square-root Vélu formula which computes the /-
isogeny in O(v/¢) field operations. This ground-breaking work allows computing
higher odd-degree isogenies efficiently, which suits well for implementing CSIDH
and B-SIDH [9]. Regarding the elliptic curve arithmetic, it is important to select
the form of elliptic curves that can provide efficient curve operations. The ma-
jority of isogeny-based cryptography implementations use Montgomery curves
as it offers fast isogeny computation and curve arithmetic. The state-of-the-art
implementation proposed in [11,12] is also based on Montgomery curves.

Currently, there is ongoing research on whether other forms of the elliptic
curve can yield efficient arithmetic or isogeny computation. The primary candi-
date is twisted Edwards curves, as it is birationally equivalent to Montgomery
curves, and mapping a point on one curve to a point on the other curve is cost-
less when projective coordinates are used. The first use of Edwards curves was by



Meyer et al. in [23], which used twisted Edwards curves for elliptic curve arith-
metic and Montgomery curves for isogeny computation [23]. This was further
optimized in [20], which used the Edwards curves for isogeny computation and
Montgomery curves for the elliptic curve arithmetic. However, as stated in [5]
and [20], using only Edwards curves for implementing SIDH-based algorithms is
not as efficient as using only Montgomery curves.

The efficiency of using Edwards curves began to stand out when used for im-
plementing CSIDH. Unlike SIDH-based algorithms, CSIDH-based algorithms use
higher odd-degree isogenies. Montgomery curves offer efficient isogeny evaluation
of arbitrary odd-degree isogenies [10]. However, it is hard to obtain an efficient
formula for recovering the coefficient of the image curve on Montgomery curves.
On the other hand, Edwards curves can provide an efficient formula for com-
puting the coefficient of the image curve. Therefore, in [22], they implemented
CSIDH by using Montgomery curves for isogeny evaluation and twisted Edwards
curves for recovering the coefficient of the image curve. In [21], they proposed
an optimized odd-degree isogeny formula by using the w-coordinate on Edwards
curves. By adapting the formula in [21], Edwards-only CSIDH can be imple-
mented, which is faster than Montgomery-CSIDH [7] or Hybrid-CSIDH [22].
The work of [21] shows that a certain form of an elliptic curve can lead to a bet-
ter result for certain isogeny-based algorithms. Hence it is important to check
the implementation results on various elliptic curves.

This work aims to provide an efficient method to exploit Huff curves in
isogeny-based cryptography. Isogenies on Huff curves were first proposed in [24].
However, due to inefficient elliptic curve arithmetic and isogeny formula, it has
not been studied until the work of [15], and in [17]. The proposed compression
functions in [15,17] for the points on a Huff curve allow Montgomery-like elliptic
curve arithmetic formulas, which result in faster isogeny computations. In this
paper, based on the formula presented in [15] and [17], we examine the appli-
cability of Huff curves for isogeny-based cryptography. The following list details
the main contributions of this work.

— We examine the computational costs of the lower-level functions — differential
addition, doubling, and isogeny computation — on Huff curves when a com-
pression method in [15] and [17] are used. These are presented in Section 3.
Also, we present 4-isogeny on Huff curves using the compression method pro-
posed in [15], by applying a similar method to derive the 4-isogeny formula
presented in [17]. The formulas for 4-isogeny are presented in the Appendix.

— We apply the square-root Vélu formula on Huff curves to compute higher-
odd degree isogenies efficiently. To use the square-root Vélu formula proposed
in [3], biquadratic polynomials must be redefined to express the relationship
between points P, @, P—@Q, and P+(Q) in w-coordinate. We derive biquadratic
polynomials for Huff curves and demonstrate that the computational cost
for evaluating the main polynomial hg is the same as Montgomery curves.
The definition of hg and details of the formula is presented in Section 4.

— We also present the formula to recover the coefficient of the Huff curve,
for SIDH-based cryptography. As using the compression method in [15] is



faster for recovering the coefficient, we used compression method in [15]
to implement SIDH. For CSIDH-based cryptography, one has to examine
where supersingular Huff curves exist for a chosen prime. We deduce that
for a prime p =7 mod 8, there exist supersingular Huff curves over F,, and
), has no supersingular Huff curves when p =3 mod 8.

— We present the implementation result of SIDH and CSIDH using Huff curves.
Based on our experiment, for SIDH, the performance of Montgomery-SIDH
and Huff-SIDH is almost the same. For CSIDH, Huff-CSIDH is 6.4% faster
than Montgomery-CSIDH. When the square-root Vélu formula is used, then
Montgomery-CSIDH is 4% faster than Huff-CSIDH. The details of the results
are presented in Section 5.

This paper is organized as follows: In Section 2, we introduce two main
isogeny-based key exchange algorithms and a form of Huff curves that will be
used for the implementation. In Section 3, we demonstrate the computational
cost of lower-level functions for implementing isogeny-based cryptography. In
Section 4, we introduce the square-root Vélu formula and present the main
polynomials for Huff curves to exploit the square-root Vélu formula. In Section
5, we present the implementation result of SIDH and CSIDH on Huff curves. We
draw our conclusion in Section 6.

2 Preliminaries

In this section, we provide the necessary background that will be used through-
out the paper. First, we introduce two main streams in isogeny-based cryptog-
raphy — SIDH and CSIDH. Lastly, we describe variants of Huff curves and their
arithmetic.

2.1 Isogeny-based cryptosystems

We recall the SIDH and CSIDH key exchange protocol proposed in [18] and [7].
For more information, please refer to [18] and [7] for SIDH and CSIDH, respec-
tively. The notations used in this section will continue to be used throughout
the paper.

SIDH protocol Fix two coprime numbers £4 and ¢g. Let p be a prime of the
form p = (5057 f £ 1 for some integer cofactor f, and es and ep be positive
integers such that (%' ~ (7. Then construct a supersingular elliptic curve F
over F,2 of order (¢5¢57 f)?. We have full ¢*-torsion subgroup on E over F .
for ¢ € {€4,¢p} and e € {ea,ep}. Choose basis {Pa,Q4} and {Pp,Qp} for the
05~ and (9 -torsion subgroups, respectively.

Suppose Alice and Bob want to exchange a secret key. Let {P4, @4} be the
basis for Alice, and {Pp,Qp} be the basis for Bob. For key generation, Alice
chooses random elements ma,na € Z/(5*Z, not both divisible by £4, and com-
putes the subgroup (R4) = ([ma]Pa+[na]Qa4). Then using Vélu’s formula, Alice



computes a curve E4 = E/(R4) and an isogeny ¢4 : E — E4 of degree (5,
where kergs = (R4). Alice computes and sends (E4,pa(Pgp),$a(Qp)) to Bob.
Bob repeats the same operation as Alice so that Alice receives (Ep, ¢5(Pa), d5(Q4)).
For the key establishment, Alice computes the subgroup (R'y) = ([ma]ép(Pa)+
[na]és(Q4)). By using Vélu's formula, Alice computes a curve Eqp = Eg/(R).
Bob repeats the same operation as Alice and computes a curve Ega = E4/(R/).
The shared secret between Alice and Bob is the j-invariant of E4p, i.e. j(Eap) =

J(EBa).

CSIDH protocol CSIDH uses commutative group action on supersingular
elliptic curves defined over a finite field F,,. Let O be an imaginary quadratic
order. Let £¢¢,(O) denote the set of elliptic curves defined over F, with the
endomorphism ring O. It is well-known that the class group Cl(O) acts freely
and transitively on ££4,(0). We call the group action as CM-action and denote
the action of an ideal class [a] € C1(O) on an elliptic curve E € £04,(0O) by [a]E.

Let p = 40145 --- £, — 1 be a prime where ¢1,--- ,£, are small distinct odd
primes. Let F be a supersingular elliptic curve over F,, such that End,(E) = Z[x],
where End,(E) is the endomorphism ring of E over F,. Note that End,(FE)
is a commutative subring of the quaternion order End(FE). Then the trace of
Frobenius is zero, hence E(F,) = p+ 1. Since 72 — 1 =0 mod ¢;, the ideal ;0
splits as £;0 = L;[;, where [; = (¢;,7 — 1) and [; = (£;, 7 + 1). The group action
[L]E (resp. [I;]E) is computed via isogeny ¢y, (resp. ¢;) over F,, (resp. F,) using
Vélu’s formulas.

Suppose Alice and Bob want to exchange a secret key. Alice chooses a vector
(e1,-++ ,en) € Z", where e; € [—m,m], for a positive integer m. The vector
represents an isogeny associated to the group action by the ideal class [a] =
(15 -+ (En], where [; = (¢;,m — 1). Alice computes the public key E4 := [a]E and
sends F 4 to Bob. Bob repeats the similar operation with his secret ideal b and
sends the public key Ep := [b]F to Alice. Upon receiving Bob’s public key, Alice
computes [a] Ep and Bob computes [b] E4. Due to the commutativity, [a] Ep and
[6]E 4 are isomorphic to each other so that they can derive a shared secret value
from the elliptic curves.

2.2 Huff curves and their arithmetic

Huff curves Huff models for elliptic curves was first introduced by Joye, Ti-
bouchi, and Vergnaud in [19]. They proposed the group law and formula for
computing Tate pairings on Huff form of elliptic curves. Let K be a finite field
of characteristic not equal to 2. The Huff form of elliptic curve is given by the
equation:

H,p= a:c(y2 -1)= by(ars2 -1)

where a? # b? and a,b # 0. The point O = (0,0) is the neutral element and
—(z,y) = (—x,—y). Also, every Huff curve has three points at infinity, which



are also points of order 2. The curve H, ; can also be simplified as
He=ca(y’ 1) = y(a® - 1)

where ¢ = a/b, ¢ # £1. The general Huff curves which contains the Huff form of
elliptic curves is introduced in [27]. General Huff curves are given by the equation

Gap = a(ay® —1) = y(ba® — 1)

where a # b and a,b # 0. Similar to the Huff curves, the point O = (0,0) is

the neutral element and —(x,y) = (—z, —y). The j-invariant of the curve Ggp

8 2 213 o i L 8¢ 4_ 2,2 ;433
isj= %, and the j-invariant of the curve H, is j = %

Isomorphisms The Huff curve H, j is isomorphic to a Weierstrass curve of the
form
Wa,p: y? =23 + Az® 4+ Bz

where A = (a® + b*) and B = a?b?. The Huff curve H, is isomorphic to an
Edwards curve of the form

b
E:z? +y —1+(a+b)2x2y2

and corresponding Montgomery curve of the form
Mp:y?> =2+ D2’ +z

where D = (a? + b%)/ab.

Arithmetic on Huff curves For points P = (z,,y,) and Q = (z4,y,) On a
Huff curve H, p, the addition of two points P+ Q@ = (z,, y,) is defined as below,
and doubling can be performed with exactly the same formula.

_ (xp +2¢)(1 + Ypyq)
" (1 + 2p2q) (1 — ypyq)
_ (Yp + yg) (1 + zpzyg)
" (1 = zpzq) (1 + ypyq)
The above formula is same for the curve H.. For a general Huff curve G, the
unified addition is performed as below:

(zp + 74)(aypy, +1)
(bzpzq + 1)(aypys — 1)
(Yp + yq) (bxpzq + 1)
(bxpzrq — 1)(aypyqs + 1)

r =

Yr =

where P = (zp,y,) and Q = (x4,y,) are points on G, and P+ Q = (x,, yr).



3 w-coordinates on Huff curves

Recently, in [15] and independently in [17], they proposed a compression func-
tion on Huff curves, which allows faster elliptic curve arithmetic and isogeny
computation. We shall express this compression function as w-coordinate and
examine the computational cost of formulas on Huff curves when w-coordinate
is used. For the simplicity of the explanation, we shall denote w-function for the
compression method proposed in [15], and w;,,-function for the compression
method proposed in [17].

3.1 Compression function w;,, on Huff curves

Huang et al. proposed a compression method for Huff curves and presented an
isogeny formula on Huff curves [17]. For the simplicity of the formula, they used
the Huff curve of the form H..

Let P = (x,y) be a point on a Huff curve H.. In [17], the defined the com-
pression function wj,, as w(P) = 1/xy. Then w(P) = w(—P) and w(0) = occ.
Using this function, doubling and differential addition formula are defined in [17].
Now, for Py, P, € H,, let wi = w(P;) and we = w(Ps). Let wy = w(2P;),ws =
w(Py + P2), and wy = w(P; — P3). Then,

(wi —1)?
wo =
4wy (w1 + ¢)(wy + 1/c)
(w1w2 — 1)2
WaWy = ~———5

(w1 —w2)?’

For the rest of this subsection, we examine the computational cost of the
doubling, differential additions, and odd-degree isogeny formula on Huff curves
when w;,, is used for the compression. We consider W Z-coordinate as projective
w-coordinate on Huff curves, where w = W/Z. The M and S refer to a field
multiplication and squaring, respectively.

Doubling Let P = (z,y) be a point on a Huff curve H,. Let ¢ = C’/D, where
¢=2(c+1-2). Let w = 1/ay, and w = W/Z. For w(P) = (W : Z) in
projective w-coordinates, the doubling of P gives w([2]P) = (W’ : Z'), where
W' and Z’ are defined as:

W' =D(W — Z)X (W + Z)?

Z' =AW Z(D(W + Z)* + C - 4W Z)

The computational cost is 4M + 28, given C' and D.



Differential addition Let P, = (W : Z;) and P, = (W5 : Z3) be the points
on Hc- Let wo = ’LU(P1 - PQ) and w3 = w(P1 + PQ) Let wy = Wo/ZO and
w3 = Wg/Zg. Then,

W3 = Zo(WiWsa — Z175)?,
Z3 = Wo(W1Zy — Zy W),

The computational cost of differential addition and doubling on Huff curves is
6MM+4S using affine curve coefficients and 8M+4S using projective coordinates
and projective curve coefficients.

Odd-degree isogeny formula Using the compression function w;,, for the
points on a Huff curve, the odd-degree isogeny formula is presented as the fol-
lowing theorem [17]:

Theorem 1 (Odd-degree isogeny on H. using w;,,-function [17]).

Let P be a point on a Huff curve H. of odd order £ = 2s + 1. Let (P) =
{(0,0), (a1, B1), - -+ , £(as, Bs)}, where P = (ay, p1). Let w; = 1/a;8; for 1 <
i <s. and w=w(Q), where Q = (x,y) € H.. Then for {-isogeny ¢ from H. to
H; = H./(P) the evaluation of w, w(¢), is given by,

w(o) = w ][ =L W

(W —wi)?

where

S

¢ = cH (1 +cwi)2

= (et wy)?

To transform the above formula by using projective coordinates and projec-
tive curve coeffcients, for (ay, 3;) € He, let (W, @ Z;) = (w; : 1) for i =1,...,s
where w; = 1/;f;. For an additional input point (W : Z) on the curve H.,,
the output is expressed as (W' : Z’) where (W’ : Z') = ¢(W : Z). Then, the
equation (1) can be rewritten as:

W =w-[[WWw; - 22>,
i=1
7' =7-1[WZi - 2W;).
i=1
Similarly, for £ = 2s + 1-isogeny, evaluation of an isogeny using wjn,-function
costs (4s)M+2S. To compute the curve coefficients, let ¢ = C/D and ¢ = C/D.
Then we have,

C=c-][(Dz+Ccwy)>
=1

D=D-. H(CZz‘ + DW;)?

i=1



Therefore, recovering the curve coefficient costs (4s)M+28S.

Coefficient transformation When w;,,-function is used for elliptic curve
arithmetic on Huff curves, instead of using the projective curve coefficients C
and D, we use (C — D)? and 4CD for efficient computation. Hence, after ob-
taining the coefficient of the image curve C and D, (C‘ — ﬁ)Q and 4C'D must be
computed in order to proceed with elliptic curve arithmetic on the image curve.
Intuitively, this requires 28S.

3.2 Compression function w on Huff curves

In [15], they proposed a compression method for Huff curves and presented an
isogeny formula. As they proposed the formulas for elliptic curve arithmetic and
isogenies for Huff curve of the form H, 3, we shall present the formulas in this
setting. However, for the implementation, we apply the compression function w
on H., for simplicity. Note that this is equivalent to the case on H, p, with b = 1,
and the resulting formula is almost the reciprocal of the formula on H. using
Winy as a compression method. For detailed formula on H. using w, please refer
to the Appendix.

For a point P = (z,y) on a Huff curve H, 3, define the compression function
w as w(P) = xy. Then w(P) = w(—P) and w(0O) = 0. Using this function,
doubling and differential addition can be expressed as follows [15].

For P, P, € Hyp, let w1 = w(Py) and wy = w(Ps). Let wy = w(2P;), ws =
w(Py + P), and wy = w(P; — P3). Then,

w :4w1(w%+ew1+1) s — (wy — wy)?
0 W 1) yW3Wy = ——————

where e = g + 7.

For the rest of this subsection, we examine the computational cost of the
doubling, differential additions, and odd-degree isogeny formula on Huff curves,
in the setting of isogeny-based cryptosystems.

Doubling Let P = (x,y) be a point on a Huff curve H,y. Let a = A/D,
b= B/D, w = uxzy, and w = W/Z. For w(P) = (W : Z) in projective w-
coordinates, the doubling of P gives w([2]P) = (W' : Z'), where W’ and Z’ are
defined as:

W' =AW Z(4AB(W — Z)? + (A + B)?(4W 2))
7' = 4AB((W — Z)*(W + Z)?)

The computational cost is 4M + 2S, when we assume that (4 + B)? and 4AB
are precomputed.



Differential addition Let P, = (W : Z;) and P, = (W5 : Z3) be the points
on H(L,b- Let wo = ’LU(Pl — PQ) and w3z = U.)(Pl + PQ) Let wo = Wo/ZQ and
w3 = Wg/Zg. Then,

Wy = Zo(W1Zo — WoaZ1)?,
Z3 = Wo(WiWo — Z1Z5)2.

The computational cost of differential addition and doubling on Huff curves is
6M+48S using affine curve coefficients and 8M+48S using projective coordinates
and projective curve coeflicients.

Odd-degree isogeny formula In [15], they proposed The odd-degree isogeny
formula on Huff curves by composing the isomorphism between Huff and general
Huff curves, and odd-degree isogeny on general Huff curves.

Theorem 2 (Odd-degree isogeny on H, ; using w-function [15]).

Let P be a point on a Huff curve Hqyp of odd order £ = 2s + 1. Let (P) =
{(070)7i(a17ﬁ1)7 e vi(a376s)}7 where P = (O‘Iaﬂl)' Let w; = aiﬁi fOT 1< <
s. and w = w(Q), where Q = (z,y) € Hyyp. Then for £-isogeny ¢ from Hyy to
Hy = Hqp/(P) the evaluation of w, w(¢), is given by,

S 2

w(g) = w ] )

ww; — 1)2
=1

(2)

where

o — al_[le(bwi + a) and o — bSHle(awi +b)
Hi:l wi(aw’i + b) Hi:l wz(bwz + a)

Now to projectivize the formula, for (o, 3;) € Hap, let (W : Z;) = (w; : 1)
for i = 1,...,s where w; = «;3;. For an additional input point (W : Z) on the
curve H,p, the output is expressed as (W' : Z’) where (W' : Z') = ¢(W : Z).
Then, the equation (2) can be rewritten as:

W' =W . H(WZz - ZWi)z,

i=1

S
Z'=2Z- H(WWi —Z7;)?,

i=1

where the computing (W Z; — ZW;) and (WW,; — ZZ,) requires 2M. Hence for
£ = 2s + 1-isogeny, evaluation of an isogeny costs (4s)M+2S. To compute the
curve coefficients, let a = A/D and b = B/D. Then we have,

10



A=A H Z{(BW; + AZ;)?,

i=1

S
B =B- H Zi(AW; + BZ;)?,

i=1

D'=D- H Wi(AW; + BZ;)(BW; + AZ;).

i=1

Note that only A’ and B’ are required when implementing isogeny-based
cryptography on Huff curves. Moreover, since we use only the ratio of A and B,
the term Z; can be omitted when computing A" and B’. Therefore, recovering
the curve coefficient costs (4s)M+28S.

Coefficient transformation Note that when w-function is used for elliptic
curve arithmetic on Huff curves, instead of using the projective curve coefficients
A, B, and D, we use (A + B)? and 4AB for efficient computation. Hence, after
obtaining the coefficient of the image curve A’ and B’, (A’ + B’)? and 4A'B’
must be computed in order to proceed with the elliptic curve arithmetic on the
image curve. Intuitively, this requires 2S.

Remark 1. Tt is obvious that when w-function is used for H., the formula for
doubling, differential addition, and odd-degree isogenies is almost the reciprocal
of the case when w;,,-function is used for H.. Let P, = (x1,y1) and Py = (22, y2)
be the points on H., and w(P) = zy for P = (z,y) € H.. Let w1 = w(Py),
we = w(Py), wg = w(2P;),ws = w(P, + P»), and wy = w(P; — P3). Then,

_Awi(wr +¢)(wy +1/c)
e

(w1 — wg)?

Wo

W3Wy = 7(101“}2 — 1)2’

which is almost the reciprocal of the case when w;,,-function is used. Hence
every computational cost for elliptic curve arithmetic and isogeny is the same
when H,. with w is used and when H,. with w;,, is used.

4 Square-root Vélu formula for Huff curves

Recently, Bernstein et al. proposed an efficient algorithm that computes ¢-isogeny
in O(v/?) field operations [3]. The conventional Vélu formula computes /-isogeny
in O(¢) field operations. The high-level view of the Vélu formula can be consid-
ered as evaluation of polynomials over K whose roots are values of a function

11



from a cyclic group to K. Let G be a cyclic group with generator P. Then for a
finite subset S of Z, define a polynomial

hs(X) = [[(X = £([s]P)) 3)

ses

where [s]P denotes the sum of s copies of P. In isogeny-based setting, let F(K)
be an elliptic curve, P € E(K). Then G = (P) is a kernel of an f{-isogeny
¢: E — E', and f([s]P) can be considered as the z-coordinate of P.

Let M, be a Montgomery curve, P € M, be a point of prime order ¢ # 2.
The isogeny ¢ : M, — M, with kernel (P) is given by the equation below,
expressed in terms of equation (3):

¢ 2
ooy = Kbt

where @’ = 2(1+d)/(1 —d) for d = ((a — 2)/(a +2))* - (hs(1)/hs(—1))%, and
S ={1,3,...,0 —2}. Now, ¢(X) can be evaluated in O(v//) field operations if
hs is evaluated in O(v/?) field operations.

The key for evaluating hg in 0(\/@) field operations is to decompose the set S
into smaller set I and .J, having size similar to v/S, satisfying certain conditions.
In [3], I and J are chosen so that most of the elements in S is represented
as elements of (I + J) U (I — J). For details on the conditions of the set and
algorithms, please refer to [3]. Hence, the problem of evaluating a polynomial
whose roots are [s]P for s € P is transformed to the problem of evaluating a
polynomial, whose roots are [¢{|P and [j]P for ¢ € I and j € J, respectively.
Then, by computing the resultant of polynomials relating to the set I and J,
we can obtain the evaluation of hg. To do this, we need to find the relations
between the z-coordinate of [i] P, [j] P, [i + j]P, and [i — j]P for i € I and j € J.
Below, Lemma 1 states the existence of biquadratic polynomials of an elliptic
curve E that shows the relationship between points P, Q, P + @, and P — @ for
PQeE.

Lemma 1 (Biquadratic relations on z-coordinates [3]). Let g be a prime
power. Let E(Fy) be an elliptic curve. There exist biquadratic polynomials Fy, Fy,
and Fy in Fy[Xq, Xo] such that

F(@(P),2(Q) . Fafa(P),2(Q)
Fo(z(P),2(Q)) Fo(z(P),z(Q))
for all P,Q € E such that O ¢ {P,Q,P + Q,P — Q}. The x(P) denotes the
x-coordinate of a point P.

(X —2(P+Q)(X —2(P-Q)) = X"+

If E is defined by affine Montgomery equation By? = 23 + Ax? + x, then the
polynomials Fy, Fy, and Fy are defined as follows [3].

Fo(X1,X2) = (X1 — X5)?
Fl(Xl,XQ) = 72((X1X2 —+ 1)(X1 —+ XQ) —+ 2AX1X2)
(X1, X2) = (X1 X2 — 1)2
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To use the square-root formula, we define the following biquadratic polynomials
specifically for Huff curves of the form H.. Similarly, the relationship between
the w-coordinates of points P, Q, P+ (@, and P—(Q on Huff curves can be written
as follows:

Gi(w(P), w(@)) ., | Ga(w(P), w(Q))

(W —w(P+ Q)W —w(P-Q))=W?+ Go(w(P), w(Q)) Go(w(P),w(Q))

For the curve H. using the w-function, then the polynomials Gy, G1, and G5 are
defined as follows:

Go(Wl,WQ) = (W1W2 — 1)2
G (W1, W) = —2(WaWs + 1) (Wi + W) + 20W, Wy + AW, TW2)
Go (W1, Wa) = (Wy — Wy)?

where C = ¢ + % — 2. When w;,,-function is used for compression, then the
polynomials Gy, G1, and G4 are defined as follows:

Go(Wr, Wa) = (W — Wa)?
G1(Wy, Wa) = —2(Wi Wy + 1)(Wy + Wa) 4+ 2CW1 Wa + AW, W)
GQ(Wl,WQ) = (W1W2 — 1)2

where C' = ¢+ % —2. Using this biquadratic polynomials, the square-root formula
for Huff curves directly follows [3], and the computational cost for evaluating
biquadratic polynomials for Huff curve is the same as Montgomery curves. The
following proposition states the isogeny formula on Huff curves H. using w- and
Winy-function, expressed in terms of equation (3).

Proposition 1 (Square-root Vélu formula on Huff curves). Let H. be an
elliptic curve over Fy in Huff form, and let P be a point of prime order £ # 2 in
H.. Let w be a compression function for point on H.. For Q € H. let w(Q) = W.
Then the evaluation of w(¢(Q)) where ¢ : H. — H., a quotient isogeny with
kernel (P), is given as:

14 2

where S = {1,3,...,4 —2} and ¢ = ¢’ - hs(—¢)?/hs(—1/c)?.

Now, let win, be a compression function for point on H.. For Q € H. let
Winy(Q) = W. Then the evaluation of Win,($(Q)) where ¢ : H. — Hy, a
quotient isogeny with kernel (P), is given as:

_ Whhs(1/W)?

Winw(0(W)) hs(W)?

where S = {1,3,...,0 —2} and ¢ = c' - hs(—1/c)?/hs(—c)?.
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Remark 2. While preparing this paper, we notice the recent work by Wronski,
introducing the application of the square-root Vélu formula on Huff curves [26].
In [26], a new compression functions on Huff are introduce to be suitable for
application.

Recovering the curve coefficient From the biquadratic polynomials, we were
able to derive the formula for recovering the coefficient of the Huff curve from
the w-coordinate of the points P, and P — Q on a Huff curve.

When implementing SIDH-based cryptography, P4 — Q4 and P — Qp are
also considered as a public key for faster kernel computation using the Mont-
gomery ladder. Hence ¢4(Pg — Qp) and ¢p(Pa — Q4) are also computed and
exchanged to compute the shared secret key efficiently. This can be thought of
as an increase in the public key size. But using the fact that the coefficient a
of the Montgomery curve M, relates to the z-coordinates of P,Q, and P — Q
for P,@Q € M,, sending the coefficient of the image curve is omitted [12]. There-
fore, (pa(Pp),pa(@B), 04(Ps—Qp)) and (¢5(Pa), ¢5(Q4), 95(Pa—Qp)) are
exchanged during the protocol, and upon the receipt of the public key, the coeffi-
cient is recovered using the relationship, which costs 4M+1S+11. The I denotes
the field inversion.

For Huff curves, similar relationship can be obtained. Let H. be a Huff curve
using w as a compression function. For P,Q, and P — @ in H,, let w(P) =
Wy, W(Q) = wy, and w(P — Q) = wpq. Then the following holds:

2((wpwy + 1) (wp + wy) + 2wpwy + dwpwy)
(wpwy — 1)

w(P+Q)+wP —Q)=

(wp — wq)2 2((wpwg + 1) (wp + wy) + 2wpwy + dwpwy)
(wpwg —1)2

(wp — wy)* + wgq(wpwq —1)% = 2wy ((wpwy + 1) (wp + wy) + 4wpw,)

4wy wpwy
(wp — wq) — (wpg(wpwy — 1)))2 — dwpg(wy, + wpwg + 2wpwy)

= (4)

dwpqwpwy

where ¢ = c+ % — 2. The computational cost is 3M+1S+11. Similar relationship
can be obtain for w;,,-function, which is as follows.

2((wp,wy + 1) (w, + wy) + 2¢w,w, + dw,w
Winy (P + Q) + Winy (P — Q) = ((eopreg + 1) p(w _q)w )2 — vita)
p q

(wpwy — 1)2 2((wpwy + 1) (wp + wy) + 2Ewpwy + dwpwg)

+ Wpg =
Wy (wp — wq)? - (wp — wg)?
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(wpwyg — 1) + w}%q(wl’ —wg)* = (2wpg(wpwy + 1) (w, + wy) + 4wpw,)

4wpqwpwy
(wpwg — 1) = (wpg(wy — wq)))2 — dwpq(wp + wpwg + 2wpwq)

= ()

dwpqwpwy

where ¢ = ¢+ % — 2. The computational cost is 5M+1S-+11.

Summarizing the section, Table 1 denotes the computational cost of the
building blocks of isogeny-based cryptography on Montgomery curves and on
Huff curves. The middle rule in Table 1 divides the functions into two groups —
the upper half is the functions that are commonly used in SIDH and CSIDH-
based cryptography, and the lower half is the functions that are explicitly used
in SIDH-based cryptography.

In Table 1, DBLADD refers to the differential addition and doubling in pro-
jective coordinates, and DBL refers to the doubling. /-isog eval refers to the
evaluation of an (-isogeny and /-isog coeff refers to the computation of the
coefficient of the /-isogenous image curve, where £ = 2s + 1. CoeffTrans refers
to the cost of transforming the coefficient for efficient elliptic curve arithmetic,
which only occurs on Huff curves. The TPL refers to tripling of a point, and
3-isogeny (resp. 4-isogeny) is the combined computational cost of isogeny
evaluation and coeflicient computation. Lastly, get_coeff refers to recovering of
the curve coefficient using points P,Q and P — @ on an elliptic curve.

Also, Mont refers to Montgomery curve, and Hybrid refers to the hybrid
method proposed by [22], where Montgomery curve is used for elliptic curve
arithmetic and isogeny evaluation, and Edwards curves are used for computing
the coefficient of the image curve. As the hybrid method is only used for a
comparison between curves in CSIDH-based cryptography, the computational
cost of the lower half of the table is omitted. The function w(¥) refers to w(¢) =
(h— 1M+ (t — 1)S. In w(¥), h denotes the hamming weight of ¢ and ¢ is the
bit length of £.

As shown in Table 1, except for the /~isogeny coeff, the computational cost
of the lower-level functions is the same for Montgomery curves and Huff curves.
Also, as the compression function w and wj;,, are reciprocals of each other,
the formula of the lower-level functions are almost reciprocals of each other so
that w-function and w;,,-function induce the same computational cost. Hence,
when implementing CSIDH-based cryptography on Huff curves, the compression
function is free of one’s choice. On the other hand, for SIDH-based cryptography,
w-function is preferred as get_coeff is slightly efficient than w;y,,-function.

Remark 3. On Huff curves, the CoeffTrans can be omitted when division poly-
nomial is used to represent the curve coefficient in terms of the kernel points. This
can be easily done for 3- and 4- isogenies. For general higher degree isogenies,
as representing the coefficient of the curve using kernel point is difficult, extra
CoeffTrans operation is required to proceed with the elliptic curve arithmetic
further.
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Table 1: Computational cost of building-blocks of isogeny-based cryptography
on Huff curves and Montgomery curves

Mont [7,10] Hybrid [22] w Winw
DBLADD 6M + 4S8 6M + 4S8 6M + 4S 6M + 4S8
DBL 4M + 2S 4M + 2S 4M + 2S 4M + 28
{-isog eval 4sM + 2S 4sM + 28 4sM + 2S 4sM + 28
{-isog coeff (6s—2)M+3S (25)M +6S + 4sM + 28 4sM + 28
2w(¥)

CoeffTrans - - 2S 2S

TPL ™ + 58 - ™™ + 58 7™ + 58
3-isogeny 6M + 58S - 6M + 58 6M + 58
4-isogeny 6M + 6S - 6M + 6S 6M + 6S
j-invariant 3M +4S + 11 - 3M +4S 4+ 11 3M +4S + 11
get_coeff 4M + 1S + 11 - 5M + 1S + 11 3M + 1S + 11

5 Implementation

In this section, we provide the performance result of isogeny-based cryptography.
First, we present the implementation result of SIDH entirely on Huff curves.
Then, we present the implementation result of CSIDH.

To evaluate the performance, the algorithms are implemented in the C lan-
guage. For SIDH, we modified the field arithmetic implemented in SIDH library
version 3.1 [11]. For CSIDH, we use the field arithmetic implemented in [7]. All
the cycle counts were obtained on one core of an Intel Core i7-6700 at 3.40 GHz,
running Ubuntu 16.04 LTS. For the compilation, we used clang version 6.0.0
with an optimization level -O3.

5.1 Implementation of SIDH

We first present the parameter settings for SIDH implementation. Then we
present the implementation result with analysis. For implementing SIDH, we
used the Huff curve of the form H, with w as compression function, as w-function
is more efficient than w;,, for recovering the coefficient of the curve after the
first round of the protocol.

Parameter Settings The prime used in SIDH-based cryptography is of the
form p = (543 f £ 1. In this section, we present two implementations on Huff
curves when {(4,¢p} = {2,3} and {¢4,¢p} = {3,5}. The former is the general
choice of ¢4 and ¢p for implementing SIDH-based cryptography. As an extra
coefficient transformation is required for Huff curves for higher degree isogenies,
the latter is to examine the performance change caused by this.
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For {4,¢p} = {2,3}, we used the 751-bit prime proposed in [2], which is as
follows:

P = 23723239 1

For {€4,¢p} = {3,5}, we used the 621-bit prime of the form:

P21 = 267 . 3175 . 5119 -1

)

and and
Over finite field Fp» = Fy, (i) for i* = —1 and a € {751,621}, we used the
supersingular Montgomery curve of the form as the base curve:

3175 ~ 2277.368 5119 ~ 2276.309

M :y? =23 + 622 +z,
which is isomorphic to a Huff curve of the form:
He, :cor(y® —1) = y(z? —1).

For a = 751, then ¢751 = 3+ 8 € Fp%l and for a = 621, then cgo1 =3+ V8 €
p2 .

“For Pe21, the generator points for the Huff curve are the points P4, Q4 and
Pp,Qp such that Py,Qa € E[3'7] and both points have exact order 372,
Py,Qp € E[5'1%] and both points have an exact order 5'1°. To select such a
point, we first search for the points on the following Weierstrass curve:

W y? =a® + (cGoy + 1)a” + gy,

which is isomorphic to the Huff curve H.,,,. When (P4,Q4) and (Pp,Qp) are
found, we compute the Weil paring e(P4,Q4) € E[3'5] and e(Pp,Qp) € E[5'19]
to check that the result has order 3!7° and 5''%, respectively. When the points
are found, we transform the points on W to points on H.,,,, and express in w-
coordinate. The generator points on Montgomery curves are found in a similar
manner.

Also, when implementing 5-isogeny, we used the formula from [10] for isogeny
evaluation. For recovering the coefficient of the image curve, we used the 2-
torsion method described in [10]. The reason is that using the 2-torsion method,
the cost for recovering the coefficient of the image curve is 8M+4S, while using
the projectivized formula of [10] presented in [7], the cost is 10M+3S.

Implementation Results Table 2 presents the implementation results of SIDH
on Montgomery curves and Huff curves. Using the prime pgo; and prs1, the
performance of SIDH is compared between Montgomery curves and Huff curves.
The implementation using prs; uses 3- and 5-isogeny formula, which is presented
in Section 3.2. The prime pgo; uses 3- and 4-isogeny, and the corresponding
formula on H, using w-function is in the Appendix.

As denoted in Table 2, for pr51, the performance of the Montgomery-SIDH
and Huff-SIDH are almost the same. This is obvious as the computational cost for
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Table 2: Performance results of SIDH implementation. The results were rounded
to the nearest 103 clock cycles.

Montgomery Curve Huff Curve

De21 D751 D621 D751
Isogeny degree used 3,5 2,3 3,5 2,3
Alice’s Keygen 134,497 221,498 134,529 221,449
Bob’s Keygen 149,234 248,712 148,495 249,294
Alice’s Shared Key 114,053 182,015 114,109 182,089
Bob’s Shared Key 133,132 211,899 132,761 211,952
Total 530,916 864,124 529,894 864,784
Security (Classical) 138 186 138 186

the formulas for implementing isogeny-based cryptography is almost the same.
For pgo1, although the Huff curve requires to transform the curve coefficient
on Bob’s side, the performance of the Montgomery-SIDH and Huff-SIDH is al-
most the same. We shall analyze the results in detail by dividing them into key
generation and shared key computation phases.

Public key generation During this phase, it is natural that there is no
difference when comparing the computational cost of the two curves for Alice’s
side. For Bob’s side on Huff curves, after calculating the coefficient of the im-
age curve, extra coefficient transformation is required for efficient quintupling.
Hence, computing the coefficient on Huff curves costs 8M+4S for a total. For
Montgomery curves, 2-torsion is used for recovering the coefficient of the im-
age curve. Hence, after evaluating isogeny at 2-torsion point for a Montgomery
curve, recovering the curve coefficient is required, and total also costs 8M+4S.
Therefore, the computation of 5-isogeny on both curves is almost the same.

Computing the shared key The difference in the computation between
two curves occurs when calculating the curve coefficient upon the receipt of
(¢1(P])7¢Z(Qj)7¢Z(P] - QJ)) for (7’7;7) € {(AvB)a (B,A)} Now, note that upon
the receipt of <¢l(P])7 ¢1(QJ>7 (bl(PJ — QJ)) for (Z,]) S {(A, B), (B7A)}, the Huff
coefficient ¢ = ¢+ 1/¢+ 2 of H, is recovered using equation (4), not ¢ itself. For
Alice, as ¢ is directly used for tripling and isogeny computation, the performance
on Huff curves and Montgomery curves is almost the same. However, on Bob’s
side in Huff curves, recovering ¢ is not enough — ¢ is used for quintupling, but
we need the actual ¢ to compute the coefficient of the isogenous curve. On the
other hand, for Montgomery curves, Bob uses the extra 2-torsion point on the
base curve to compute the image curve’s coefficient. To reduce the key size,
when computing the shared key on Bob’s side, we compute the 2-torsion, given
the coefficient of the Montgomery curve. Hence both curves require to solve
quadratic equation over IF)2, which requires 1 field multiplication and 1 square-
root computation for both curves. Hence, the performance of Montgomery-SIDH
and Huff-SIDH is almost the same.
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5.2 Implementation of CSIDH

For CSIDH-based cryptography, the compression function to use is free of one’s
choice as the computational cost of the building blocks for CSIDH is the same for
w and wjp, . In this paper, we used w;y, for implementing CSIDH. To implement
CSIDH-based cryptography, we first need to check whether a supersingular curve
exists over a given prime field. In this section, we examine the existence of a
supersingular Huff curve over F, for a prime p and present the base curve H.
for the implementation. Then we present the implementation result of CSIDH
using Huff curves.

Prime field and base curve In order to implement the CSIDH-based cryp-
tosystem, we need to search for a supersingular Huff curve H,; over a prime
field p of the form p = f-[[¢; — 1, where ¢;s are small distinct primes. Below is
the theorem proving that a supersingular Huff curve over I, exists when p =7
mod 8. If p =3 mod 8, there is no supersingular Huff curve over F,,.

Theorem 3. There exists a supersingular Huff curve of the form Hgp over F)
when p =7 mod 8.

Proof. In the CSIDH setting, for every supersingular elliptic curve over F,, there
exist a corresponding supersingular Montgomery curve over F,,. Hence it suffices
to show that for a given supersingular Montgomery curve, there exists an isomor-
phic Huff curve over F,. Now, Huff curve H, is isomorphic to a Montgomery
curve of the form:

a?+bv

M:y* =23+ " ¥+ (6)

Then, M is supersingular if and only if H, ; is supersingular. Let (a* 4 b%)/ab =
A. If we find a supersingular Montgomery curve y? = 23 + Az? + z over Fp,
then by using the equation (6), we can find the corresponding supersingular
Huff curve over F,,. Solving the equation we have,

. Ab + /(Ab)? — 4b2 @)
B 2

From the above equation, H, ; is defined over F,, if and only if Ab* — 4b? is a
square in IFp, i.e. A? — 4 is a square in F,.

Now, suppose p = 7 mod 8 and let M be a supersingluar curve having a
2-torsion point on F), except for (0,0). Then the 2-torsion subgroup of M satisfy
| M[2] |= 4. In this case, the supersingular curve M lies on the surface so that
Endg, (M) = Z[(1 + /=p)/2] [6]. Then A% — 4 is a square in F, so that the
corresponding H, ; exists over F,. On the other hand, if p = 3 mod 8, then
M lies on the floor so that A% — 4 is not a square in F,, so that there is no
supersingular Huff curve H, ; over [Fp.
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The original implementation of CSIDH uses the prime of the form p = 3
mod 8. However, from Theorem 3. we use the 511-bit prime presented in [16],
which works over [F,, where

p=2*-3.5.7-117-13...373 — 1.
In this field, we choose a supersingular Huff curve of the form as the base curve:
H,:cx(y? —1) =y(z* - 1)
Wherec=3—\/§er.

Remark 4. For a prime p such that p = 3 mod 8, there exist a supersingular
general Huff curve over IF),. However, as the computational cost of elliptic curve
arithmetic and isogeny evaluations is slower than the Huff curve, we omit this
case.

Selecting a random point over F,, When implementing CSIDH, one has to
select a random point on a curve over F,, of a certain order to compute an isogeny
using Velu’s formula. For a Montgomery curve, first, a random element in F, is
selected, and we consider as an z-coordinate of a given Montgomery curve. Then,
by using the curve equation y? = z3 + Az? + x, r = 23 + Az? + x is computed
and checked whether r is a square or nonsquare in F,. The computational cost
for checking whether a random point on a Montgomery curve is in F), or Fj2\F,
costs 2M + 1S (we omit the computational costs for computing the Legendre
symbol).

The following method checks whether the point (z,y) € H. is on F, or
F,2\FF,. Since w = 1/2y for a point (z,y) € H., y = 1/wx. Now, from the curve
equation, the following holds:

ca(y? —1) =y(=* - 1)
c c
—y—ccr=—x—y
w w
c 1
(—Jrl)y: <+c>z
w w
22 = (w4 ¢)/w(l + cw)
Thus z € F, if (cw + 1)(cw + w?) is square in F,. The computational cost for

checking whether a random point is in F,, or F,2\F, costs 2M + 18S.

Implementation results For the implementation, we used the prime field ),
as presented in Section 6. In order to compare the performance with Montgomery
curves, we use the following supersingular curve over F,, as a base curve.

M:y* =23+
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The original implementation of Montgomery-CSIDH in [7] does not use the
optimization method when evaluating isogenies. Hence, we modified the imple-
mentation for a fair comparison with the Huff-CSIDH. The difference in the
performance between the algorithms lies purely in the computation of the coef-
ficient of the image curve and coefficient transformation for Huff curves. Table
3 presents the performance of the group action on Montgomery curves and Huff
curves. In Table 3, Hybrid-CSIDH is a method proposed in [22], which imple-
ments CSIDH using Montgomery curves but uses Edwards curves for evaluating
the coefficient of the image curve.

Table 3: Performance results of group action in using traditional Vélu formula.

Montgomery-CSIDH Hybrid-CSIDH Huff-CSIDH

Group action 110,558,288 99,264,050 103,469,978

As shown in Table 3, Huff-CSIDH is 6.4% faster than Montgomery-CSIDH.
This is because although an extra coefficient transformation is required when
Huff curves are used for the implementation, recovering the Montgomery curve’s
coeflicient is costly than on a Huff curve for odd-degree isogenies. Also, Hybrid-
CSIDH is 10.2% faster than Montgomery-CSIDH and 4% faster than Huff-
CSIDH.

Additionally, for CSIDH, it is important to optimize the odd-degree isogeny
formula as isogeny computation contributes to the overall CSIDH performance.
Hence we present the CSIDH implementation using the square-root Vélu formula
in [3].

Table 4: Performance results of group action in CSIDH using the square-root
Vélu formula.

sqrt-Mont sqrt-Huff

Group action 99,658,531 103,396,849

Table 4 presents the performance comparison of Montgomery-CSIDH and
Huff-CSIDH, when the square-root Vélu formula is used for computing odd-
degree isogenies. In Table 4, sqrt-Mont and sqrt-Huff refers to CSIDH imple-
mentation when the square-root Vélu formula is used for Montgomery curves
and Huff curves, respectively. As the effect of square-root Vélu formula becomes
more conspicuous when isogeny of degree larger than 113 is used, the effect is not
immediate for the current parameter setting. However, as the square-root Vélu
formula exploits Edwards curves for recovering the coefficient of Montgomery
curve, we can see that the performance of sqrt-Mont is similar to Hybrid-
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CSIDH in Table 3. The sqrt-Huff is 3.6% slower than sqrt-Mont. This is
because when computing the coefficient of image curve, sqrt-Huff computes
hg(—c) and hg(—1/c), while sqrt-Mont computes hg(1) and hg(—1), which is
more efficient.

6 Conclusion

In this paper, we present the complete analysis of Huff curves’ usage for im-
plementing isogeny-based cryptography. First, we analyzed the computational
cost of the lower-level functions when the compression method is used for Huff
curves. Then, we proposed additional functions on Huff curves to implement
isogeny-based cryptography. We presented implementation results of the two
main isogeny-based algorithms — SIDH and CSIDH — on Huff curves.

For SIDH, as the computational cost for the lower-level function is the same
on Montgomery curves and Huff curves, the performance of Montgomery-SIDH
and Huff-SIDH is almost the same. For CSIDH, we present the birational poly-
nomials on Huff curves in order to exploit the square-root Vélu formula. We
implemented CSIDH using the classical Vélu formula and the square-root Vélu
formula and compare it with Montgomery curves. The sqrt-Mont is 4% faster
than sqrt-Huff.

Base on our analysis, the Huff curve can be quite practical for implementing
isogeny-based cryptography but has some limitations. The first is that as the
points of order 2 are all at infinity on Huff curves, it is hard to construct a 2-
isogeny formula using w-coordinate so that only e4 with an even number can be
used to implement SIDH with Huff curves. The second is that a supersingular
Huff curve exists on F,,, where p =7 mod 8. This result is contrary to the case
where supersingular Montgomery curve exists on IF,, for both p =3 mod 8 and
p=7 mod 8.
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Appendix A 4-isogenies on Huff Curves

Although [15] omits the 4-isogeny formula on Huff curves using w-function, by
adapting the idea from [17], we additionally present the 4-isogeny formula on
Huff curves using w-function. In this section, we shall briefly state the formula
for implementing SIDH using 4-isogeny.

Theorem 4 (2-isogenies for H,; using w-function). Let ¢ : Hyp, — Hy 1
be a 2-isogeny with kernel {(0,0),(a:b:0)}. Let w =y for (x,y) € Hop. Then
the evaluation of w under ¢ is given by

(a® — b*)w
(bw + a)(aw + b)

To derive equation (8), we adapt the method used in [17]. That is, ¢ is first
derived from the below composition:

p(w) = (8)

where

L P !
Ha,b — Ga,b — G&,E — Ha/}bl
where ¢ denotes the transformation from a Huff curve to a general Huff curve,

1 is a 2-isogeny on general Huff curve from [24]. Then ¢ = =1 04 o (. Similarly,
we can derive Huff 2-isogenies for the curve of the form H..

Theorem 5 (2-isogenies for H. using w-function). Let ¢ : H. — H. be a
2-isogeny with kernel {(0,0),(c:1:0)}. Let w = xy for (x,y) € H.. Then the
evaluation of w under ¢ is given by

w(c® —1)

ow) = (w+¢)(cw+1)

(9)

where ¢ =| (c+1)|/|(1=¢)].
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As shown in equation (9), 2-isogeny on H,. using w-function is identical to
setting b = 1 in equation (8). Also, equation (9) is just reciprocal of the 2-isogeny
on H,. using w;,, function defined in [17]. Lastly, we state the 4-isogeny on Huff
curve using w-function, directly derived from the idea presented in [17].

Theorem 6 (4-isogenies for H. using w-function). Let ¢ : H. — H. be
a 4-isogeny with kernel P such that w(P) = wy and P has order J in H.. Let
w(Q) = w = zy for a point Q = (x,y) € H.. Then the evaluation of w under ¢
s given by

w(w — wg)?(ww? +w — 2wy)

P(w) =

(2wwy —w? — 1) (wwy — 1)2

where ¢ = (1+ /1 —w})/(1 — /1 —w}).

Appendix B Formulas for implementing SIDH-based
cryptography

In this section, we present the doubling, tripling, 3-isogeny, and 4-isogeny for-
mula on a Huff curve of the form H., using w as a compression function. For
corresponding formulas on H,. using w function, please refer to [17].

Doubling Let P = (z,y) be a point on a Huff curve H.. Let ¢ = C/D and
¢ = C/D, where ¢ = 1 (c+1—2). For w(P) = (W : Z) in projective w-
coordinates, the doubling of P gives w([2]P) = (W' : Z'), where W’ and Z’ are
defined as:

W' =4WZ(D(W + 2)* + C - 4W Z)
Z'=D(W — Z)2(W + Z)?
The computational cost is 4M + 28, given C and D. Therefore, instead of using

the projective curve coefficient (C' : D), it is efficient to use (C' : D) = ((C—D)? :
4C'D) for implementation.

Tripling Let P = (z,y) be a point on a Huff curve H.. Let ¢ = C/D and
¢ = C/D, where ¢ = 1 (c+1—2). For w(P) = (W : Z) in projective w-
coordinates, the tripling of P gives w([3|P) = (W' : Z’), where W’ and Z’ are
defined as:

W' =W(DW* - 6DW?2% —16CW Z2° — 8DW Z° — 3D Z*)?
Z' = Z(3DW* +16CW3Z + 8DW3Z + 6DW?222 — DZ*)?

The tripling formula is the same to the case when wj, is used. The compu-
tational cost is 7TM + 5S, given C' and D. For tripling it efficient to keep the
projective curve coefficient as ((C'— D)% : (C + D)?).
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3-isogeny Let P = (x3,y3) be a 3-torsion point on a Huff curve H., w(P) =
(W3 : Z3). Let ¢ : H. — H. be a 3-isogeny generated by a kernel (P), such
that Hos = H./(P). Let Q = (W : Z) be another point on H.. Then the image
w(@(Q)) = (W' : Z') is computed as:

W' =W(WZs — ZWs)?

7' = Z(WWs — ZZ3)*

and

C = (W3 — Zs)(Ws + 3Z3)°
D = (Ws + Z3) (W5 — 3Z3)*

where ¢ = C'/D’ and C = (C" + D’)? and D = (C’' — D')?, to continue with the
tripling efficiently. The computational cost for 3-isogeny evaluation is 4M + 2S
and the computational cost for computing the coeflicient of the image curve is
2M + 38S.

4-isogeny Let P = (x4,y4) be a 4-torsion point on a Huff curve H., w(P) =
(Wy : Z4). Let ¢ : H. — Ho be a 4-isogeny generated by a kernel (P), such
that Ho = H./(P). Let Q = (W : Z) be another point on H.. Then the image
w(Pp(Q)) = (W' : Z') is computed as:

W' =W EW,Z,Z — W (Wi + ZD))WZW — Wy Z)?
7' = Z2W,ZW — Z(WE + Z3)(WWy — ZZ,)?

and

where ¢ = C'/D = 1 (¢ + % —2), to continue with the doubling efficiently. The
computational cost for 4-isogeny evaluation is 6IM + 2S and the computational

cost for computing the coeflicient of the image curve is 4S.
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