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Abstract

Proof of Elapsed Time (PoET) is a Nakamoto-style consensus algorithm where proof of work is
replaced by a wait time randomly generated by a trusted execution environment (TEE). PoET was
originally developed by Intel engineers and contributed to Hyperledger Sawtooth, but has never been
formally defined or analyzed. In particular, PoET enables consensus on a bitcoin-like scale without
having to resort to mining. Proof of Luck (PoL), designed by Milutinovic et. al., is a similar (but not
identical) protocol that also builds a Nakamoto-style consensus algorithm using a TEE. Like PoET,
it also lacks a formal proof.

In this work, we formally define a simplified version of PoET and Proof of Luck, which we call
elapsed time (ET) consensus with a trusted timer. We prove the security of our ET consensus
protocol with a trusted gimer given an honest majority assumption in a model very similar to the
bitcoin backbone model proposed by Garay et al. which we call the elapsed time backbone model.
Our model and protocol aims to capture the essence of PoeT and PoL while ignoring some of the
more practical difficulties associated with such protocols, such as bootstrapping and setting up the
TEE.

The PoET protocol also contains a function called the z-test that limits the number of blocks
a player can publish in any particular larger set of blocks. Surprisingly, by improving this z-test a
little bit we can prove the security of our ET consensus protocol without any TEEs with a (slightly
stronger) honest majority assumption. This implies that Nakamoto-style consensus with rate limiting
and no proofs of work can be used to obtained scalable consensus in a permissioned setting: in other
words, “bitcoin without proofs of work” can be made secure without a TEE for private blockchains!

1 Introduction

In today’s interconnected world, it is important to be able to share data widely but in a selective manner.
Efficient distributed databases have been known for quite some time and continue to get better and
better [VO99]. However, basic distributed databases have a core problem: they have absolutely no
protection from malicous users. Since we do not live in a perfect world, we cannot expect database users
to be angels [Mad88], and this leads to many practical issues when using distributed databases: what
happens when two people or entities that do not trust each other need to share data? What if these
participants in the database are outright malicious?

Almost two decades ago, Castro and Liskov [CL+99] came up with a clever solution to this problem:
the practical byzantine fault tolerant (PBFT) consensus algorithm. PBFT was a clever and practical
invention: it allowed people to use what were essentially distributed databases that tolerated up to a
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third of the users being malicious. This was a big improvement over basic distributed databases, but
still did not allow for truly public databases. In addition, PBFT protocols require a large amount of
communication between participants–O

(
n2
)
, for n parties [DR85], which makes them very difficult to

scale. So while PBFT protocols proved to be very useful for many applications of distributed computing,
they did not fully solve the fundamental problem at hand.

In 2008, another new technology radically changed the state of distributed databases: bitcoin [Nak].
Someone using the pseudonym Satoshi Nakamoto designed what amounted to a new distributed database1

with some pretty incredible properties: the database is fully public, so anyone can participate, and
(probabilistic) consensus in the optimistic case only requires O (n) communication, meaning that it is
easy for tens of thousands of users to participate in bitcoin at any given time. The ideas behind bitcoin
have been further generalized: blockchains enabling smart contracts such as Ethereum constitute even
more powerful types of distributed database.

But bitcoin and other proof of work-based systems have one major drawback: energy consumption.
One source [dig] reports that the power consumed for bitcoin proof-of-work in January 2019 was around
40TWh/year, comparable to the power use of a small country. In essence, the public trust that bitcoin
guarantees is directly correlated to the energy consumption of the bitcoin miners. To put it differently,
bitcoin’s resiliency to attack is a direct result of consuming large amounts of power.

This brings us to a fundamental question in modern distributed databases: can we build systems
with many of the good core properties of bitcoin–scalability and broadly decentralized trust—without
the drawbacks associated with mining?

1.1 Proof of Elapsed Time (PoET) Consensus

In an attempt to offer a low power but scalable alternative, Intel included in the Hyperledger Saw-
tooth [saw] distributed ledger platform a form of Nakamoto consensus that replaced proof-of-work with
an alternative called proof of elapsed time, or PoET for short [poe]. A validator participating in a PoET
consensus network creates a random “lottery ticket” that indicates a future time when it may claim the
right to publish the next block in the blockchain (assuming no other validator has a ticket with an earlier
time). Instead of backing the resiliency of the network with massive power consumption, PoET utilitizes
the security properties provided by a trusted execution environment (TEE).

A trusted execution environment is a hardware-assisted, secure execution environment that protects
computation from common attacks caused by applications, system administrators and potentially even the
operating system [EKA13]. TEEs provide features that may include confidential execution, application
integrity protection, and attestation. Examples include Intel SGX [Int13] and ARM TrustZone [tru09].

In other words, PoET functions very similarly to bitcoin, except for the fact that it uses TEEs to
replace mining. Intuitively, the analogy is as follows: in bitcoin, miners have to actually compute proofs
of work, and the first miner to produce and publish a valid proof of work on the head of a chain claims
the next block of the chain. In PoET, the “miners” query a TEE. The TEE “tells” the “miners” when
they would have finished mining, and offers a “proof” of this fact that can be verified by other “miners.”
The first “miner” to publish such a proof extending the head of a chain after its “wait time” is up claims
the next block in the chain. While this analogy is not exactly correct, it provides the right intuition for
how PoET works relative to bitcoin.

Other Proposals. There have been other proposals for TEE-based “bitcoin without mining” consen-
sus protocols. To our knowledge, proof of luck [MHWK16] is the only academically proposed system.
Intuitively, proof of luck works in a very similar way to PoET, although there are some key differences
we will discuss later.

1We take the view in this paper that bitcoin is, functionally speaking, a “trustless” distributed database for currency
accounting.
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Production Systems and Implementations. PoET has been used in many production systems that
run on Hyperledger Sawtooth [saw], which is a permissioned blockchain platform. These include things
as wide-ranging as Salesforce’s marketing platform [sal], the Tel Aviv Stock Exchange blockchain plat-
form [tas], and many startups, such as Blockchain Technology Partners’ Sextant [sex]. These production
systems use PoET due to its good perfomance and scalability, and in spite of perceived TEE insecurities
and the lack of a formal security proof.

Despite its lack of formal analysis, there have been several academic works studying the efficiency of
the PoET protocol [SZH+19, Cor19], as well as many casual analyses across the internet. Generally, all
of these works point to the efficiency of PoET and its strong performance in large systems. We defer to
the above works for precise details on PoET’s practical performance.

When compared to other consensus algorithms, there are a number of compelling reasons to use PoET:
it has absolutely minimal communication (like bitcoin), does not require any complicated cryptography
or have a complicated leader set election (like Algorand [GHM+17] or Dfinity [AMNR18]), does not need
a randomness beacon (like Ethereum 2.0 [But18]), and can be ideal for IoT scenarios in which low power
and low communication are required. On the other hand, there are some clear drawbacks: consensus is
not as fast as some proof-of-stake systems, the chain can have forks (no instant finality), and, perhaps
most of all, trusted hardware is recommended. But, as networks become larger, communication becomes
more of a bottleneck, and more and more devices have trusted hardware, we think PoET and similar
protocols will see more widespread use.

1.2 Our Contributions

We generalize the PoET and Proof of Luck protocols into what we call elapsed time consensus, and we
prove the security of our elapsed time consensus protocols in a model that generalizes the bitcoin backbone
model [GKL15] which we call the elapsed time backbone model. Elapsed time consensus can be thought
of as a relaxation of the PoET protocol where we focus on the critical protocol itself and ignore some of
the practical difficulties faced in practical implementations, such as bootstrapping, onboarding parties,
and dynamic membership. Many of our proofs and models are inspired by those from the works of Garay
et al. on the bitcoin backbone [GKL15, GKL17] as well as more recent follow-up works [BMTZ17].

We focus on elapsed time consensus protocols with two main assumptions on the TEE: 1. The TEE
has access to a trusted timer.2 2. No TEEs are present, or TEEs can be easily compromised.

Elapsed Time Consensus Model. Our first main contribution is the development of a simple security
model that we believe effectively captures the guarantees desired for a blockchain implementation in the
permissioned model (participation in consensus is not fully public3). We define blockchain security in the
form of a security game played between a challenger and adversary, mirroring traditional cryptographic
security games. The adversary wins if they can cause the blockchain to have certain undesirable properties:
for instance, breaking properties that correspond to safety, liveness, or the ability of honest parties to
complete transactions. In section 3, we define our elapsed time consensus model.

In the bitcoin backbone paper [GKL15], the authors rigorously prove security but do it in an ad-
hoc manner. We generalize their security proof into a model that explicitly formalizes a game that
rigorously defines a protocol structure and adversary, and thus is potentially much more extensible to
other blockchain proofs of security. Our model allows us to more easily handle things like a public
key infrastructure and a TEE formalization, which would be cumbersome using the [GKL15] approach.
Furthermore, the [GKL15] framework explicitly requires that the chance of any party “winning” and
generating a block in any given round is identical. For one of our protocols4, this will explicitly not be

2We will explain precisely what this means later, but it is not a fully synchronized “wall clock.”
3For a reader unfamiliar with permissioned blockchains, we explain the concept rigorously later in this paper.
4For those looking forward: our elapsed time consensus protocol with z-test will allow an adversary to win specific blocks

with probability one, clearly violating this guarantee
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the case, so we do in fact need a generalization of [GKL15] in order to prove our protocols secure.
While our model does not meet the requirements for universally composable (UC) security [Can01]

(and thus does not give ideal security guarantees), it is considerably simpler and easier to work with than
UC proofs of bitcoin, like that of [BMTZ17]. However, we do believe in the merits of UC-framework
blockchain constructions and consider building a UC version of our protocol to be an interesting line of
further research.

Elapsed Time Consensus with a Trusted Timer. We next define the simplest version of our
protocol: elapsed time consensus with a trusted timer. In this version of the protocol, we assume that
the TEE has access to a trusted timer.5 We also run (essentially) all code inside the TEE, resulting in
some inefficiencies since a “mining node” must have an active connection (i.e. constantly query) the TEE
to figure out when blocks are ready.6

This protocol captures the essence of PoET [poe] and other related works like proof of luck (which we
discuss more later). We define the protocol and discuss our design decisions in section 4. While it may, at
first glance, seem like TEEs make this proof trivial, it turns out that there are still many possible attacks.
While we assume that an adversary cannot compromise any TEE, they still may cause Byzantine faults
in communications between nodes. For instance, selfish mining attacks [ES18] are still possible, and our
proof must take these into account.

In our first main proof, we show that our elapsed time consensus protocol with a trusted timer is
secure with an honest majority7 when the protocol is run on nodes such that each node is run inside
a trusted execution environment that cannot be compromised. Due to its similarities to how bitcoin
works, the proof of this system follows in a similar manner as similar proofs for bitcoin [GKL15]. Our
proof for this protocol can also be thought of as a proof for the proof of luck system, modulo some setup
assumptions.

PoET Analysis. We show that, unfortunately, PoET does not fall into our above analysis, and we
cannot prove that it is secure without a rate-limiting function on block production called a z-test (we
explain this in more detail below). The fundamental issue is that PoET gives players a “WaitCertificate”
which tells them how long they have to wait. This information is not available to either a bitcoin miner
or a “miner” in our ET consensus with trusted timer protocol, and we do not currently know how to
prove security of such a protocol without a z-test. However, even without the z-test, we do not know
how to use this additional information to attack the PoET protocol. So, the status of the PoET protocol
without a z-test remains uncertain.

Elapsed Time Consensus with a z-test. As we mentioned before, it is well known by this point that
the security of TEEs may not be perfect [KHF+19, VMW+18, LSG+18, KKSAG18]. In deference to this
possibility,8 the Intel engineers who developed the PoET protocol cleverly allowed for the use of what
is called a z-test in order to mitigate potential TEE compromises. The z-test works as a rate-limiter:
if a particular participant in the blockchain protocol produces “too many” blocks, then all of the other
participants refuse to accept their blocks for a certain amount of time. The PoET protocol as described
in the specification [poe] currently uses a simple z-test that is based on the ratio of the number of blocks
a particular player has produced over a period of time to the total number of blocks produced by the
entire blockchain over that same time period.

5We note that many TEEs, including SGX [pla], have a trusted timer or equivalent functionality.
6We explain this more in the technical overview and proof sections.
7The exact proportion of honest users needed is dependent on a large variety of parameters, including things like

network latency. For reasonable choices of parameters, this honest majority condition will still allow a constant fraction of
participants to be adversarial.

8PoET was designed before these attacks were known.
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We modify our basic ET consensus protocol to include a z-test. However, our z-test is quite different
than the one proposed by the Intel engineers, as theirs is not sufficient for our proof.9 We instead use a
“time-based”10 z-test, which we explain thoroughly in section 6. To summarize, rather than check the
proportion of the total number of blocks a player produces, we (essentially) restrict how many blocks a
player can produce over a sliding window of time.

Somewhat surprisingly (at least to us), we can show that elapsed time consensus with our z-test is
secure in our (permissioned) model without TEEs and assuming that some constant fraction of the
participants are Byzantine. In other words, we show that “bitcoin without mining”–where participants
sample a wait time (which can be thought of as the time it “would have taken” them to mine a block)
and (if they are behaving honestly) release a block if they have not yet received a block and their time is
up — coupled with some clever rate-limiting (the z-test) it is secure in a permissioned network without
any hardware security guarantees or other extra assumptions.

We only need to assume a (slightly higher) constant fraction of participants in the protocol are honest.
Some of our other parameters, unfortunately, are substantially worse, including the amount of time needed
to be confident of block confirmation (blockchain finality), but the protocol is certainly practical (and
can be used in conjunction with a TEE to get “the best of all worlds”). We go through this in detail in
section 6. This proves that the core protocol of PoET (with some modfications to the z-test) is secure,
even if TEEs are compromised, although performance is worse in this case.

Implications. PoET, proof of luck, and other similar “elapsed time” based consensus protocols might
have many practical applications, since they, like bitcoin, have (almost) minimal communcation cost: if
there are no (or few) forks, communication is O (n) where n is the number of participants. Traditional
BFT-based solutions typically require O

(
n2
)

communication. While there are some recent and exciting
BFT protocols that scale linearly in the number of participants [YMR+19], none of these seem to have
the raw scalability of “bitcoin without mining” protocols. Thus, elapsed time consensus protocols seem
quite useful for any application of a blockchain where consensus is permissioned and communication
complexity is the limiting factor.

Until now, PoET, proof of luck, and other elapsed time based consensus systems have never (to our
knowledge) been formally proved secure. Modifying these protocols so that they are admissible under
our security proof (including the z-test) would mean that they are provably resilient to TEE compromise
(although security guarantees wouldn’t be as strong in the case of TEE compromise).

Perhaps the most exciting implication, though, is that we can ignore TEEs completely in these
protocols and still maintain relatively good security with our z-test. This notion of “permissioned bitcoin
without mining” might be very useful for blockchains in the future.

1.3 Related Work

The only current work of which we are aware on the security of PoET is [CXS+17]. This work shows how
an adversary that is capable of compromising SGX can attack PoET up to the bounds of the z-test that
PoET currently uses. Unfortunately, this paper does not offer any formal analysis in the other direction:
it does not include a rigorous security proof that PoET is secure outside of these bounds. As we have
mentioned before, we note that Milutinovic et al. [MHWK16] define a consensus protocol called proof of
luck that functions very similarly to PoET, but do not offer a security analysis to their protocol or even
a comparison to PoET. Additionally, the authors of [ABK+18] show a construction of a proof of stake
protocol using TEEs, but this protocol also lacks a formal security proof.

9Using the z-test given by the PoET specification would require much stronger parameter settings than for which we
achieve provable security

10For a reader familiar with distributed systems literature, our protocol is actually round-based rather than time based,
but, as usual, thinking about round-based restrictions as time-based restrictions is a useful abstraction.
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Improved consensus algorithms and models with exciting new properties have proliferated recently.
Some examples include Thunderella [PS18], the sleepy model of consensus [PS17b], Snow White [DPS16],
Fruitchain [PS17a], Ouroboros [KRDO17, DGKR18], Bitcoin-NG [EGSVR16], Casper [BG17], Stel-
lar [Maz15], and ByzCoin [KJG+16]. Exciting new work in the space includes things like proofs of space
and storage [BG18, CP19, DFKP15] and verifiable delay functions [BBBF18]. However, most of these
protocols focus on public blockchains.

Comparatively, the adacemically-focused work on permissioned blockchains has been substantially
less, but has notably included things like an analysis of Hyperledger Fabric [Cac16, ABB+18] and the
Tendermint consensus protocol [Kwo14]. Work on Byzantine fault tolerant consensus has also been done
[BSA14], including the recent an exciting development of [YMR+19].

There have also been a number of very useful papers that have analyzed these consensus protocols
and their properties, including [CV17], [BGM16], [Vuk15], [GKW+16], [NKMS16].

Several consensus protocols in past have leveraged different forms of trusted hardware. For example,
MinBFT [SVCNB+13] proposes a trusted counter to reduce the number of nodes required from 3F + 1
to 2F + 1 for F faulty nodes. More recently, FastBFT [LLKA19] uses a trusted execution environment
to aggregate messages for latency and throughput improvements. Other protocols use TEEs for the
purposes of sharding on blockchains [DDL+19].

1.4 Paper Outline

The rest of the paper proceeds as follows: In Section 2, we discuss background material that are relevant
to this paper. In particular, we discuss some properties of PoET that give intuition on why it is a nice
consensus algorithm. In section 3, we define our model and security notions that we use in the rest of
the paper and justify our choices behind our model. In section 4, we define our elapsed time consensus
protocol using a TEE with a trusted timer, which is our abstraction of PoET. We discuss its security
in our ET backbone model in section 5. In section 6, we add the z-test functionality to our protocol;
and in Section 7 we discuss a proof showing that our ET consensus with z-test is secure in our model
even without TEEs. Finally, since the parameter choices are very complicated, in section 8 we discuss
our parameter choices for the ET consensus protocol, and implications of the security. In Section 9,
we present a version of our elapsed time consensus protocol with z-test that provides some performance
improvement. We offer concluding remarks in section 10.

2 Background

In this section, we start by explaining how the PoET protocol works, since it is the inspiration for our
constructions. We then explain proof of luck and compare it to PoET. Afterwards, we discuss the bitcoin
backbone model of [GKL15], which we base our elapsed time backbone model on.

2.1 PoET

We begin by describing a leader election algorithm designed for Nakamoto consensus, called “Proof
of Elapsed Time” or PoET, that elects leaders through a simple computation in a trusted execution
environment provided by commodity processors. PoET is based on the observation that proof-of-work,
at its core, is a method for generating and enforcing random wait times — proof-of-work elects as leader
the first participant to solve a cryptographic puzzle, which induces a time delay that is a random interval
drawn from (roughly) an exponential distribution.

With PoET, participants use a trusted execution environment — such as Intel’s Software Guard Ex-
tensions (SGX) [poe]–to generate and then enforce a random wait time without a cryptographic puzzle.
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Where proof-of-work can verify correctness by checking the solution to the puzzle, PoET uses an attesta-
tion of correctness that is provided by the trusted execution environment; any participant can verify that
the wait time was generated correctly and enforced. In this way PoET preserves the fairness and integrity
of leader election provided by proof-of-work without high cost of electricity and custom hardware.

As with proof-of-work algorithms, at the beginning of each PoET consensus round, a validator builds
a block that extends the chain it believes to be the correct one (note that the selection of a chain to extend
is an implicit “vote” for the chain). Next, the validator performs a computation that determines a time
duration it must wait before it may claim leadership and extend the chain with the block it constructed.
If no other validator claims leadership before the computed time expires, the validator broadcasts its
proposed block and a proof that it computed the time correctly. The chain is extended with the new
block and the process begins again. Effectively, the future time that is computed represents a form of
“lottery” where every validator is given a ticket and the validator with the smallest ticket wins the lottery.

Just like bitcoin, players in PoET construct chains of blocks, and the longest chain is considered to be
the correct chain. However, instead of mining, players query a TEE, which gives a “wait time.” This wait
time indicates how many rounds a player must wait until they can produce a blog. So players basically
do the following:

• When a new block is received, check to see if:

– The block results in the creation of a longer valid chain.

– The “wait time” specified in the block has elapsed–i.e., that enough time has passed since the
block’s creation for it to be valid.

• If yes to both of the above:

– Replace the currently stored chain with the received chain (implied by the block).

– Query the TEE with the relevant parameters for a new block and receive a wait time, a in the
form of a WaitCertificate.

• If no: Do nothing.

• When a player’s wait time is up:

– Query the TEE again and reeive the new block with the appropriate parameters.

– Broadcast the block.

Otherwise, the player just waits.

Intuitively, PoET meets the basic requirements for decentralized consensus:
• Censorship Resistant: The computation should distribute leader election across the broadest

possible population of participants. Fairness ensures that no single validator can persistently control the
transactions that may be committed; that is, fairness ensures censorship resistence. To achieve fairness,
PoET requires every validator to generate a random number across the same distribution. The properties
of the distribution used are captured in the leadership claim so that every other validator can verify that
the leader “played fairly.”
• Simple to Verify Correctness: Third-party attestation is one of the most valuable characteristics

of modern trusted execution environments. The basic idea is that the trusted execution environment can
create an attestation about the characteristics of a computation that anyone can validate. The current
implementation of PoET that is included in the Hyperledger Sawtooth distributed ledger platform [poe]
uses Intel SGX as the trusted execution environment and the Intel Attestation Service (IAS) [AGJS13] as
the root of trust for third party attestation. The PoET enclave creates an attestation that is signed by IAS.
Anyone can verify the signature. The attestation binds an ECDSA key to the PoET enclave that can be
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used to sign leadership claims. As a result, any validator can, by verifying the ECDSA signature is bound
to a valid PoET enclave, verify that the leadership claim came from a trusted execution environment.
• Distributed Wait Times: Nakamoto consensus is efficient when all validators accept a leader

with a single broadcast. To achieve this, wait times must be distributed such that a validator that believes
it has been elected leader can broadcast its claim across the network before any other validator believes it
has been elected leader. Similar to other proof-of-work algorithms, the current implementation of PoET
pulls wait times from an exponential distribution. One of the unique benefits of PoET is that we can
easily choose alternative distributions with potentially more efficient distribution of wait times. We do
not discuss this in this work, but it is an interesting topic for future research.
• Adapt to Changing Populations11: Adaptation to changing populations of validators is one

of the main benefits of Nakamoto consensus over traditional Byzantine Fault Tolerance. Proof-of-work
algorithms handle adaptation through a variable difficulty level. If blocks are published more frequently
than a target interval (an indication that the population of validators has increased), then the difficulty
level increases enough to slow down block publication. Similarly, PoET samples the random wait times
generated for winning blocks and determines if the intervals are appropriate. If blocks are being published
too quickly, the distribution from which each validator chooses its wait time is increases. This is done
deterministically and the result of the computation is captured in the leadership claim and signed by the
enclave.

(Lack of a) Formal Description of PoET. We do not present a formal description of PoET here
because, to our knowledge, there is not one. The most extensive description of the algorithm is given
in the form of code in the Hyperledger Sawtooth repository [poe] and lacks the formal vigor necessary
for a rigorous security proof. Instead, we define our own simplified versions of PoET, called elapsed time
consensus, in section 4. Our elapsed time consensus protocols ignore some of the more difficult aspects
of PoET to incorporate into a security proof, including dynamic membership, bootstrapping, and many
of the practical difficulties associated with using enclaves. However, our protocols do exactly model the
“core” functionality of PoET and thus we feel captures the theoretical essence of the protocol12.

2.2 Proof of Luck

Proof of luck [MHWK16] (PoL) is a consensus protocol that is very similar to PoET. It was developed
independently from PoET (the paper doesn’t refer to PoET at all, although it appeared after Hyperledger
Sawtooth) but uses the same core principle of building a “bitcoin without mining” consensus protocol
using a TEE. The proof of luck protocol is well written in [MHWK16], but the paper lacks a formal
security proof.

The main difference between PoET and PoL is the extent to which the TEE is used. PoL utilizes a
strategy of running essentially all of the protocol execution inside of the TEE, whereas PoET is designed
to use the TEE as little as possible. Players in PoL do more or less the following:

• When a new block is received, send it to the TEE.

• The TEE:

– Checks if the block results in the creation of a longer valid chain.

– The “wait time” specified in the block has elapsed–i.e., that enough time has passed since the
block’s creation for it to be valid.

– If yes to both of the above:

11Dynamic adaption will not be included in the proofs of correctness in this paper.
12In [GKL15] and [GKL17], the authors make similar assumptions for bitcoin.
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∗ The TEE replaces the currently stored chain with the received chain (implied by the
block).

∗ The TEE samples a new wait time.

– If no: Just wait.

• When a player’s wait time is up (the player doesn’t know the wait time):

– The TEE generates a new block with the appropriate parameters and sends it to the player.

– The player broadcasts the block.

It’s not exactly clear how the “wait” functionality in PoL would be implemented efficiently in practice
given the fact that, at least in SGX, the trusted timer is located outside of the core TEE and must be
queried by the TEE [pla]. An implementation of PoL would probably have to have the TEE query the
trusted timer frequently or use some other clever way of approximating time. In any case, it likely that
this kind of solution would be substantially less efficient in terms of CPU and TEE operations than the
PoET solution, where the wait time is made public.13

Looking ahead, the first protocol we present–elapsed time consensus with a trusted timer–is very
similar to, PoL. Thus, our proofs of security for it can be reasonably applied to PoL, modulo practical
details (i.e. setup, bootstrapping the blockchain and public key interface, etc.).

2.3 Bitcoin Backbone Model

In a series of very influential works [GKL15, GKL17], Garay, Kiayias, and Leonardos developed what they
termed the bitcoin backbone model and used it to argue that bitcoin (as a distributed consensus protocol
and public ledger) was secure. Their model is based on the principles of the UC-model [Can01] and
thus captures a very general notion of adversarial behavior. It is our opinion that this bitcoin backbone
model (and its derivatives, e.g. [BMTZ17]) to this point is the best and most comprehensive model for
blockchain security. The full justification of the model is out of scope for this work, but we encourage
readers to refer to the excellent works [GKL15] and [GKL17] for in-depth explanation and justifcation of
the model.

At a high level, the model focuses on three core properties: common prefix, chain quality, and chain
growth. We summarize these below:

• Common Prefix Property: the common prefix property, at a high level, says that, while the
chains of all honest parties might be different, they share some common subchain C′ that is a prefix
of their main chain C (in our notation, C′ � C. We require that this common prefix chain C′ be no
more than λ blocks shorter than C with all but negligible probability, for some λ that is essentially a
security parameter. More informally, the common prefix property says that no forks above a certain
length can occur between honest parties on the chain. This property corresponds to “safety” in
traditional consensus protocols.

• Chain Quality Property: the chain quality property requires that, in any subchain C of the
main chain C of some honest party, at least some fraction of the blocks in C′ have been produced by
honest parties. This provides censorship resistance and “fairness” in practice–i.e., any honest party
will be able to have a transaction included in the blockchain with some small amount of waiting.

• Chain Growth Property: the chain growth property simply requires that blocks are produced
and the chain is extended at some minimal rate over time. It is roughly analagous to liveness in
the traditional distributed consensus setting.

13But keeping the wait time hidden will have serious and positive implications on the security proof!
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In [GKL15], the authors show that a bitcoin-like protocol with these three properties allows for secure
applications like byzantine fault tolerant consensus and a “public ledger”–the core application of bitcoin–
to be built. The proof follows from what the authors refer to as the honest majority assumption. For
bitcoin, this has colloquially meant that honest parties control a majority of the hashing power on the
chain. However, in [GKL15], the authors recognize that this is not enough for security–for instance, selfish
mining attacks [NKMS16] are a counterexample to this–and the honest majority assumption requires
that the number of participants/“hash power” of the honest parties be at least some fraction of the total
number of parties which is dependent on parameters including the proof of work difficulty and network
latency.

2.4 About TEE

We state the following security theorem about TEEs, which we will use in our proofs in order to assume
that TEEs cannot be compromised.

Theorem 1. Let T be a trusted execution environment, or TEE. Let P1, ..., P` be a sequence of programs
with input and output pairs (I1,O1). Any adversary that can observe T.Run (P1), ... , T.Run (P`) and
an arbitrary number of calls to the other provided TEE functions cannot distinguish the behavior of the
TEE T from a PPT simulator given (I1,O1) and the results of the other TEE function calls.

This is a standard TEE security theorem mimicking the complexity-theoretic statements of [BGI+01].
We can also use a weaker theorem that models the guarantees from the sealed glass model, as given
in [TZL+16]. In this case, we allow an adversary to see a computation but not to change it. We note
that this model allows many of the most practical known attacks on TEEs.

Theorem 2. Let T be a trusted execution environement, or TEE. Let P1 be a program that may or
may not include calls to other TEE functions. No adversary with access to T may induce an error in the
computation of T.Run (P1). Moreover, no adversary may learn T ’s secret values used for certification
(signing) or pseudorandom number generation.

Multi enclave TEEs:

In Section 3.3 we introduced a TEE model that does not support parallel execution of multiple secure
enclaves. Even though it simplified our TEE abstraction and protocol description, real TEEs such as
Intel SGX do support parallel execution of secure enclaves. This opens the possibility of probability am-
plification attacks, where an adversarial player can potentially run multiple enclaves in parallel. However,
such attacks are thwarted by the use of monotonic counter. The WaitForBlock function in Figure 4.1
remembers the chain length of the last call in the monotonic counter and aborts unless the current chain
length is strictly larger than the chain length in the previous call.

3 Elapsed Time Backbone Model

In this section, we explain the notation and model that we use in our paper and why we chose the
model we ended up using. We base most of our notation on that of [GKL15], although we have made
some changes for the sake of clarity. Several follow-up works [GKL17, BMTZ17] have also influenced our
description here.

3.1 An Overview on Our Elapsed Time Backbone Model

In this paper, we create a new elapsed time consensus backbone model that is inspired by the bitcoin
backbone model. Our model has a few notable differences from the bitcoin backbone model [GKL15],
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but is similar in its overall approach and can be thought of as a general formalization of that model.
We outline our backbone model and explain some intuition below. In section 4, we formally define our
model.

Permissioned vs. Permissionless Blockchains. Perhaps the largest deviation between our elapsed
time backbone and the bitcoin backbone protocols is related to the notion of a permissioned versus a
permissionless blockchain. Our constructions assume a permissioned model. This means that all parties
know in advance who is allowed to participate in the blockchain (or, at least in the consensus aspect of
the blockchain), and that we assume a pre-existing public key infrastructure. In other words, we assume
that all participants in a blockchain have the public keys of all other participants when the genesis block
is formed.

As an example, note that Byzantine fault-tolerant algorithms require knowledge of the participants
in advance in order to be secure, and thus can only be used for permissioned blockchains. On the other
hand, proof of work consensus does not require participants to know the identities of other participants,
and thus can be used in the permissionless setting.

Unlike our protocols which assume some level of knowledge of the legal participants on the chain (even
if it comes from the TEE), bitcoin (and the backbone protocol) are permissionless. It is not required that
everyone know everyone else’s public key in advance (or even ever). This is an important quality for truly
public blockchains, but it makes communication more complicated since it is not possible for participants
to know who they are talking to during the protocol. Since our elapsed time consensus protocols assume a
PKI in some form (including through a TEE), we can dramatically simplify the communication protocol
present in the bitcoin backbone paper and assume reliable secure channels14. For instance, we can assume
all messages are signed by the sender, and we have a protocol abstraction that simulates this. This is not
a possible assumption when all parties in the protocol do not know each other’s public keys.

Players. We will consider a fixed number of N players in our protocol. Ideally, we would like to be
able to handle a dynamic amount of players in our protocol (and even dynamic corruptions), and there
isn’t seemingly any reason we cannot do this other than proof complexity. However, we leave this topic
to future work.

Discretizing Time. As in [GKL15], we consider a round-based protocol. Our protocol proceeds as a
series of rounds. Each round is essentially started and ended by the adversary, but with the restriction
that all honest parties have performed all of the actions that they intended to do in that particular round.

The main reason for this is that it is very difficult to analyze time-based protocols like this and prove
concrete facts. Minor clock synchronicity incidents can be difficult or impossible for analysis, as are cases
where things happen right around a time cutoff. Thus, we abstract these things out with a model, and
assume that, in practice, these temporal events cannot be efficiently exploited by an adversary. Moving
our model more towards reality with regards to our round structure is excellent future work.

Adversarial Corruptions. We allow the adversary to adaptively corrupt some fraction of the N
players. The exact fraction allowed will vary depending on the protocol and depends on the protocol we
are analyzing and many other parameters of the system. We assume that once a player is corrupted, it is
permanently corrupted and always counts towards the adversary’s number of allowed corrupted players.

Public Key Interface. We assume a PKI of some sort in our model. In other words, we assume that
all users know the public key of all of the other players. This would not be a reasonable assumption if we

14This isn’t always a good assumption, but we think it is reasonable for a permissioned blockchain on today’s networks
and internet.
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were analyzing, say, bitcoin. But since we are focused on permissioned blockchains, we think that this is
an eminently reasonable assumption to make.

Reliable Messaging. In our protocol, all of the parties will need to send messages to other parties.
As we mentioned earlier, we require that messages from honest parties always be delivered, although
we allow an adversary to delay these messages up to some amount (or, more precisely, reorder messages
within a given round). Since we are assuming a PKI, we may also assume that these messages are signed.

We think that this correctly models the reality of the protocol: if an adversary can completely cut
off a party from communication, then we count that as an adaptive corruption. Otherwise, in the real
world, if it is possible for a party to communicate with at least a little part of the world at large, then
it is likely that they can reach their desired recipients. The Internet is powerful! However, an adversary
may have much faster messaging than an honest user, which is reflected in our model.

Due to our reliable messaging and PKI assumptions, we may also assume that players know exactly
who sent what message and that messages have not been tampered with by an adversary. This follows
trivially from adding abstractions of signatures that we call certifications to each message.

Formal Security Game. In the bitcoin backbone model, the authors define an adversary with certain
properties and structure their proof around this adversary, but do not have a generalizable formal security
game that can be easily used to prove the security of other, related protocols. In this work, we formally
define an elapsed time consensus security game that can, at least in theory, be used to show the security
of many different types of blockchain consensus algorithms. We hope that our formalisms around this
security game can be used by other protocols in the future.

Our model requires that protocols have two core functionalities: Genesis and RunHonestP layer.
Genesis is the blockchain setup protocol that creates the genesis block and any other common infras-
tructure needed by the blockchain. It is run once at the beginning of the protocol. RunHonestP layer
is the heart of the protocol: what players are supposed to do during every round. It is run once, per
(honest) player, per round.

Round Structure. As we have previously mentioned, our protocol is round-based. Each round pro-
ceeds roughly as follows:

• The round starts.

• The players receive messages sent in the previous round and can do any necessary “precomputation”
activity.

• The players can “mine” or query a TEE if it is part of the protocol.

• The players can Broadcast messages, sending them to all other players. The messages are not
received until the next round though.

Network Latency and Adversarial Reordering. The round-based protocol also allows us to model
(at least to a degree) network latency. We allow the adversary to control the order that the messages sent
in round i are received in round i+ 1. This models the adversary having a “network latency” advantage
over other parties. We note that [GKL15] and virtually all other works based upon it make the same or a
very similar assumption. This is incorporated into our round structure, but we omit it above to simplify
our description.
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Adversarial Corruptions. We also allow the adversary to adaptively corrupt up to a certain threshold
of parties (this threshold is stated in the individual security guarantees for that particular protocol). The
corruptions are declared in round i and then the nodes are corrupted in round i + 1. This is to ensure
that an adversary cannot corrupt “winning” nodes after they have won but before they have broadcast
their blocks.

3.2 Notations

We start by defining some basic primitives. We use H : {0, 1}∗ → {0, 1}κ to represent a cryptographic
hash function (modelled as a random oracle), where κ ∈ N is the security parameter. We assume that a
blockchain has a fixed number n of players which participate in the protocol.

A block is any tuple of the form B = 〈s, x, π〉, where s ∈ {0, 1}κ is the hash of the previous block,
x ∈ {0, 1}∗ is the content of the block and π ∈ {0, 1}∗ is the proof of block validity. validblock is
the predicate that takes a block B as input, checks validity of the content. We formally define this in
Figure 1. We will use this Block.XXX notation for querying the properties of blocks in our protocol.

Block:

Block.s // Hash of previous block.
Block.x // Block content.
Block.π // The block proof of validity will depend on the scheme.

Chain C = (B1, · · · , B`):
Chain.head // The head of the chain B`.

ValidBlock(Block b, Chain C):
//Verify the content of b, return 1 if valid and 0 otherwise.

Figure 1: Block & Chain Structure

With this in mind, we can move to defining chains. A blockchain or chain is a sequence of blocks
(refer to Figure 1). The last block of a blockchain C is called the head of C and is denoted by C.head.
For an empty string or empty blockchain ε, we have ε.head = ε. The length of a chain is its number of
blocks. A chain C can be extended by a block B = 〈s, x, π〉 if s = H(C.head), ValidBlock(B, C) is true

and B.π is a valid proof for the extended chain C′ = C‖B. For the new chain C′, we have C′.head = B.
For any chain C = (B1, · · · , B`), Length(C) = ` denotes the length of the chain. For any pair of integers
1 ≤ i ≤ j ≤ `, the chain C̃ = (Bi, · · · , Bj) is called a subchain of C. Cdk denotes the chain resulting from
removing the k rightmost blocks, for a given non-negative integer k. If k ≥ `, then Cdk = ε. For two
chains C1, C2 the notation C1 � C2 denotes that C1 is a prefix of C2.

3.3 Abstractions

In this work we use the following abstractions to simplify our protocol and proof. These are generally
slight modifications of standard abstractions that have been used repeatedly in the blockchain literature.

Certifications. Certifications are attestations of the statement being certified from the entity perform-
ing the certification. In other words, they act as completely unforgeable, perfect digital signatures. We
use the Cert functionality instead of explicitly using digital signatures because it dramatically simplifies
our presentation and proof while still capturing the essence of digital signatures.
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Certu (Statement m):

return Certu,m //certificate issued by u attesting validity of statement m.

IsCertValidu (Cert cu,m,Statement m):

Return 1 if cu,m certifies statement m on behalf of user u and 0 otherwise.

Figure 2: Certification Functionality:

Trusted Execution Environment(TEE). In our model, a TEE is an unbreakable black box (a VBB
obfuscator [BGI+01]) that, given an input, runs some code in a way that completely hides the internals
of the code and then produces an output. An adversary can only see the input and output values of the
program being run by the TEE. We note that this is an idealistic model for a TEE since it presumes
perfect security and no side channel attacks. We use the TEE. prefix to signify that a computation is
done inside a TEE. In other words, everything that happens within a function called with the TEE.
prefix is hidden from all other users, who only see the final output.

In some protocols, we will give our TEE a trusted timer functionality. Since time is approximated by
round number in our protocol, we will have the TEE return the current round number for this function.

Additionally, we endow our TEE with a monotonic counter TEE.Counter which can never be de-
creased in value, even if the TEE is reset. This is the only non-permanent state that must be preserved
in the TEE. We also allow our TEE to run programs securely, but these programs cannot preserve state
outside of their runs with the exception of the monotonic counter. We note that many modern TEEs like
Intel’s SGX have both trusted timer and monotonic counter functionalities [pla].

Queues. A queue contains an ordered sets of certified (i.e. authenticated) chains. We allow, whenever
a player or the adversary is running:
• All parties to add a certified chain to any other party’s queue.
• Players may read from and remove items from their own queues.
• The adversary may examine all players’ queues.

Later in our protocol, we allow the adversary to implicitly modify the queue (by reordering). But this
is done in a controlled fashion by the protocol, and, in general, the adversary is not allowed to modify
queues on their own.

Broadcast Communication. We give all of the participants in our protocol and the adversary the
ability to broadcast messages to all other parties participating in the protocol. We assume reliable
broadcast: a message that is sent always arrives at its destination — the adversary cannot interfere with
message delivery.

Our broadcast protocol involves an array of n queues (recall that n is the total number of players)
called PLAY ER QUEUE, where PLAY ER QUEUE[i] corresponds to the incoming message queue for
player i.

Corruptions. In our model, we allow the adversary to adaptively corrupt honest parties. When an
adversary corrupts an honest party, we give them full access to all of the internal state of the honest
party and access to all of the subroutines that the honest party could call.

3.4 Model and Structure

We now formally define our model. We include the presence of an adversary, who is given substantial
power in the system. In particular, we allow the adversary to see all of the global variables in the system.
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TEE.α := null; // Can be set to any program code.
TEE.args := null; // Arguments for α().
TEE.Counter := 0; // monotonic counter inside TEE.

TEE.GetTime():

return current-round. // round number is our proxy for time

TEE.CounterSet(x)

// Verify that the value is higher than the current value
if TEE.Counter < x then TEE.Counter ← x end if

TEE.GetCounterValue():

Return TEE.Counter // Just return the counter value.

TEE.CertTEE (m): return CertTEE (m)
// Just a digital signature abstraction with TEE guarantees.

TEE.Run(Prog, arguments):

// Run the program Prog inside the TEE.
//If there is any currently running program it aborts the current programa

Abort(α), α← Prog, args← arguments, Run α(args)

TEE.Poll():

// Checks to see if a program is still running in the TEE
// Can be called only after calling TEE.Run()
if α = null then return ⊥ end if
if α() has completed running then

// Return a CERT of the program and output
O ← output of α(args), Return (O,CertTEE (O||α||args))

else return Incomplete end if
aOur model of TEE handles only single secure enclave running at a time. Please refer to Section 2.4 for a

discussion related to multi enclave TEEs.

Figure 3: TEE Functionality:

PLAYER QUEUE [i] .ADD (Chain C):
PLAY ER QUEUE[i].ADD (C) //Add chain C to player i’s queue of chains

Figure 4: Queue Functionality

In our model we have three top level parameters: the total number of players n, the security parameter λ
and honest parties’ advantage δ. If t is the number of corrupt players then we require that t

n−t ≤ 1− δ.
We note that the adversary also has access to the description of all of the algorithms in the protocol,
which includes things like the distribution from which wait times are sampled.

Model Rules. We let each honest party send to other players’ queues, but only read from their own
queue. All honest parties are allowed access to the round number as well. Honest parties are not allowed
to see the PLAY ER CORRUPT array: only the adversary is allowed to view the contents of this. In
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Broadcast (Chain C):
// Send the chain C to all parties.
for i = 1; i ≤ n; i+ + do
PLAY ER QUEUE[i].ADD (C)

end for

Figure 5: Broadcast Functionality:

addition, the adversary is not allowed to see the internal state of honest parties.

Main Game Structure. We start by presenting the structure of our game in figure 6. It calls several
subroutines, which we describe below.

RunProtocol(Number of players n, Security Parameter λ, Honest Advantage δ):

Run Blockchain.Genesis (n, λ) // protocol’s initialization algorithm.

CORRUPTION THRESHOLD ← (1−δ)n
(2−δ)

// Set up our initial variables.
integer ROUND ← 0, Allocate queue PLAY ER QUEUE[n]
Allocate boolean PLAY ER CORRUPT [n]
for i = 1 to n; i++ do
PLAY ER QUEUE[i]← null, PLAY ER CORRUPT [i]← 0

end for
// Start the core part of the protocol.
while true do

ROUND++
RunAllP layers (n) // Run players in an order chosen by the adversary.
AdversarialReordering () //Adversary can reorder PLAY ER QUEUE
AdversarialCorruption () // Allow adversary to corrupt players.

end while

Figure 6: Model and Structure: Elapsed T ime Framework

We next enumerate our algorithm for running all of the players in figure 7. The point of this algorithm
is to allow the adversary to adaptively run all of the players, both honest and corrupt, in an order of
their choosing. If the adversary tries to run a player twice, we abort the protocol, as this is not allowed.

In figure 8, we define the functionalities of our adversary. To allow the adversary to run an adversarial
player we give access to the player’s internal state and the player’s subroutine queries (like querying a TEE
or “mining,” for instance). We also allow the adversary to reorder the messages sent by all parties before
they are delivered. This is formally done by allowing the adversary to permute the queues (including the
queues of the honest players) in PLAY ER QUEUE.

3.5 Blockchain properties and security game

We next define three core blockchain properties: common prefix property, chain quality property, and
chain growth property. As argued in [GKL15], these properties together essentially define what it means
to be a functional and useful blockchain.
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PLAY ERS[n]; // Array containing instances of all the players

RunAllPlayers(Number of Players n):

boolean HAS RAN [n] := all elements set to 0;
for i = 1 to n; i++ do
x← Adversary (·) //Adversary picks a player to run.
if HAS RAN [x] = 0 then

if PLAY ER CORRUPT [x] = 0 then
PLAY ERS[x].RunP layer() // RunPlayer() is specified by protocol

else RunAdversarialP layer (x) end if
HAS RAN [x]← 1.

else
// The adversary is trying to run a player twice, so run all honest players that have not
run and exit
for j = 0; j ≤ n; j + + do

if HAS RAN [j] = 0 AND PLAY ER CORRUPT [j] = 0 then
PLAY ERS[j].RunP layer() end if

end for
Return

end if
end for

Figure 7: Adversarially Ordered Player Running: ETAllplayers

Definition 1. Common Prefix Property: Suppose C1 is a chain which has been accepted by an honest
party at round r1 and C2 is another chain which has been accepted by some honest party at round r2. The
following holds for all integers k ≥ `cf , where `cf is the common prefix parameter.

• if r1 < r2 then Cdk1 � C2
• if r2 < r1 then Cdk2 � C1
• if r1 = r2 then Cdk1 � C2 and Cdk2 � C1

Definition 2. Chain Quality Property: Suppose C is a chain that got accepted by some honest party.
Any subchain C̃ of C of length ˜̀≥ `q must contain at least µ˜̀ many honest blocks. Here `q, µ are chain
quality parameters.

A block is an honest block, if it is created by an honest party.

Definition 3. Chain Growth Property: Suppose C1 is a chain of length `1 which has been accepted
by an honest party at round r1 and C2 is another chain of length `2 which has been accepted by some
honest party at round r2. If r2 − r1 > rg, then `2 − `1 ∈ [τ(r2 − r1), σ(r2 − r1)]. Here rg, τ, σ are chain
growth parameters.

The security of a blockchain system can be stated as the following game between an adversary and a
challenger. The game can be characterized by the number of players n, security parameter λ, common
prefix parameter `cf , chain quality parameters `q, µ, chain growth parameters rg, τ, σ and honest parties
advantage δ .

Definition 4. Blockchain Security Game: We consider a security game parameterized by (n, λ, `cf ,
`q, µ, rg, τ, σ,δ). The game starts with the challenger running RunProtocol(n, λ, δ). After some number
of rounds rend = poly(λ) the adversary chooses to end the game. We say that the adversary wins if at any

17



RunAdversarialPlayer (index i):

// Give the adversary control over the player.
Adversary (PLAY ERS[i], PLAY ER QUEUE[i]).

AdversarialReordering:

// Permute the player queues one by one.
for i = 1; i ≤ n; i+ + do

// Adversary picks a permutation to reorder the queue.
Pi ← Adversary (·); PLAYER QUEUE[i] ← Pi (PLAY ER QUEUE[i])

end for

AdversarialCorruption:

// Get the desired corruptions from the adversary.
Allocate boolean NEW CORRUPT [n]
NEW CORRUPT ← {Adversary (·)→ boolean [n]}
// Make sure there aren’t more than the allowed number of corruptions.

if
∑N
i=1 PLAY ER CORRUPT [i] +

∑N
i=1NEW CORRUPT [i] ≥

CORRUPTION THRESHOLD then Return end if
// Set the bits for corruption.
for i = 1; i ≤ n; i++ do

if NEW CORRUPT [i] = 1 then PLAY ER CORRUPT [i]← 1 end if
end for

Figure 8: Adversarial Functionalities: ETADV

time during the protocol execution at least one of the three core blockchain security properties (common
prefix, chain quality or chain growth) does not hold.

4 Elapsed Time Consensus Protocol

In this section, we first construct an elapsed time consensus protocol with a trusted timer. This protocol
very closely mirrors the description of proof of luck that we mentioned in the introduction.

4.1 Elapsed Time (ET) consensus with Trusted Timer

We start by defining our block structure for elapsed time consensus. Our proof of block validity π (see
Fig 9) contains the following things: a RoundGenerated parameter that indicates the round in which the
block was initially “mined,” a WaitT ime that indicates how many rounds until the block can be issued,
and a WaitCert which certifies that a TEE generated the WaitT ime properly.

Block.π:

π.RoundGenerated // Round of “mining.”
π.WaitTime // How many rounds until the block can be issued.
π.WaitCert // Proof that a TEE generated the WaitTime properly.

Figure 9: Block Proof Structure

18



The ideal version of our ET with trusted timer protocol, denoted by ETtimer, works in two phases:
(1) Initialization phase, (2) Leader election phase.

Initialization Phase. In this phase, the challenger initializes the blockchain by calling Genesis() (refer
to Figure 10), which in turn creates the genesis block Bgenesis and initializes all the players. Since we
consider a setting where all the players are active from the beginning, initialization for all the players
happen together (at round 0), and happens before the “leader election” phase starts. It is worth repeating
here, since we are in a round based model, all the time values in PoEThonest are measured in number of
rounds.

Leader Election Phase. In this phase, all the players compete with each other to be elected to generate
the next block. Once a block is generated, they start a fresh competition and repeat the process [poe].
We define the leader election protocol in the RunPlayer() routine defined in Figure 11. For an honest
user, the challenger runs RunPlayer() exactly once per round.

Genesis(n, λ):

generate the genesis block Bgenesis
P := Geometric Distribution with parameter p
H := hash function H based on security parameter λ
for i = 1 to n; i++ do
PLAY ERS[i].Initialize(i, Bgenesis)

end for

Figure 10: Initialization of the Blockchain for ETtimer

For each round, RunPlayer() checks if there are new chains in the input buffer of the player.
These chains are generated in the previous round by other players. Our current player picks the best
chain according to PickChain() (defined in figure 12) to replace (if applicable) its own local chain.
If PickChain() updates the local chain, our player stops competing for the last election and calls
TEE.Run(WaitForBlock, C, · · · ) to start a new competition.

Leader Election Mechanism. The TEE runs the leader election mechanism for a given player by
runningWaitForBlock(C) (defined in figure 13). Given an existing chain C, the leader election mechanism
works very much like a lottery algorithm: a player wins an election if their WaitT ime (picked from a
pre-defined probability distribution P ) is smallest among all players.

The TEE waits for WaitT ime rounds before generating the wait certificate waitCert for a block which
needs to be added after C, unless the player interrupts by calling a new TEE.Run(WaitForBlock, · · · ).
The TEE calls CreateBlock after WaitT ime rounds to generate a block which is populated with trans-
actions provided by the player, with a valid WaitCert that proves validity of the WaitT ime for that
generated block. The player then adds the new block to his local chain and broadcasts the chain. Without
a valid WaitCert in the block, other players will not accept the new block as a valid block.

Collision Resolution: It is possible that two players get the same WaitT ime. In that case, both the
players broadcast their chains in the same round, each chain with a newly added block – it is considered
a collision.

Each player handles collision locally in the following way (refer to Figure 12 for the pseudocode
representation): If two chains C1 and C2 are of same length, and the last blocks in C1 and C2 were
generated at rounds t1 and t2 respectively. Among t1 and t2, whichever is smaller the corresponding
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chain C := empty; // A chain - an ordered list of blocks.
playerID; // denotes the index of the player provided by the challenger
TEE; // denotes the trusted execution environment specific to the player

Initialize( integer i, the genesis block Bgenesis):

playerID ← i ; Add Bgenesis to C; TEE.Initialize(i);
x← Collected transactions from users; TEE.Run(WaitForBlock, C, x)

RunPlayer():

Check PLAY ER QUEUE[playerID] for all new received chains.
// The player has received a chain from some other player
if QUEUE is not empty then
Cnew ← PickChain(playerID)
if Cnew 6= C then
C ← Cnew; x← Collected transactions from users
TEE.Run(WaitForBlock, C, x) // Wait on TEE for the next block

end if
else

// The player has NOT received a chain from some other player
if TEE.Poll() 6= Incomplete ∧ TEE.Poll() 6=⊥ then

// It seems the player is a leader
(B,WaitCert)← TEE.Poll(); B.π.WaitCert←WaitCert
Add B to C; Broadcast(C)
// Again, repeat for the next leader election
x← Collected transactions; TEE.Run(WaitForBlock, C, x)

end if
end if

Figure 11: Ideal functionality of ET with timer protocol : ETtimer

chain is chosen. However, if t1 = t2, the collision is not resolved; the player can choose any one of the
chains as the current chain and keeps mining for that chain. If C1 and C2 are of different lengths, the
longer chain is chosen by the player.

Note that, since we have a synchronized round based model and the players have access to a reliable
broadcast mechanism, it might seem unlikely to have t1 6= t2. However, a compromised player might
choose not to broadcast his chain, or selectively send the chain to some players.

Probability Distribution for WaitT ime. In our protocol, the TEE generates the WaitT ime by
sampling from a probability distribution specified by the protocol. In the real world, the PoET protocol
uses an exponential distribution. However, since we are quantifying time in terms of number of rounds, we
must consider a discrete probability distribution. In our case, we use a geometric distribution where the
probability of success in each round p.15 Lemma 13 in Appendix A shows the validity of approximating
an exponential distribution with a geometric distribution.

The parameters of the probability distribution are defined by the protocol, and are globally known.
Each WaitT ime is independent of all previous ones and all other players. We denote the probability
distribution with P .

We emphasize that the sampled wait times are never leaked outside the TEE. Due to the memory-

15Here we are considering the version of geometric distribution where trial number WaitT ime is the first successful trial.
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PickChain(integer i denoting the player index):

for each C∗ in PLAY ER QUEUE[i] do
// Check if the chain is valid and longer than the current chain
// In case of a tie, keep the current chain

if (Length(C∗) > Length(C))∧ IsChainV alid(C∗) then C ← C∗ end if
end for
return C

IsChainValid( chain C∗ = {B1, B2, . . . B`} ):

if B1 is not the genesis block then return false end if
for each block Bi in C∗ except B1 do
Ci−1 ← (B1, · · · , Bi−1)
// Verify that the current block is pointing to the previous block
if ( Bi.s 6= H(Bi−1) ) then return false
// Verify that the block is not created ahead of its previous block
else if (Bi.π.timestamp < Bi.π.WaitT ime+Bi−1.π.timestamp )
then return false
// Verify the WaitCert and content for the block
else if !V alidBlock(Bi, Ci−1) ∨ !IsCertValidTEE

(
Bi.π.WaitCert,

Bi.π.WaitT ime‖WaitForBlock‖(Ci−1, Bi.x)
)

then return false
else continue
end if

end for
// Verify that the last block is not created ahead of time
if ( B`.π.timestamp ≥ current-round ) then return false end if

Figure 12: Chain Selection mechanism for PoEThonest

WaitForBlock(chain C, transactions x)

// Verify that the new chain is longer than the local chain
if (TEE.GetCounterValue() ≥ Length(C)) then return ⊥
else TEE.CounterSet(Length(C)) end if
waitT ime← draw an element from P
sleep(waitT ime) // Wait for the required amount of time
B ← CreateBlock(waitT ime, C, x); return B

CreateBlock(time delay t, chain C, transactions x):

create an empty block B; B.x← x // Add transactions
B.s← H(C.head) // Point to the last block of the existing chain
// Add details that will help others to verify the block
B.π.timestamp← current-round; B.π.WaitT ime← t
B.π.playerID ← current player ID
return B

Figure 13: Function to be run under Trusted Execution Environment (TEE)
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lessness of the exponential/geometric distribution16 adversarial parties gain no information about the
sampled wait times until the wait time actually expires and TEE releases the block. The following
Lemma captures this fact, and we use it in our security proofs. Without loss of generality we assume,
the adversarial nodes always generate a block, when TEE time expires. Even though they are free to do
anything with the generated block.

Lemma 1. The event that any party generates a block in a given round happens with probability p over
the random coins of that party’s TEE. This event is independent of all other random coins in the protocol
as well as adversarial choices.

Proof. The probability of block generation by an honest party can only be influenced if a new block
arrives. However, because the adversary has no knowledge about the current wait times of honest or
adversarial parties, drawing a new wait time is exactly same as drawing a new element from the probability
distribution with replacement, and hence, is independent of the current wait times or any past wait times.

The memorylessness property of geometric distribution ensures that the probability of generating a
block by an honest party is p in a given round, independent of if the party has queried a new wait time
in that round or not. An adversarial party can draw a new wait time in two ways:

1. if the party decides to discard the current wait time and draw a new wait time,

2. or, after the completion of the current wait time.

In the first case, the probability for the adversarial party to generate a block in a given round still remains
p since the wait time is stored inside the TEE and the party does not see it. In the second case, the
probability is trivially p. Note here, we assume that the adversarial party always generates a block, when
the TEE time expires.

5 Security of ET Consensus with Trusted Timer

In our first proof, we prove the security of our ET consensus protocol with a trusted timer. As with the
bitcoin backbone papers [GKL15] [GKL17], this involves proving the common prefix property, the chain
quality property, and the chain growth property given an honest majority assumption. These properties
imply that our ET consensus protocol can be securely used and suggest that the core principles of real-life
proof of luck consensus are sound.

It might seem that our proof would be trivial given the presence of (uncompromisable) TEEs. However,
this is far from the case: while an adversary is not allowed to interfere with computations in the TEE,
they can still block or cause Byzantine faults in communication, causing victim TEEs to fall behind in
the chain or receive conflicting information. Additionally, in proof of work protocols blocks are difficult
to create since they require a valid proof of work; however, In PoET or our elapsed time consensus with
TEE model, blocks only require valid signatures, which means they are easy to create. Moreover, attacks
like selfish and stubborn mining [NKMS16] are still possible, and we end up needing essentially the full
power of the proof in [GKL15].

Before we begin the proof in earnest, we recall that the hash function and the certification (signature)
scheme are assumed to be ideal primitives and thus cryptographically secure. Additionally we assume
integrity of the TEE as defined in Theorem 1 in Section 2.4.

We say an honest party adopts a chain C′ at round r if, after completion of the execution of the honest
party in round r, the honest party’s internal best chain C̃ becomes C′. We say a chain C′ got adopted by
an honest party if that honest party adopted the chain C′ at some round r. We define some additional
Boolean random variables:

16By memoryless, we mean that the distribution of winning a block is independent of the history of block wins or losses.
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Table 1: Table of all parameters

n : Total number of players
t : Number of corrupted players
δ : Advantage of honest parties, ( t

n−t ≤ 1− δ)
p : Probability that an honest player creates a block in a given round
f : Probability at least one honest player creates a block in a given round
rend : Total number of rounds in the security game
ε : A security parameter used to bound the “luckiness” of the adversary

See the “typical execution” definition in Def. 6
ε′ : Quality of concentration for z-test (Definition 7)
λ : Security parameter
`cf : Minimum number of blocks in common prefix property
µ : Parameter in chain quality property
`q : Minimum number of blocks for which the chain quality property holds.
τ : Minimum number of blocks in chain growth property.
σ : Maximum number of blocks in chain growth property.
rg : Minimum number of rounds for which the chain growth property holds

• HON≥1
i is defined to be 1 if at least one honest party creates a block at round i and 0 otherwise.

• HON1
i is defined to be 1 if exactly one single honest party creates a block at round i and 0 otherwise.

• ADVi,j is defined to be 1 if the jth dishonest party creates a block at round i and 0 otherwise17.
We also define, ADVi :=

∑
j ADVi,j .

In addition, we define the following terms over sets of rounds S:

HON≥1 (S) :=
∑
r∈S

HON≥1
r , HON1 (S) :=

∑
r∈S

HON1
r ,

ADV (S) :=
∑
r∈S

ADVr.

A round r is successful, iff HON≥1
r = 1, it is uniquely successful iff HON1

r = 1.
The integrity of the trusted environment guarantees for all participants (whether honest or adversarial)

that the probability of block creation is the protocol parameter p. We note that this also assumes we
are using a “memoryless” distribution like an exponential or geometric distribution. Suppose f is the
probability that at least one honest party creates a block at a given round. In other words, for any round
r, Pr[HON≥1

r = 1] = f . Suppose there are n honest players and t corrupted players. Then we have
f = 1− (1− p)n−t. Below, we mention an inequality that we will use often.

f < p(n− t) < f

1− f
(1)

Note, the first inequality is a straight forward application of Bernoulli’s inequality which says for real
x > −1 and integer r ≥ 0 we have, (1 + x)r > 1 + rx. The second inequality is another application of
Bernoulli’s inequality after applying the following inequality (1− p)−(n−t) > (1 + p)n−t.

17The adversary, actually have a choice try to mine in a specific round or not. However, without loss of generality we
can consider an adversary who always tries to do so. Even though, the adversary is always free to do whatever with a
successfully mined block. This assumption helps us in defining random variables ADVi,j in terms of pure probabilistic
events.
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We can also easily calculate expectation of the random variables HON≥1(S), HON1(S) and ADV (S)
for any set of rounds S.

E[HON≥1(S)] = f |S|, E[HON1(S)] = (n− t)p(1− p)n−t−1|S|
E[ADV (S)] = pt|S|

(2)

Furthermore, we know x(1− x) is an increasing function when x ∈ (0, 1
2 ). If we assume f < 1/3, this

in turn implies f < (n − t)p < f
1−f <

1
2 by inequality (1). Note, x

1−x is also an increasing function for

x ∈ (0, 1
2 ), which shows f

1−f < 1
2 , for f < 1

3 . Now, assuming f < 1
3 we can have the following lower

bound on E[HON1(S)].

E[HON1(S)] = (n− t)p(1− p)n−t−1|S|
> (n− t)p(1− p)n−t|S|
> (n− t)p (1− (n− t)p) |S| Bernoulli’s inequality

> f(1− f)|S| Preceding paragraph (3)

>
2

3
f |S| (4)

5.1 Honest Majority Assumption and Typical Execution

All of our security guarantees hold if there are enough honest parties in the system, where the exact
amount that is “enough” depends on other parameters of the system. For reasonable and real-world
choices of parameters, our security proofs can handle a constant fraction of adversarial parties. Below,
we formally state the honest majority assumption.

Definition 5 (Honest Majority Assumption). Suppose n is the total number of parties, and out of them
t parties are corrupted. If δ is the advantage of honest parties, then we require that t < (1 − δ)(n − t),
where 3f + 3ε < δ ≤ 1, where ε is a positive fraction (used in various concentration bounds) and f is the
probability that at least one honest party creates a block at a given round.

In our security game (Definition 4), the adversary stops the game after rend many rounds. We define
such a protocol execution as ‘typical’ if for any set of consecutive rounds S of size more than λ, the
quantities HON≥1(S), HON1(S) and ADV (S) do not deviate a lot from their expected values.

Definition 6 (Typical Execution). An execution of rend rounds, is (ε, λ)-typical, for an ε ∈ (0, 1), if for
any set S ⊆ [1, rend] of at least λ consecutive rounds the following hold:

(a) (1− ε)E[HON≥1(S)] < HON≥1(S) < (1 + ε)E[HON≥1(S)]
(b) (1− ε)E[HON1(S)] < HON1(S)
(c) ADV (S) < (1 + ε)E[ADV (S)]

Theorem 3. An execution of rend rounds, is (ε, λ)-typical with probability at least 1− rend(e−Ω(ε2λf) +

e−Ω(ε2λpt)).

Proof. The first thing to observe here is that the value of p remains same over all rounds because of the
memorylessness property of the exponential distribution. Therefore, the random variables HON≥1

i (and
similarly HON1

i and ADVij) are independent but identically distributed random variables.

Now we use Chernoff bound on HON≥1(S) =
∑
i∈S

HON≥1
i to derive the following,

Pr
[
HON≥1(S) ≤ (1− ε)E[HON≥1(S)]

]
≤ e−ε

2E[HON≥1(S)]/2.
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And,

Pr
[
HON≥1(S) ≥ (1 + ε)E[HON≥1(S)]

]
≤ e−ε

2E[HON≥1(S)]/3.

From Equation(2), we have E[HON≥1(S)] = f |S| ≥ fλ. We also know there are at most rend many pos-

sible choices of set S. Hence property (a) of Definition 6 holds with probability at least 1− rende
−Ω(ε2λf).

Using a similar argument and Inequality (4) we can show property (b) also holds with probability at

least 1− rende
−Ω(ε2λf). Similarly, for property (c), the probability is at least 1− rende

−Ω(ε2λpt) because
E[ADV (S)] = pt|S|.

Now we shall look at some more properties of typical execution through the following lemma.

Lemma 2. For any set S of at least λ consecutive rounds, assuming integrity of the TEE the following
properties hold in a typical execution:

(a) (1− ε)f |S| < HON≥1(S) < (1 + ε)f |S|

(b) HON1(S) > (1− ε)f(1− f)|S| > (1− δ
3 )f |S|

(c) ADV (S) < t
n−t

f
1−f |S|+ εf |S| < (1− 2δ

3 )f |S|

(d) ADV (S) < (1 + δ
2 ) t
n−tHON

≥1(S) + εf |S|

(e) ADV (S) < HON1(S).

Proof. Recall, E[HON≥1(S)] = f |S|. Hence, part(a) follows from the definition of typical execution
(Definition 6). For part (b) from definition of typical execution and equation (2) we have,

HON1(S) > (1− ε)E[HON1(S)]

> (1− ε)f(1− f)|S| By Inequality (3)

The last inequality uses the Honest majority assumption (Definition 5) which guarantees f < 1/3. Finally,
from honest majority assumption we also have f + ε < δ/3, which implies (1− ε)(1− f) > (1− δ

3 ). This
completes proof of part (b). For part (c) from definition of typical execution and equation (2) we have,

ADV (S) < (1 + ε)pt|S| < (1 + ε)
t

n− t
f

1− f
|S| < t

n− t
f

1− f
|S|+ 1− δ

1− f
εf |S|

The second inequality uses equation (1). The last inequality uses honest majority assumption, which also
implies 1−δ

1−f < 1. This proves first inequality of part (c). Second inequality of part (c) again follows from

honest majority assumption, i.e. t
n−t < 1− δ and 3(ε+ f) < δ.

Part (d) is implied by first inequality of part (c), lower bound of HON≥1(S) on part (a), because
the honest majority assumption which guarantees (ε+ f) < δ

3 <
1
3 implies (1 + δ

2 )(1− ε) > 1
1−f . Second

inequalities of part (b) and part (c) readily imply part (e).

5.2 Chain Growth Property

Now we provide an upper bound as well as a lower bound on the number of blocks generated given a
chain C and a sequence of rounds S with length s > λ. Here we prove that the number of blocks x added
to the chain C in s rounds is upper bounded by σs and lower bounded by τs, for some constants τ and σ.

Lemma 3. C1 and C2 be two chains which got adopted by some honest parties. Suppose B1 and B2 are
the k-th blocks of chains C1 and C2 respectively. If id(B1) is an honest user and round(B1) is a uniquely
successful round, then either B1 = B2 or id(B2) is corrupted.
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Proof. For contradiction, we assume B1 6= B2 and id(B2) is honest. Security of the signature scheme
implies the blocks B1 and B2 are actually created by id(B1) and id(B2). As, round(B1) is uniquely
successful round and both id(B1) and id(B2) are honest, we have round(B1) 6= round(B2). Suppose,
round(B1) < round(B2); as both of the players are honest id(B2) must have received the chain ending
in B1 with length k on or before round(B2). This implies position of the block B2 must be greater than
k, which is a contradiction. The cryptographic security of the hash function ensures an honest party
creates a block at position k and that adversarial players cannot insert that block at a different position.
A similar argument holds for the case round(B1) < round(B2).

Lemma 4 (Chain Growth Lemma). Suppose an honest party has adopted a chain of length ` at round

r. Then, by round h > r, every honest party has adopted a chain of length at least `+
h−1∑
i=r

HON≥1
i .

Proof. We prove the above theorem using induction on h ≥ r + 1.
Induction base: The protocol has moved only one round after round r, hence h = r + 1. If at round

r, an honest party has a chain of length `, every honest party will adopt a chain of length at least ` by
round r + 1. Additionally, if HON≥1

r = 0, the statement follows directly. If HON≥1
r = 1, the successful

honest party will broadcast a chain of length ` + 1 = ` + HON≥1
r , and all honest parties will adopt a

chain of at least that length by round h = r + 1.
Inductive step: Let us assume that every honest party has adopted a chain of length at least `′ =

`+
h−2∑
i=r

HON≥1
i by round h− 1.

Now, two things could have happened on round h− 1:

1. HON≥1
h−1 = 0, in which case

h−1∑
i=r

HON≥1
i =

h−2∑
i=r

HON≥1
i . Hence, the statement follows.

2. HON≥1
h−1 = 1, in that case a successful honest party will broadcast a chain of length at least `′ + 1

in round h − 1. By round s, all honest parties will adopt a chain of length at least `′ + 1 =

`+
h−2∑
i=r

HON≥1
i + 1 = `+

h−1∑
i=r

HON≥1
i .

Lemma 5. Suppose C is a chain adopted by an honest party during a typical execution. For any k ≥
max(2λf, 4), let Bm, Bm+1, · · · , Bm+k−1 be k consecutive blocks of the chain C. Then, we have

|[round(Bm), round(Bm+k−1)]| ≥ k

2f

.

Proof. Suppose S′ = [round(Bm), round(Bm+k−1)]. For contradiction let us assume |S′| < k
2f . Consider

the set S of consecutive rounds such that S ⊇ S′ and |S| = d k2f e. Integrity of the trusted execution
environment, security of the signature scheme along with the fact chain C has been adopted by an honest
party ensures HON≥1(S′) +ADV (S′) ≥ k. As S′ ⊆ S, this in turn implies HON≥1(S) +ADV (S) ≥ k.
As, |S| ≥ λ, we can apply part (a) and part (c) of Lemma 2 and it imply the following.
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HON≥1(S) +ADV (S)

< (1 + ε)f |S|+ (1− 2δ

3
)f |S|

< (2 + ε− δ

3
)f |S|

≤ (2− f)f |S| Since 3f + 3ε ≤ δ

< (2− f)f(
k

2f
+ 1) Since |S| = d k

2f
e < k

2f
+ 1

≤ k − kf

2
+ 2f − f2 < k + f(1− k/4) < k. Since k ≥ 4

This shows we have a contradiction.

A direct corollary to Lemma 2, the chain growth lemma (Lemma 4), and Lemma 5 is the following
theorem.

Theorem 4 (chain-growth). In a typical execution, the chain growth property holds with parameters
τ = (1− ε)f , σ = 2f and rg > λ.

5.3 Common Prefix Property.

We want the honest parties to eventually agree on a common chain. If the common prefix property holds,
once a transaction is included in a block B, the transaction becomes irreversible once honest parties have
mined enough blocks extending the chain that includes B.

Lemma 6 (Common Prefix Lemma). In a typical execution, for two chains C1 and C2 with len(C2) ≥
len(C1), if C1 is adopted by an honest party at round r, and C2 is either adopted by an honest party or

broadcast at round r, then Cdk1 � C2 and Cdk2 � C1, for all k ≥ max(2λf, 4).

Proof. Let us assume, for the sake of a contradiction, that there exists a k > 2λf such that Cdk1 6� C2 or

Cdk2 6� C1. Suppose B∗ is the last block on the common prefix of C1 and C2 such that id(B∗) is honest.
Let us denote round(B∗) = r∗. Note that B∗ can be the genesis block, in which case r∗ = 0.

Now, we define S = {i : r∗ < i < r}. Suppose Bm, Bm+1, · · · , Bm+k′−1 are k consecutive blocks of
the chain C1, where Bm is the next block after B∗ and Bm+k′−1 is the last block of C1. Clearly, k′ ≥
k ≥ max(2λf, 4) and we can apply Lemma 5. This implies, |[round(Bm), round(Bm+k′−1)]| ≥ k′

2f ≥ λ.

We also know, S ⊇ [round(Bm), round(Bm+k′−1)]. Hence, |S| ≥ λ and Lemma 2 applies for the set of
rounds S.

For an uniquely successful round u ∈ S, let ju be the position at which the uniquely successful honest
party created the block. J be the set of positions at which honest parties created the blocks on uniquely
successful rounds. J = {ju : u ∈ S,HON1

u = 1}. Suppose the maximum value of the set J is max(J).
Then, len(C1) ≥ max(J), since C1 is adopted by an honest party at round r, by which the honest party
has already received a chain of length max(J).

Since, len(C2) ≥ len(C1), jth the block exists in both the chains C1 and C2 for all j ∈ J . We denote
such blocks by B1,j and B2,j respectively. Now, we want to claim for all j ∈ J at least one of the
players between id(B1,j) and id(B1,j) is corrupted. By Lemma 3, if both id(B1,j) and id(B1,j) are
honest then we must have B1,j = B2,j . Cryptographic strength (collision resistance) of the hash function
implies Bj = B1,j = B2,j belongs to the common prefix of chains C1 and C2. However, we also know
round(Bj) > round(B∗) and B∗ is the last block in the common prefix such that id(B∗) is honest. This
implies a contradiction.
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Now, we have established the fact that for all j ∈ J at least one of the players between id(B1,j) and
id(B2,j) is corrupted. Hence, the total number of blocks B such that id(B) is corrupted, B ∈ C1 ∪ C2
and round(B) ∈ S must be more than or equal to size of set J . This along with the integrity of the
trusted execution environment implies ADV (S) ≥ |J | = HON1(S). However, for a typical execution
with |S| ≥ λ, by part (e) of Lemma 2 we have ADV (S) < HON1(S). Hence, we arrive at contradiction.

Therefore, we can say that for all k > 2λf , it holds that Cdk1 � C2 and Cdk2 � C1.

Theorem 5 (Common Prefix). In a typical execution the common prefix property holds with parameter
`cf ≥ max(2λf, 4).

The proof follows directly from the Common Prefix Lemma.

5.4 Chain Quality Property.

We also want the property that at least a constant fraction of blocks are added by honest parties in a
chain C that is adopted by an honest party.

Theorem 6 (Chain Quality). In a typical execution, the chain quality property holds with parameters
`q ≥ max(2λf, 4) and µ = 1− (1+ δ

2 ) t
n−t −

ε
1−ε > 1− (1+ δ

2 ) t
n−t −

δ
2 for any chain adopted by any honest

party.

Proof. Let us consider a chain C, which has been adopted by an honest party P at round r, such that
len(C) > `q. Suppose C consists of sequence of blocks (B1, B2, . . . , Blen(C)) and (Bu, Bu+1, . . . , Bu+`q−1)
is an arbitrary `q length subsequence of C.

Suppose (Bu′ , Bu′+1 . . . , Bu′+L−1) is the shortest subsequence of C containing (Bu, Bu+1, . . . , Bu+`q−1)
(i.e. u′ ≤ u and L ≥ `q) such that:

1. id(Bu′) is honest

2. there exists an honest party which adopted the chain (B1, B2, . . . , Bu′+L−1)

Observe that B1 is the genesis block and id(B1) is honest by definition. An honest party P adopted the
chain C and len(C) > `q Hence, the whole chain C trivially satisfies the above properties, except it might
be not the shortest one. This shows existence of the shortest subsequence Bu′ , Bu′+1 . . . , Bu′+L−1.

Suppose, r1 = round(Bu′) and the earliest round at which the chain (B1, B2, . . . , Bu′+L−1) got
adopted by an honest party is r2. Let S be the sequence of rounds defined as S = {r : r1 ≤ r < r2}.
Observe that,

S ⊇ [round(Bu′), round(Bu′+L−1)] ⊇ [round(Bu), round(Bu+`q−1)].

Hence, by Lemma 5, we have |S| ≥ `q/2f ≥ λ and properties of typical execution are applicable (Lemma 2)
for the set of rounds S.

Let x be the number of honest blocks in the `q length sequence. In other words x = |{B ∈
(Bu, Bu+1, . . . , Bu+`q−1)|id(B) is honest}|. For contradiction, we assume the chain quality property does
not hold for this `q length sequence of blocks (Bu, Bu+1, . . . , Bu+`q−1). Hence,

x < µ`q ≤ µL (5)

As the chain (B1, B2, . . . , Bu′+L−1) got adopted by an honest party in round r2; for all i ∈ [u′, u′+L−1]
we have round(Bi) ∈ S. Integrity of the trusted execution environment ensures

ADV (S) ≥ |{B ∈ (Bu, Bu+1, . . . , Bu+`q−1)|id(B) is corrupted}|
= L− x > (1− µ)L

(6)
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The last inequality uses inequality (5), which is our contradiction assumption. Now, Lemma 4 implies
u′ + L − 1 ≥ u′ + HON≥1(S) or equivalently L > HON≥1(S). Hence inequality (6) can be rewritten
as ADV (S) > (1− µ)HON≥1(S). As we have seen before, |S| ≥ λ. Hence. by part (a) and part (d) of
Lemma 2

(1− µ)HON≥1(S) =

((
1 +

δ

2

)
t

n− t
+

ε

1− ε

)
HON≥1(S)

≥
(

1 +
δ

2

)
t

n− t
HON≥1(S) + εf |S|

> ADV (S)

Hence, we have a contradiction ADV (S) > (1− µ)HON≥1(S) > ADV (S).

The above theorem shows that a chain C of length at least 2λf adopted by an honest party will have
at least µ fractions of honest blocks. In table 2 we show some examples with possible values of ε, f, δ
and how the parameters τ, k, µ corresponding to the security properties(namely, chain growth, common
prefix and chain quality properties) vary.

Theorem 7 (Security of ET Consensus with Trusted Timer). For a security parameter λ, total number
of parties n ∈ poly(λ), and given the honest majority assumption defined in Definition 5, suppose the
following parameter inequalities hold:
• `cf ≥ max (2λf, 4)
• rg ≥ λ, τ = (1− ε)f , σ = 2f
• `q ≥ max(2λf, 4), µ = 1− (1 + δ

2 ) t
n−t −

ε
1−ε > 1− (1 + δ

2 ) t
n−t −

δ
2 .

Then it is the case that no efficient adversary can win the blockchain security game as defined in Defi-
nition 4 with more than negl (λ) probability.

Proof. Follows directly from Theorem 4, Theorem 5 and Theorem 6.

Theorem 7 shows that elapsed time consensus with trusted timer provides security guarantees similar
to bitcoin — the chain quality, chain growth, and common prefix properties hold for the honest majority
assumption defined in Definition 5. To be concrete, in Table 2 we show some examples with possible
values of ε, f, δ and how the security parameters τ, σ, `cf , µ vary.

Table 2: How the security property parameters (τ, σ, rg, `cf , `q, µ) of ET consensus with Trusted Timer
corresponding to chain growth, common prefix and chain quality properties vary based on the protocol
parameters δ, ε, f, λ. The first column presents the values of ε and f defined in the honest majority
assumption, the second column the minimum δ (accurate up to two decimal places) to satisfy the honest
majority assumption; the third, fourth, fifth, sixth, seventh, and eighth columns are τ , σ, rg, `cf , `q and
µ respectively as defined in Theorem 7. We assume λ >> 4.

Protocol parameters δ τ σ rg `cf `q µ
ε = 0.05, f = 0.05 0.3 0.05 0.1 λ 0.1λ 0.1λ 0.14
ε = 0.1, f = 0.1 0.6 0.09 0.2 λ 0.2λ 0.2λ 0.36
ε = 0.1, f = 0.2 0.9 0.18 0.4 λ 0.4λ 0.4λ 0.74
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6 ET Consensus with Z-test

One of the biggest benefits of proof-of-work algorithms is that they are very difficult to compromise (so
long as basic assumptions about cryptography continue to hold). Operations within a TEE, however,
may be subject to attack [KHF+19, VMW+18, LSG+18, KKSAG18]. In PoET, PoL, and ET consensus
with TEEs, we are mainly concerned about two forms of attack: accelerating the trusted timer and
impersonating (or stealing the secret keys from) a TEE. In both cases, an attacker can create an invalid
leadership claim and break the security of the protocol.

To address this issue, PoET implements a “z-test” (or more accurately, it implements a “1 sample
z-test”) that limits the number blocks any validator can win over a period of time. The “z-test” is based
on the observation that while any validator can win any block (the fairness principle), the probability that
a particular validator wins a disproportionately large number of blocks is extremely low. The “z-test”
computes the value of the standard deviation of a specific observation relative to the expected value. So
the z-value computed for a set of observations is the number of standard deviations the observations are
from the expectation.

To be concrete, with a population of 1000 validators, the probability of winning is 1/1000. That
means that for a sample of 100000 blocks, a validator would be expected to claim 100 blocks. If we
observe that a validator has actually won 125 blocks, that would mean the “z-value” would be about 2.5.
We can then use the z-value to compute the probability that a given validator is winning more often than
it should. For this example, with 99.5% confidence, we can say that a validator that wins 125 is winning
more often than it should.

If we set the “z-value” to be a value that honest parties should only achieve with negligible probability,
then the z-test will function as a rate-limiter for an adversary without ever impacting the honest parties.

6.1 Our ET Consensus Protocol with z-test

While the PoET z-test is an excellent innovation, it unfortunately does not help us to prove the security of
any ET consensus protocols. In our case, we implement a more complicated z-test than what is currently
present in PoET. Instead of rate-limiting what percentage of blocks any given participant can win on the
chain, we rate-limit each participant’s block wins over a sliding window of time (or, in our protocol, a
sliding window of rounds). Given the distribution of block creation, we can figure out the expectation of
(and appropriate other statistics around) how many blocks a player wins over a particular time period.
Deviating too far from this results in future blocks being declared invalid.

More precisely, in terms of the protocol formalizations, we limit the number of blocks any given
participant can win over some number of rounds of the protocol based on the distribution of block wins.
We set our z-test parameters so that honest parties will only be affected with negligible probability, so
our z-test has no negative impact on honest blockchain operation. Our new z-test more effectively stops
an adversary from concentrating a high number of blocks in a very small amount of time and allows us
to state concrete facts about the security of our protocol with the z-test.

In this section, we do not assume any integrity of the trusted execution environment. Hence, adver-
sarial parties can generate arbitrarily many valid blocks per round. However, honest parties apply the
‘z-test’ before accepting a chain, which checks that no single player is producing more than their fair
share of the blocks. For a consecutive set of rounds S, we denote number of adversarial blocks in a chain
C by ADVC(S). In other words, ADVC(S) = |{B ∈ C : round(B) ∈ S and id(B) is corrupted. }|. For a
player i ∈ [1, n], ZC(i, S) denotes the number of blocks in chain C produced by player i, created in rounds
in S, i.e. ZC(i, S) = |{B ∈ C : round(B) ∈ S and id(B) = i}|. Hence, for a chain C and set of rounds S,
we have ADVC(S) =

∑
i∈[1,n]

i is corrupted

ZC(i, S).

Definition 7. Let C be a chain. For ε′ ∈ (0, 1) and λ > 0 the function zε′,λ : C × [1, ..., n] → {0, 1} be
defined in the following way:
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zε′,λ (C, i) =
0 if ∃ set of consecutive rounds S s.t.

|S| ≥ λ and ZC(i, S) > (1 + ε′)p|S|
1 otherwise

(7)

zε′,λ (C, i) denotes whether party i contributed less than allowed number of blocks in chain C or not.

6.2 Protocol Description

The ET protocol with z-test remains almost the same, except that now the TEE is not considered to be
secure in any way. However, there is an additional check for chains to ensure that they satisfy the z-test
criteria (Definition 7). We call this version of ET consensus ETztest which borrows all the functionalities
from ETtimer (refer to figure 11), except the chain validation mechanism. The new chain validation
mechanism for ETztest is defined in Figure 14.

Optionally, for performance improvement, ETztest does not have to wait on the TEE to generate the
block. Instead, a player can just query the WaitT ime and WaitCert. This can be very useful practically
because if each round is small enough, querying the TEE every round can be really inefficient. We define
the improved version in figure 15 of Section 9. However, for our security proof we use the version from
figure 11.

Although we do not assume any security of any TEE (or even the existence of a TEE), the probability
any honest party generates a block in any given round still remains p. This holds because adversarial
nodes cannot compromise honest parties and change their wait time distributions. We capture this in
the following lemma. The proof is very similar to the proof of Lemma 1.

Lemma 7. The event that any honest party generates a block in a given round happens with probability
p, over the random coins of that party’s TEE. This event is independent of all other random coins in the
protocol as well as adversarial choices.

IsChainValid( chain C = {B1, B2, . . . B`} ):

if B1 is not the genesis block then return false end if
for each block Bi in C except B1 do
Ci−1 ← (B1, · · · , Bi−1)
// Verify that the current block is pointing to the previous block
if Bi.s 6= H(Bi−1) then return false
// Verify that the block is not created ahead of its previous block
else if (Bi.π.timestamp < Bi.π.WaitT ime+Bi−1.π.timestamp ) then return false
// Verify the WaitCert for the block
else if !V alidBlock(Bi, Ci−1) ∨ !IsCertValidTEE

(
Bi.π.WaitCert,

Bi.π.WaitT ime‖WaitForBlock‖(Ci−1, Bi.x)
)

then return false
else continue
end if

end for
// Verify that the block is not created ahead of time
if ( B`.π.timestamp ≥ current-round ) then return false end if
// Verify that the chain satisfies z-test property
if ( zε,λ (C, B`.π.playerID) = 0 ) then return false end if

Figure 14: Chain Validation mechanism for ETztest
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7 Security of ET Consensus with Z-test

With the z-test, we strictly bound how many blocks an adversary can win on any given chain in any
given period of time. This is a powerful restriction, but it still gives an adversary quite a bit of freedom.
The adversary can still essentially allocate these blocks however they want over the given time periods.
In addition, the adversary can also create many different small forks or chains like a “nothing at stake”
attacker [BCNPW18].

7.1 Intuition about the security proof

It might seem that this would allow an adversary to perform powerful attacks. For instance, since we
assume that an adversary always wins “race conditions” with honest parties (i.e. if an adversary and
an honest party publish blocks at the same time, the adversary wins), it is possible for an adversary to
“cover up” more honest blocks in this manner than would occur with random chance.

However, the proofs of bitcoin in the bitcoin backbone protcol [GKL15] and associated works (including
our proofs without the z-test) typically use a bound on the number of adversarial blocks in most of their
proofs and are agnostic to where the adversarial blocks are present. We shall follow a similar strategy
(with a slight inflation of the percentage of honest users required) to prove the security of ETztest.
However, the z-test bound the behaviour of the adversary on each chain, not globally. Therefore, we use
a slightly modified honest majority assumption (where we require slightly more honest parties) compared
to bitcoin (and ET with TEE), and prove that honest parties are “stronger” than the adversary on each
chain.

It is important to recall here that, to prove the desired security properties for ETztest, we assume
cryptographic security of the hash function and the signature scheme, and an honest majority (formally
stated below). However, we do not assume the TEEs to be secure in any way.

We start by presenting our honest majority assumption. Note that it is substantially more compli-
cated than in the protocol with the trusted timer, as are other theorem statements in this section. For
simplification, in subsection 8.2, we show how to pick parameter choices that dramatically simplify many
of these statements.

Definition 8 (Honest Majority Assumption). Suppose n is the total number of parties, and out of them t

parties are corrupted. Then we require that t < (1−δ)(n−t), where max
(

2f+ε+ε′−f2−fε
1+ε′ , 1+ε+2ε′−2ε′f−2εf

2(1+ε′)(1−f)

)
<

δ ≤ 1, ε ∈ (0, 1) and ε′ > 0.

7.2 Typical Execution

We start be (re)defining a typical execution and prove some simple properties about it.
We slightly modify the definition of typical execution here compared to Section 5. Let HONr,i be a

boolean random variable that denotes whether honest player i successfully generated a block at round
r or not. We denote HON·,i(S) =

∑
r∈S HONr,i. We also do not impose any condition on adversarial

success, because without integrity of the trusted execution environment the adversary is free to generate
as many valid blocks as it wants (although, if they generate too many, they will be rejected by honest
parties).

Definition 9 (Typical Execution). An execution of rend rounds, is (ε, ε′, λ)-typical, for some ε ∈
(0, 1), ε′ > 0, if for any set S of at least λ consecutive rounds the following hold:

(a) (1− ε)E[HON≥1(S)] < HON≥1(S) < (1 + ε)E[HON≥1(S)]
and (1− ε)E[HON1(S)] < HON1(S)

(b) For all honest players i, HON·,i(S) < (1 + ε′)E[HON·,i(S)]
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Theorem 8. An execution of rend rounds is (ε, ε′, λ)-typical with probability at least 1− rend(e−Ω(ε2λf) +

(n− t)e−Ω(ε′2λp)).

Proof. Note, there are (n− t) honest parties and for every honest party i, we have E[HON·,i(S)] = p|S|.
The theorem follows with a Chernoff bound and a line of argument very similar to proof of Theorem 3.

Now, let us look at some more properties of a typical execution under z-test. Later in this section,
we are going to use those properties to analyze the chain growth and chain quality properties.

Lemma 8. For any set S of at least λ consecutive rounds, the following properties hold in a typical
execution where C is a chain adopted by an honest party.

(a) (1− ε)f |S| < HON≥1(S) < (1 + ε)f |S|

(b) ADVC(S) < (1+ε′)t
(n−t)(1−f)(1−ε)HON

≥1(S)

(c) 2ADVC(S) < HON1(S)

(d) ADVC(S) < (1− f − ε)f |S|

Proof. Recall, E[HON≥1(S)] = f |S|. Hence, part (a) readily follows from definition of typical execution
(Definition 9). The chain C got adopted by an honest party, hence it passed the ‘z-test’ for all parties.
As |S| ≥ λ, for all players i ∈ [1, n] we have ZC(i, S) < (1 + ε′)p|S|. Hence,

ADVC(S) =
∑
i∈[1,n]

i is corrupted

ZC(i, S) < (1 + ε′)pt|S| < (1 + ε′)tf

(n− t)(1− f)
|S| (8)

The last inequality above uses inequality (1). Now we can prove part (b) by applying HON≥1(S) lower
bound from part (a). For part (c), from the definition of typical execution and , we have

HON1(S) > (1− ε)E[HON1(S)]

= (1− ε)(n− t)p(1− p)n−t−1|S|
> (1− ε)(n− t)p(1− p)n−t|S|
> (1− ε)(n− t)p(1− p(n− t))|S| By Bernoulli’s inequality

> (1− ε)(n− t)p(1− f

1− f
)|S| By Inequality (1)

=
(1− ε)(1− 2f)

(1 + ε′)(1− f)

(n− t)
t

(1 + ε′)pt|S|

>
(1− ε)(1− 2f)

(1 + ε′)(1− f)

(n− t)
t

ADVC(S) By Inequality (8)

>
(1− ε)(1− 2f)

(1 + ε′)(1− f)(1− δ)
ADVC(S) Definition 8

From the honest majority assumption or Definition 8 we also have

1 + ε+ 2ε′ − 2ε′f − 2εf

2(1 + ε′)(1− f)
< δ < 1,
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which in turn implies (1−ε)(1−2f)
(1+ε′)(1−f)(1−δ) > 2. This completes the proof of part (c). For part (d), from

Inequality (8) we have

ADVC(S) < (1 + ε′)pt|S|
< (1 + ε′)(1− δ)p(n− t)|S| By Definition 8

< (1 + ε′)(1− δ) f

1− f
|S| By Inequality (1)

=
(1 + ε′)(1− δ)

(1− f)(1− f − ε)
(1− f − ε)f |S|

From honest majority assumption or Definition 8 we also have 2f+ε+ε′−f2−fε
1+ε′ < δ < 1, which in turn

implies (1+ε′)(1−δ)
(1−f)(1−f−ε) < 1. This completes the proof of part (d).

7.3 Chain Growth Properties

Now, we want to prove the chain growth property for ET consensus with z-test. First, we state the
modified versions of Lemma 3 and Lemma 4, which now depend on the guarantees of typical execution.
The proofs remain essentially the same. However, they crucially depend upon the fact that in a typical
execution, honestly generated blocks never get rejected because of the ‘z-test’. We note that this property
is easy to achieve with what should be fairly typical parameter settinhgs: namely, with ε ≤ ε′.

Lemma 9. In a typical execution, let C1 and C2 be two chains which were adopted by some honest parties.
Suppose B1 and B2 are the k-th blocks of chains C1 and C2 respectively. If id(B1) is an honest user and
round(B1) is a uniquely successful round, then either B1 = B2 or id(B2) is corrupted.

We skip the proof here because the proof is almost identical to the proof of Lemma 3.

Lemma 10 (Chain Growth Lemma). In a typical execution, suppose an honest party has adopted a chain
of length ` at round r. Then, by round h > r, every honest party has adopted a chain of length at least

`+
h−1∑
i=r

HON≥1
i .

Again, this proof is almost identical to the proof of Lemma 4, so we omit it here.

Lemma 11 (Chain Growth Upper Bound). Suppose C is a chain adopted by an honest party during a
typical execution. For any k ≥ max(2λf, 4), let Bm, Bm+1, · · · , Bm+k−1 be k consecutive blocks of the
chain C. Then, we have

|[round(Bm), round(Bm+k−1)]| ≥ k

2f
.

Proof. Suppose S′ = [round(Bm), round(Bm+k−1)]. For contradiction let us assume |S′| < k
2f . Consider

the set S of consecutive rounds such that S ⊇ S′ and |S| = d k2f e. Security of the signature scheme along

with the fact chain C has been adopted by an honest party ensures HON≥1(S′) + ADVC(S
′) ≥ k. As

S′ ⊆ S, this in turn implies HON≥1(S) + ADVC(S) ≥ k. As, |S| ≥ λ, we can apply Lemma 8 and it
implies the following.
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HON≥1(S) +ADVC(S)

< (1 + ε)f |S|+ (1− f − ε)f |S|
< (2− f)f |S|

< (2− f)f(
k

2f
+ 1) Since |S| = d k

2f
e < k

2f
+ 1

≤ k − kf

2
+ 2f − f2 < k + f(1− k/4) < k. Since k ≥ 4

This shows we have a contradiction.

Lemma 11 provides us an upper limit on the rate of chain growth. It says that at least k
2f rounds are

required for a valid chain to grow by k blocks. Additionally, note that, for f > 0.5 the number of rounds
to generate k blocks becomes less than k, which is not possible because multiple blocks in the same round
will only increase forks, not the chain length. That necessarily means any f > 0.5 will not improve the
chain growth, instead only increase the fork rate. That is why we should always consider f ≤ 0.5.

A corollary to chain growth lemma(Lemma 10), Lemma 8 and Lemma 11 is the following theorem.

Theorem 9 (chain-growth). In a typical execution, the chain growth property holds with parameters
τ = (1− ε)f , σ = 2f and rg > λ.

The above theorem provides an upper bound as well as a lower bound on the total number of blocks
added to a chain C given a sequence of rounds S with a length s > rg. For s rounds, the number of blocks
x added to the chain C is upper bounded by σs and lower bounded by τs.

7.4 Common Prefix Property

In this section we prove the common prefix property for our ET consensus with z-test protocol. This
proof requires us to deviate from our proof for ET consensus with trusted timer pretty substantially (and
thus, also deviate from the bitcoin backbone analysis [GKL15]).

The main issue is the following: In bitcoin and in ET consensus with trusted timer, we can bound the
total number of blocks an adversary can produce (with some probability, of course). However, in our ET
consensus with z-test protocol, the z-test only allows us to bound the number of blocks per chain. So an
adversary could create a theoretically infinite number of chains and generate blocks on all of them. This
would result in a huge total number of blocks created.

It turns out, though, that this per-chain restriction is actually pretty strong. All of our proofs rely
on proofs of contradiction using chain comparisons–so we only ever need to work with two chains at a
given time. In the bitcoin backbone analysis and our analysis of the ET consensus with trusted timer, we
need to assume the fact that honest parties can “outmine” the adversary overall by some margin. In our
proof of ET consensus with z-test, we need to assume that the honest parties can produce more blocks
than the adversary on both chains in our analysis, effectively doubling the power of the adversary. This
means we lose a factor of 2 compared to all of our earlier proofs, but can still prove security in a very
adversarially tuned setting.

Below we present the formal proofs.

Lemma 12 (Common Prefix Lemma). In a typical execution, for two chains C1 and C2 with len(C2) ≥
len(C1), if C1 is adopted by an honest party at round r, and C2 is either adopted by an honest party or

broadcasted by an honest party at round r, then Cdk1 � C2 and Cdk2 � C1, for all k ≥ max(2λf, 4).
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Proof. Let us assume, for contradiction, there exists a k > 2λf such that Cdk1 6� C2 or Cdk2 6� C1. Suppose,
B∗ be the last block on the common prefix of C1 and C2 such that id(B∗) is honest. Let us denote
round(B∗) = r∗. Note, B∗ can be genesis block, in which case r∗ = 0.

Now, we define S = {i : r∗ < i < r}. Suppose, Bm, Bm+1, · · · , Bm+k′−1 are k′ consecutive blocks of
the chain C1, where Bm is the next block after B∗ and Bm+k′−1 is the last block of C1. Clearly, k′ ≥ k ≥
max(2λf, 4) and we can apply Lemma 11. This implies, |[round(Bm), round(Bm+k′−1)]| ≥ k′

2f ≥ λ. We

also know, S ⊇ [round(Bm), round(Bm+k′−1)]. Hence, |S| ≥ λ (i.e., the execution during S is a typical
execution with overwhelming probability) and Lemma 8 applies for the set of rounds S.

For a uniquely successful round u ∈ S, let ju be the position at which the uniquely successful honest
party created the block. J be the set of positions at which honest parties created the blocks on uniquely
successful rounds. J = {ju : u ∈ S,HON1

u = 1}. Suppose the maximum value of the set J is max(J).
Then, len(C1) ≥ max(J), since C1 is adopted by an honest party at round r, by which the honest party
has already received a chain of length max(J).

Since, len(C2) ≥ len(C1), jth block exists in both the chains C1 and C2 for all j ∈ J . We denote
such blocks by B1,j and B2,j respectively. Now, we want to claim for all j ∈ J at least one of the
players between id(B1,j) and id(B1,j) is corrupted. By Lemma 9, if both id(B1,j) and id(B1,j) are
honest then we must have B1,j = B2,j . Cryptographic strength (collision resistance) of the hash function
implies Bj = B1,j = B2,j belongs to the common prefix of chains C1 and C2. However, we also know
round(Bj) > round(B∗) and B∗ is the last block in the common prefix such that id(B∗) is honest. This
implies a contradiction.

Now, we have established the fact that for all j ∈ J at least one of the players between id(B1,j) and
id(B2,j) is corrupted. Hence, total number of blocks B such that id(B) is corrupted, B ∈ C1 ∪ C2 and
round(B) ∈ S must be more than or equal to size of set J . Hence,

ADVC1(S) +ADVC2(S) ≥ |{B : B ∈ C1 ∪ C2 and round(B) ∈ S}|
≥ |J | = HON1(S).

However, for a typical execution with |S| ≥ λ, by Lemma 8 we have

ADVC1(S), ADVC2(S) <
HON1(S)

2
.

Hence, contradiction. Therefore, we can say that for all k > 2λf , it holds that Cdk1 � C2 and Cdk2 � C1.

Intuitively, if Cdk1 6� C2 or Cdk2 6� C1, the number of adversarial blocks for both the chains combined is
more than the total number of honest blocks, for the parts of the chains where they don’t have a common
honest block. And that is not possible for a typical execution, because the number of adversarial blocks

for a chain C during a sequence of rounds S is limited by ADVC(S) < HON1(S)
2 .

Common Prefix Lemma shows that the honest parties eventually agree on a common chain. Once a
transaction is included in a block B, the transaction becomes irreversible once honest parties have mined
enough number of blocks extending after B. The common prefix lemma directly implies the following
security theorem about the common prefix property.

Theorem 10 (Common Prefix). In a typical execution the common prefix property holds with parameter
`cf ≥ max(2λf, 4).

7.5 Chain Quality Property

Theorem 11 (Chain Quality). In a typical execution, the chain quality property holds with parameters

`q ≥ max(2λf, 4) and µ = 1− (1+ε′)t
(n−t)(1−f)(1−ε) for any chain adopted by any honest party.
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Proof. Let us consider a chain C, which has been adopted by an honest party P at round r, such that
len(C) > `q. Suppose C consists of sequence of blocks (B1, B2, . . . , Blen(C)) and (Bu, Bu+1, . . . , Bu+`q−1)
is an arbitrary `q length subsequence of C, such that `q ≥ max(2λf, 4).

Let (Bu′ , Bu′+1 . . . , Bu′+L−1) be the shortest subsequence of C containing (Bu, Bu+1, . . . , Bu+`q−1)
(i.e. u′ ≤ u and L ≥ `q) such that:

1. id(Bu′) is honest

2. there exists an honest party which adopted the chain (B1, B2, . . . , Bu′+L−1)

Observe that B1 is genesis block and id(B1) is honest by definition. We know that an honest
party P adopted the chain C and len(C) > `q. Hence, the whole chain C trivially satisfies the above
properties, except it might not the shortest one. This shows existence of the shortest subsequence
Bu′ , Bu′+1 . . . , Bu′+L−1.

Suppose, r1 = round(Bu′) and the earliest round at which the chain (B1, B2, . . . , Bu′+L−1) got
adopted by an honest party is r2. Let S be the sequence of rounds defined as S = {r : r1 ≤ r < r2}.
Observe that

S ⊇ [round(Bu′), round(Bu′+L−1)] ⊇ [round(Bu), round(Bu+`q−1)].

Hence, by Lemma 11, we have |S| ≥ `q/2f ≥ λ and the properties of typical execution are applicable
(Lemma 8) for the set of rounds S.

Let x be the number of honest blocks in the `q length sequence. In other words x = |{B ∈
(Bu, Bu+1, . . . , Bu+`q−1)|id(B) is honest}|. For contradiction, we assume the chain quality property does
not hold for this `q length sequence of blocks (Bu, Bu+1, . . . , Bu+`q−1). Hence,

x < µ`q ≤ µL (9)

As the chain (B1, B2, . . . , Bu′+L−1) got adopted by an honest party in round r2; for all i ∈ [u′, u′+L−1]
we have round(Bi) ∈ S. As [u, u+ `q − 1] ⊆ [u′, u′ + L− 1], we have

ADVC(S) ≥ |{B ∈ (Bu, Bu+1, . . . , Bu+`q−1)|id(B) is corrupted}|
= L− x > (1− µ)L

(10)

The last inequality uses inequality (9), which is our contradiction assumption. Now, Lemma 10 implies
u′ + L − 1 ≥ u′ + HON≥1(S) or equivalently L > HON≥1(S). Hence inequality (10) can be rewritten
as ADVC(S) > (1− µ)HON≥1(S). As we have seen before, |S| ≥ λ. Hence, by Lemma 8

(1− µ)HON≥1(S) =
(1 + ε′)t

(n− t)(1− f)(1− ε)
HON≥1(S)

> ADVC(S)

Therefore we have our desired contradiction ADVC(S) > ADVC(S).

The chain quality property guarantees that there will be at least µ`q honest blocks given a chain of
length `q. For example, when 20% of the miners are dishonest, ε′ = ε = 0.2, and f = 0.2, we have
µ = 0.53 — which means at least 53% blocks in the chain are honest blocks. We refer to Table 3 for
more examples.

Theorem 12 (Security of ET Consensus with Z-test). For a security parameter λ, total number of parties
n ∈ poly(λ), and given the honest majority assumption defined in Definition8, suppose the following
parameter inequalities hold:
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• `cf ≥ max (2λf, 4)
• rg ≥ λ, τ = (1− ε)f , σ = 2f

• `q ≥ max(2λf, 4), µ = 1− (1+ε′)t
(n−t)(1−f)(1−ε) .

Then it is the case that no efficient adversary can win the blockchain security game as defined in Defi-
nition 4 with more than negl (λ) probability.

Proof. Follows directly from Theorem 9, Theorem 10 and Theorem 11.

8 Discussion and Practical Application

In this section we discuss how to instantiate our protocol and some of the implications of particular
parameter settings. We note that our parameter choices here are theoretical in nature and reflect provable
security properties. In practice, most blockchain system parameters are only set to avoid known attacks
(e.g. assuming that bitcoin consensus is final 6 blocks deep into the cahin), so practical systems will
typically have much better performance than is implied by these figures.

8.1 When n, t are variable

We prove the security considering fixed n, t — which parameters tend to change over time. If n and t
changes, f also changes, for a chosen constant value of p. Therefore, in real life, the protocol needs to
periodically estimate n and update the parameters of the probability distribution(and p) such that the
probability of a successful round is upper bounded by f . However, the probability should not be really
small compared to f because in that case the chain growth will be too slow. Therefore, the period has to
be long enough (>> max(2λf, 4, λ)) for the security to hold, but not too long that can hurt performance.
The exact procedure of calculating p is out of scope of this paper; the security holds as long as f follows
the honest majority assumption, independent of the exact method to calculate p.

8.2 Parameter Choices

We want to set the z-test parameter ε′ in such a way that an honest block is excluded from a chain only
with negligible probability. If we can ensure that an honest block is never excluded by the z-test during
a typical execution, that automatically implies the above. Therefore, we recommend ε = ε′ — that is
the minimum value of ε′ which ensures that no honest block is excluded by z-test for a typical execution.
With ε′ = ε, the typical execution definition and theorem will reduce to following:

Definition 10 (Typical Execution). An execution of rend rounds, is (ε, λ)-typical, for some ε ∈ (0, 1), if
for any set S of at least λ consecutive rounds the followings hold:

(a) (1− ε)E[HON≥1(S)] < HON≥1(S) < (1 + ε)E[HON≥1(S)]
and (1− ε)E[HON1(S)] < HON1(S)

(b) For all honest players i, HON·,i(S) < (1 + ε)E[HON·,i(S)]

Theorem 13. An execution of rend rounds is (ε, λ)-typical with probability at least 1− rend(e−Ω(ε2λf).

This simplifies our honest majority assumption as well as the security theorem related to the chain
quality property, as the following:

Definition 11 (Simplified Honest Majority Assumption). Suppose n is the total number of parties, and
out of them t parties are corrupted. Then we require that t < (1− δ)(n− t),
where max

(
(2−f)(f+ε)

1+ε , 1+3ε−4εf
2(1+ε)(1−f)

)
< δ ≤ 1, 0 < f ≤ 0.5, and ε ∈ (0, 1).
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Theorem 14 (Chain Quality). In a typical execution, the chain quality property holds with parameters

`q ≥ max(2λf, 4) and µ = 1 − (1+ε)t
(n−t)(1−f)(1−ε) for any chain adopted by any honest party. This assumes

cryptographic strength of the hash function and the signature scheme.

The security theorem related to the chain growth property and the common prefix property remain
the same. Our main security theorem is modified as following:

Theorem 15 (Simplified Security of ET Consensus z-test). For a security parameter λ, total number
of parties n ∈ poly(λ), and given the honest majority assumption defined in Definition 8, suppose the
following parameter inequalities hold:
• `cf ≥ max (2λf, 4)
• rg ≥ λ, τ = (1− ε)f , σ = 2f

• `q ≥ max(2λf, 4), µ = 1− (1+ε)t
(n−t)(1−f)(1−ε) .

Then it is the case that no efficient adversary can win the blockchain security game as defined in Defi-
nition 4 with more than negl (λ) probability.

In table 3 we show some examples with possible values of ε, f, δ and how the parameters τ, σ, `cf , µ
corresponding to the security properties(namely, chain growth, common prefix and chain quality proper-
ties) vary. It shows that we can vary (f + ε) up to 1, when δ = 1 (which means all the protocol parties
are honest). For ε = 0.2 and f = 0.2, δ can be as low as 0.75, which means the protocol can tolerate up
to 20% dishonest protocol parties. For carefully chosen small values of ε and f , ET consensus with z-test
can tolerate up to 33% dishonest protocol parties.

Table 3: How the security property parameters (τ, σ, rg, `cf , `q, µ) of ET consensus with z-test correspond-
ing to chain growth, common prefix and chain quality properties vary based on the protocol parameters
δ, ε, f, λ. The first column presents the values of ε and f defined in the honest majority assumption, the
second column the minimum δ (accurate up to two decimal places) to satisfy the honest majority assump-
tion; the third, fourth, fifth, sixth, seventh, and eighth columns are τ , σ, rg, `cf , `q and µ respectively as
defined in Theorem 12. For all the cases, we use ε′ = ε, and λ >> 4.

Protocol parameters δ τ σ rg `cf `q µ
ε = 0.05, f = 0.05 0.58 0.0475 0.1 λ 0.1λ 0.1λ 0.51
ε = 0.1, f = 0.1 0.64 0.09 0.2 λ 0.2λ 0.2λ 0.51
ε = 0.2, f = 0.2 0.75 0.16 0.4 λ 0.4λ 0.4λ 0.53
ε = 0.3, f = 0.3 0.85 0.21 0.6 λ 0.6λ 0.6λ 0.60
ε = 0.4, f = 0.3 0.88 0.18 0.6 λ 0.6λ 0.6λ 0.6
ε = 0.4, f = 0.4 0.93 0.24 0.8 λ 0.8λ 0.8λ 0.72
ε = 0.5, f = 0.4 0.95 0.2 0.8 λ 0.8λ 0.8λ 0.65
ε = 0.6, f = 0.4 0.96 0.16 0.8 λ 0.8λ 0.8λ 0.73
ε = 0.5, f = 0.5 1 0.25 1 λ λ λ 1

Table 4: Relationship between f and minimum δ in ET consensus with trusted timer, ET consensus with
z-test

f ET with Trusted Timer δmin ET with z-test δmin

0.05 0.3 0.58
0.1 0.6 0.64
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8.3 Implications of z-test Security

In addition to lending evidence to support that the actual PoET protocol (and other similar protocols like
proof of luck) is resilient to the compromise of some TEEs, we show a pretty surprising fact: basic proof
of work consensus with a z-test but no actual proofs of work, just “promises” from users still remains
secure with an honest majority assumption! Table 4 shows that ET protocol without TEE is not terribly
worse (in terms of security) than ET with trusted timer (and hence bitcoin backbone protocol).

While these numbers are not incredibly tight, the δ factors indicate that our proofs hold even when
the number of adversarial parties is a (relatively large) constant fraction (up to 33%) of the total number
of players. This indicates that current TEE-based consensus systems like PoET that are used “in the
wild” are, at least in theory, secure, although we would need to change the z-test in PoET in order for
our proofs to apply.

8.4 Applications of Our Protocol

In [GKL15], the authors show that the bitcoin backbone protocol almost immediately implies a Byzantine
fault tolerant consensus protocol and a public ledger. The same results apply to our protocols, so we
omit the full proofs and descriptions here. An inquisitive reader can refer to sections 5 and 6 of [GKL15].

9 Performance Improvement

Suppose we wanted to improve the efficiency of the elapsed time consensus protocol. In our elapsed time
consensus with trusted timer protocol and in proof of luck, players must constantly query the TEE to
see if the wait time has elapsed. From a practical perspective, this must be done at regular intervals
of, say, approximately half of the network latency time. If we wanted to rigorously prove security over
continuous time (i.e. not using a round-based protocol) then we might have to query even more, perhaps
even continuously. This is obviously very inefficient. In our round-based protocols, this means the TEE
must be queried at least once per round. In practice, this might mean a query a second, or hundreds of
TEE queries per block.

Since, in the context of z-test, we do not consider the TEE to be secure in any way, a player does
not need to wait on the TEE to generate a block. Instead, an honest player can just query the wait time
and corresponding wait certificate from the TEE, and construct the block by themselves. In figure 15 we
present our optimized version of ET consensus protocol with z-test.

In the optimized version of the protocol, instead of the player repeatedly querying the TEE, the TEE
issues a WaitCertificate. This WaitCertificate indicates how long a player has to wait before the TEE
would release the block. In other words, the protocol allows players to know how long it will take for
their “mining” efforts to succeed. This means that players can wait to query the TEE until their wait
time is up, at which point the TEE will issue a block. The number of TEE queries goes down to two per
block, which is very good.

The above optimization/modification does not change anything for the security proofs, and therefore,
the security properties described in Section 7 are valid for this version as well.

10 Conclusion and Future Work

In this work, we defined and proved the security of our elapsed time consensus protocol both with and
without trusted execution environments. This provides evidence for the security of the PoET protocol
and other related TEE-based protocols like proof of luck even when some of the TEEs are compromised.
In addition, our results imply that “bitcoin without mining”–where players wait for a certain randomly
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C := empty // A chain - an ordered list of blocks
playerID; // denotes the index of the player provided by the challenger
WaitT ime :=∞
remainingWaitT ime :=∞
WaitCert := null // denotes the certificate validating WaitT ime

Initialize( integer i, the genesis block Bgenesis):

playerID ← i; TEE.Initialize(i); Add Bgenesis to C;
TEE.Run(GetWaitT ime(), C)
(WaitT ime, ·,WaitCert)← TEE.Poll()
WaitT ime← remainingWaitT ime

RunPlayer():

Check PLAY ER QUEUE[playerID] for all new received chains.
// The player has received a chain from some other player
if QUEUE is not empty then
Cnew ← PickChain(playerID)
if Cnew 6= C then
C ← Cnew; r ← current round number
TEE.Run(GetWaitT ime(), C)
(waitT ime, ·,WaitCert)← TEE.Poll()
remainingWaitT ime← waitT ime+ C.head.π.timestamp− r

end if
else

// The player has NOT received a chain from some other player
remainingWaitT ime← remainingWaitT ime− 1
if remainingWaitT ime = 0 then

// It seems the player is a leader
x← Collected transactions from users
B ← CreateBlock(waitT ime, C, x), B.π.WaitCert = WaitCert
Add B to C; Broadcast(C)
// Again, repeat for the next leader election
TEE.Run(GetWaitT ime(), C)
(WaitT ime, ·,WaitCert)← TEE.Poll()
WaitT ime← remainingWaitT ime

end if
end if

GetWaitTime(chain C):
if (TEE.GetCounterValue() ≥ Length(C)) then return ⊥
else TEE.CounterSet(Length(C)) end if
waitT ime← draw an element from P
return (waitT ime,H(C.head))

Figure 15: Ideal functionality of performance optimized ET protocol with z-test
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sampled amount of time before publishing a block–is secure in a permissioned environement. This, to us,
is a surprising result that may have many applications in distributed consensus.

However, there are many interesting topics for future research. We explain some of these below.

Tighter Proofs. The proofs in our work for ET consensus with a z-test seem (at least to us) to be very
loose. Tightening these proofs would be useful for practitioners using similar protocols to know exactly
what they could assume about the security of their systems.

Model and Protocol Improvements. There are many potential ways our framework could be im-
proved. Adding in dynamic participation and putting the protocol in the UC framework are two adap-
tations that would improve our results. In [GKL17], the authors added dynamic participation and some
other improvements to the bitcoin backbone protocol, and in [BMTZ17], the authors prove bitcoin secure
in the UC model. Corresponding results for our model would be nice advancements (and may encompass
these previous works as well).

Improved Wait Time Distributions. Our protocol only works for geometric wait time distributions.
This is mostly just a proof artifact, as using a non-geometric distribution would substantially complicate
the proof. It might be the case that a non-geometric wait time distribution can substantially outperform
traditional geometric distributions, but, to our knowledge, no research even has been done on the per-
formance of TEE-based blockchain consensus algorithms with non-geometric wait times. We think that
this is an exciting area for future work.

Better Scalable Blockchain Algorithms. As we live in an increasingly interconnected world, we will
need distributed consensus protocols that can handle large numbers of participants. Blockchain protocols
that efficiently scale solve many of these problems, so we think that future work in this direction could
be very rewarding.
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A Appendix: Additional Lemmas and Proofs

Lemma 13. If the range R = [0,∞) is divided into intervals of width δ each, suppose the intervals
are denoted with I1 = [0, δ), I2 = [δ, 2δ), . . . , Ij = [(j − 1) · δ, j · δ), . . . , for a sample t from exponential
distribution,
Pr[t ∈ Ij |t ≥ (j − 1) · δ] = Pr[t ∈ Ij−1|t ≥ (j − 2) · δ)] = · · · = Pr[t ∈ I1].

Proof. According to memoryless property of exponential distribution,
Pr[t > s+ δ|t > s] = Pr[t > δ]

⇐⇒ 1− Pr[t > s+ δ|t > s] = 1− Pr[t > δ]

⇐⇒ Pr[t ≤ s+ δ|t > s] = Pr[t ≤ δ]
⇐⇒ Pr[t < s+ δ|t ≥ s] = Pr[t < δ] [continuous distribution]

And the above is true for any chosen value of s, and hence, is true for s = i · δ, given any positive
integer i.
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