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Abstract. We present ZEN, the first optimizing compiler that generates efficient verifiable, zero-
knowledge neural network inference schemes. ZEN generates two schemes: ZENacc and ZENinfer.
ZENacc proves the accuracy of a committed neural network model; ZENinfer proves a specific infer-
ence result. Used in combination, these verifiable computation schemes ensure both the privacy of the
sensitive user data as well as the confidentiality of the neural network models. However, directly using
these schemes on zkSNARKs requires prohibitive computational cost. As an optimizing compiler, ZEN
introduces two kinds of optimizations to address this issue: first, ZEN incorporates a new neural net-
work quantization algorithm that incorporate two R1CS friendly optimizations which makes the model
to be express in zkSNARKs with less constraints and minimal accuracy loss; second, ZEN introduces a
SIMD style optimization, namely stranded encoding, that can encoding multiple 8bit integers in large
finite field elements without overwhelming extraction cost. Combining these optimizations, ZEN pro-
duces verifiable neural network inference schemes with 5.43 ∼ 22.19× (15.35× on average) less R1CS
constraints.

1 Introduction

From health care AI to machine translation, our civilization relies more and more on neural networks. With
the increasing adoptions of neural networks, privacy leakage is ever-growing [Gau, O’F, She]. In particular,
we need to protect two kinds of privacy: the privacy of the end user’s sensitive data; and the intellectual
properties of the neural network that many companies spent millions of dollars in training [Wig, PS].

In recent years, zero-knowledge proof systems, commonly known as zkSNARKs (zero-knowledge Succinct
ARgument of Knowledge) [PHGR13, BCTV14, AHIV17, BBB+18, WTS+18, BBHR18, BCR+19, XZZ+19,
BCG+20], become increasingly efficient. One natural question to ask is:

Can we build an optimizing compiler that leverages these powerful zkSNARKs to construct efficient
privacy-preserving, verifiable neural network schemes?

This question is important since a zkSNARK based privacy-preserving and verifiable neural network
scheme has many desired and unique features, compared with other popular solutions in this domain, such
as secure multi-party computation (MPC) and homomorphic encryption (HE) [GDL+16, JVC18, DSC+19,
JKLS18, MZ17, LJLA17, RRK18, SS15]. To name a few, (1) the computation result will be publicly verifiable;
(2) the whole process could be non-interactive.

Many potential applications require these two properties. For example, a patient may want to selectively
disclose the diagnosis result by an AI doctor without leaking sensitive personal information. Blockchain
oracles may want to put public verifiable results of neural network based inference such as facial recognition,
natural language processing on the blockchain to interact with smart contracts, yet not leak the input
information.

To support these promising applications, we first propose verifiable neural network inference schemes
that protect both the privacy of input and the confidentiality of neural network model, namely ZENacc and
ZENinfer. They can work in combination: during the setup phase (ZENacc), the neural network inference
service provider first commit the model, then take a random challenge from the user to prove the accuracy of
the committed model; then, the service provider can provide verifiable inference using the committed model
without leaking the input data (ZENinfer).
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However, naively implementing these schemes on zkSNARKs incurs prohibitive cost. The neural network
that is useful in the real world is usually defined on floating-point numbers, which is not the first-class citizens
in zkSNARKs. Despite previous attempts to improve the efficiency of verifiable floating-point computation
[SVP+12], there is still a huge performance gap between the floating-point computation compared with
“native” arithmetic computations in finite field. Additionally, inference tasks using modern neural network
models require a significant amount of computation, which makes the constraints size very large and thus
prohibitive performance.

To address this challenge, we develop the first end to end optimizer that compiles a floating-point pyTorch
model to R1CS constraints, a common intermediate representation (IR) that is supported by a variety of
zkSNARK back-ends. First, we observed that neural network quantization has been extensively studied
[JKC+18, DMM+18, MNA+18, SCC+19, LLQ+19, WPQ+18, SJG+20] and widely deployed [BSB, Alf,
PyT, Ten]. As a result, instead of adapting zkSNARKs to floating-point computation, we adapt the state
of art neural network quantization technique to convert floating-point neural network models to quantized
models which only contains low precision integers. To optimize the number of the constraints in R1CS of the
quantized models, we propose two “lossless” R1CS friendly optimizations: sign-bit grouping and remainder
based verification, which reduces the constraint sizes without any accuracy loss compared with models
generated by the state-of-the-art quantization technique.

Since quantized neural network models work well on low precision integers (8bit or 16bit) and the un-
derlying zkSNARKs usually works on large finite field element (e.g. 254bit), an intuitive idea is to encode
many integers in a single finite field element, similar to SIMD (Single Instruction Multiple Data). However,
simply stacking low precision integers in finite field elements would not work since extracting these integers
requires expensive bit decompositions, which out-weights the savings. To solve this problem, we a novel en-
coding technique, namely stranded encoding, that could bring a SIMD style optimization to the batched dot
product. We also develop an analytical cost model for stranded encoding so that the encoding scheme can
always choose the best parameter based on the size of neural network kernels. Combining R1CS friendly op-
timizations and stranded encoding, ZEN brings up to 22.19× savings in the number of constraints compared
with a vanilla implementation of the neural network models in zkSNARK.

1.1 Our Contributions

In this paper, we present ZEN: an optimizing compiler for verifiable neural networks with zero-knowledge.
To our best knowledge, ZEN is the first work of its kind. In short, ZEN makes the following contributions:

– ZEN schemes: We propose two privacy-preserving, verifiable inference schemes for neural networks,
namely ZENacc and ZENinfer. These schemes can be used in many promising applications where a pub-
licly verifiable inference result is essential. Additionally, they provide cryptographic privacy guarantees
(zero-knowledge) for both the sensitive input and the neural network models.

– R1CS friendly quantization: The first compilation challenge that ZEN faces is converting a floating-point
neural network to a fully quantized model, so that it could be expressed in Rank-1 Constraint Systems
(R1CS), a common intermediate representation used by many proving systems. We proposed a new
quantization algorithm, which incorporates two R1CS friendly optimizations, namely sign-bit grouping
and remainder-based verification. As a result, compared with the state-of-the-art quantization schemes,
ZEN brings up to 73.9× savings in R1CS constraints for convolution kernel and up to 8.4× reduction
for fully connected kernel without any additional accuracy loss.

– Stranded encoding of R1CS Constraints: To further improve the number of R1CS constraints in the com-
pilation result, ZEN incorporates a new stranded encoding technique, which optimally encodes multiple
low-precision integers (8bit), that are common to quantized neural networks, with a single finite field
element (usually 254bit). A caveat here is that encoding methods always come with some extra cost for
extraction. Simply stacking the low-precision integers in the finite field does not work in our scenario,
since the extraction coast is prohibitively high. Our stranded encoding mechanism comes with an effi-
cient extraction. Additionally, our mechanism is adaptive, in that it always employees optimal encoding
parameters, for any given input. Empirically evaluation shows that stranded encoding leads to up to
2.2× improvement in R1CS constraints for convolution kernel and 3.4× improvement for fully connected
kernel.
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– ZEN toolchain: We build an open-sourced toolchain [FQZ+] (Fig. 1) that takes a floating-point PyTorch
model and converts it to ZEN schemes with all the above optimizations. Our evaluation shows that,
without incurring any additional accuracy loss, ZEN brings 5.43 ∼ 22.19× (15.35× on average) savings,
in the number of constraints, compared with a vanilla implementation of the neural network models in
zkSNARK.

In a nutshell, while many existing works focus on improving the zero-knowledge proof system backends,
ZEN demonstrates a powerful new approach: co-designing the domain-specific algorithms (neural network in-
ference) and constraints compilation process. This new approach brings an orders of magnitude improvement
on the performance.
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Fig. 1: Overview of ZEN tool chain.
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Fig. 2: Privacy-preserving, verifiable inference workflow.

1.2 Our Techniques

Privacy-preserving, verifiable inference schemes Neural networks are eating the world. We focus on
how to let service providers, such as medical AI service, identity service, blockchain oracles [EJN], to provide
verifiable proof of neural network inference result, without leaking either the user’s privacy or the service
providers neural network models.

To enable these privacy-preserving verifiable neural network inference applications, we propose two
schemes:

– ZENacc, a verifiable NN accuracy scheme for classification and recognition workloads;
– ZENinfer, a verifiable NN inference scheme for classification and recognition workloads.

The performance results are shown in Table 1 and Table 2. More details will be given in the corresponding
section.

These two schemes are compatible with each other (Fig. 2). In a typical example, the service provider
firstly demonstrates the effectiveness of her model during the setup phase using ZENacc. This is an interactive
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Model-Dataset
Constraints

(K)
Linear Combinations

(K)
Setup
(s)

Comm.
(s)

Prove
(s)

Verify
(s)

CRS Size
(GB)

ShallowNet-MNIST 4,380 18,008 154.87 0.310 147.07 0.097 1.395
LeNet-small-CIFAR 4,061 19,863 137.67 0.255 125.53 0.023 1.144
LeNet-medium-CIFAR 23,681 130,054 1033.59 1.069 1000.79 0.106 7.059

LeNet-Face-small-ORL 20,607 95,406 787.79 1.226 766.76 0.103 6.359
LeNet-Face-medium-ORL 83,416 474,277 4915.39 3.779 4710.13 0.372 25.531
LeNet-Face-large-ORL 318,353 1,818,988 20,000* 15.058 20,000* 1.5* 100*

Table 1: Overall performance of ZENinfer. * indicates an estimated value.

Model-Dataset
Constraints

(K)
Linear Combinations

(K)
Setup
(s)

Comm.
(s)

Prove
(s)

Verify
(s)

CRS Size
(GB)

ShallowNet-MNIST 13,181 75,210 291.67 0.366 256.02 0.17 1.75
LeNet-small-CIFAR 88,294 675,365 466.21 0.265 413.24 0.13 2.21
LeNet-medium-CIFAR 563,545 5,762,645 1511.20 1.069 1323.67 0.21 8.13

LeNet-Face-small-ORL 284,341 2,395,061 1316.51 1.081 1158.21 0.21 7.43
LeNet-Face-medium-ORL 1,809,239 21,266,440 5350.75 3.737 4863.41 0.47 26.61
LeNet-Face-large-ORL 5,792,208 77,689,757 20,000* 14.587 20,000* 1.5* 100*

Table 2: Overall performance of ZENacc scheme

protocol: she needs to first commit the neural network model into a commitment cm. Then, a user or a trusted
third party sends her a random challenge: a dataset and truth label pair (D,T ). Next, the service provider
returns a zero-knowledge proof πacc, proving that the committed neural network maintains an accuracy accu
on the input D.

Once this (one time) setup is completed, the service provider begins her service using ZENinfer: the
service provider collects the input data a from the end user, then generates a zero-knowledge proof πinfer
to attest the result of inference using the previously committed model.

Both ZENacc and ZENinfer leak no information of either the neural network model or the sensitive user
input by the zero-knowledge property of zkSNARK.

Model
Commitment ZEN vanilla ZENinfer Saving

(K) (K) (K) (×)
ShallowNet-MNIST 4, 314 364 67 5.43

LeNet-small-CIFAR 3, 289 16, 809 772 21.77

LeNet-medium-CIFAR 18, 306 85, 126 5, 375 15.84

LeNet-Face-small-ORL 18, 022 57, 352 2, 585 22.19

LeNet-Face-medium-ORL 66, 063 274, 490 17, 354 15.82

LeNet-Face-large-ORL 263, 140 610, 797 55, 212 11.06

Table 3: Overall saving on the number of constraints of ZEN vanilla and ZENinfer. Constraints from commitment
are also shown above. The unit of number of constraints is thousand (K).

R1CS friendly quantization A crucial part of ZEN is converting neural network models with floating-
points to arithmetic circuit (R1CS constraints) on a given finite field. This part is named quantization.
Although neural network quantization has been extensively studied [JKC+18, DMM+18, MNA+18, SCC+19,
LLQ+19, WPQ+18, SJG+20] and widely deployed [BSB, Alf, PyT, Ten], these existing works do not apply
to zkSNARKs, for the following reasons. First, most schemes are partial quantization, in which part of the
quantized models remain on signed floating numbers; second, most quantization schemes require operations
such as divisions, which are non-atomic in an R1CS; last, directly applying the state-of-art full quantization
algorithm [JKC+18] will produce a prohibitive number of R1CS constraints.

We address these challenges by proposing an improved, dedicated full quantization algorithm that mini-
mizes the R1CS constraints. In this quantization algorithm, we incorporate two R1CS friendly optimizations
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(§4.2), namely, sign-bit grouping, and remainder-based verification, to the [JKC+18] algorithm. The core idea
behind both optimizations is to use algebraic equalities to bypass the expensive bit-decompositions caused
by non-atomic operations such as comparisons and divisions:

– With the sign-bit grouping, we completely eliminate the bit-decompositions from element-wise zero-
comparisons for all kernels.

– With the remainder-based verification, we reduce the bit-decompositions caused by divisions (due to the
scale factor) up to 8.4× and 73.9× for fully connected and convolution kernels, respectively.

Both optimizations bring significant savings in terms of the number of constraints in the generated circuits.
In addition, since these optimizations only use algebraic equalities, the resulted quantized neural network
models do not incur any additional accuracy losses, compared with the original quantization algorithm
[JKC+18].

Stranded encoding of R1CS Constraints This technique comes from a fundamental observation: most
quantized neural networks work with low precision (e.g. 8-bit) unsigned integers; on the other hand, most
zkSNARKs use ellipitic curves (e.g. BLS12-381 [BLS02]) with an underlying finite field of order ≈ 2254. It
makes sense that if we encode multiple matrix entries into a single finite field element, we should be able
to reduce the number of constraints. This is analogous to the SIMD (Single Instruction Multiple Data)
technique that is widely used in modern CPUs and GPUs [PH12].

As alluded earlier, extraction remains problematic. Indeed, simply stacking many 8-bit unsigned integers
into a finite field element would not work since the extraction cost will out-weight the benefits. Instead, we
propose a novel encoding scheme, namely stranded encoding, which encodes batched vector dot products with
fewer field operations (§5). Given {Aj , Bj}sj=1 as inputs, where |Aj | = |Bj | = n, to compute s dot products
simultaneously, i.e.,

(A1 ·B1), (A2 ·B2), . . . , (As ·Bs),
a näıve encoding requires 2ns field elements. Our stranded encoding encodes these dot product operations
with 2n field elements:

xi =

s∑
j=1

aj,iδ
φ(j), yi =

s∑
j=1

bj,iδ
φ(j)

where xi, yi ∈ Fp, i ∈ {1, . . . , n}. For appropriate parameters δ and φ(·) (see Definition 2), these s dot
products could be extracted from the following quantity

n∑
i=1

xiyi = (A1 ·B1)δ2φ(1) + . . .+ (A2 ·B2)δ2φ(2)+

. . .+ (As ·Bs)δ2φ(s),

and the cost is not much different from a single extraction.
A caveat here is to pack as many matrix coefficients into a field element, while still allowing a proper φ(·)

to extract A1 ·B1, . . . , As ·Bs correctly. We formulate this as a discrete optimization problem; and develop a
cost model for stranded encoding, so that our implementation automatically chooses the optimal batch size
s for any instance.

Implementation and evaluation To evaluate the effectiveness of ZEN, we implemented both ZEN-vanilla,
a straight-forward implementation of existing full quantization scheme [JKC+18], and the fully optimized
ZEN toolchain. We summarize our benchmark results in Table 3. We see an improvement of 5.43∼22.19×
(14.27× on average), depending on the inference model. Further discussions will be given in the corresponding
sections.

As one shall see, while the verification speed is more or less stable, the proving cost increases drastically
with the increase of the number of constraints. We make various optimizations that reduce the number of
constraints. See Table 4 for a highlight of optimizations on LeNet-5-Small for CIFAR-10.
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Kernels ZEN-vanilla Opt. Lv1 Opt. Lv2 Opt. Lv3

Conv 69,692,928 28,630,272 8,082,688 5,195,008

FC 394,000 219,706 132,490 54,906

AvgPool 14,925,312 4,982,976 7,872 7,872

ReLU 114,227 97,920 97,920 97,920

Table 4: Case study: benefits of optimizations on the number of constraints for the four kernels in LeNet-5-Medium
CIFAR-10. Opt. Lv1 only includes sign-bit grouping; Opt. Lv2 adds remainder-based verification; Opt. lv3 adds
stranded encoding.

Our code is open-sourced, publicly available on GitHub [FQZ+] .
Our underlying zero-knowledge proof scheme is from the celebrated work of Groth [Gro16]. We remark

that the selection of underlying zero-knowledge proof systems is largely orthogonal to our ZEN design. In
particular, our optimization is independent of the underlying proving system, and we expect to see similar
gains from our optimizations for other proving systems. With [Gro16], our proof size is always a constant,
i.e., 192 bytes for our choice of parameters. Verifying a proof can be done in subsecond in all cases. This
feature may be particularly appealing in practical use cases such as blockchains, where decisions (whether
authentication passes or not) need to be made almost instantly.

1.3 Related work

Verifiable machine learning We first compare ZEN with existing verifiable machine learning systems. Gin-
ger [SVP+12] is an argument system that supports floating-point computation. Despite the improvement,
Ginger’s concrete efficiency is still far behind verifying arithmetic computation that can be directly expressed
in finite fields. As a result, ZEN’s approach takes advantage of the existing quantization techniques, which
avoid expensive zero-knowledge proof systems for floating-point values.

SafetyNet [GGG17] implements a specialized interactive proof protocol for verifiable execution of a class
of deep neural networks. Compared with SafetyNet, ZEN has three major advantages: first, ZEN’s inference
schemes is non-interactive; second, SafetyNet still leaks the neural network model, such as the weights,
which are usually treated as trading secrets of the service providers; last, SafetyNet only supports quadratic
activation functions, which are usually considered less effective than the widely used ReLU activation function
[MHN13].

zkDT [ZFZS20] implements verifiable inference and accuracy schemes on decision trees. zkDT proposes
protocols with tree-specialized commitment design. Verifiable inference and accuracy schemes for neural
networks pose a whole different set of technical challenges. We also note that neural network inference
itself has more complicated application scenarios, such as computer vision, natural language processing, and
computational biology, compared with a limited scope of decision tree models.

vCNN [LKKO20] proposes a verifiable inference scheme for neural networks with zero-knowledge. ZEN
differentiates from vCNN in the following aspects. First, ZEN includes an accuracy statement, so that the
effectiveness of the neural network models from the service provider is verifiable, rather than being blindly
trusted. Second, ZEN’s optimizations are applicable to quantization for different neural network kernels
(fully connected, convolution, ReLu, and pooling) while vCNN only optimizes convolution; Last, ZEN’s
optimization can be easily extended to any existing SNARKs that supports R1CS, without the need of
introducing a mixing of QAP [GGPR13], QPP [KPP+14] and CP-SNARKs [CFQ19] as in vCNN.

To the best of our knowledge, ZEN is the first end-to-end optimizing compiler that compiles neural
network models to R1CS constraints.

Other privacy models for machine learning Many research efforts [CJM20, HSLA20, HSC+20, JL17, CKM17,
GRSY20, ZFZS20] have been devoted to the security and privacy in machine learning recently. These works
largely fall into three categories. The first approach [DSC+19, JKLS18, GDL+16] utilizes homomorphic
encryption to execute machine learning models on encrypted data. The second approach [MZCS18, BDK+18,
DSZ15, JVC18] builds upon the multi-party computations (MPC), enabling multiple parties with local
datasets to learn the same machine learning model on the aggregated datasets, while preserving privacy
for individual’s data. The third approach [ACG+16, ZYCW20, BNS19] adopts differential privacy (DP) to
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ensure that the individual data points in a large dataset will not be leaked even if they have been utilized
to train a machine learning model. The privacy models of these works are largely orthogonal to ZEN since
none of these work can provide a publicly verifiable inference result with both user input data and the service
provider model private.

Zero-knowledge proof systems A large body of zero-knowledge proof systems [BCTV14, AHIV17, BBB+18,
WTS+18, BBHR18, BCR+19, XZZ+19, BCG+20] have been proposed to facilitate the various use cases.
These systems usually come with diverse setups, verification time, and proof size, leading to trade-offs in
these dimensions. In particular, we focus on the scheme developed by Groth [Gro16] and the Arkworks
implementation [ark, BCG+20] to provide constant size proofs and millisecond-level verifications. We stress
again that the selection of zero-knowledge proof systems is largely orthogonal to our ZEN design; our design
is applicable to other R1CS-based proof systems and will deliver various performance preference, suiting
dedicated use cases.

Neural network quantization Quantization has been widely studied [JKC+18, DMM+18, MNA+18, SCC+19,
LLQ+19, WPQ+18, SJG+20] to accelerate neural networks by replacing float32 data with low-precision
data (e.g., float16). Apple and XORNet.ai [BSB, Alf] have deployed quantization of neural network to
accelerate neural network on devices with resource constraints. Facebook [PyT] and Google [Ten] have
integrated quantization as standard feature of PyTorch and TensorFlow due to its wide usage. However,
existing quantization techniques are usually not R1CS friendly due to two reasons. First, most quantization
techniques [DMM+18, MNA+18, SCC+19] involve floating-point data. However, applying neural network
models in zkSNARKs requires full quantization: converting a floating-point neural network model to a neural
network model consisting of only integer arithmetic. Second, for a few quantization techniques [JKC+18]
with full quantization, it still involves negative values and division operations, which cannot be efficiently
supported in zkSNARKs. We use the full quantization scheme in [JKC+18] as in our baseline system ZEN-
vanilla, since it establishes state-of-the-art accuracy on uint8 quantization with minimal accuracy loss, for
a variety of real-world neural networks.

1.4 Paper organization

?? presents necessary background for this paper. We introduce our privacy-preserving, verifiable classification
and recognition schemes based on neural networks in §3. Next, §4 and §5 present our R1CS friendly quanti-
zation method and stranded encoding respectively. Finally, implementation and evaluations are reported in
§6.

2 background

We briefly recall zk-SNARK in §2.1. Then, we explain the necessary background on neural networks to
understand our optimizations in §2.2.

2.1 Cryptography

The major cryptographic building block used in this paper is zk-SNARK, formally (publicly-verifiable, pre-
processing,) zero-knowledge Succinct Non-interactive ARgument of Knowledge. A zk-SNARK is defined in
the context of arithmetic circuit satisfiability. A more formal definition can be found in [BCI+13].

We denote a finite field of order p as Fp. An Fp-arithmetic circuit is a circuit whose inputs and outputs
are from Fp. We consider circuits that have an input x ∈ Fnp and a witness w ∈ Fhp . We restrict the circuits
to the ones with only bilinear gates, i.e. addition, multiplication, negation, and constant gates with input
y1, . . . , ym is bilinear if the output is 〈~a, (1, y1, . . . , ym)〉 · 〈~b, (1, y1, . . . , ym)〉 for ~a,~b ∈ Fm+1

p .
It is not hard to convert boolean circuits to arithmetic circuits via bit decomposition. We define arithmetic

circuit satisfiability as follows:

Definition 1. The arithmetic circuit satisfiability of an Fp-arithmetic circuit C : Fnp × Fhp → Flp can be

defined by the relation RC = {(x,w) ∈ Fnp × Fhp : C(x,w) = 0l} and the language LC = {x ∈ Fnp : ∃ a ∈
Fh s.t. C(x,w) = 0l}.
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A zk-SNARK for Fp-arithmetic circuit satisfiability is a triple of polynomial time algorithms, namely
(Gen,Prove,Verify):

– Gen(1λ, C) → (pk, vk). Using a security parameter λ and an Fp-arithmetic circuit C as inputs, the key
generator Gen randomly samples a proving key pk and a verification key vk. These keys are considered as
public parameters pp := (pk, vk), and can be used any number of times to prove/verify the membership
in LC .

– Prove(pk, x, w) → π. Taking a proving key pk, and any (x,w) ∈ RC as inputs, the Prove algorithm
generates a non-interactive proof π for the statement x ∈ LC .

– Verify(vk, x, π)→ {0, 1}. Taking the verification key vk, public input x, and proof π, the Verify algorithm
output 1 is the verification success, i.e. the verifier is convinced that x ∈ LC .

Remark 1. In practice, the prover may segment the proving processing into multiple stages. For example, it
may commit to an input and publish the commitment first, and at a later stage generates the proof. It may
even commit different parts of the inputs independently and separately. For simplicity, for the rest of the
paper, we will model this whole process as a single function. It is straightforward to see that our security
features remain intact in this simplified model.
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Fig. 3: Popular neural network kernels

A zk-SNARK has the following properties:

– Completeness. For any security parameter λ, any Fp arithmetic circuit C, and (x,w) ∈ RC , an honest
prover can convince the verifier, namely that the verifier will output 1 with probability 1 − negl(λ) in
the following experiment: (vk, pk)← (1λ, C); π ← Prove(pk, x, w); 1← Verify(vk, x, π).

– Succinctness. An honestly-generated proof π has Oλ(1) bits and Verify(vk, x, π) runs in time Oλ(|x|)
3.

– Proof of Knowledge. If the verifier accepts a proof output by a computationally bounded prover,
the prover must know a witness for a given instance. This is also called soundness against bounded
provers. More precisely, for every poly(λ)-size adversary A, there is a poly(λ)-size extractor E such that
Verify(vk, x, π) = 1 and (x,w) /∈ RC with probability negl(λ) in the following experiment: (pk, vk) ←
KeyGen(1λ, C); (x, π)← A(pk, vk); w ← E(pk, vk).

– Zero Knowledge. An honestly generated proof is zero knowledge. Specifically, there is a poly(λ)-size
simulator Sim such that for all stateful poly(λ)-size distinguishers D, the probability of D(π) = 1 on an
honest proof and on a simulated proof is indistinguishable.

zk-SNARK’s security can be reduced to knowledge-of-exponent and variants of Diffie-Hellman assump-
tions in bilinear groups [Gro10, BB04, Gen04]. Although the knowledge-of-exponent assumption is considered
fairly strong, Gentry and Wichs showed that assumptions from this class are likely to be inherent for efficient,
non-interactive arguments for NP relations [GW11].

There are a number of zero-knowledge proof systems proposed in recent years [BCTV14, AHIV17,
BBB+18, WTS+18, BBHR18, BCR+19, XZZ+19, BCG+20]. In this paper, we use Arkworks implemen-
tation [ark] that was part of [BCG+20]. We will use the scheme by Groth [Gro16], commonly referred to as
Groth16, to generate and verify proofs. This scheme is the state-of-the-art in terms of proof size and verifier
efficiency.

2 The concrete numbers are from [XZZ+19].
3 Oλ(·) hides a fixed polynomial factor in λ.
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In a typical Groth16-type of proving system, the statements that are to be proved are translated into a
so-called Rank-1 Constraint System (R1CS). To prove that the prover knows some secret inputs that satisfy
the given statements, is then converted into the satisfiability of the R1CS over any points over the field.
The proof is therefore a demonstration that the R1CS is satisfied at a random point, which, as a prior, is
agreed upon a trusted setup (result into the so-called common reference string) and remains unknown to
both prover and verifier. Without going into further details, we note that the overall cost of the proving
system is dominated by the number of constraints in the R1CS.

Apart from zk-SNARK, we use a cryptographic commitment scheme as a building block, formally,
COMM : {0, 1}O(λ) × {0, 1}∗ → {0, 1}O(λ) . We require the scheme to be both binding and hiding. Looking
ahead, we will be using Pedersen commit which is statistically hiding and computationally binding under
well-accepted assumptions.

2.2 Neural network based classification and recognition

Neural network (NN) brings significant advancement in computer vision [HZRS16, LBBH98], natural lan-
guage processing [DS20, WJI+20] and computational biology [SEJ+19, SEJ+20]. Abstractly, An NN can
be viewed as a function Y = f(X0) that takes an input X0 ∈ Rc×h×w and generates an output Y ∈ Rm:
f = fl ◦ fl−1 ◦ · · · ◦ f1 is usually composed by a sequence of kernels. Each kernel fi (also called a single layer
in NN) is usually one of the following 4 “elementry” matrix operations (illustrated in Fig. 3):

1. ReLU [MHN13] kernel applies a simple non-linear activation function (i.e., ReLU(X) = max(X, 0))
element-wisely to the input matrix. This kernel enables NNs to learn non-linearity patterns of the input
data.

2. Average pool kernel splits the input data spatially into a set of r×r grid (r=2 in Fig. 3(b)) and computes
the mean over all values in each grid. This kernel spatially summarizes local image features and extract
high-level features to facilitate pattern recognition.

3. Fully connected kernel takes two inputs (i.e., a weight matrix W ∈ Rm×n and a data matrix X ∈ Rn)
and computes an output matrix W ·X ∈ Rm. This fully connected kernel mixes signals from individual
pixels and extra high-level features based on the learnable weight matrix W .

4. Convolution kernel slides a weight matrix W along the height and width of the input matrix X, retrieves
a slice of input matrix with the same spatial size (2× 2 in Fig. 3(d)), and computes the dot product to
generate a real number. This kernel mixes local signals (e.g., local edges and angles) in contrast to fully
connected kernel that mixes global signals over all pixels. Note that convolution kernel can be transformed
into matrix-matrix multiplications [CWV+14], which can be computed similar as fully connected kernel.

Two prominent use cases of NNs are classification [HZRS16, LBBH98] and recognition [SYS+20, WWZG20].
The classification task puts an input into one of m candidate classes (e.g., cat, dog, and house). In this case,
the final layer fl is a softmax function that outputs Y = [y1, y2, ..., ym] which satisfies 0 ≤ yj ≤ 1 and
y1 + · · · ym = 1. As a result, yj can be treated as the probability that the input image X0 has class j. The
classification result is the class with the highest predicted probability: ŷ = argmaxj yj .

The recognition task compares an input X to a reference input XR and decides whether the input and
the reference input are a same object. Different from classification, the final layer fl takes neural embeddings
of both the input and the reference, and then computes their distance d in a metric space (e.g., Eculidean
space). These two objects are decided as a same object, if their distance d is smaller than a pre-defined
threshold τ (e.g. 0.5).

3 ZKP for accuracy and inference

In this section, we present our constructions for accuracy and inference. We first introduce a verifiable neural
network accuracy scheme that proves the accuracy of neural network models without revealing the weights
of the models (§3.1). We then introduce a verifiable neural network inference scheme for classification and
recognition (§3.2). Here, we consider a quantized neural network Q : Fd1p → Fd2p which is a mapping from a
size d1 vector over Fp to a size d2 vector on the same field. While neural networks are usually floating-point
models, we defer our R1CS friendly quantization to §4.
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We remark that we will use Groth16 method to generate proofs. This implies that the prover and the
verifier need to agree on certain common reference string (CRS) that is generated through either a trusted
third party, or a multiparty computation protocol. For a dedicated verifier use case, it may also be sufficient
for the verifier to generate the CRS.

3.1 ZENacc

We present ZENacc, a zero-knowledge, verifiable neural network accuracy scheme, that works for the following
typical scenario: the prover firstly commits to a private neural network, then proves the prediction accuracy
of the committed neural network, on either a public or a verifier-chosen testing dataset. The verifier learns
nothing about the model except its prediction accuracy.

Formally, we consider a testing dataset D = {a1, a2, . . . , an} and the corresponding truth labels T =
{t1, t2, . . . , tn} for the testing dataset. In classification task, ti ∈ {1, 2, ...,m} indicates whether the image ai
contains object ti. In recognition task, ti ∈ {0, 1} indicates whether the current image ai contains the same
person as a reference image aref . Given a neural network Q, we define a classification computation routine
as: a) running the neural network Q on the testing dataset D provided by the verifier to get prediction results
Y ← Q(D); b) comparing Y with their truth label T to obtain the accuracy, denoted by accu, of the neural
network prediction.

For recognition task, we additionally define a distance metric L : Fd2p × Fd2p → Fp over the embedding
space, τ ∈ Fp be the agreed threshold, and a ground truth embedding yg. Given a neural network Q, we
define a recognition computation routine as: a) running the neural network Q on D to obtain the embedding
results Y = {y1, y2, . . . , yn}; b) for each yi in Y, calculate L(yi, yg) ≤ τ to obtain the recognition prediction
results R; c) comparing R and T and obtaining the recognition accuracy results accu on testing dataset D.

Based on these two computation routines, we define a zero-knowledge, verifiable neural network accuracy
scheme (ZENacc) as the following algorithms:

– (pk, vk) ← ZENacc.Gen(1λ,Q): given a security parameter λ and a quantized neural network model Q
for classification or recognition tasks, randomly generate a proving key pk and a verification key vk.

– cm ← ZENacc.Commit(Q, r): given a random opening r, the prover commits to the neural network Q
with r, i.e., cm← COMM(r,Q).

– (accu, πacc) ← ZENacc.Prove(pk,D, T ,Q): Upon receiving the commitment, the verifier sends a testing
dataset D to the prover. Then the prover runs either classification or recognition computation routine
for each data sample in D, compares with the predictions with their truth labels in T and outputs accu,
the prediction accuracy of the neural network Q. Finally, the prover generates a corresponding proof
πacc for this computation routine.

– {0, 1} ← ZENacc.Verify(vk, cm,D, T , accu, πacc): given the verification key vk and proof πacc, verifies if
the following statements are correct: the number of correct predictions on dataset D with model Q is
accu; cm is a commitment to Q.

3.2 ZENinfer

Our zero-knowledge, verifiable neural network inference scheme (ZENinfer) assumes the prover keeps the
neural network private, but will publicly commit to it (binding). At a later time, the prover generates a
proof for the result of the classification or recognition. Upon receiving the model commitment and the proof,
the verifier checks if the proof is valid or not. During the whole process, the prover’s neural network is kept
secret (hiding).

Formally, we consider a public input a ∈ Fdp and a neural network Q. We define the classification inference
routine as running the neural network Q on the input a to get ya ← Q(a). For the recognition task, we
additionally have the distance metric L, agreed threshold τ , and the ground truth embedding yg. We define
the recognition inference routine as running the neural network Q on a to obtain the embedding ya and
calculating L(ya, yg) ≤ τ to obtain the recognition prediction result.

Based on these two inference routines, we define a zero-knowledge, verifiable neural network based infer-
ence scheme (ZENinfer) as the following algorithms:
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– (pk, vk)← ZENinfer.Gen(1λ,Q): given a security parameter λ and a quantized neural network model Q
for classification, randomly generate a proving key pk and a verification key vk.

– (cm, cma, ya, πinf )← ZENinfer.Prove(pk, a, r, s,Q): given an input a ∈ Fdp and a random opening r and
s, the prover commits to the input with r and the neural network model with s, i.e., cma ← COMM(r, a)
and cm← COMM(r,Q), respectively. Then the prover runs the classification or the recognition inference
routine to get a result. Finally, the prover generates a proof πinf for the above process.

– {0, 1} ← ZENinfer.Verify(vk, cm, cma, ya, π): validate input a’s inference result on model Q given the
verification key vk, a’s commitment, Q’s commitment, a’s inference result, and a zero-knowledge proof
πinf .

4 R1CS Friendly Quantizaiton

In this section, we introduce our R1CS friendly quantization. Recall that popular neural networks require
arithmetic computation on floating-point numbers (e.g., float32). However, zero-knowledge systems work over
finite fields where data is represented by large unsigned integers (e.g., uint256). This poses special challenges
on the operation and data, namely, converting floating points to non-negative integers, and handling divisions.
To bridge this gap of numerical data types, we first integrate the full quantization scheme in [JKC+18] to
the existing zkSNARK library and achieve our baseline system, ZEN-vanilla. Then, we introduce two R1CS
friendly optimizations on top of our baseline system, to significantly reduce the number of constraints while
maintaining an equivalent accuracy. Last, we demonstrate these R1CS friendly quantizations can be applied
to 4 major neural network kernels: fully connected, convolution, average pool, and ReLU.
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Fig. 4: Illustration of Partial Quantization when computing Y = WX.

4.1 Baseline: ZEN-vanilla

As discussed in §2.2, given a floating-point weight matrix W and a floating-point input matrix X, a neural
network kernel computes the output matrix Y as follows:

Y = WX, W ∈ Rm×n, X ∈ Rn, Y ∈ Rm (1)

The first step of quantization is to generate floating-point scale parameters (sY , sW , sX ∈ R) and the lifted
zero points (zY , zW , zX ∈ uint) for each matrix, as illustrated in Fig. 4. As a result, we have the quantized
representation:

Y = sY (QY − zY Jm,1) W = sW (QW − zWJm,n)

X = sX(QX − zXJn,1)

Here, Jk,l represents a k × l matrix of ones.
During neural network computation, we can substitute Y , X, and W in Eq. 1 with their quantized

representation:

sY (QY − zY Jm,1) = sW sX(QW − zWJm,n)(QX − zXJn,1)

The second step is to replace the floating-point scale parameters with unsigned integers and enable the full
quantization computation:

M = b2k sW sX
sY

c

QY − zY Jm,1 = M(QW − zWJm,n)(QX − zXJn,1)/2k (2)
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By multiplying with 2k for a large k (=22 by default), we preserve the precision of the floating-point scale
parameters in an unsigned integer.

Efficiency Challenges in ZEN-vanilla. While ZEN-vanilla produces effective privacy-preserving and
verifiable neural network models, it is not efficient due to its large number of constraints. There are two
main reasons coming from [JKC+18]. First, [JKC+18] is developed for signed int8 on integer-only hardware,
allowing negative elements in (QW − zWJm,n) and (QX − zXJn,1) of Eq. 2. However, zk-SNARK supports
only finite field arithmetic and requires expensive sign checks for signed integers.As a result, for mn + n
elements in (QW − zWJm,n) and (QX − zXJn,1), one may still need O(mn) sign-checks in the generated
constraints, where each sign-check needs expensive bit-decomposition. Considering that Eq. 2 accounts for
most computations in neural networks in terms of fully connected kernels and convolution kernels, this would
lead to significant overhead. Second, [JKC+18] involves division operations while the division operation is
non-atomic in zk-SNARK systems. To näıvely support this division operation, we need to first conduct the
expensive bit-decomposition. Then, we need to drop the n least significant bits and pack the rest back to
enforce equality in Eq. 2. While this strategy allows verifying Eq. 2, it would introduce heavy overhead from
the bit decomposition.

4.2 R1CS Friendly quantizations

In this section, we introduce two R1CS friendly optimizations on top of the baseline quantization scheme,
namely, sign-bit grouping and remainder-based verification. Here, we focus on fully connected kernel and
convolution kernel. Both can be viewed as matrix multiplications (Eq. 1). We defer the discussion of ReLU
kernel and average pool kernel to the next section. Both optimizations use algebraic equalities to reduce
the number of expensive bit-decomposition operations in zkSNARK, while maintaining the semantics of the
quantization. As a result, our techniques incur similar accuracy loss as [JKC+18]. Nonetheless, we note that
[JKC+18] itself introduces accuracy loss.
Sign-bit grouping. In ZEN-vanilla, the constraints for a forward step on each layer is generated by Eq. 2.
Our sign-bit grouping first reformulates Eq. 2 to:

QY = zY Jm,1 +M(QW − zWJm,n)(QX − zXJn,1)/2k

Here, both sides are guaranteed to be positive. While (QW −zW ) and (QX−zX) may have negative elements,
we use the associativity of matrix multiplication to group operands of the same sign:

G1 = QWQX , G2 = zXQW , G3 = zWQX , M
′ = bzY 2k

M
c

QY = M(G1 + nzW zXJm,1 +M ′Jm,1 −G2 −G3)/2k (3)

Note that we add zY before subtraction such that all intermediate elements in the reformulated system are
guaranteed to be positive. Now we can directly encode Eq. 3 on the finite field without the need of any sign
check, and thus completely remove bit-decompositions. This optimization saves O(mn log p) constraints for
QW ∈ Rm×n, where p is the order of the finite field used by zk-SNARK.
Remainder-based verification. NN computation involves abundant division computations in average pool
kernels (e.g., division by 4) and quantization (e.g., division by 2k). These division computations usually lead
to non-integers and make it costly to verify since zk-SNARK supports only integers. A näıve approach is
to use expensive bit-decomposition operations in zk-SNARK. To efficiently verify division operation in zk-
SNARKs, we propose a remainder-based verification optimization to avoid this high overhead. We first use
an extra matrix R to store the division remainder. During verification, we will utilize this remainder matrix
to avoid the division in zk-SNARK systems. Formally, instead of Eq. 3, we prove Eq. 4:

QY 2k +R = M(G1 + nzW zXJm,1 +M ′Jm,1 −G2 −G3) (4)

As a result, we can verify the computation without the need of any division operations. This optimization
saves O(m log p) constraints (Y ∈ Rm, p is the order of the finite field used by zkSNARK).
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Fig. 5: Dot product/other computation Ratio in LeNet-5-Medium and LeNet-5-Small.

4.3 Adapting R1CS friendly quantization for average pool and ReLU kernels

Now, we show how to adapt the previously introduced R1CS friendly quantization techniques to average
pool and ReLu kernels as well.
Average pool kernel. The average pool kernel computes the average values among a set of integers. It is
useful to summarize neural network features across spatial dimensions, as illustrated in Fig. 3(b). Formally,
given a matrix in quantized representation (Q, s, z) (Q ∈ Ncin×m×n), and a pooling parameter r, the average
pooling operator splits the data into a set of r × r grid and computes the average in each grid

q̄c,i,j =

r−1∑
p=0

r−1∑
t=0

qc,ri+p,rj+t/r
2, c ∈ {1, 2, ..., cin}

i ∈ {1, 2, ..., bm
r
c}, j ∈ {1, 2, ..., bn

r
c}

Let’s briefly summarize the obstacles. First, the average pooling operator contains division operation,
which is not generally supported in zk-SNARK systems. Second, even if division for certain pooling pa-
rameters (e.g., r = 2) can be conducted with bit operations, it may still lead to non-integer outputs after
division.

To this end, we incorporate the aforementioned remainder-based verification strategy to the average pool
kernels. In particular, we first use an extra scalar γ to store the division remainder and use the following
verification for the average pooling kernel

q̄c,i,jr
2 + γ =

r−1∑
p=0

r−1∑
t=0

qc,ri+p,rj+t, c ∈ {1, 2, ..., cin}

i ∈ {1, 2, ..., bm
r
c}, j ∈ {1, 2, ..., bn

r
c}

ReLU kernel. The ReLU kernel contains only maximum operations, and is used to extract nonlinear
neural network features, as illustrated in Fig. 3(a). Formally, given a quantized matrix represented in a triple
(Q, s, z), where Q is the quantized matrix (Q ∈ Ncin×m×n), s is the scale parameter (s ∈ R), and z is the
zero point z ∈ N. We compute the ReLU kernel by element-wisely applying the maximum comparison

QReLU = max(Q, zJcin,m,n))

The key insight is that z is an integer value corresponding to the lifted zero in the floating-point data.
Note that this design involves only integer arithmetics, and avoids the conversion between floating-point and
integer completely.

5 Optimizing Matrix Operation Circuits using Stranded Encoding

In this section, we propose the stranded encoding, a general methodology of optimizing matrix operation cir-
cuits for zk-SNARKs. Our profiling on neural networks shows that matrix operation, especially dot products,
consumes most computation in neural networks, as shown in Fig. 5.

One important observation that we make is: neural network models can be effectively quantized to models
consisting of small integers, such as uint8 or uint16, while the underlying finite field is usually much larger
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Fig. 6: Stranded encoding with batch size s = 2

(a) s=3
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Fig. 7: Data layout for variable batch size s. Each block has k bits and can store a value up to 2k. k is a hyperparameter
that is generally larger than 8 to accumulate the dot product and avoid overflow.

(e.g. ≈ 2254 in case of BLS12-381 [BLS02]). From this observation, we propose a new encoding scheme,
namely stranded encoding, that could encode multiple low precision integers into a single finite field element.
Näıve encoding. One intuitive solution is, to encode A · B where A = [a1, a2], B = [b1, b2], ai, bi ∈ uint8,
we can use finite field elements x and y (x, y ∈ Fp, p ≥ 216) to encode A and B:

x = a1 + a2δ, y = b1 + b2δ.

where δ ≥ 216. This encoding is already additive homomorphic, i.e., A + B = [a1 + b1, a2 + b2] since
x+ y = (a1 + b1) + (a2 + b2)δ, from which a1 + b1 and a2 + b2 can be easily extracted. This näıve encoding is
not multiplicative homomorphic though. Take dot product computation A ·B = a1b1 + a2b2 as an example.
We know that

xy = a1b1 + (a1b2 + a2b1)δ + a2b2δ
2

To get A ·B, we need to extract each aibi separately from xy. This costs O(n), n = |A| = |B|, which defeats
the purpose of the encoding.
Stranded encoding. To address this problem, we propose a stranded encoding of low precision integers in
finite field elements. The core idea of stranded encoding is to encode multiple matrix operations at the same
time. For example, to better encode A ·B = a1b1 + a2b2 and C ·D = c1d1 + c2d2, we could first encode the
low-precision integers in finite fields as follow:

x1 = a1 + c1δ x2 = a2 + c2δ

y1 = b1 + d1δ y2 = b2 + d2δ

with sufficiently large δ (δ ≥ 217). Now, A ·B and C ·D can be all easily extracted from
∑
xiyi, since:

x1y1 = a1b1 + (a1d1 + c1d1)δ + c1d1δ
2

x2y2 = a2b2 + (a2d2 + c2d2)δ + c2d2δ
2

x1y1 + x2y2 = (a1b1 + a2b2) + (. . .)δ

+ (c1d1 + c2d2)δ2

We can extract A ·B and C ·D from x1y1 + x2y2 by mod δ and extracting the lowest 9 bits.
It is not hard to see that this stranded encoding can be easily extended to the case that vector length

|A| = |B| = |C| = |D| = n > 2, as illustrated in Fig. 6:

A ·B =

n∑
i=1

aibi, C ·D =

n∑
i=1

cidi
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We encode xi and yi as:

xi = ai + ciδ, yi = bi + diδ, i ∈ {1, 2, . . . , n}

Here, we set δ = 2k, k = 2win+log n, where win is the bit width of the low precision unsigned integer and
n is the size of the vector. We need to add n here to catch the possible overflow of accumulating n win-bit
unsigned integers. Now we have:

n∑
i=1

xiyi =

n∑
i=1

aibi + (. . .)δ +

(
n∑
i=1

cidi

)
δ2

= A ·B + (. . .)δ + (C ·D)δ2

(5)

Finally, we can decode the dot products A ·B and C ·D with bit operations

A ·B =

(
n∑
i=1

xiyi

)
mod δ, C ·D =

(
n∑
i=1

xiyi

)
� 2k

where mod is the module operation and� 2k indicates right-shift by 2k bits. While the decoding adds more
overhead, this overhead is amortized as we increase the number of batched operations in stranded encoding.

In the above example, we batch two dot product operations: A ·B, C ·D. We will discuss how to extend
stranded encoding with a larger batch size next.

Stranded encoding with arbitrary batch sizes. Let batch size s be the number of batched dot product
operations. To achieve further saving in the constraint size, we would like to extend s from 2 to larger batch
sizes.

However, a näıve extension of the stranded encoding when batch size s = 2 would not work. For example,
for s = 3, we encode A ·B, C ·D, E · F (A = [a1, . . . , an] etc.) as follows:

xi = ai + ciδ + eiδ
2, yi = bi + diδ + fiδ

2.

Then, the multiplication becomes:

xiyi =aibi + (aidi + bici)δ + (cidi + aifi + biei)δ
2

+ (cifi + diei)δ
3 + eifiδ

4

It becomes very difficult to extract cidi from xiyi since cidi is “mixed” in the coefficient of δ2. To solve this
problem, we use the following encoding instead for i ∈ {1, ..., n}:

xi = ai + ciδ + eiδ
3, yi = bi + diδ + fiδ

3.

Now it is not hard to see:

xiyi =aibi + (. . .)δ + (cidi)δ
2 + . . .+ (eifi)δ

6 (6)

As a result:

n∑
i=1

xiyi =A ·B + (...)δ + (C ·D)δ2 + . . .+ (E · F )δ6

In fact, stranded encoding can be generalized to an arbitrary batch size s (with constraints). Formally,
we define stranded encoding as follows:

Definition 2 (Stranded encoding scheme). For a series of dot product A1 · B1, . . . , As · Bs, where
Aj = [aj,1, . . . , aj,n], Bj = [bj,1, . . . , bj,n](j ∈ {1, . . . , s}) and aj,i, bj,i ∈ [2win ], stranded encoding encodes
these dot product operations in finite field elements xi, yi ∈ Fp, p ≥ 2wout , i ∈ {1, . . . , n} as follows:

xi =

s∑
j=1

aj,iδ
φ(j), yi =

s∑
j=1

bj,iδ
φ(j)
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where δ = 22win+logn and φ(·) : {1, . . . , s} → N can be defined by the following optimization problem:

min φ(s)

s.t. Ω1 = {φ(1) + φ(s), ..., φ(s− 1) + φ(s)}
Ω2 = {2φ(1), 2φ(2), ..., 2φ(s− 1), 2φ(s)}
Ω1 ∩Ω2 = ∅

(7)

In addition, n needs to satisfy the following constraint:

(2φ(s) + 1)(2win + log n) ≤ wout (8)

As a result:
n∑
i=1

xiyi = (A1 ·B1)δ2φ(1) + . . .+ (A2 ·B2)δ2φ(2)+

. . .+ (As ·Bs)δ2φ(s) (9)

The core of this definition is to formulate stranded encoding as an optimization problem in Eq. 7.
Intuitively, as shown in Eq. 9, Ω2 is the set of exponents of δs in the terms of xiyi that ends up to be
“useful”. Ω1 represents the set of exponents of δs in the terms of xiyi that are going to be discarded. For
example, in case of s = 2, φ(1) = 0, φ(2) = 1, Ω1 = {1}, Ω2 = {0, 2}. This can be verified in Eq. 5. In case of
s = 3, φ(1) = 0, φ(2) = 1, φ(3) = 3, Ω1 = {1, 3, 4, 5}, Ω2 = {0, 2, 6}. This can be verified in Eq. 6.

In addition, the constraint shown in Eq. 8 prevents the stranded encoding scheme from blowing up the
finite fields. Since δ = 22win+logn > max{Ai ·Bi}, each term in Eq. 9 is non-overlapping in the final encoded
bits (as shown in Fig. 7). Now, we only need to worry about the last term not exceeding the size of the finite
field, which is captured by Eq. 8. We list the φ(s) for different s and their corresponding nmax in Table 5.

Cost based optimization. Now, we can analyze the benefits brought by stranded encoding in terms of the
number of constraints. Since the encoding part is “free”: the addition would not cost extra constraints. The
major cost is decoding, which requires bit decomposition (generating O(wout) constraints). For example, in
the zk-SNARK implementation we use, bit decomposition of a finite field element in BLS12-381 generates
632 constraints. Then, the amortized cost of each element-wise multiplication in dot product is:

cost(s, n) =
O(wout)

sn
(10)

where s is the batch size and n is size of the vectors to be dot producted. For the cost function listed in Eq. 10,
we always choose the best batch size s for the given input. For example, in our setting, win = 8, wout = 254,
the fixed cost of bit decomposition is 632. For n < 632/3, we shall not do stranded encoding since the
amortized cost is greater than 1; for 632/3 ≤ n ≤ 4096, we choose a batch size of 4; and for n > 4096, we
choose a batch size of 3. We believe this cost function is useful when determining both the integer precision
during the neural network quantization and the underlying field field used by a zk-SNARK.

s 2 3 4 5

φ(s) 1 3 4 9

2φ(s) + 1 3 7 9 19

nmax 268 220 212 -

Table 5: Largest supported vector size nmax in stranded encoding for different batch size s (ωin = 8 and ωout = 254).
‘-’ indicates not supported.

6 Evaluation

We first describe ZEN’s implementation details and evaluation settings in §6.1. Next, we demonstrate the
effectiveness of our proposed optimizations on reducing constraints in §6.2. Then, we show the benefits of
reducing linear combinations in §6.3. Last, we show the end-to-end results on the number of constraints as
well as accuracy in §6.4.
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Network
Number of Layers

# FLOPs (K)
Conv FC Act Pool

ShallowNet 0 2 1 0 102

LeNet-5-small 3 2 4 2 530

LeNet-5-medium 3 2 4 2 7,170

LeNet-Face-small 3 2 4 2 2,880

LeNet-Face-medium 3 2 4 2 32,791

LeNet-Face-large 3 2 4 2 127,466

Table 6: Neural Networks used in our evaluation.

6.1 Implementation and Evaluation Settings

Implementation. ZEN implementation consists of three major parts: a quantization engine, circuit gener-
ators, and a scheme aggregator. The quantization engine takes a pretrained floating-point PyTorch model,
applies our zk-SNARK friendly quantizations, and produces a quantized neural network model. Circuit gen-
erators generate individual components of circuit. We implemented circuit generators for FC, Conv, average
pooling, and ReLU kernels. Our system also includes a commitment circuit generator from the underlying
zk-SNARK system we used. We implement stranded encoding as part of FC and Conv circuit generators. The
scheme aggregator assembles all component circuits together, and produces the final zero-knowledge proof
systems according to the specified ZENinfer scheme. Our system uses arkworks’ implementation [ark] of
Groth16 scheme [Gro16] as the underlying zk-SNARK. We choose the BLS12-381[BLS02] as the underlying
curve for in Groth16.

Datasets. We select three popular datasets (MNIST, CIFAR-10, and ORL) used by many secure ma-
chine learning projects [DSC+19, ZYCW20, GDL+16, JVC18, JKLS18]. Among these datasets, MNIST and
CIFAR-10 are used for the classification task and ORL is used for the recognition task (e.g., face recognition).
In particular,

– MNIST is a large dataset for handwritten digit classification with 60, 000 training images and 10, 000
testing images. Images in MNIST are gray-scale of shape 28× 28× 1.

– CIFAR-10 is a classification dataset with 10 classes (e.g., cat and dog). It contains 50, 000 training images
and 10, 000 testing images of shape 32× 32× 3.

– ORL dataset contains face images from 40 distinct subjects with diverse lighting, facial expression, and
facial details. Since ORL dataset does not specify the training and testing dataset split, we randomly
select 90% images as the training dataset and use the remaining 10% images as the testing dataset.

All images are stored with uint8 data type and values are between 0 and 255.
Models. We use ShallowNet, a lightweight neural network model and a series of LeNet variants [LBBH98],

as summarized in Table 6: ShallowNet contains two fully connected kernels and one ReLU kernel. LeNet has
three convolutional kernels, two fully connected kernels, and four ReLU kernels. These variants have different
kernel sizes for adapting to different sizes of inputs. The evaluation on these six variants demonstrates the
performance of ZEN under diverse model sizes.

Experiment Configuration. All the evaluations run on a Microsoft Azure M32ls instance with 32 core
Intel Xeon Platinum 8280M vCPU @ 2.70GHz and 256 GiB DRAM. We compile ZEN code using Rust 1.47.0
in release mode.

6.2 ZEN optimizations on reducing constraints

R1CS friendly quantization. We demonstrate the optimization benefits from R1CS friendly quantization
on convolution (Conv) kernels and fully connected (FC) kernels with diverse kernel sizes. We choose Conv
and FC kernels since they take up to 60% share in the total number of constraints. We report the benefits
from sign-bit grouping and remainder-based verification for each kernel.

Fig. 8 shows the constraint saving on Conv kernels. We observe that the number of constraints can be
reduced by 3.4× to 73.9× with R1CS friendly quantization, including the sign-bit grouping and remainder-
based verification. Looking at individual kernels, we find that sign-bit grouping and remainder-based ver-
ification significantly bring benefits on diverse Conv kernels, especially on small Conv kernels of shape
8× 1× 5× 5 and 16× 4× 5× 5. Fig. 9 shows similar constraint saving (from 1.1× to 8.4×) for FC kernels
from R1CS-friendly quantization.
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Fig. 8: Constraint saving on conv ker-
nels. Shape is [# of in channels]×[# of
out channels]×[kernel width]×[kernel
height].

Fig. 9: Constraint saving FC kernels.
Shape is [# of in channels]×[# of out
channels].

Fig. 10: Constraint saving on FC ker-
nels with different batching size s.
Shape is [# of in channels] × [# of
out channels]. 4

From Table 4 we know that AvgPool obtains 3.0× and 633× constraint reduction from the sign-bit
grouping and remainder-based verification in R1CS-friendly quantization. ReLU obtains 1.2× constraint
reduction from sign-bit grouping. This improvement is regardless of AvgPool and ReLU kernel size, because
the constraint reduction for each division in AvgPool is fixed and independent of the number of division
operations, and similarly for ReLU.

Stranded encoding. We first show the effectiveness of stranded encoding with the optimal batch s
determined by the optimizer. Since stranded encoding can only be applied to FC kernel and Conv. kernel,
we show constraint savings cause by stranded encoding in Fig. 8 and Fig. 9. When applied to Conv. kernel,
stranded encoding didn’t get triggered when the kernel sizes are small (8×1×5×5 and 16×4×5×5). This
is because the optimizer decides that the gain of stranded encoding will be negative. For larger size kernels,
stranded encoding brings 1.6× to 2.2× constraint size savings on top of R1CS friendly quantization. We
observe a similar trend when applying stranded encoding to FC kernel in Fig. 9: it brings additional 1.2×
to 2.9× constraint reduction for FC kernels of different sizes. The larger FC kernel is, the more benefit from
stranded encoding it gets. This is because the amortized cost of stranded encoding decreases proportionally
as the kernel size increases.

Selecting the optimal batch size s in stranded encoding. We further demonstrate the benefits
of stranded encoding under different batch sizes s (Fig. 10). Comparing across different batch sizes s, we
notice that a larger batch size usually leads to higher savings. This result shows that we should choose a
larger batch size s when the vector satisfies the corresponding length requirement. We also observe that the
constraint saving increases as the FC size grows. In particular, when the kernel shape is 100× 16384, s = 3
can lead to a 2.8× constraint saving, which almost reaches the theoretical upper bound on constraint saving.
Meanwhile, stranded encoding brings little benefits on small FC kernels (e.g., 100× 256). The reason is that
the encoding and decoding overheads are constant across FC sizes and become relatively small on large FC
sizes. This observation motivates the usage of s = 1 for these small FC kernels. Our optimizer maximizes
the benefits from stranded encoding by automatically selecting the best batch size s.

Model
FP Acc. Quant. Acc. ∆Acc.

(%) (%) (%)

ShallowNet-MNIST 95.13 94.91 −0.22

LeNet-small-CIFAR 55.76 55.35 −0.41

LeNet-medium-CIFAR 64.23 63.68 −0.55

LeNet-Face-small-ORL 84.3 84.0 −0.3

LeNet-Face-medium-ORL 88.6 88.2 −0.4

LeNet-Face-large-ORL 91.6 92.1 0.5

Table 7: Accuracy comparison between floating-point (FP) models and R1CS friendly quantized models.

4 We skip s = 4 for the FC kernel of shape 100× 16384 since our stranded encoding with s = 4 requires a vector of
length less than 212 = 4096, as described in Table 5
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Case study: end-to-end results on LeNet-5-Medium. We show end-to-end results of different levels
of optimizations on inference using LeNet-5-Medium on CIFAR-10 in Table 4. Starting from ZEN-vanilla,
we add individual optimizations one by one and show the total number of constraints from all NN layers. In
ZEN-vanilla, LeNet-5-Medium has almost 85 million constraints. This large number of constraints comes from
the intensive computation and bit decomposition in NNs. When all three optimizations are applied, ZEN
significantly reduces the total number of constraints by 15.45×. This is similar to the constraint saving on
popular NN kernels in Fig. 8 and Fig. 9. These results show that our optimization techniques can significantly
mitigate the intensive number of constraints on NN workloads and enable a more efficient deployment of
ZEN.

0% 20% 40% 60% 80% 100%

ZEN

ZEN-
Vanilla

Constraints Ratio

Conv AvgPool FC ReLU Commitment

Fig. 11: Breakdown of constraints in LeNet-Face-large ORL dataset from both ZEN-vanilla and ZEN.

Constraint size breakdown by kernel type. We breakdown the number of constraints in LeNet-
Face-Large on CIFAR-10 circuits generated by ZEN-vanilla and fully optimized ZEN in Fig. 11. We split
the constraints into those from the commitment scheme and those from 4 different kinds of kernels. Overall,
we observe that convolution kernels and fully connected kernels are the dominant sources of constraints in
the ZEN-vanilla (59.2%) implementation. Since these two kinds of kernels heavily rely on dot products, this
justifies our efforts on improving dot product circuit size by using stranded encoding. It is worth noting
that commitment accounts for only 30.1% constraints in the ZEN-vanilla, but this ratio significantly rises to
82.6% in ZEN. Note that the absolute number of constraints from commitment remains the same in both
ZEN-vanilla and ZEN. This ratio change comes from optimizations in ZEN that significantly reduces the
number of constraints from neural network inference part. Further improving the commitment size to make
ZEN even more efficient is our future work.

6.3 ZEN optimizations on reducing linear combinations

Fig. 12: LC saving on conv kernels. Shape is [# of in
channels]×[# of out channels]×[kernel width]×[kernel
height].

Fig. 13: LC saving on FC kernels. Shape is [# of in
channels]×[# of out channels].

Despite the traditional wisdom that the prover time is mostly decided by the number of constraints, we
find this is not the case for ZEN schemes on arkworks implementation of Groth16 protocol [ark], especially
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on the bigger neural network models (which translates to a larger number of constraints). In Table 8, we
breakdown the run time of ZENinfer’s proving time into four parts: synthesizing constraints from circuits
(Const. syn.), inlining linear combinations (Inline LCs), transforming R1CS to QAP (R1CS to QAP), and
computation in groups (Comp. in Gs). Surprisingly, as the number of constraints goes up, the time spent on
inlining linear combinations goes up and dominates the run time.

Fortunately, our optimizations reduce the number of linear combinations (LCs) as well. We demonstrate
the effectiveness of our optimizations in terms of reducing the number of LCs in Fig. 12 and Fig. 13. We can
observe a result that is similar to our savings of constraint sizes shown in §6.2. Overall, our optimizations save
the number of LCs from 1.4× to 24.4× in ZENinfer. We also observe that stranded encoding consistently
saves the number of LCs across various kernel sizes. Meanwhile, sign-bit grouping and remainder-based
verification may slightly increase the number of LCs on certain NN kernels (e.g., 100×4096 and 100×16384
in Fig. 13).

Model-Dataset Const. syn. Inline LCs R1CS to QAP Comp. in Gs

ShallowNet-MNIST(4M) 21.6% 11.6% 17.3% 49.5%

LeNet-small-CIFAR(4M) 27.7% 16.2% 12.1% 44.0%

LeNet-medium-CIFAR(23M) 21.0% 28.9% 13.2% 36.9%

LeNet-small-ORL(20M) 23.1% 20.8% 14.9% 41.2%

LeNet-medium-ORL(83M) 17.9% 39.4% 12.5% 30.2%

LeNet-large-ORL(318M) 15.1% 67.4% 8.8% 15.7%

Table 8: Prover time breakdown of ZENinfer using Arkworks implementation of Groth16

6.4 End-to-end performance

In this section, we evaluate the end-to-end performance of ZEN in terms of accuracy, savings on total number
of constraints, savings on total number of LCs, setup/proving time, and CRS sizes.

ZEN is accurate. In Table 7, we list the accuracy of our quantized model compared with the original
floating-point PyTorch models. One can see the accuracy drop is minimal and some of them are within the
error bound of different implementation of the same machine learning models. Additionally, compared with
the state of the art full quantization scheme [JKC+18], ZEN has exactly the same accuracy thanks to our
semantic preserving optimizations proposed in §4. As a result, we can conclude that ZEN maintains the
accuracy of neural network models in practice.

Overall saving on the number of constraints. Table 3 shows the overall saving on the number
of constraints with our optimizations. Overall, we can significantly reduce the number of constraints by
15.35× on average. This shows a similar saving on the number of constraints as our case study in the micro-
benchmarks. On large models such as LeNet-Face-Large, we achieve a saving of 11.06×. On small models of
LeNet-5-small and LeNet-Face-small, we achieve more than 22.19× saving. This is mainly due to the fact
that kernels in these small models are dot products of vectors which can be drastically improved with our
sign-bit grouping and remainder-based verification. This result is similar to our microbenchmark in Fig. 8
and Fig. 9.

Overall saving on the number of LCs. Table 9 shows that the number of LCs in ZENinfer varies
significantly from 509K to 766, 147K. Our optimizations save the number of LCs from 2.34× to 8.03× (5.34×
on average).

Model-Dataset
Commitment ZEN vanilla ZENinfer Saving

LCs(K) LCs(K) LCs(K) (×)
ShallowNet-MNIST 17, 349 1, 193 509 2.34

LeNet-small-CIFAR 13, 487 51, 231 6, 375 8.03

LeNet-medium-CIFAR 73, 405 263, 779 56, 649 4.66

LeNet-small-ORL 72, 423 175, 066 22, 982 7.62

LeNet-medium-ORL 264, 501 856, 834 209, 775 4.08

LeNet-large-ORL 1, 052, 862 1, 944, 147 766, 125 2.54

Table 9: Overall saving on the # of linear combinations in ZENinfer.
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Setup time, prover time and CRS sizes. Table 15 shows the overall performance of ZENinfer on
6 neural networks with diverse number of constraints, ranging from 4, 061 thousands to 318, 505 thousands.
We observe that a model with a higher number of constraints comes with higher prover and setup time con-
sumption and a larger Common Reference String (CRS) size. For a small model ShallowNet on MNIST with
4, 380 K constraints, we have a short time of 154 seconds and 147 seconds for setup and proving, respectively;
the CRS consists of 1.395 GB of data. The overall cost increases as the number of constraints increases. For
large models such as LeNet-Face-large on ORL with over 318, 505 thousand constraints, ZENinfer requires
nearly 20, 000 seconds for setup and proving respectively. Its CRS size is around 100 GB.

Due to the large memory and time consumption by ZENacc, we can parallelize the testing dataset inference
step across multiple machines and add a prediction accuracy commitment sum check circuit. Table 26 shows
the overall performance of ZENacc on 6 neural networks with a testing dataset size of 100. The constraints
of ZENacc here consist of the commitment to the neural network model, the inferences on 100 images, and a
commit to the final accuracy. The number of constraints of ZENacc ranges between 13, 181 K to 5, 792, 208
K on 6 neural networks.

5 In Table 1 and Table 2, we calculate the number of linear combination before inlining. It influences the time spent
on inlining all linear combinations.

6 We record the time spent on model commitment, inference on one image plus the final accuracy commitment check
circuit as the ZENacc execution time.
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