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Abstract

In this article, we propose a new public key cryptosystem, called NAB. The most important features
of NAB are that its security strength is no easier than the security issues of the NTRU cryptosystem [8]
and the encryption/decryption process is very fast compared to the previous public key cryptosystems
RSA [17], Elgamal [6], NTRU [8]. Since the NTRU cryptosystem [8] is still not known to be breakable
using quantum computers, NAB is also the same. In addition, the expansion of the ciphertext is barely
greater than the plaintext and the ratio of the bit-size of the ciphertext to the bit-size of the plaintext
can be reduced to just over one. We suggest that NAB is an alternative to RSA [17], Elgamal [6] and
NTRU [8] cryptosystems.

Keywords: public-key cryptosystem, lattice-based, the shortest vector problem, the closest vector problem

1 Introduction

The public key cryptosystems currently in use have many weaknesses in previous years, due to their old
age. The RSA [17] and Elgamal [6] cryptosystems were announced in 1978 and 1985 respectively. RSA and
Elgamal have became the most widely used public key cryptosystems that due to the simplicity of their
mathematical background, constitute only a simple background in number theory. However, the security
of the RSA depends on the difficulty of solving the factoring problem, as well as the security of Elgamal
depends on the difficulty of solving the discrete logarithm problem. In [19], Shor et al. showed that these two
problems can be solved using quantum computers. Additionally, the security of RSA and Elgamal depends
on the quality of the choice of the parameters used in these two systems to avoid some of the weaknesses may
be used to break the systems [3, 7]. Therefore, the designers of these cryptosystems must be sufficiently aware
of all aspects of that weaknesses have appeared in these cryptosystems in recent years. As for performance,
RSA and Elgamal require heavy calculations (power) during the encryption/decryption process. In RSA,
the plaintext m and ciphertext c are two integers in Zn. Therefore, RSA has 1/1 message expansion and this
is one of the most advantage of RSA. However, in Elgamal, the plaintext is an integer m ∈ Zp, while the
ciphertext has two integers c1, c2 ∈ Zp. Therefore, message expansion in Elgamal cryptosystem is 2/1.
NTRU is a relatively new public key cryptosystem that appears to be more efficient than the currently more
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widely used public key cryptosystems, RSA [17] and ElGamal [6]. NTRU is still not known to be breakable
using quantum computers. The security of NTRU relies on the difficulty of finding a non-zero vector of a
smallest norm in some given lattice, solving the shortest vector problem [1, 13, 9]. Also, its security depends
on the difficulty of getting a vector in a given lattice that is a closest to some known vector, solving the
closest vector problem (CVP) [4, 9, 12]. The operations of NTRU are taken place over the polynomial rings
R = Z[x]/(xn − 1), Rp = Zp[x]/(xn − 1) and Rq = Zq[x]/(xn − 1) with assumptions [8, 10, 9], p is very
small relatively to q and GCD(p, q) = 1. NTRU has message expansion log q/ log p and this is one of the
drawbacks of the NTRU.
Any new proposed public key cryptosystem must be secure even if quantum computers are used in the future,
just as it should be more efficient than its predecessors. Because NTRU cryptosystem is still not breakable
using quantum computers, we therefore rely on what was presented during the study of the security of
NTRU. We demonstrate that the security of the proposed public key cryptosystem NAB is no less powerful
than that of the NTRU. The message expansion in the proposed public key cryptosystem NAB is just over
one. The necessary mathematical background of NAB is simple, as it depends on a simple background to
add and multiply matrices (vectors), and therefore the speed of encryption/decryption process in NAB is
very fast compared to RSA, Elgamal and NTRU cryptosystems, also it can be easy implemented in different
platforms. But the downside of NAB is that its key size is larger than that of RSA, Elgamal and NTRU.
The paper is organized as follows. Section 2 presents definitions and basic concepts that are needed to NAB
and describes the NTRU cryptosystem. We present NAB in Section 3. We study the security of NAB in
Section 4. Section 5 contains the experimental results. Finally, Section 6 includes the conclusion.

2 Preliminaries

Since we show that NAB cryptanalysis is no less difficult than NTRU cryptanalysis, we provide a review
of NTRU. Also, through the key creation and ecnryption/decryption processes of NAB we need to perform
some matrix operations, therefore, we give some facts (rules) on matrix operations.

2.1 NTRU

We specify Zp as a ring of integers modulo p that contains the integers in the interval (−p/2, p/2]. Similarly
for Zq. Let R, Rp and Rq be the rings of all polynomials with a degree less than n and integral coefficients
in Z, Zp, and Zq, respectively. i.e., R = Z[x]/(xn − 1), Rp = Zp[x]/(xn − 1) and Rq = Zq[x]/(xn − 1).
It is generally useful to use the polynomial f =

∑n
i=0 fix

i inR (Rp or Rq) as the vector of its coefficients
(f0, f1, ..., fn) ∈ Zn (Znp or Znq ).
The NTRU assumptions [8, 9] are that p is very small relative to q and gcd(p, q) = 1. Let T (d1, d2) be the
set of all polynomials with coefficients in {−1, 0, 1}, where each polynomial has d1 coefficients equal to 1,
d2, coefficients equal to −1 and all other coefficients equal to 0. For some selected security parameters df
and dg, a private key is generated by selecting two private polynomials f ∈ T (df + 1, df ), g ∈ T (dg, dg),
where the polynomial f has inverses fp, fq in Rp and Rq, respectively, i.e., f · fp ≡ 1 (mod p) and f · fq ≡ 1
(mod q). Then (f, g) is the private-key and the corresponding public-key is given by h = fq · g (mod q).
Let m ∈ Rp be the plaintext, the corresponding ciphertext c is computed by c = Eh(m) = ph ·r+m (mod q),
where r is chosen randomly in T (dm, dm), for some chosen security parameters dm.
The pliantext m can be restored from c as follows:

1. set t = c · f (mod q).
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2. adjust the coefficients of t in the interval ( q2 , q].

3. get the plaintext m = t · fp (mod p).

In [8], Hoffstein et al. studied various attacks on NTRU. They showed that brute force and that meet-
in-the-middle attacks might be used to recover the private key or against a single message, but will not be
successful in a reasonable time. Coppersmith and Shamir [5] explained the lattice attacks on NTRU. These
attacks have mainly focused on the private-key recovery problem: find the private-key (f, g) giving only the
public-key h and public information about how f and g are selected. Coppersmith and Shamir presented
a lattice of dimension 2n× 2n constructed from the rotation matrix of the public-key h and explained that
the problem of recovering the private polynomials f and g from h is reduced to SVP. They declared that
their attack is efficient to break the system if the NTRU parameters are poorly chosen. They showed that

the smaller value of the ratio c =
√

2πe‖f‖‖g‖
nq the greater chance to recover the private-key (f, g), where ‖ · ‖

is the Euclidean norm. May [11] showed that if g has a long zero pattern somewhere in its coordinate list,
it is better to create the lattice generated by the rotation matrix of the public-key h after multiplying a few
consecutive columns of the rotation matrix of h with an integer θ > q. May [11] also shortens the lattice
dimension in the attack by Coppersmith and Shamir from 2n to (1 + δ)n, 0 < δ ≤ 1. With that lattice (he
called it zero-run lattice), the time to restore the private-key from the public-key is reduced by a factor of
10 if the security level is low. Since the NTRU creator can skip using long consecutive zero coefficients in g,
Silverman [20] made an improvement to the attack of May [11] and suggested to multiply k random columns
of the rotation matrix of h by θ. Silverman [20] showed that this suggestion is better than multiplying k
consecutive columns by θ. The lattice created by Silverman is called forced-zero lattice.
In [16], Nitaj studied NTRU with two different public-keys h and h′, which are connected by two correspond-

ing different private keys (f, g) and (f ′, g′) for everyone. Nitaj showed that if the ratio c′ =
√

2πe‖f‖‖g−g′‖
nq

is as small as possible, we have a great chance of breaking the system.
Bahig et al. [2] generalized the cryptanalysis of NTRU [11, 20] when g has one or more patterns of zero
coefficients at various positions (not necessarily of the same length).

2.2 Matrix Operations

We give some facts (rules) on matrix operations. Let Xi and Yi be matrices where each of dimension k × k,
their components in Zq and Xi × Yi = I mod q, i = 1, · · · , k.

1. If X = X0 ×X1 × · · · ×Xk (mod q) and Y = Yk × Yk−1 × · · · × Y0 (mod q) then X × Y = I (mod q)

2. let Y ′i be the transpose of Yi, then the transpose of Y can be given by Y = Y ′0 ×Y ′1 × · · · ×Y ′k (mod q)

3. define SwapTwoRows(Xi, n,m) to return the matrix Xi after swapping the nth row with the mth.
Also, SwapTwoCols(Yi, n,m) to return the matrix Yi after swapping the nth column with the mth. If
Wi = SwapTwoRows(Xi, n,m) and Zi = SwapTwoCols(Yi, n,m), then Wi × Zi = I (mod q).

4. Define AddTwoRows(Xi, n,m) to return the matrix Xi after adding the the mth row to the nth. Also,
SubtractTwoCols(Yi, n,m) to return the matrix Yi after subtracting the the mth row from the nth. If
Wi = AddTwoRows(Xi, n,m) and Zi = SubtractTwoCols(Yi,m, n), then Wi × Zi = I (mod q).

Based on these facts, the following algorithm can be used to compute the inverse of a given square matrix
A over Zq where GCD(|A|, q) = 1. This algorithm can be used to speed up the creation of the NAB key.
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Algorithm 2.1. Computing the inverse of a given matrix (mod q)
Input: a matrix A on Zq and of dimension k × k.
Output: the inverse matrix B, where A×B = I (mod q).
Begin

1: set B to be the identity matrix of dimension k × k.
2: for i = 0 to k − 1 do
3: find j ≥ i where GCD(Aji, q) = 1, if there is no such j, then the algorithm fails to obtain the inverse.
4: if i 6= j then then
5: SwapTwoRows(A, i, j)
6: SwapTwoRows(B, i, j)
7: end if
8: f = (Aii)

−1 (mod q)
9: define A(i) and B(i) to be the ith row of A and B, respectively

10: A(i) = fA(i) (mod q) . mutliply the ith row of A by f
11: B(i) = fB(i) (mod q) . mutliply the ith row of B by f
12: for j = i+ 1 to k − 1 do
13: g = Aji (mod q)
14: A(j) = A(j)− gA(i) (mod q)
15: B(j) = B(j)− gB(i) (mod q)
16: end for
17: end for
18: for i = k − 1 downto 0 do
19: f = (Aii)

−1 (mod q)
20: define A(i) and B(i) to be the ith row of A and B, respectively
21: A(i) = fA(i) (mod q) . mutliply the ith row of A by f
22: B(i) = fB(i) (mod q) . mutliply the ith row of B by f
23: for j = i− 1 downto 0 do
24: g = Aji (mod q)
25: A(j) = A(j)− gA(i) (mod q)
26: B(j) = B(j)− gB(i) (mod q)
27: end for
28: end for

End

3 The Proposed public Key Cryptosystem NAB

The public key is summarized as two relatively prime integers p and q, (p < q) and two public matrices (k×k)
E1 and E2 their components in Zq. The two matrices E1 and E2 are constructed from the random matrices
B, T1 and T2 where gcd(|B|, q) = 1 and the components of T1 and T2 in {−1, 0, 1} with gcd(|T1|, p) =
gcd(|T2|, q) = 1. We define E1 = B × T1 (mod q) and E2 = B × T2 (mod q). The private key is (B,B−1

(mod q), T1, T
−1
1 (mod p), T2, T

−1
2 (mod q)) and hidden in E1 and E2. If p is chosen of bit-size l, then q is

selected of bit-size greater than 2l + log k − 1 + ε. The parameters l and k are determined according to the
required level of the proposed system security.
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Algorithm 3.1. Key Creation
Input:

k > 2 is the number of rows (columns) in the generated public key.

l is a positive integer (security parameter).

Output:The public and private keys of NAB cryptosystem.
Begin

1: generate randomly a positive integer q of bit-size greater than 2l + log k − 1 + ε
2: generate randomly a positive integer p of bit-size l with GCD(p, q) = 1.
3: generate two random matrices T1 and T2 each of dimension k × k where their components are selected

from {−1, 0, 1} and GCD(|T1|, p) = GCD(|T2|, q) = 1.
4: compute T−11 (mod p) and T−12 (mod q)
5: generate a random matrix B of dimension k × k where their components are selected from Zq and
GCD(|B|, q) = 1.

6: compute B−1 (mod q)
7: compute E1 = B × T1 (mod q) and E2 = B × T2 (mod q).
8: the public key e is (E1, E2, p, q).
9: the private key d is (B,B−1 (mod q), T1, T

−1
1 (mod p), T2, T

−1
2 (mod q))

End

The plaintext m = (m0, . . . ,mk−1) is a vector of k components in Zq, where each component is of bit-size
2(l− 2). The plaintext m can written as m = u+ v2l−2, where u and v are two vectors their components of
biz-size l− 2 and belong to Zp. The ciphertext is just computed by the matrix-vector multiplication modulo
q as:

c = pE2 × v + E1 × (u+ v) (mod q).

The overall complexity of the matrix-vector multiplication is θ(k2). Note that matrix-vector multiplication
can be implemented in parallel to reduce the time complexity of NAB encryption.

Algorithm 3.2. Encryption
Input:

A public key of a NAB cryptosystem e = (E1, E2, p, q), where q and p are relatively prime and of bit-size
2l + log k − 1 + ε and l, respectively.

m = (m0, . . . ,mk−1) is the plaintext, where mi is of bit-size 2(l − 2) and written as mi = ui + vi(2
l−2),

(note that 0 ≤ ui, vi < 2l−2 < p).

Output: The ciphertext c.
Begin

1: define u = (u0, u1, . . . , uk−1) and v = (v0, v1, . . . , vk−1).
2: compute c = pE2 × v + E1 × (u+ v) (mod q).

End

If the ciphertext c is the output of Algorithm 3.2, we simply write c = Ence(m).
The ciphertext c = (c0, . . . , ck−1) is a vector of k components in Zq. Obtaining the plaintext m = u+ v2l−2

from c begins by multiplying c by B−1 modulo q to get R1 = pT1× v+ T2× (u+ v) (mod q). We select q of
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bit-size 2l+log k−1+ε to make the center lift of R1 (make the components of R1 in the interval (−q/2, q/2])
gives pT1 × v + T2 × (u + v) (Over Z the set of all integers). Then, getting u and v becomes simple and
described in Algorithm 3.3 that has a time complexity θ(k2).

Algorithm 3.3. Decryption
Input:

The private key of the NAB cryptosystem d = (B,B−1 (mod q), T1, T
−1
1 (mod p), T2, T

−1
2 (mod q)).

c = (c0, c1, . . . , ck) is the ciphertext, where c0, c1, . . . , ck−1 ∈ Zq.

Output: The plaintext m.
Begin

1: define B′ = B−1 (mod q) and T ′1 = T−11 (mod p) and T ′2 = T−12 (mod p)
2: R1 = B′ × c (mod q), and center lift R1 in Zq (make the components of R1 in the interval (−q/2, q/2].
3: R2 = R1 (mod p)
4: R3 = T ′1R2 (mod p)
5: v = (pE2)−1(c− E1 ×R3) (mod q)
6: u = R3 − v
7: the plaintext is m = u+ v(2l−2)

End

If the plaintext m is the output of Algorithm 3.3, we simply write m = Decd(c). In the following theorem,
we prove the correctness of NAB cryptosystem.

Theorem 3.4. Let e = (E1, E2, p, q) and d = (T1, T2, B) be the public and private keys of a NAB public key
cryptosystem. Then m = Decd(Ence(m)) for every m = (m0, . . . ,mk−1), where mi is of bit-size 2(l − 2).

Proof. Since mi is of bit-size 2(l− 2), it can be written as mi = ui + vi(2
l−2), where ui and vi are of bit-size

l − 2. Define u = (u0, u1, . . . , uk−1), and v = (v0, v1, . . . , vk−1), therefore, the plaintext m can be written as
m = u+ v(2l−2).
Define c = Ence(m), therefore, c = pE2 × v + E1 × (u+ v) (mod q).
We need to show that m = Decd(c). In Algorithm 3.3,

R1 = B′ × c (mod q)

= pT2 × v + T1 × (u+ v) (mod q).

Since the positive components of pT2× v+T1× (u+ v) is of bit-size at most 2l+ log k− 2 + ε, these positive
components are smaller than q/2. Similarly the negative components of pT2 × v + T1 × (u + v) are greater
than −q/2. Therefore, the center left of R1 in Zq gives pT2× v+T1× (u+ v). i.e., R1 in Algorithm 3.3 gives
pT2 × v + T1 × (u+ v).
Therefore, R2 = R1 (mod p) = T1 × (u+ v) (mod p). Thus, R3 = T ′1R2 (mod p) = u+ v (mod p).Since the
components ui and vi are smaller than p/2, we ensure that u+ v (mod p) is itself u+ v. i.e., R3 = u+ v.
This leads to

v = (pE2)−1(c− E1 ×R3) (mod q)

u = R3 − v.

We get the plaintext m = u+ v(2l−2).
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We need to process the plaintext before the encryption where we aim to make the ciphertext appear to
be not fixed and random for each plaintext. In addition, we use a checksum function to simply ensure the
integrity of the plaintext. Therefore, we consider the original plaintext just as a vector of k− 2 components
in Zq, where each component is of bit size 2(l− 2), and pad this plaintext with two additional components,
the first is random and the second is a checksum of all other plaintext components. i.e., if the plaintext is
m = (m0,m1, ...,mk−3), then we pad the two components mk−2 and mk−1 where mk−2 is selected to be a
random value of size 2(l − 2)-bit and mk−1 is defined as checksum(m0,m1, ...,mk−2),

checksum(m0,m1, ...,mk−2) =

(
k−2∑
i=0

(i+ 1 + p)m2
i (mod q)

)
(mod 22(l−2)) (1)

Therefore, we give the following encryption algorithm with padding.

Algorithm 3.5. Encryption with Padding
Input:

A public key of a NAB cryptosystem e = (E1, E2, p, q), where q and p are relatively prime and of bit-size
2l + log k − 1 + ε and l, respectively.

(m0, . . . ,mk−3) is the plaintext, where mi is of bit-size 2(l − 2).

Output: The ciphertext c.
Begin

1: select a random value mk−2 of bit-size 2(l − 2)
2: define mk−1 = checksum(m0,m1, ...,mk−2) (Equation 1)
3: pad mk−2 and mk−1 to the end of the plaintext. i.e., define m = (m0, . . . ,mk−3,mk−2,mk−1) where

each mi is written as mi = ui + vi(2
l−2), (note that 0 ≤ ui, vi < 2l−2 < p).

4: define u = (u0, u1, . . . , uk−1) and v = (v0, v1, . . . , vk−1).
5: compute c = pE2 × v + E1 × (u+ v) (mod q).

End

Through the decryption process, we can ensure the integrity of the decryption result by verifying that
the kth component of the decryption result is the checksum of the first k−1 components. Therefore, we give
the following decryption algorithm to ensure the integrity of plaintext.

Algorithm 3.6. Decryption with plaintext integrity
Input:

The private key of the NAB cryptosystem d = (B,B−1 (mod q), T1, T
−1
1 (mod p), T2, T

−1
2 (mod q)).

c = (c0, c1, . . . , ck) is the ciphertext, where c0, c1, . . . , ck−1 ∈ Zq.

Output: The plaintext m or plaintext error.
Begin

1: define B′ = B−1 (mod q) and T ′1 = T−11 (mod p) and T ′2 = T−12 (mod p)
2: R1 = B′ × c (mod q), and center lift R1 in Zq (make the components of R1 in the interval (−q/2, q/2].
3: R2 = R1 (mod p)
4: R3 = T ′1R2 (mod p)
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Table 1: Performance Comparision

Runtime NAB NTRU RSA

Encryption O(n2) O(n2) O(n2)

Decryption O(n2) O(n2) O(n3)

Message expansion 1 + log k+3+ε
2l−4 ≈ 1 log(q)/log(p) >> 2 1

5: v = (pE2)−1(c− E1 ×R3) (mod q)
6: u = R3 − v
7: set m = u+ v(2l−2), m is a vector of k components in Zq, let m = (m0,m1, . . . ,mk−1),
8: if mk−1 = checksum(m0,m1, . . . ,mk−2) then
9: return the plaintext m

10: else
11: return plaintext error.
12: end if

End

Let n be the bit-size of plaintext. We give in Table 1 some of the performance characteristics of the RSA,
NTRU and NAB cryptosystems. In each case n is the bit-size of plaintext.

4 Security

4.1 Brute Force Attack

One of the possible attacks on the proposed system is that an adversary tries to search for one of the private
matrices T1, T2 or B1. Obtaining one of them is therefore equivalent to obtaining the private key. Therefore,
if an adversary uses brute force search, it is easier to search for T1 or T2 than to search for B because
each component of T1 and T2 has only three possibilities, either 0, 1 or -1 while each component of B is a
number in Zq. Therefore, we assume that an adversary searches for all possibilities for T1 (or T2). We try
to estimate a lower bound for the number of all possible matrices for T1 (or T2). For simplicity, let p be a
prime number and p ≥ 3. The number of all matrices (of dimension k× k) whose component is either 0, 1 or
-1 and invertible over Zp is greater greater than or equal to the number of invertible matrices (of dimension
k × k) over Z3. Note that the number of all matrices of dimension k × k and invertible over Z3 is given by
(see [15])

k−1∏
i=0

(3k − 3i) > 3k(k−1) > 23k(k−1)/2

Therefore, the number of all possible matrices for T1 (or T2) is greater than 23k(k−1)/2. So if k = 12, the
number of all possible matrices for T1 (or T2) will be greater than 2198.



New Public Key Cryptosystem 9

4.2 Chosen Ciphertext Attack (CCA)

In the chosen ciphertext attack (CCA), we assume that an adversary has access to an oracle machine
that returns the plaintext for any suggested ciphertext except a given challenge ciphertext c. In order to
avoid CCA’s success on the proposed system, we have proposed Algorithms 3.5 and 3.6 for encryption and
decryption, respectively. The encryption algorithm (Algorithm 3.5) causes the ciphertext to appear randomly
each time. In addition, the decryption algorithm (Algorithm 3.6) ensures the integrity of the plaintext by
using the checksum (Equation 1). Therefore, any modification of the ciphertext affects the integrity of the
result of the decryption algorithm. Thus, CCA may be inefficient in the case of using Algorithms 3.5 and 3.6
for encryption and decryption, respectively.

4.3 Key Recovery Attack

We try to prove that the security strength (cryptanalysis) of NAB is no less difficult than the cryptanalysis
of NTRU. Therefore, we review the problems on which the cryptanalysis of NTRU depends. In 1997,
Coppersmith and Shamir [5] explained how NTRU private-key recovery problem 4.1 can be formulated as
the shortest vector problem SVP [1, 9, 13] and how NTRU plaintext recovery problem 4.2 can be formulated
as the closest vector problem CVP [4, 9, 12], problem in a certain special sort of lattice. Both SVP and
CVP are computationally difficult as the lattice dimension grows and they are known to be NP-hard under
a certain hypothesis, see [14]. In practice, CVP is considered to be a little bit harder than SVP, since CVP
can often be reduced to SVP in a slightly higher dimension, see [18].

Problem 4.1. (NTRU Private Key Recovery Problem) Given NTRU public key h ∈ Zq [x]
xk−1 (The quotient

ring of Zq[x] modulo (xk − 1)): Find ternary polynomials f, g ∈ Zq [x]
xk−1 satisfying f ∗ h ≡ g (mod q).

Problem 4.2. (NTRU Plaintext Recovery Problem) Let p and q be two integers (modulus) used in a given

NTRU public key h ∈ Zq [x]
xk−1 where p is small relatively to q. Given ciphertext c ∈ Zq [x]

xk−1 : Find m, r ∈ Zp[x]
xk−1

(their coefficients in Zp) satisfying c = p.h ∗ r +m (mod q).

In the following two Problems 4.3, 4.4, we formulate the private key recovery and the plaintext recovery
problems of NAB. Therefore, to confirm the security of our suggested cryptosystem, we prove in Theo-
rems 4.5, 4.6 that the two Problems 4.3, 4.4 are not easier than Problems 4.1, 4.2, respectively.

Problem 4.3. (NAB Private Key Recovery Problem) Let e = (E1, E2, p, q) be a public key of a NAB
cryptosystem where E1 and E2 are of dimension k × k. Find a matrix B where T1 = B × E1 (mod q) and
T2 = B × E2 (mod q) have their components in {−1, 0, 1}.

Problem 4.4. (NAB Plaintext Recovery Problem) Let e = (E1, E2, p, q) be a public key of a NAB cryp-
tosystem where E1 and E2 are of dimension k × k. Given ciphertext c = (c0, c1, . . . , ck−1), ci ∈ Zq. Find
u = (u0, u1, . . . , uk) and v = (v0, v1, . . . , vk) with 0 ≤ ui, vi < 2l−2 < p satisfying c = pE2 × v +E1 × (u+ v)
(mod q).

In the following theorem, we prove that recovering NAB’s private-key from its corresponding public-key
is no easier than recovering NTRU’s private-key from its public-key.

Theorem 4.5. Problem 4.3 is not easier than Problem 4.1.
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Proof. Suppose that we have an algorithm (Algorithm-A) can be used to solve problem 4.3 in polynomial
time. Therefore, by giving E1 and E2 modulo q, as an input to Algorithm-A, this algorithm gets a matrix
M = B−1modq in polynomial time such that the components of T1 = M × E1 (mod q) and T2 = M × E2

(mod q) are in {−1, 0, 1}.
We directly transform (in polynomial time) the parameters given in Problem 4.1 to be a special form of

the parameters given in Problem 4.3. Let h = (h0, h1, . . . , hk−1) ∈ Zq [x]
xk−1 be an NTRU public key with its

corresponding private key f = (f0, f1, . . . , fk−1) and g = (g0, g1, . . . , gk−1), where f ∗ h = g (mod q). Define
H, F and G to be the rotation matrices of h, f and g, respectively. From the definition of f ∗h = g (mod q),
we have

F ×H = G (mod q)

Therefore, if we define the parameters E1 = H and E2 = I modulo q as an input to Algorithm-A, then this
algorithm can find M such that the components of T1 = M ×H (mod q) and T2 = M × I = M (mod q) are
in {−1, 0, 1}. Therefore, each row of T2 with its corresponding row in T1 can be selected to represent two
ternary polynomials f, g, respectively, satisfying f ∗ h = g (mod q).

In the following theorem, we prove that recovering NAB’s plaintext from its corresponding ciphertext is
no easier than recovering NTRU’s plaintext from its ciphertext.

Theorem 4.6. Problem 4.4 is not easier than Problem 4.2.

Proof. Suppose that we have an algorithm (Algorithm-B) can be used to solve problem 4.4 in polynomial
time. Therefore, by giving a public key e = (E1, E2, p, q) of a NAB cryptosystem and a ciphertext c =
(c0, c1, . . . , ck−1), ci ∈ Zq this algorithm gets u = (u0, u1, . . . , uk) and v = (v0, v1, . . . , vk) with 0 ≤ ui, vi <
2l−2 < p satisfying c = pE2 × v + E1 × (u+ v) (mod q) in polynomial time.
We directly transform (in polynomial time) the parameters given in Problem 4.2 to be a special form of the
parameters given in Problem 4.4.
Let p and q be the two integers (modulus) used in the encryption process with the NTRU public key

h = (h0, h1, . . . , hk−1) ∈ Zq [x]
xk−1 , where p is small relatively to q. Let c ∈ Zq [x]

xk−1 be the given ciphertext. From
c = p.h ∗ r + m (mod q), define E2 to be the rotation matrix of h and E1 = I. Therefore, the ciphertext
c can be expressed by c = pE2 × r + E1 × m (mod q). Therefore, if we get the parameters c, E1 and E2

as inputs to Algorithm-B, then this algorithm can find r = (r0, r1, . . . , rk−1) and m − r = (m0 − r0,m1 −
r1, . . . ,mk−1 − rk−1) such that mi, ri ∈ Zp. Therefore, m = (m0,m1, . . . ,mk−1) and r = (r0, r1, . . . , rk−1)

can be used to represent two polynomials in
Zp[x]
xk−1 , satisfying c = p.h ∗ r +m (mod q).

5 Experiments

We present in Table 2 some of suggested sets of parameters that may be used to setup NAB cryptosytems
based on levels of required security. In Table 3, we give the speed benchmarks for our implementation of
NAB. Our implementation is coded in C++, compiled with Microsoft Visual C++ .NET 2010 and ran on
a GenuineIntel 2600 Mhz under windows 10 operating system. The size of data used for encryption is 100
MB. The time is given in seconds.
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Table 2: NAB Parameter Sets

Set l (bit-size of p) k bit-size of q NAB key size (K.Byte) NAB Message expansion

A 10 12 24 0.845 1.5

B 10 14 24 1.149 1.5

C 14 16 24 1.5 1.5

D 18 18 24 1.899 1.5

Table 3: NAB Run Time

set Key Creationn Encryption Decryption

A 0 65.5403 121.0090

B 0.003 71.1960 135.8805

C 0.008 59.7874 108.7359

D 0.01 91.0616 154.4752
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6 Conclusion

The advantage of NAB is that its performance (key creation, encryption, decryption) is very fast compared
to RSA, Elgamal and NTRU cryptosystems. Also, NAB security strength is not easier than the security
of NTRU. Therefore, if NTRU is considered secure against quntum computer, then NAB is the same.
Additionally, NAB needs some simple mathematical background in matrix algebra for its implementation
and it can be implemented simply in different platforms. Message expansion in NAB is smaller than message
expansion in NTRU and Elgamal. The disadvantage of NAB is its message expansion is not optimal like
RSA but can be optemized to be just over one. Also, its key-size depends on matrix storage, therefore,
the key-size of NAB is greater than the key-size of RSA, Elgamal and NTRU. We suggest that NAB is an
alternative public key cryptosystem for RSA, Elgamal and NTRU cryptosystems.
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Appendix

We give an example of NAB public/private key. The chosen parameters for this example p = 997, q =
1569816417, k = 12 and the two public matrices E1 and E2 are defined as follows:

E1 =

346378333 1506998010 1158592697 763237038 371322664 890771778 205041698 1477375343 1362167950 965148466 1408949995 1355443658
1448448924 963645714 818715253 191197494 206785581 1464028532 1411094989 1415102743 387527256 938941991 125655093 757635453
1090068744 27535634 633132532 729499765 906952983 479121430 1181577206 1415787567 623227470 219307795 1338673896 1317910750
513018534 173346356 1274292116 1328991186 517513981 1564975556 130304344 651292759 81472167 52560322 917887418 242324450
560658541 935720992 1278354437 1195933319 599350928 557850131 289344517 1082008659 241132847 1183007611 619038307 11907839
985662470 320889076 1413540469 403759887 1075085644 1468853558 581475161 49793901 1194709672 1065413170 1443738060 1121552258
463624907 190907440 74453960 1260783574 533316635 564071119 879830638 1498169604 857137306 1160699572 1162594458 1083542447
74871099 1454624910 1200185496 810836025 960685183 204449626 86039933 1369025023 1070865891 319384926 26780244 420096508
433677034 364407279 14867365 1483667512 1332885986 867710011 86130598 885623184 1163040432 593134817 302278440 1092185751
158538057 1196925829 1383236813 552166463 383025120 971492194 1133591998 370591475 1038124520 679234204 1153287653 35075533
1338809905 388894927 755239219 1207691077 256435631 1102501077 180956646 623977236 1454335612 279777424 1301080660 665257857
619355059 969091848 554008868 100498089 705468446 921198463 732997298 339419965 917261532 212519999 949438992 459319391



E2 =

948836796 615103021 706260575 142259602 572563356 962093654 24558377 5498008 841413183 44583823 625977184 312395348
744538730 409550130 479451745 1095277346 1515873877 1501651247 1180216840 1423919733 579654868 483423275 293770734 267408234
1490085732 494775932 1234507854 1491959252 292360605 194606719 31626198 997867895 196642199 738187132 928286568 1136890584
1337392927 1234915931 1228929352 1449836587 439784877 1130435083 294676109 1284711192 290260134 1129846830 291708300 1454795509
540258069 330253603 323381288 738347634 1528183054 308295084 913175201 1567452467 1225516021 761663106 1352023103 573089872
1479054880 921507251 1256686627 630149289 1055591009 625352812 1529483923 1106115452 342226583 1163942259 1100618208 1309716574
667683303 677511941 1074765856 287036403 694053257 1202964046 245261465 1052105887 1325279631 325080109 1409954428 1483847545
255095472 1348371068 1507239982 42775154 1384520577 1113218482 1113271416 378908655 711552876 1036574159 742624076 1224783652
1333239492 292582481 1459946116 401370542 333925420 665299635 672431763 215428983 1338561338 1179800893 277599125 1460381405
1324751585 92150361 477036161 1255635255 811353757 159699476 741795822 1408864210 1429535055 1007022628 1115059615 1339562016
439530465 955485956 200858144 985727033 537158382 1474614124 1064970422 1177255335 665625437 513176893 1342363652 989307729
601264177 1322278694 160631582 784384575 1027825831 815195463 1017564850 948009988 476352121 279804745 1149415978 214324897


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The private matrices B, T1, T2, with their inverses B−1 (mod q), T
−1
1 (mod p) and T

−1
2 (mod q) are defined as follows:

B =

1569280474 11501396 471959977 277474994 941096369 382486568 197271368 1183153892 520778386 861171260 1461015349 233124047
304348146 603689488 219438485 928033369 1117346764 990988177 1430769231 163587098 1323444363 1560560884 473751309 800400097
1453519647 445619114 1000052561 1416639823 1521214044 834111306 1541954661 636920411 1514703521 391437638 87299684 551527779
1325245673 1215327067 621592147 549887286 670282125 869588469 1035432673 1419148098 809273427 436378340 606248635 1047690416
967811593 857355873 592331673 1350482154 499380724 1358846141 1111258217 1293863975 1485407195 1223190968 1103649796 358098917
1158939524 13695754 238247038 441343282 522180823 1395078794 864691610 423621668 1077172009 1450015647 306623974 407316053
1150290497 302554171 1222287532 573793426 1387698258 430122760 354761580 1224414469 717250725 783646320 1146919664 977729827
672058606 1272227316 214520487 1201987118 146716893 1198191890 206594828 684655776 1069014031 9018565 1147063026 856555918
1224282453 1448676706 646631720 1281005884 1155669645 101465652 726169982 1208286228 1208514534 1318276053 406650194 4012807
1419582650 178637124 431922416 402425011 898176081 1492257684 33515371 44626906 1246919535 421390684 998168379 471973366
1057362051 1274491966 747211298 1495318427 1517934262 1221104248 401976617 683027253 846314939 1210094154 802860703 1157891382
849058700 414887321 357487556 325293457 1506770075 380221133 548147958 526544160 782230372 861823096 489345348 327008458



T1 =

-1 0 -1 -1 -1 0 1 0 -1 1 -1 1
1 -1 1 0 1 0 -1 0 1 1 1 1
1 1 1 1 -1 0 1 -1 1 -1 1 -1
0 0 1 -1 1 -1 -1 -1 1 0 1 0
-1 -1 -1 -1 1 1 0 1 1 1 0 -1
1 1 0 -1 1 -1 -1 -1 0 0 0 -1
0 -1 -1 0 1 0 1 -1 -1 -1 1 -1
0 -1 -1 1 -1 1 -1 1 -1 0 -1 1
-1 -1 1 0 -1 1 -1 -1 1 -1 -1 0
-1 -1 1 -1 1 -1 0 1 1 1 -1 -1
0 1 0 0 -1 0 -1 -1 1 -1 -1 -1
1 -1 -1 0 -1 -1 1 1 -1 1 -1 -1



T2 =

-1 -1 0 -1 1 -1 1 0 -1 0 -1 0
-1 1 -1 0 -1 -1 0 1 0 -1 -1 1
-1 -1 1 0 0 0 0 0 1 1 0 -1
1 0 -1 -1 1 -1 -1 1 0 1 -1 0
0 -1 1 1 -1 -1 -1 0 -1 -1 1 -1
1 0 -1 1 0 -1 1 -1 0 1 0 0
1 0 1 -1 -1 0 1 0 -1 -1 -1 -1
-1 1 1 0 0 1 1 -1 -1 1 -1 -1
-1 0 1 1 0 -1 0 -1 1 -1 1 -1
-1 -1 1 0 0 0 -1 0 -1 1 -1 -1
0 1 -1 -1 -1 -1 -1 0 1 -1 1 0
0 1 1 1 -1 1 1 1 0 0 1 -1



B
−1

(mod q) =

1196205829 −17825286 433150574 759735803 −941218143 −127865614 821067326 −846333260 −274734611 −737396754 −337813401 682410997
−453845630 595204738 −62287397 −854181085 55313868 255458248 −277429290 663256447 1379517453 1221920929 1554011913 −144534251
−155512527 303894757 −771286663 −153546268 49659778 152432913 332065590 1054417210 385410700 69015607 758449176 1192862930
−1250834626 −1393297181 225006722 1224568611 −1033124354 −130121719 264220971 −193153383 −518705613 1448565272 −20852778 −53028529
581382827 58316617 −929252828 −1243278125 530628714 −839682909 −408733767 954729640 −1226273254 −501032723 −596326815 −398596388
486604763 31963204 −1149574288 −202886860 481310886 −15891400 −1421463487 1134288117 154717474 −234151666 24623135 496805331
1415328370 757152808 −372714938 148810458 949584548 1269931339 −587487218 278908354 1149014348 −18973648 70898994 229219800
595298179 749586347 −223035044 492276725 746552324 653820302 −1171081743 −275699474 85302325 81837261 801771829 384005646
506061907 671565249 −1233037104 5982928 248849578 543805107 −764754987 357451075 718951257 −943453912 981319020 242668419
1094094234 −1440167958 −1104958114 1224880168 −1380784904 748616666 −236687117 −753033254 −277431509 698539015 −1344570987 −1038612948
−1064322949 1279665519 551279446 −117343631 120251624 −982400550 21767393 1230554734 1270528674 773491230 895647512 402370292
−584935551 719852622 1497029914 −534515516 1124813428 −121746494 437876904 1209017282 448143028 −1279251195 184084448 475522891



T
−1
1 (mod p) =

754 -42 -425 -744 -834 -750 507 -782 -114 367 671 -603
393 592 937 435 707 520 -127 943 610 -175 -417 483
846 48 -513 -290 -139 -235 749 -628 -628 671 277 -544
334 -66 -662 -598 -266 -132 134 -462 -799 534 532 -334
-121 79 785 525 314 157 -610 640 308 -447 -628 30
725 -272 -725 634 242 -211 -393 -121 212 755 513 151
-212 387 -122 -327 -115 108 12 -44 -42 -617 230 -362
-787 211 119 -272 -151 422 120 -425 -90 -515 -695 -301
90 490 -92 54 -701 -684 -556 947 284 102 406 -936
395 393 -57 635 -755 -542 -392 880 -122 93 -484 -183
-755 -357 424 -851 236 949 290 -17 -683 -169 525 604
-31 -628 693 -218 477 736 894 -141 -471 -412 43 756


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T
−1
2 (mod q) =

1200447848 253940891 −1246618919 69256607 −23085535 46171071 −1108105706 −1500559810 −669480531 969592492 −115427678 692566066
1266406521 811291678 −435327241 1444494939 −930017288 738737137 −237451223 −1022359430 −59362806 1385132131 −613415659 540861118
435327241 1088318105 −1081722234 521073518 −98938006 646394994 −1160872645 −375964433 −1075126371 1015763559 402347904 725545401
−1015763564 −1165819545 1477474274 288569194 −750279906 323197498 −300111962 −496339015 −173141516 −1454388738 −611766692 530967318
−646394995 −1027306332 369368568 611766692 −334740266 1061934635 −761822673 −173141517 −681023298 −69256606 −103884910 623309460
725545403 1028955298 −494690049 −178088418 620011524 −230855355 −626607393 943209022 824483413 646394998 408943773 −883846217
−580436322 −469955545 395752038 1202096815 −1241672019 969592493 −676076398 −479849346 714002635 −1223533384 967943526 −1098211905
−1042147033 141811147 −573840455 −1164170578 −583734256 46171071 −883846218 −491392114 563946654 −600223924 1117999507 −428731374
844271014 1325769327 −290218161 −1391728000 164896682 −554052853 1411515602 −943209024 −824483412 923421422 375964436 883846218
−1055338768 501285915 −1207043714 −811291677 382560305 −877250351 982784227 −587032188 −1127893309 1200447846 118725611 857462748
461710711 −611766692 184684285 11542768 911878655 138513213 −577138389 796450977 934964189 −623309461 −150055981 900335886
−672778465 −1289492056 −897037950 −56064871 1401621804 1569816416 1009167696 616713595 −728843338 784908204 −1513751546 1233427183




