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Abstract
Credit and debit-card payments are typically authenticated
with PINs. Once entered into a terminal, the PIN is sent as
an encrypted PIN block across a payments network to the
destination bank, which decrypts and verifies the PIN block.
Each node in the payments network routes the PIN block to
the next node by decrypting the block with its own key, and
then re-encrypting the PIN block with the next node’s key;
nodes establish shared secret keys with their neighbors to
do so. This decrypt-then-encrypt operation over PIN blocks
is known as PIN translation, and it is currently performed
in Hardware Security Modules (HSMs) to avoid possible
PIN exposure. However, HSMs incur heavy acquisition and
operational expenses.

Introduced at EUROCRYPT’98, proxy re-encryption (PRE)
is a cryptographic primitive which can re-encrypt without ex-
posing sensitive data. We perform an extensive study of PRE
as applied to PIN translation, and show through formalization,
security analysis, and an implementation study that PRE is
a practical alternative to HSMs. With PRE, we eliminate the
need for HSMs during re-encryption of a PIN, thus greatly
reducing the number of HSMs needed by each participant in
the payments ecosystem. Along the way we conduct practice-
oriented PRE research, with novel theoretical contributions
to resolve issues in comparing so-called honest re-encryption
to chosen-ciphertext PRE security, and a new efficient PRE
scheme achieving a type of chosen-ciphertext security.

1 Introduction

Credit and debit-card fraud is a multi-billion dollar problem.
To help combat it, financial institutions commonly require
consumers to enter a PIN during payment to further verify
the transaction’s authenticity. Traditionally, PIN-based verifi-
cation was reserved for use at ATMs, but with the adoption

∗An abridged version of this work appears at Usenix Security 2021. This
is the full version.

†Work conducted while all authors were employees of Visa Research.

of EMV [40] (a.k.a. Chip-and-PIN), PINs are now used to
authenticate both ATM and Point-of-Sale (PoS) transactions.

PIN verification on a PoS device is either offline or online.
Offline PIN verification only involves the PoS device and the
chip card. The consumer-entered PIN is sent directly from
the PIN pad to the chip card, where it is authenticated.

In contrast, online PIN verification involves sending the
PIN to the consumer bank that issued the card. The PoS de-
vice transmits the PIN in encrypted form — along with other
sensitive data, such as personal account numbers (PANs) —
across a network to the consumer’s bank, which verifies the
PIN before authorizing the transaction. The PIN might pass
through many intermediaries over the network, including PoS
terminals, payment gateways, merchant banks, network pro-
cessors and consumer banks. Countries with mature payment
infrastructure perform nearly all PIN verifications online. For
example, in the USA offline PIN verification has not been
adopted due to the complexity involved in synchronizing the
offline PIN held on the chip card with the backend PIN used
for online verification [71].

Many works and consumer reports discussing the security
of PINs focus on attacks at the point of entry. Divulging a
PIN to an attacker that can steal or clone cards could lead to
immediate loss of funds. ATM skimming and overlay attacks
continue to be a major cause of fraud [69]. Of equal impor-
tance however, is to ensure that PINs remain secure as they
are transmitted to the consumer bank.

Payments Card Industry (PCI) regulations [63] mandate
that PINs should never be exposed during transmission.
Naïvely, one might assume that the PoS terminal encrypts
the PIN under a key shared with the consumer bank. How-
ever, as the PoS Partner has no direct relationship with the
consumer bank, it is difficult for such a key to be established.
Therefore, the payments ecosystem operates by having each
pair of neighboring network participants separately establish
a shared key; for example, the PoS Partner shares a key with
the Payment Gateway, who in turn shares a different key with
the Merchant Bank and so on (cf. Figure 1).

Currently, network participants comply with PCI regula-
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Figure 1: HSM Key setup and typical transaction flow for 3DES “decrypt-then-encrypt” PIN translation.

tions by using hardware security modules (HSMs) to decrypt-
then-encrypt the PIN before forwarding to the next party. As a
result, HSMs proliferate across the payments ecosystem start-
ing from payment gateways. HSMs incur significant purchase
and maintenance costs, with a single payment HSM typically
costing around $10-20 000 before considering additional an-
nual licensing and maintenance fees. Further costs result from
the strict and specialized processes of operating HSMs. For
example, firmware updates may require two collaborating
administrators to apply the update on each individual appli-
ance. PCI requires this dual-control operation to ensure that
no one individual can compromise the protected keys, but the
administration cost increases significantly as a result.

Moreover, HSMs become a performance bottleneck as the
maximum throughput of payment transactions at any party
depends on the number of available HSMs at that party, cre-
ating further issues when traffic spikes, such as during holi-
days. Unlike modern VM-based architectures (such as cloud
services) which spin-up additional instances on-the-fly, HSM-
based solutions lack this elasticity and must have additional
HSMs deployment in advance. For example, network proces-
sors such as Visa process on average 5 000 transactions per
second, and are designed to handle upwards of 60 000 trans-
actions per second [6]; therefore, a large number of HSMs
must be deployed to ensure sufficient hardware parallelism to
handle this throughput.

Ideally, the payments ecosystem should not need to use
HSMs to maintain security, and would operate with com-
modity hardware instead. However there are significant chal-
lenges to removing HSMs from the payments ecosystem.
First and foremost, changing transaction processing is both
time-intensive and expensive — for instance, it took nearly
a decade to deploy EMV in the USA [4]. Any solution that
replaces HSMs should preferably be backwards compatible
and easy to deploy. Second, due to the large number of parties
in the payments ecosystem, each with their own priorities, the
design space is large, yet a proper solution requires taking
into account technical, regulatory, and business constraints.

Contributions

Despite the volume and importance of PIN-based transactions,
secure PIN translation has received little attention from the
research community. To address this we initiate a systematic
study of PIN translation with an overarching aim to reduce
HSM reliance. After detailing the current setting in Section 2,
we distill a threat model and design goals for an improved
approach in Section 3, with three main goals:

1. reducing HSM numbers,
2. ensuring key management is in-line with existing prac-

tices such as PCI [63], and
3. ensuring maximal backward compatibility.

Our threat model and design goals let us discuss seemingly
straightforward solutions — such as simply deploying public-
key encryption to transport PINs — and why they are unsuit-
able (cf. Section 3.3).

Based on this groundwork we provide the first mathemati-
cal formalization of secure PIN translation (cf. Section 4 and
5). We capture the actors, threat model and security goals of
PIN authentication within the framework of provable security.

Our models allow us to rigorously explain how we can
achieve our goals using Proxy Re-Encryption (PRE), a type
of public-key encryption introduced by Blaze et al. [23] where
ciphertext can be re-encrypted to other public keys without de-
crypting. In our search for a suitable PRE scheme, we find that
existing schemes are either not secure enough, too inefficient,
or are too restrictive in functionality (cf. Appendix C). As a
result, we introduce modeling techniques and a new scheme,
opening a new line of practice-oriented PRE research.

More specifically, our observations lead us to define new
PRE notions which more accurately capture the abilities of an
attacker in the payment setting. With chosen-ciphertext secure
(CCA) schemes too inefficient and chosen-plaintext security
(CPA) not enough, we seek a strengthening of security under
Honest Re-encryption Attacks (HRA) [34] where adversaries
may perform chosen-ciphertext attacks. However, as Cohen
points out [34], CCA and HRA security are incomparable —
neither implies the other — presenting a theoretical block to
finding a good security definition. We circumvent the block
by observing that many issues disappear when focusing on
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deterministic re-encryptions (as is relevant to our setting). We
introduce a new PRE security definition, hrCCA, which is a
hybrid of HRA and CCA security and links the two notions.

Furthermore, we introduce a new attack notion for PRE we
call Ciphertext-Verification Attack (CVA). While weaker than
CCA, this notion more closely aligns with the information
available from a payment transaction. Consider PIN verifica-
tion: the decrypted PIN is never returned but instead a single
bit which signifies whether verification was successful or not
is returned.

In Section 6.1, we present our efficient PRE scheme which
follows the KEM-DEM1 hybrid-encryption paradigm. We
analyze the hrCCA security of this construction in Section 6.2.

Finally our experimental evaluation in Section 7 shows
the throughput and latency metrics of our new construction
on commodity machines. We demonstrate improved latency
requirements at all intermediaries between the PoS device and
the consumer bank, and show 5x improvement in throughput
when using a single commodity server compared to a single
HSM — we achieve over 6000 transactions per second using a
single server, which can handle the average throughput faced
by network processors such as Visa.

Our proposal can be deployed on the existing EMV [40]
and ISO PIN [10] standards, without having to issue new cards
to the customers or incur significant changes at the intermedi-
aries. Additionally, all key-management remains inline with
existing PCI-compliant processes. HSMs are still required
for key ceremonies during the initial setup phase. However,
after the key ceremony, the initial public key and subsequent
re-encryption keys can be used without the need for trusted
hardware. This greatly reduces the number of HSMs needed
by the payment gateway, the merchant bank and other parties
since they no longer need HSM infrastructure to cope with
the scale of online processing of PIN translations.

2 An Overview of PIN-based Payments

2.1 Online PIN Verification
When PIN verification is online, the PIN passes through sev-
eral intermediaries before it reaches the appropriate consumer
bank. For simplicity, we focus on five participants — the
PoS terminal and partner, payment gateway, merchant bank,
network processor, and the consumer bank — although our
results are more generally applicable.

Merchants employ PoS partners and payment gateways
to accept payments from cardholders across the globe. PoS
partners help merchants manage heterogenous PoS termi-
nals manufactured by numerous vendors. Payment gateways
help merchants accept payments from cardholders by con-
tacting the merchant’s bank. Merchant banks help merchants

1Key-Encapsulation Mechanism and Data-Encryption Mechanism — The
KEM is a public-key encryption scheme which encrypts an ephemeral sym-
metric key used by the DEM to encrypt the data.

accept various card types by contacting the appropriate net-
work processor (e.g. Visa). The network processor performs
authorization by contacting the consumer bank, who performs
the final verification of the transaction.

2.2 Key Management and Compliance
PCI regulations require that PINs are never in the clear, ex-
cept inside secure hardware [63, Req 1]. Thus intermediaries
must deploy HSMs to handle the PINs as they traverse the
network. Keys are generated inside the HSMs and then shared
with the neighboring party in a secure key ceremony process
(Section 3.4) [63, Req 8] — such ceremonies are generally
time consuming and require strict processes to be followed, cf.
Section 3.4.1. Subsequently, when an encrypted PIN passes
through an intermediary, it will be sent to the intermediary’s
HSM to be decrypted and then re-encrypted under the shared
key of the next hop (cf. Figure 1).2

2.3 Encrypted PIN Blocks
PINs are transmitted over the payments network in the form
of Encrypted PIN Blocks (EPBs). An EPB is constructed by
first encoding the PIN and then encrypting this encoded block.
PIN block encoding can be performed in multiple ways as
defined in the ISO 9654-1 standard [10], named ISO Format 0
through 4. Format 2 is used for PINs that are submitted from
the IC card reader to the IC card, and Format 1 is used when
the PAN is not available, which in most payments cases is not
the case. Hence, we focus on Formats 0 and 3 as these are
relevant for our setting (cf. Figure 2. ISO Format 4 is the most
recently defined, but is yet to see wide deployment. Formats
0 and 3 take as input the PIN and the card number (PAN)
and output an encoded block. The main difference between
these two formats is that Format 0 uses a fixed padding while
Format 3 uses a random padding.

After encoding, the PIN block is encrypted using a block
cipher to give the final EPB (cf. Figure 3). Formats 0 and 3
both output a 64-bit block which would then be encrypted us-
ing 3DES. 3DES remains the predominant block cipher used
by the financial industry due to the difficulties presented by
migrating large amounts of legacy hardware to new methods.
ISO Format 4 defines a 128-bit encoded block which would
instead be encrypted by AES. As mentioned previously, this
is yet to see wide deployment.

3 Threat Model and System Requirements

3.1 Threat Model
Due to the sensitive nature of PINs it is important to ensure
their security at all points across a payment transaction. Bank

2Note that when going from PoS terminal to PoS Partner PCI requires
that each transaction uses a unique key e.g. using the DUKPT method [13].
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FIGURE 2: ISO PIN-BLOCK ENCODINGS (AS DEFINED IN ISO 9564-1)

A PIN-block encoding scheme ES= (encode,decode) take two inputs a PIN and a PAN, and outputs a PIN Block (PB).
The encoded PB is the XOR of two fields, a plaintext PIN field and an account number field.

Plaintext PIN field:
C N P P P P P/F P/F P/F P/F P/F P/F P/F P/F F F

where each 4-bit field is as follows:
• C – Control field: takes value 0000 (zero) for ISO-0 or 0011 (3) for ISO-3;
• N – PIN length: takes a value from 0100 (4) to 1100 (12);
• P – PIN digit: takes a values from 0000 (zero) to 1001 (9);
• F – Fill digit: takes value 1111 (15) for ISO-0 or a random value between 1010 (10) and 1111 (15) for ISO-3.

Account Number field:
0 0 0 0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

where each 4-bit field is as follows:
• 0 – Pad digit: takes value 0000 (zero);
• Ai – the 12 rightmost digits of the PAN excluding the check digit (values from 0000 (0) to 1001 (9)).

FIGURE 3: PIN-BLOCK ENCRYPTION

1: function SE.KG(1λ) . Key Generation

2: K $←{0,1}k

3: return K

4: function SE.E(K,PAN,PIN) . Encryption
5: PB← encode(PAN,PIN)
6: EPB← E(K,PB)
7: return EPB

8: function SE.D(K,PAN,EPB) . Decryption
9: PB← D(K,EPB)

10: PIN← decode(PAN,PB)
11: return PIN

customers are already well aware of the importance of not
revealing their PIN to others but they are not the only party
that must be concerned with PIN privacy. After entry at the
PoS any entity which the PIN passes through must also en-
sure its security. As a result PCI specifies detailed security
requirements that all entities handling PIN data must meet.

In line with PCI requirements we formally study PIN’s se-
curity during their transmission from PoS to consumer bank.
Specifically, we assume adversaries can compromise any in-
termediary or network link. Adversaries are permitted to drop
and inject arbitrary messages, and tamper with any message
between any two parties. They may corrupt any subset of
parties to obtain their secret keys, such as the HSM-protected
keys established during setup. However, security for the other
parties should remain despite these corruptions.

To formally capture these capabilities, we enhance security
notions for Proxy Re-encryption. In Section 4 we define secu-
rity for Proxy Re-encryption, and discuss the unique setting
of payments where the adversary has access to a restricted
decryption oracle, which reveals a single bit of information

whether each transaction’s ciphertext encodes a valid PIN.
Hence, we introduce a new notion for PRE under Ciphertext-
Verification Attack (CVA), and justify in Section 5 why this
notion captures security for the payments setting.

While the primary purpose of PINs is for authentication,
we however focus on ensuring the privacy of PINs as they
traverse the network, for the following reason. Due to the lim-
ited message space of PINs (104), an attacker’s best strategy
would always be a simple brute-force, entering each PIN in
turn at the PoS device. However, an issuer or network pro-
cessor can mitigate this attack by restricting the number of
retries permitted through rate limiting. Instead, a more scal-
able and clandestine attack to break PIN confidentiality could
be launched by a network attacker, or attackers who compro-
mises a subset of the parties in the payments ecosystem. We
analyze security with respect to such adversaries in this paper.

3.2 Design Goals

The primary security goal of any payment system handling
PIN data is to ensure appropriate levels of privacy. Three
additional goals we wish to achieve are to:
• reduce HSM numbers,
• ensure Key Management is in-line with existing prac-

tices, and
• ensure maximal backward compatibility.

Reducing HSM numbers. As PCI requirements mandate
that PINs should only ever appear in the clear inside an HSM,
it is not possible to completely eliminate HSMs from a pay-
ment transaction: the final entity performing PIN verification
(i.e., the consumer bank) would still require an HSM to de-
crypt and verify the PIN. Nevertheless, we can eliminate HSM
use during transaction processing by all other parties.

One caveat is that all parties must retain a small number
of HSMs for key management. As with PINs, PCI mandates
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that secret keys must only be handled within a secure environ-
ment such as an HSM. As Key Management tasks are only
performed a small number of times per year and can largely
be performed offline, our overarching goal of reducing HSM
numbers is still obtainable. This is due to corresponding par-
ties no longer requiring a large farm of HSMs to cope with
the huge performance demands of processing peak transac-
tion volumes. The HSM’s purpose now is purely for a small
number of secure key-management operations. We explore
the specifics of these operations next.

Key Management. Any new key-management operations
we define must meet two important criteria. First as men-
tioned above, they must adequately meet or improve upon
the requirements mandated by PCI [63]. Secondly, as parties
within the network can only communicate with their imme-
diate neighbors we must ensure that any key ceremony we
define considers this fact. For example, it is not possible for a
consumer bank to generate a key which would be injected into
the PoS terminals. We discuss in detail the key management
implications of our solution in Section 3.4.

Backward compatibility. The update or migration of any
large-scale system is always a challenging task. Within the
financial industry this is no different with many banks still
operating mainframes and relying on 3DES for many crypto
functions. Our solution must provide a straightforward de-
ployment and migration path. It should also largely remain
backwards compatible with existing specifications and re-
quire little changes to deployed hardware, that is, it should
not require changes to existing PoS devices.

A final requirement to ensure backwards compatibility re-
lates to the ISO 8583 [49] message format. As PIN blocks
are passed between the different payment parties they are
included within an ISO 8583 message. The message format
which this defines restricts the space we have for any addi-
tional data. A number of data fields reserved for private use
limit us to a few hundred bytes [66] which we may use for
our purposes.

3.3 Failed Approaches
We discuss why traditional public-key cryptography based
solutions fail to achieve seamless deployment. We focus on
three salient solutions and highlight how they incur significant
deployment overheads.

Alternative I. A naïve way to achieve PIN confidentiality
were if the Point-of-Sale (PoS) device encrypted the PIN un-
der the consumer’s bank’s public key. In this case, all parties
involved in a PIN-based transaction could simply forward
the encrypted PIN to the consumer bank. However, for this
to work a PoS device must have secure access to a database
which maps PANs to the corresponding consumer bank’s
public keys. Storing such a database on PoS devices is not
feasible because it incurs significant deployment overheads

(due to the large number of existing PoS devices — there are
currently 46 million merchants accepting Visa cards [6]). Fur-
thermore, such a database would be constantly evolving and
hence a remote database which the PoS device could invoke to
fetch the consumer bank’s public key may seem more appro-
priate. However, maintaining such a central database across
network processors would necessitate new interoperability
requirements. Additionally the remote invocation would not
only increase transaction latency, but also requires significant
changes at various intermediaries (PoS partners, gateways,
merchant banks, and network processors) as the transaction
processing flow must be modified.
Main Concerns: deployment cost, backwards compatibility

Alternative II. Offline PIN verification [1] uses public keys
stored on the chip card to encrypt PINs. Taking a similar ap-
proach for online PIN, where a consumer bank’s public key
stored on the card is used to encrypt the PIN seems an obvious
solution. However, offline PIN verification is optional and no
longer supported by banks in the USA [5, 9], therefore key
material for this purpose is either not available or is not sup-
ported by the standard. On a similar note, we could consider
leveraging the authorization key on the card (a symmetric key
shared with the consumer’s bank) for PIN encryption. This
approach however is non-standard and requires new logic that
necessitates the re-issuance of all chip cards, which is pro-
hibitively expensive. It is also backward incompatible because
not all merchants support chip cards [8], including many gas
stations in the USA [3].
Main Concerns: deployment cost, backwards compatibility

Alternative III. The PIN could also be encrypted against a
network processor’s public key, but this seemingly simple so-
lution is not deployable as merchants will lose routing flexibil-
ity of PIN-based transactions. Merchants today dynamically
route PIN-based transactions [2] over their preferred network
processors to minimize the processing fees. While one could
encrypt against multiple network processors for each transac-
tion, there are over 22 network processors globally, this would
be both expensive for PoS devices and impossible to fit these
ciphertexts within the available space allowed by the ISO
8583 standard [66]. To that end, the above seemingly natural
solutions, including the solution proposed by Jayasinghe et
al. [51], incurs significant changes to the ecosystem. More-
over, this approach requires the network processor (which is
already the bottleneck for transaction processing) to perform
public-key decryption for each transaction, incurring signifi-
cant latency overheads.
Main Concerns: backwards compatibility, restricts routing
flexibility
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3.4 Key Management in Practice
3.4.1 Traditional Approach

In the traditional setting each pair of neighboring parties must
establish a shared symmetric key. As all keys are held within
HSMs, a key ceremony is strictly followed to establish these
shared keys. Note that there is no connection between neigh-
boring parties’ HSMs which would facilitate an online key
exchange. Instead each party designates several employees
as key custodians. Two parties establish a shared key in the
following way. For the purposes of our description each party
has two custodians.

First, one of the parties (party A) generates a Key-
Encryption Key (KEK) in their HSM. The two custodians at
party A perform an export operation on the HSM such that
each custodian receives an XOR-share of the key. The first
custodian seals their XOR share in a tamper-proof envelope
and sends this to the corresponding custodian at party B.

Similarly, the second custodian sends their XOR-share via
a different courier to the corresponding custodian at party B.
The custodians at party B then engage in an import operation
on their HSM. Note that at no time has any one party had
knowledge of the full plaintext key. This concept is known as
split knowledge.

Once both parties have the same KEK loaded in their HSM,
all subsequent keys can be shared encrypted under this key
(where key generation and encryption under the KEK is per-
formed inside the HSM). This is a strictly audited process
and must closely follow the requirements mandated by PCI.
In particular, the process described above closely follows
Control Objective 3, Requirement 8 of the PCI PIN Security
Requirements [63].

3.4.2 Key Management Requirements

Our goal is to design a scheme where the re-encryption key
can be used in unprotected memory without fear of PIN expo-
sure, i.e. knowledge of a re-encryption key should not enable
an adversary to determine a customer’s PIN. However, to
establish these special re-encryption keys there still needs to
be some form of trusted key ceremony. As a result we must
assume that parties still use a minimal number of HSMs for
this process and the protection of private keys.

Due to the nature of the payments, parties only have a
relationship with their immediately preceding and succeeding
neighbors. It is for this reason in the traditional approach that
neighboring pairs all separately establish a shared symmetric
key. For our improved construction this key management
requirement remains. As a result we require schemes where a
party only requires the help of their immediate neighbors to
generate re-encryption keys.

The process for sharing key material between parties must
also align closely with the traditional approach due to the re-
quirements mandated by PCI. More specifically, when sharing

secret key material they should either be shared in encrypted
form or under a strict process of split knowledge. An improve-
ment to this process would be to eliminate the sharing of
secret material completely. If we only require parties to share
public information to generate re-encryption keys this facili-
tates a simpler and more secure key ceremony. In Section 5
we discuss how key ceremony processes could be improved
in this way using PRE.

3.4.3 Key Rotation

Part of managing the lifecycle of cryptographic keys is to en-
sure that they can be easily rotated at regular intervals. Key ro-
tation is a vital function as it protects against exposure of data
due to overuse of a key and also ensures that we can quickly
transition from keys that may have been compromised. Due
to the requirement that re-encryption key generation must be
performed locally between each neighboring pair, this means
that key rotation in the payments setting is relatively straight-
forward. In both the traditional and our desired settings, we
simply locally rotate the key of a party and where appropri-
ate recalculate the re-encryption keys with their neighbors.
As there is no global key that needs to be rotated, individual
key rotations can happen at each party/pair of parties without
requiring coordination with all parties in the system.

4 Cryptographic Definitions and Relations

We introduce the necessary definitions to explain PRE and
its security definitions. We discuss issues with the original
chosen-plaintext attack (CPA) security definition, the hon-
est re-encryption attack (HRA) strengthening, and its incom-
parability with chosen-ciphertext attack (CCA) security. As
observed in Appendix C, CCA secure schemes are too in-
efficient for our setting, even though we need a basic level
of chosen-ciphertext security, as modeled by our ciphertext-
validation attack (CVA) setting. We observe that by focusing
on PRE schemes with deterministic re-encryption, HRA and
CCA security become comparable, allowing us to introduce
hrCCA security, which models HRA security while giving
adversaries chosen-ciphertext capability.

4.1 Syntax and Correctness
When clear from context, we do not make explicit the input
domains to all algorithms. We assume that if an input is en-
tered into an algorithm, then it is in the correct domain. The
length of bitstring x is denoted |x|. We interchangeably write
f (a,b,c, . . .) and fa(b,c, . . .). Furthermore, for any adversary
A, we define

∆
A
( f1, f2, . . . ; g1,g2, . . .) =∣∣P [A f1, f2,... = 1

]
−P [Ag1,g2,... = 1]

∣∣ , (1)
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where A f1, f2,... = 1 denotes the event where A outputs 1 when
provided oracle access to ( f1, f2, . . .). By extension, we let
∆A (G0 ; G1) denote A’s advantage in distinguishing its inter-
action with G0 versus G1 for two games G0 and G1.

Proxy Re-Encryption (PRE) schemes are Public-Key En-
cryption (PKE) schemes enhanced by a re-encrypt operation.
We define PRE schemes in terms of PKE schemes, and there-
fore recall the definition of a PKE scheme:

Definition 1 (Public-Key Encryption Scheme). A Public-
Key Encryption scheme consists of a tuple of algorithms
(Setup,KG,E,D) with the following interfaces:

Setup(1λ)→ pp : Setup on input security parameter λ out-
puts public parameters pp.

KG(pp)→ (pk,sk) : Key generation returns a public and
secret key pair (pk,sk).

E(pk,m)→ c : Encryption on input public key pk and mes-
sage m outputs a ciphertext c.

D(sk,c)→ m or ⊥ : Decryption on input a secret key sk
and a ciphertext c outputs a plaintext message m or
error symbol ⊥.

PRE enables those holding re-encryption keys to transform
ciphertext encrypted under a user A’s public key to a ciphertext
under a different user B’s public key. A bidirectional PRE
scheme [23] permits a re-encryption key rkA→B to be used to
re-encrypt in either direction, i.e. from A to B, or from B to
A. In contrast, re-encryption keys generated by unidirectional
schemes [50] rkA→B can only be used to re-encrypt in one
direction, that is, from A to B, but not from B to A.

Definition 2 (Bidirectional Proxy Re-encryption Scheme).
A Bidirectional Proxy Re-Encryption scheme is a public-
key encryption scheme with re-key generation RKG and re-
encryption RE functionalities. Re-key generation exposes the
following interface:

RKG(ski, pki,sk j, pk j)→ rki→ j: on input a source key pair
(ski, pki) and destination key pair (sk j, pk j), RKG out-
puts a re-encryption key rki→ j.

Re-encryption has the following interface:

RE(rki→ j,c)→ c′ or ⊥: on input a re-encryption key rki→ j
and a ciphertext c, RE outputs a transformed ciphertext
c′ or error symbol, ⊥.

Unidirectional schemes are similarly defined, except RKG
no longer takes the destination secret key, sk j, as input. The
definition can be found in Appendix D.

Since a PRE scheme is an extension of a PKE scheme, PRE
schemes must be correct PKE schemes as well.

Definition 3 (PKE Correctness). For all possible (pk,sk)
generated by KG(pp), for all m, with probability one:

for all c← E(pk,m) it holds that m = D(sk,c) . (2)

Some PRE schemes restrict how many times a cipher-
text can be re-encrypted. Schemes which only permit one
re-encryption are single-hop, such as the one proposed by
Ateniese et al. [15]. Multi-hop PRE schemes do not restrict
the number of re-encryptions, such as those of Blaze et al. [23]
and Canetti and Hohenberger [27].

The correctness definition we give below is in terms of
bidirectional rekey generation. The unidirectional counterpart
replaces RKG(ski, pki,sk j, pk j) with RKG(ski, pki, pk j).

Definition 4 (`-hop Bidirectional PRE Correctness). A bidi-
rectional PRE scheme is `-hop correct if it is correct as
a PKE scheme and for all possible (pki,ski) generated by
KG(pp) for 1 ≤ i ≤ `+ 1, for all rki→i+1 generated by
RKG(ski, pki,ski+1, pki+1) for 1≤ i≤ `, for all m, with prob-
ability one it holds that:

c1 = E(pk1,m) (3)
ci+1 = RE(rki→i+1,ci) 1≤ i≤ ` (4)

m = D(sk`+1,c`+1) . (5)

Definition 5 (Multi-hop PRE Correctness). A PRE scheme
is multi-hop correct if it is `-hop correct for all `≥ 1.

4.2 PRE Security Definitions
Throughout, we assume that adversaries are computationally-
bounded. Furthermore, in-line with most prior work, we con-
sider only static corruptions, meaning the adversary fixes in
advance the keys it wishes to expose. An extension of our
work could consider security in the presence of adaptive cor-
ruptions analogous to Fuchsbauer et al.’s work [43].

In the following subsections we describe the adversary’s
goal, the oracles it may use, and any restrictions on those
oracle queries. Section 4.2.1 reviews the PRE games and
settings from the literature. Section 4.2.2 delves into our
core observation and contribution, which then allows us to
define the new settings we use to model security for PIN
translation in Section 4.2.3. Definition 6 formally describes
our framework, with oracle definitions given in Figure 4, and
Table 1 summarizing what oracles the adversary may access
depending on the setting.

4.2.1 Adversarial Goal and Oracle Interaction

We consider standard confidentiality settings, where the adver-
sary’s goal is to distinguish the encryption of two equal-length
messages m0 and m1 of its choosing. Section 5 relates our
choice of PRE security definitions to the payment setting.

All games start with a setup phase, where first the adver-
sary decides the total number of users present, then the game
generates keys for those users, the adversary divides the users
into honest and corrupt subsets, and finally the game exposes
the corrupt keys to the adversary. Subsequently, the adver-
sary enters an attack phase where it is given access to PRE
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functionality depending upon the setting: there are those con-
sidered in the past, CPA, CCA, and HRA, and the ones we
introduce, hrCVA and hrCCA.

In all settings the adversary has access to a rekey gener-
ation oracle and a challenge oracle. We define two Re-Key
Generation oracles, one for unidirectional and one for bidi-
rectional schemes. The unidirectional oracle Ouni

RKG disallows
re-key generation if the adversary attempts to generate a key
from an honest to a corrupt party. In bidirectional schemes
rki→ j equals rk j→i, hence the bidirectional oracle Obi

RKG only
permits queries where either both parties are honest or both
are corrupt. The challenge oracle OChall may only be queried
once; we call its output the challenge ciphertext.

In addition to the re-key generation and challenge oracles,
the CPA (chosen-plaintext attack) setting allows the adver-
sary to also query re-encryption ORE. It may not query re-
encryption from honest to corrupt users. Cohen [34] points
out that CPA secure PRE schemes could be trivially insecure
in practice since a guarantee of CPA security does not prevent
receivers from learning senders’ secret keys. Hence we deem
CPA security insufficient and do not consider such schemes.

As a strengthening of CPA, Cohen proposes HRA (honest-
re-encryption attack) security [34], where PRE schemes must
be secure against adversaries which may re-encrypt from hon-
est to corrupt users, but only ciphertexts which are produced
as the result of either an oracle encryption query, OE, or a re-
encryption of an OE output. We denote the HRA re-encryption
oracle by OhRE to distinguish it from the CPA re-encryption
oracle ORE. Cohen proves that HRA implies CPA security.

As we elaborate in Section 5, HRA security does not suffice
for our setting since adversaries might have access to a re-
stricted decryption oracle. Hence we look at schemes proven
secure in the CCA (chosen-ciphertext attack) setting [27, 56],
where adversaries are given access to decryption oracles OD

for honest users. Yet all known CCA secure schemes are
not efficient enough for our application, as we discuss in Ap-
pendix C. Instead, we search for a strengthening of HRA
which gives adversaries access to a decryption oracle (hrCCA)
or a decryption verification oracle (hrCVA).

4.2.2 Understanding CCA Restrictions

Adding a decryption oracle OD to the HRA setting without
further restrictions allows adversaries to trivially win by de-
crypting the challenge ciphertext. Similarly, adversaries might
try to re-encrypt the challenge ciphertext and then decrypt it.
To prevent trivial wins in the CCA setting, Canetti and Hohen-
berger (CH) [27] introduce the concept of derived ciphertexts,
where the idea is to “track” the challenge ciphertext as it gets
re-encrypted, and forbid the adversary from submitting any
ciphertext derived from the challenge ciphertext to OD.

Defining derived ciphertexts is subtle, since if re-encryption
is randomized, there could be many possible ciphertexts that
derive from the challenge ciphertext. In particular, if the ad-

versary requests a re-encryption key via ORKG, then the adver-
sary can re-encrypt with randomness of its choosing thereby
making it difficult to track which ciphertexts were derived
from the challenge. CH’s definition of derived ciphertexts
deals with these randomness issues, but as a result CCA and
HRA security are incomparable; see Cohen’s discussion for
details [33, App. B].

We observe that many subtleties disappear when focus-
ing on PRE schemes with deterministic re-encryption, where
each ciphertext only has one possible re-encryption per re-
encryption key. Since our proposed PRE scheme (cf. Sec-
tion 6.1) has deterministic re-encryption, for our purposes
it suffices to focus our formalization on such schemes. We
present our definition of derived ciphertexts below, and dis-
cuss the differences with CH’s definition in Appendix A.

Definition 6 (Derived Ciphertexts). Let ORE(i, j,c) and
ORKG(i, j) represent the re-encryption and re-key generation
oracles exposed to an adversary against a PRE scheme as
defined in Figure 4. A ciphertext tuple (i,c) is a derivative of
another ciphertext tuple (i∗,c∗) if one of the following holds:

1. (i,c) = (i∗,c∗) (self or reflexive derivation),

2. if (i,c) is a derivative of (i′,c′), where (i′,c′) is a deriva-
tive of (i∗,c∗) (transitive derivation),

3. if c = ORE(i∗, i,c∗) (oracle derivation), or

4. if the adversary queries ORKG(i∗, i), or equivalently
ORKG(i, i∗) in the bidirectional case, to get a re-
encryption key rki∗→i from i∗ to i , and c=RE(rki∗→i,c∗)
(external derivation).

4.2.3 hrCCA, hrCVA and Formal Definition

With our definition of derived ciphertexts, HRA and CCA are
no longer incomparable, and we can extend HRA to a setting
which allows the adversary to make queries to the decryption
oracle: hrCCA. In the remainder of the paper, CH-CCA will
refer to the CCA setting using Canetti and Hohenberger’s
definition of derived ciphertexts, while just CCA refers to the
setting we define below.

We furthermore consider the hrCVA setting, which more
accurately models the requirements of the payments setting;
cf. Section 5. The hrCVA setting is a variant of hrCCA, where
the adversary has access to a more restricted decryption oracle,
OV, which only checks the validity of a ciphertext.

The fact that CCA implies hrCCA, that hrCCA implies
hrCVA, and hrCVA implies HRA security follows trivially
from the definitions. Note that all our settings are incom-
parable with CH-CCA (Canetti Hohenberger CCA, cf. Sec-
tion 4.2.3), since CH-CCA is incomparable with HRA. Fur-
thermore, CH-CCA is a replayable CCA [28] style definition,
meaning it tolerates mauling of the ciphertext, whereas our
CCA definition does not.
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FIGURE 4: PRE GAME ORACLES

1: function OUNI
RKG(i, j) . Unidirectional Re-key

2: if i ∈ H, j ∈C then return ⊥
3: return PRE.RKG(ski, pki, pk j)

4: function OBI
RKG(i, j) . Bidirectional Re-key

5: if i ∈ H, j ∈C then return ⊥
6: if i ∈C, j ∈ H then return ⊥
7: return PRE.RKG(ski, pki,sk j, pk j)

8: function OChall(i,m0,m1) . Challenge
9: if i 6∈ H or |m0| 6= |m1| then return ⊥

10: return PRE.E(pki,mb)

11: function OE(i,m) . Encryption
12: return PRE.E(pki,m)

13: function ORE(i, j,c) . Re-encryption
14: if c ∈ D∗ and j ∈C then return ⊥
15: return PRE.RE(rki→ j,c)

16: function OhRE(i, j,c) . Honest Re-encryption
17: if c 6∈ D∗∪D, or c ∈ D∗ and j ∈C then
18: return ⊥
19: return PRE.RE(rki→ j,c)

20: function OD( j,c) . Decryption
21: if c ∈ D∗ then return ⊥
22: return PRE.D(sk j,c)

23: function OV( j,c) . Decryption Verification
24: if PRE.D(sk j,c) =⊥ then return false

25: return true

Definition 7 (PRE-X Advantage). Consider a proxy re-
encryption scheme PRE = (Setup,KG,E,D,RKG,RE). Let
A be an adversary playing Gb denoting an execution of the
PRE-X game defined below, with bit b ∈ {0,1}. Then A’s
PRE-X advantage for X ∈ {HRA, hrCVA, CCA, hrCCA} is:

AdvPRE-X(A) := ∆
A
(G0 ; G1) . (6)

The game Gb consists of a Setup and Attack phase:

Setup: Run PRE.Setup and give the generated public param-
eters to A. The adversary A decides n, representing the total
number of users, and splits {1, . . . ,n} into two sets H and C,
representing the honest and corrupt users, respectively. Gen-
erate n keypairs (pki,ski)← PRE.KG, and divide the indices
of the keypairs among the sets H and C. For all i ∈ H give A
pki, and for all i ∈C give A (pki,ski).

Attack: For all i, j ≤ n, i 6= j, compute the re-encryption key
rki→ j using PRE.RKG. Let D∗ denote the set of ciphertexts
which are derived from the output of the challenge oracle
OChall (cf. Definition 6); D∗ = /0 before the challenge oracle
is queried. Similarly, we let D denote the set of ciphertexts
which are derived from any encryption oracle output, with

D = /0 before the encryption oracle is queried. The adversary
A is given access to the oracles as defined in Figure 4 and
Table 1, where A may query OChall at most once.

At the end of the attack phase A outputs a guess b′.

Table 1: Oracle access for each attack notion. In addition to the
oracles specified in the table, the adversary always has access to
Ouni/bi
RKG and OChall.

HRA hrCVA hrCCA CCA

OE OE OE

OhRE OhRE OhRE ORE

OV OD OD

4.3 Hybrid Encryption and PRE

Hybrid-encryption schemes combine public- and symmetric-
key encryption: a Key Encapsulation Mechanism (KEM) en-
crypts a randomly chosen key with public-key encryption,
and a Data Encapsulation Mechanism (DEM) encrypts the
data under this random key with symmetric-key encryption.

Our construction is an extension of a hybrid-encryption
scheme to the PRE setting: when we re-encrypt a ciphertext,
we re-encapsulate the KEM output. In preparation, we for-
mally define the components making up Hybrid-PRE, namely
a DEM and a key re-encapsulation mechanism (KREM). In
the interest of brevity, and due to their similarity with Defi-
nition 3 and 4, the Hybrid-PRE correctness definitions are in
Appendix D.

Much as KEMs are similar to PKE schemes, KREMs are
similar to PRE schemes with the main difference being that
KREMs do not take plaintext as input, and output uniform
random keys. As with PRE and PKE, we define KREMs as
KEMs with additional functionality.

Definition 8 (Key Encapsulation Mechanism). A Key Encap-
sulation Mechanism (KEM) consists of a tuple of algorithms
(KG,Encaps,Decaps) defined as follows:

KG→ (pk,sk) : Key generation returns a public and secret
key pair (pk,sk)

Encaps(pk)→ (c,K) : Encryption on input the public key
pk, outputs a ciphertext c and a key K

Decaps(sk,c)→ K or ⊥ : Decryption on input a secret key
sk and a ciphertext c outputs a key K or error symbol ⊥.

We only define bidirectional KREMs. The definition can
be easily modified to capture uni-directional KREMs as well.

Definition 9 (Proxy Key Re-Encapsulation Mechanism). A
Proxy Key Re-Encapsulation Mechanism (KREM) is a KEM
with the following added functionality:
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RKG(ski, pki,sk j, pk j)→ rki→ j : ReKeyGen takes as input
a source key pair (ski, pki) and a destination key pair
(sk j, pk j) and outputs a re-encapsulation key rki→ j.

ReEncaps(rki→ j,c)→ c′ or ⊥ : ReEncapsultion takes as in-
put a re-encapsulation key rki→ j and a ciphertext c and
outputs a transformed ciphertext c′ or error symbol ⊥.

Definition 10 (Data Encapsulation Mechanism). A Data En-
capsulation Mechanism (DEM) consists of a tuple of algo-
rithms (KG,E,D) defined as follows:

KG(pp)→ K : Key generation returns a secret key K

E(K,m)→ c : Encryption on input a key K and a message
m, outputs a ciphertext c.

D(K,c)→ m or ⊥ : Decryption on input a secret key K and
a ciphertext c outputs a message m or error symbol ⊥.

Definition 11 (DEM-CCA Advantage). Consider a DEM
(KG,E,D), then the DEM-CCA advantage of an adversary A
against it is

AdvDEM(A) := ∆
A
(EK ,DK ; $,DK) , (7)

where K $← KG, $(x) returns independent, uniform random
strings of length |EK(x)|, and A may query its left oracle only
once and may not use the output of its left oracle as input to
its right oracle.

KREM security can be defined in the same settings as PRE
security, but we only need to focus on hrCCA KREM secu-
rity. The KREM-hrCCA game is the same as our PRE hrCCA
game, except encryption, re-encryption, and decryption are
replaced by encapsulation, re-encapsulation, and decapsula-
tion. We also use the same concept of derived ciphertexts to
prevent trivial wins. The definition of KREM-hrCCA advan-
tage can be found in Appendix D under Definition 19, with
oracle definitions found in Figure 8.

The following theorem follows from a straightforward
hybrid argument, similar to how Giacon, Kiltz, and Poet-
tering [47] prove the same result for traditional hybrid-
encryption in the multi-user setting.

Theorem 1. Combining an hrCCA KREM with a CCA DEM
results in an hrCCA PRE scheme, i.e. we can construct effi-
cient adversaries B and C such that

AdvPRE(A)≤ 2 ·AdvKREM(B)+AdvDEM(C) . (8)

5 PIN Translation using PRE

Recall that our objective is to transmit a PIN from the PoS
terminal to the consumer bank, while ensuring confidentiality
of the PIN from the intermediate parties. Using a PRE scheme
which satisfies our PRE-CVA notion gives this guarantee and
mitigates the threats outlined in Section 3.1. The reason we

only consider CVA attacks is because the final PIN verifica-
tion only outputs a true/false whether the ciphertext is valid
and the PIN matched or not. Thus we do need to be concerned
with adversaries having access to a full decryption oracle.
In the rest of this section we describe how the various PRE
algorithms would be used by each participant in the payment
ecosystem.

5.1 General Construction

Since banks and payment gateways join the payments ecosys-
tem dynamically (i.e. the network is not static), and since
PoS terminals are deployed on demand, we decompose our
system based on two processes: enrollment of new parties and
processing online transactions.

We assume an initial setup has been performed, where
a PRE scheme PRE = (Setup,KG,E,D,RE) is chosen, and
PRE.Setup invoked to generate public parameters for use in
all future PRE operations. These parameters must be shared
with all parties in the ecosystem, and therefore, it is ideally
generated by the network processors and forms part of some
global standard.

5.1.1 Enrollment

Network processors (e.g., Visa) continuously add merchant
and consumer banks to their network, and are responsible
for managing keys to route transactions between any pair of
banks; similarly, merchant banks enroll new payment gate-
ways dynamically, and are responsible for key management
for all PoS devices. To that end, we introduce an HSM-backed
key manager at each network processor, merchant bank, and
consumer bank following the requirements presented in Sec-
tion 3.4 – note that the key managers are only used during
key ceremonies for generating key material, and not during
payment transactions (thus reducing our reliance on HSMs).

Here we elaborate on how a bidirectional PRE scheme can
be applied to perform PIN translation. First we focus on the
initial key management steps that must be performed.

To enroll a bank, the network processor generates a keypair
using PRE.KG and shares the corresponding private key with
that bank’s trusted key manager (using the split knowledge ap-
proach in Section 3.4). Using its knowledge of the merchant
bank’s secret key skmb and consumer bank’s key skcb, the net-
work processor’s key manager uses PRE.RKG to generate a
re-encryption key rkmb→cb for its use while processing trans-
actions. The merchant bank enrolls each payment gateway
and its set of PoS devices by generating a gateway-specific
keypair (pkgw,skgw)← PRE.KG, and sharing pkgw with the
PoS partner, and sharing the re-encryption key rkgw→mb (de-
rived from the gateway-specific skgw and the merchant bank’s
own secret key skmb) with the gateway – note that skmb is not
shared with any party.
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5.1.2 PIN-based Transactions

Following the above key management steps, public keys and
re-encryption keys will have been distributed appropriately to
all parties and now during the transaction only the consumer
bank needs an HSM (to perform a decryption and a PIN
verification operation). More specifically each transaction
proceeds as follows:

1. Using the pkgw provided by the merchant bank/PoS part-
ner, the PoS device invokes PRE.E on the user-supplied
PIN and sends the encrypted pin block to the gateway.

2. The payment gateway uses its re-encryption key
rkgw→mb to invoke PRE.RE, and send the re-encrypted
PIN to the merchant bank.

3. The merchant bank forwards the incoming ciphertext to
the network processor verbatim.

4. The network processor determines the consumer bank
that must authorize the transaction. It then looks up
the corresponding re-encryption key rkmb→cb, invokes
PRE.RE, and sends on the re-encrypted PIN block.

5. The consumer bank’s HSM uses the private key skcb
to invoke PRE.D (producing the cleartext PIN within
HSM), and authenticates the PIN based on some addi-
tional secret data needed for PIN verification.3

5.1.3 Bi-directional versus Uni-directional

Above we have focused on how to deploy a bidirectional PRE
scheme for PIN translation and its corresponding key man-
agement. As a bidirectional scheme requires the secret keys
of both parties to compute a re-encryption key, it is neces-
sary to follow a strictly controlled process during initial setup.
During enrollment/setup we need to securely share secret
keys between parties (as required) just as in the traditional
approach (cf. Section 3.4.1). However, after the key ceremony
any involved HSMs are no longer required and hence will
remain offline (unlike the traditional approach where HSMs
are consistently online increasing their chance of exposure).

A further concern when using a bidirectional scheme is
that leakage of a single secret key would permit an attacker
with knowledge of the re-encryption keys to infer all other
secret keys. Due to the fact the HSMs are only online during a
transaction and also due to fact they are operated in a strictly
controlled and audit manner, the risk of such an exposure is
low. A simple mitigation which eliminates the risk is to delete
secret key material after re-encryption keys are generated.
This would however come at the expense of complicating the
enrollment of new intermediaries.

The use of unidirectional PRE scheme, would both simplify
the key-ceremony process and also mitigate the risk of key in-
ference. A unidirectional scheme only needs the source secret

3PIN verification is generally performed using the IBM3624 method.
This is based on the cleartext PIN, a secret PIN verification key and a PIN
offset. As we are focused on PIN privacy we omit full details on how PIN
verification is performed.

key and destination public key to generate a re-encryption
key. Sharing of the destination public key with the source can
be performed in a more relaxed manner since there is little
concern related to its exposure.

When a new participant enrolls, their trusted key manager
(HSM) generates a key pair using PRE.KG. Now to generated
a re-encryption key from Party A to Party B, Party B shared
its public key with Party A. Then Party A used its secret key
together with B’s public to generate a re-encryption key from
A to B. In this setting, as only public keys are shared between
participants we do not need to use KEKs or split knowledge
during key transfer, making key ceremonies much simpler.
Due to the variation in re-encryption key setup, transactions
based on unidirectional PRE proceed slightly differently. In
the interests of space we detail a uni-directional PRE-based
transaction in Appendix B.

Despite the attractive key management characteristics of
unidirectional schemes all known constructions lack the level
of efficiency we require for our setting. As a result in the rest
of this paper we focus on how to construct a solution based
on bidirectional PRE.

6 Hybrid PRE Construction

Appendix C surveys known schemes to determine their suit-
ability. We find that no published PRE schemes satisfy our
criteria, and introduce our construction.

6.1 Our Construction
We present our Hybrid PRE scheme and analyze its security.
It is formed of a KREM, used to share a randomly chosen
key, and a DEM, which encrypts the PIN under a random key
protected by the KREM. Re-encryption changes the KREM
output but leaves the DEM output unchanged.

As with other PRE schemes and hybrid PKE schemes [36],
the basis of our scheme is ElGamal encryption [44]. Our
scheme, given in Figure 5, works over a group of prime order
q with generator g and uses a symmetric encryption scheme
SE = (SE.E,SE.D). Key Generation selects a secret key sk
at random from Z∗q and calculates the public key pk = gsk.
Our construction is bidirectional so re-encryption key gener-
ation PRE.RKG requires both secret keys, ski and sk j. The
re-encryption key from party i to party j is ski/sk j.

Encryption PRE.E first performs the KREM, where a ran-
dom exponent r is chosen and c1 = gr calculated. The sym-
metric key K is the hash of pkr = gsk·r; we effectively have
an ephemeral-static Diffie-Hellman key. Next, the DEM runs
SE.E on the input message m with the key K, to obtain c2.
The output of PRE.E is (c1,c2).

Decryption follows the reverse procedure. First, c1 is de-
capsulated to obtain the symmetric key K, by taking the hash
of csk

1 = gr·sk. Then using K we call SE.D on c2 to retrieve m.
As mentioned previously, the re-encryption function PRE.RE
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FIGURE 5: HYBRID-PRE CONSTRUCTION

1: function PRE.Setup(1λ) . Setup
2: Choose G of prime order q with generator g
3: return pp = (g,q)

4: function PRE.KG(pp) . Key Generation

5: sk $← Z∗q; pk← gsk

6: return (pk,sk)

7: function PRE.RKG((pki,ski),(pk j,sk j))
8: . ReKey Generation
9: rki→ j← ski/sk j

10: return rki→ j

11: function PRE.E(pk,m) . Encryption

12: r $← Z∗q; c1← gr

13: K = F(pkr); c2← SE.E(K,m)
14: return (c1,c2)

15: function PRE.D(sk,c) . Decryption
16: Parse c as (c1,c2)
17: K = F(csk

1 ); m← SE.D(K,c)
18: return m

19: function PRE.RE(rki→ j,c) . ReEncryption
20: Parse c as (c1,c2)

21: c′1← crki→ j
1

22: return (c′1,c2)

only operates on the KREM output c1. Here re-encryption
from party i to party j is performed by raising it to the re-
encryption key c

rki→ j
1 .

Figure 5 uses a generic symmetric encryption scheme SE
as the DEM. The actual DEM we implement is based on
standard PIN Block encryption (cf. Figure 2 and 3), which
encodes the PIN based on ISO 9564-1 and then encrypts this
PIN Block using 3DES using the random key protected by
the KREM. This means that our DEM ensures best possible
backwards compatibility.

6.2 Security Analysis
We analyze the security of our construction by analyzing
the security of the Hybrid-PRE construction presented in
Section 6.1 and also the DEM-CCA security of the EPB
construction from Figure 3.

We rely on the gap-Strong-Diffie-Hellman (gap-SDDH)
assumption in the random oracle model. This problem is the
same as the ODH-RO problem [11], with the addition of g1/v,
or alternatively the SDDH assumption [64] with an oracle
which returns random oracle output evaluated on Xv.

Definition 12 (gap-SDDH-RO Advantage). An adversary
A’s advantage in playing the gap-SDDH-RO game is

∆
A

(
F,Fv,gu,gv,g1/v,F(guv) ; F,Fv,gu,gv,g1/v,W

)
, (9)

FIGURE 6: KREM CONSTRUCTION

1: function PRE.Setup(1λ) . Setup
2: Choose G of prime order q with generator g
3: return pp = (g,q)

4: function PRE.KG(pp) . Key Generation

5: sk $← Z∗q; pk← gsk

6: return (pk,sk)

7: function PRE.RKG((pki,ski),(pk j,sk j))
8: . ReKey Generation
9: rki→ j← ski/sk j

10: return rki→ j

11: function PRE.Encaps(pk) . Encapsulation

12: r $← Z∗q; c1← gr

13: K = F(pkr);
14: return (c1,K)

15: function PRE.Decaps(sk,c1) . Decapsulation
16: K = F(csk

1 );
17: return K

18: function PRE.ReEncaps(rki→ j,c1) . ReEncaps

19: c′1← crki→ j
1

20: return c′1

where F is a random oracle, u,v,W are chosen uniformly at
random, Fv(X) := F(Xv), and A may not call Fv on gu.

The KREM underlying our Hybrid PRE construction in
Figure 5 is given in Figure 6, cf. Appendix D. It performs the
same operations as the main PRE construction, except it does
not take a plaintext as input, nor does it call the DEM. During
encapsulation it outputs the key K alongside c1.

Theorem 2. Let A be a KREM hrCCA adversary against the
KREM presented in Figure 6, then we construct a gap-SDDH-
RO adversary B such that

AdvKREM(A)≤ Advgap-SDDH-RO(B) , (10)

where if A takes time t, then B takes at most time O(n · t) with
n the number of users.

The proof of Theorem 2 is given in Appendix E.
Next we show that the standard PIN block encryption

scheme (cf. Figure 2 and 3) is a secure DEM. This result
nearly follows from the Encode-then-Encipher paradigm of
Bellare and Rogaway [21], with two main differences: 1) we
must now consider associated data,4 and 2) due to our use
of hybrid encryption, we need only consider one-time use of
the key and cipher. The effect of this last point is that we no

4The encoding scheme for PIN blocks uses the PAN as additional associ-
ated data. For simplicity, we have omitted this from our earlier definitions
but our results would continue to hold with its addition.

12



longer need to consider the collision resistance of the encod-
ing scheme since there will only ever be one encrypt call for
each DEM key.

Theorem 3. EPB’s SE (as defined in Figure 3) is DEM-CCA,
i.e., given a DEM-CCA adversary A, we can construct effi-
cient adversaries B and C (each permitted only one query to
their respective oracle) such that

AdvDEM(A)≤ Advprf(B)+2 ·Advsprp(C)+4 ·δ.

where δ≤ 2−48 for ISO-0 and δ≤ 2−45 for ISO-3 encodings,
and Advprf and Advsprp are the PRF and SPRP advantages
against E as defined in Definition 20 and Definition 21.

This is proven by extension of results by Bellare and Rog-
away [21]. Full details are given in Appendix F.

Finally we apply Theorem 1 and due to hrCCA implying
hrCVA, our construction is secure for our payment setting.

7 Implementation and Evaluation

We study the time overhead (latency and throughput) and the
space overhead of our PRE-based scheme, and compare with
the HSM-based approaches described below.

Deployment. We consider the potential for phased rollout of
the PRE-based scheme, where only a subset of the parties
adopt the PRE scheme while the remaining parties use the
HSM-based approach. Each phase is then a step towards an all
PRE-based deployment. We study the following deployments:

1. All HSM: This is the current deployment where all par-
ties use the HSM-based approach.

2. PoS-MB: This is a phased deployment, where the
PoS performs PRE encryption, gateway performs re-
encryption, and the merchant bank computes the PRE
decryption and 3DES encryption within an HSM — the
network processor and consumer bank perform HSM-
based encryption and decryption operations.

3. PoS-Proc: Similar to PoS-MB, except now the network
processor also migrates to the PRE-based approach.
Specifically, the PoS perform PRE encryption, gateway
performs re-encryption, the merchant bank forwards, and
the network processor computes the PRE decryption and
encryption within an HSM — the consumer bank de-
crypts within an HSM.

4. All PRE: All parties migrate to the PRE-based approach,
where the PoS performs PRE encryption, gateway and
network processors perform re-encryption, and the con-
sumer bank performs PRE decryption (merchant bank
simply forwards).

Setup. We simulate how PIN translation operates in a pay-
ments network by implementing applications for each of the
participants. We implement a mobile PoS application on the

Android platform which receives the user’s PIN and initi-
ates the PIN-based transaction; we deployed our mobile PoS
application on Honor 7X equipped with Android 8.0. We im-
plement web applications for the payment gateway service,
merchant bank, network processor, and consumer bank, all us-
ing dropwizard [38]. The web applications use LevelDB [46]
to efficiently manage re-encryption keys in memory.

In reality, the parties in the payments ecosystem are geo-
graphically distributed and the wide-area network links domi-
nate the latency of the cryptographic operations. To focus on
comparing the latency of the schemes we evaluate the system,
containing the PoS and web applications, on a single machine.
We use a server with 12 physical cores (Intel Xeon E5-2650
V4, 2.2GHz), 128GB memory, and 2.8 TBs of SSD storage.

We implement our PIN translation scheme based on the
hybrid-PRE construction shown in Figure 5 with the DEM
based on standard PIN Block encryption (Section 2.3). The
ISO 8583 [49] messaging standard has fields reserved for
private use [66], which we can use to store the KREM com-
ponent of the PRE ciphertext (i.e., gr in Figure 5) of size 32
bytes — the unmodified DEM component of the ciphertext
uses the same field as used by the current deployment. We
use NIST P-256 curve (secp256r1) [30] with the parameters
recommended by the standard. We implement the scheme in
Java, using the Bouncy Castle API [7].

For performance measurements of deployments with HSMs
at one or more parties (namely, All HSM, Pos-MB, and Pos-
Proc), we provision a Thales payShield 9000 HSM in a re-
stricted network zone, and have the web applications invoke
operations over the network. This emulates typical deploy-
ment of HSMs in payments.

Party All HSM All PRE PoS-MB PoS-Proc

PoS 98 348 348 348
Gateway 920 161 161 161
Mer. Bank 920 — 934 —
Net Proc. 920 161 920 934
Cons. Bank 900 934 900 900

(a) Latency measurements (in microseconds)

Party All HSM All PRE PoS-MB PoS-Proc

Gateway 1086 6240 6240 6240
Mer. Bank 1086 — 1025 —
Net Proc. 1086 6240 1086 1025
Cons. Bank 1110 1025 1110 1110

(b) Throughput (in txs / sec)

Figure 7: Performance Results

Latency. In Figure 7a, we compare the latency of all deploy-
ment approaches. For the All-PRE deployment, the latency
measurement includes the PRE.E operation at the PoS ter-
minal, PRE.RE at the gateway and network processor, and
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PRE.D at the consumer bank (in addition to the PIN verifi-
cation) — the merchant bank simply forwards the incoming
message and has negligible latency. In HSM-based deploy-
ments, we report both the time spent locally within the HSM —
to perform a 3DES decrypt followed by 3DES encrypt — and
the remote invocation over the network from the application.
The latency characteristics in phased deployments depend on
whether the party uses HSM or PRE, i.e., the measurement
is similar to either All-HSM or All-PRE, with the caveat of
the merchant bank in PoS-MB and the network processor
in Pos-Proc — in these two cases, the merchant bank and
the network processor performs PRE decryption and 3DES
encryption within an HSM, thus incurring longer latency.

Apart from the encryption at PoS terminal, we find that the
PRE-based approach provides much lower latency, mainly be-
cause the operation can be executed locally by the application
— the roundtrip for HSM operations incurred approximately
750 µs in our experiments. While PRE-based PIN encryption
is more expensive for the PoS terminal (2 group exponentia-
tions), in comparison with one 3DES encryption, this latency
difference is more than offset by the latency savings at other
parties processing that transaction. Recall that verification at
the consumer bank requires an HSM in both the traditional
and the PRE-based schemes; therefore, the consumer bank’s
latency for all deployments is roughly similar.

Throughput. We measure throughput by launching 100
threads concurrently to generate PIN-based transactions, and
report the results in Figure 7b. Our experiment shows that the
PRE scheme on a commodity server can handle the average
throughput of network processors such as Visa (roughly 5000
txs / sec [6]), and achieves roughly 5× the throughput of a
single HSM that is dedicated to PIN translations. The caveat
is that even the PRE-based approach requires an HSM at the
consumer bank, and therefore shows similar throughput as the
HSM-based approach — while it may appear from this that
the throughput is bounded by the consumer bank in all de-
ployments, we recall that a typical network processor services
thousands of consumer banks and is therefore the bottleneck
for throughput (making our 5x improvement worthwhile).

In both HSM-based and PRE-based systems, throughput
scales linearly with the amount of hardware parallelism. In
practice, HSMs are deployed in a restricted environment, and
the throughput is also bound by network latency; on the other
hand, our PRE-based approach scales better as operations are
invoked locally by the application. It is possible to achieve
desired throughput by deploying multiple HSMs and process
transactions by invoking HSMs concurrently. However, it
would be expensive for gateways and network processors to
procure and manage HSMs. For example, the hourly price
of Amazon CloudHSM [16] is $1.81, 9 times the cost of a
general purpose large Amazon EC2 instance [17] ($0.1984).
Furthermore, private cloud deployments would be more ex-
pensive due to additional operational overheads and the cost
of specialized payment HSMs.

Storage. The network processor (e.g. Visa) endures the
largest, yet practically reasonable storage requirement — in
the worst case, with m merchant banks and n consumer banks,
the network processor must store mn re-encryption keys. For
example, there are approximately 15900 financial institutions
currently active with Visa [6], in which case our scheme
requires approximately 7.5GB of (unprotected) storage as
opposed to approximately 0.48MB of HSM protected mem-
ory. The PoS device requires 32 bytes to store the merchant
bank’s public key. The payment gateway stores a 32 byte re-
encryption key for each merchant bank, and requires roughly
500 KB in the current state of the payments ecosystem. The
merchant bank does not need any storage for key material.
The consumer bank stores a 32 byte decryption key within its
HSM.

8 Related Work

Berkman and Ostrovsky [22] show how anyone with HSM ac-
cess at either the consumer bank or an intermediary can obtain
customer PINs. Mannan and van Oorschot [58, 59] propose
a fix called ‘salted-PIN’ but it requires significant changes
to the payments infrastructure. Steel [70] and Centenaro et
al. [29] formally analyze HSM APIs for PIN verification and
PIN translation to check for vulnerabilities.

Jayasinghe et al. [51] propose several solutions to online
PIN verification which avoid the need for PIN translation and
reduce the trust needed in intermediaries. However, much
like the alternatives we explore in Section 3.3, their proposals
would require significant changes to the payment card and
EMV standard.

Myers and Shull [60] previously studied constructions for
hybrid PRE. Their work focuses on use cases related to key
rotation for cloud outsourced data storage and access con-
trol. In this context Key-scraping attacks are a major concern.
Here, an adversary initially has access to the data and at this
time takes note of the random key encapsulated in the KEM.
Following a key rotation and re-encryption, it is assumed that
the adversary should no longer have access to the plaintext.
However, in the standard approach, re-encryption is only per-
formed on the KEM, leaving the DEM the same even after
re-encryption. This means that an adversary, who previously
recorded the random key held in the KEM, will always be
able to decrypt the “re-encrypted” data.

In our setting key-scraping attacks are not a concern pri-
marily due to the ephemeral nature of the transactions and
the party performing decryption. As mandated by PCI [63],
a fresh random DEM key must be used for each encrypted
PIN block and after verification the encrypted PIN block is
discarded. The only party that decapsulates to obtain the
(ephemeral) DEM key is the consumer bank performing veri-
fication, shortly after which the PIN block is destroyed. For
an adversary to obtain a DEM key at an intermediary earlier
in the transaction would constitute a major attack since that
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implies a compromise of their long-term secret key.

9 Conclusion

In this paper, we study how proxy re-encryption can be used to
reduce the reliance on HSMs for PIN translation in payment
transactions. We introduce a new notion for PRE, namely
Ciphertext-Verification Attack which is weaker than CCA
security but more closely matches the attack model of secure
payments. Our final construction is based on a bidirectional
PRE scheme which can be efficiently realized and makes use
of a hybrid approach to ensure the encryption of the PIN itself
remains backwards compatible with existing PIN blocks.

An extension of our work would perform a complete analy-
sis of authentication by studying PIN verification in conjunc-
tion with EMV cryptogram verification [40]. It also remains
an open problem to construct an efficient multi-hop unidirec-
tional PRE-CVA scheme. Known constructions are based on
lattices [31, 52, 67] or generically from Fully-Homomorphic
Encryption [45], but they incur significant overheads.
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A Derived Ciphertexts

Canetti and Hohenberger’s [27] definition of derived cipher-
texts differs from ours in the fourth condition. Our external
derivation condition states that (i,c) is derived from (i∗,c∗) if

the adversary queries ORKG(i∗, i), or equivalently
ORKG(i, i∗) in the bidirectional case, to get a re-
encryption key from i∗ to i, rki∗→i, and c =
RE(rki∗→i,c∗).

In contrast, Canetti and Hohenberger’s external derivation
condition states that (i,c) is derived from (i∗,c∗) if

the adversary queries ORKG(i, j) or ORKG( j, i) to
get a re-encryption key from i to j, and OD( j,c)
results in a challenge plaintext m0 or m1, then ( j,c)
is a derivative of (i,c′) for all c′.
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Canetti and Hohenberger’s definition is used to deal with the
fact that re-encryption could be randomized, and if the ad-
versary has generated a re-encryption key, then it could use
any randomness it wanted to, to re-encrypt. Using Canetti and
Hohenberger’s external derivation condition, if an adversary
makes a challenge query OChall(i,m0,m1) = c and requests a
re-encryption key from i to j, then any re-encryption of c from
i to j cannot be entered into a decryption query involving j.
Although this prevents trivial wins, it also prevents the adver-
sary from making encryption queries OE(i,m0) or OE(i,m1)
and then requesting the decryption of those ciphertexts, which
should be a harmless operation since OChall(i,m0,m1) should
use independent randomness anyway. It is also for this rea-
son that Canetti and Hohenberger’s CCA definition is not
comparable with Cohen’s HRA definition [34].

Since we are mainly interested in analyzing schemes with
deterministic re-encryption, we adopt a less restrictive exter-
nal condition. Deterministic re-encryption means that each
ciphertext has only one re-encryption per re-encryption key,
therefore it is possible to track the re-encryptions of the chal-
lenge ciphertext, and not exclude harmless encryptions of the
challenge plaintexts.

B Unidirectional PRE based transaction

Here we detail a payment transaction in the case of unidirec-
tional PRE:

1. Using the pkgw provided by the merchant bank/PoS part-
ner, the PoS application invokes PRE.E on the user-
supplied PIN and sends the encrypted pin block to the
payment gateway.

2. The payment gateway uses his key rkgw→mb to invoke
PRE.RE, and send the re-encrypted PIN to the merchant
bank.

3. The merchant bank invokes PRE.RE with the key
rkmb→np, to reencrypt towards the corresponding net-
work processor and sends on the result.

4. The network processor determines the appropriate the
consumer bank that must authorize the transaction. It
then looks up the corresponding re-encryption key and
invokes PRE.RE with the key rknp→cb, and sends the
re-encrypted PIN block to that bank.

5. The consumer bank’s HSM uses the private key skcb
to invoke PRE.D (producing the cleartext PIN within
HSM), and authenticates the PIN based on some addi-
tional secret data needed for PIN verification.

C Surveying Known PRE Schemes

We consider four properties when evaluating PRE schemes
(see Section 4 for definitions of the terms used):

1. whether they are single-hop or multi-hop; our setting
requires PRE schemes which are multi-hop;

2. what security level they offer; known constructions are
either CPA, HRA, or CH-CCA secure;

3. whether they offer unidirectional or bidirectional re-
encryption; although both can be used in the payments
setting, unidirectional PRE schemes simplify the key
setup process;

4. their efficiency; using PRE should not significantly in-
crease transaction latency compared to HSMs, hence
ciphertext size should be small and computationally de-
manding operations avoided.

As single-hop schemes cannot be used in our setting, we
rule out constructions by Atienese et al. [14, 15], Libert and
Vergnaud [55, 56], Chow et al. [32], Kirshanova [52], Phong
et al. [65], Dutta et al. [39], Hanaoka et al. [48], and Weng et
al. [37, 72].

From the multi-hop schemes, we cannot use those which
are only CPA secure, ruling out the constructions by Nuñez,
Agudo, and López [61], Blaze, Bleumer, and Strauss [23],
Polyakov et al. [67], and Borcea et al. [26]. Fan and Liu
(FL) [41, 42] use lattices to build a unidirectional scheme
which is CCA secure, and a CPA-secure multi-hop scheme.

Some have proposed CH-CCA-secure, multi-hop schemes.
Lai et al. [54] construct one based on indistinguishability
obfuscation, a primitive which is not practical, requiring po-
tentially years to evaluate [18] and whose cryptanalysis is
nascent, making it unsuitable to deploy.

Canetti and Hohenberger (CH) [27] use pairings to build a
CH-CCA-secure, multi-hop, bidirectional scheme. They do
not instantiate their scheme, hence we estimate its efficiency
by instantiating its underlying components. The scheme uses
a pairing-friendly curve, a signature scheme, and a hash func-
tion. Let e : G1×G2→GT denote the pairing, then the cipher-
text consists of the verification key of the signature scheme,
two G1 elements, one G2 element, and one GT element.

As signature scheme we take ECDSA [62] with 32 byte
public keys.

Using the 128-bit secure curves recommended by Sakemi
et al. [68], we calculate that ciphertext size with the BN462
curve is 956 bytes, and with the BLS12-381 curve it is 800
bytes. If using supersingular curves, we need GT to be at
least 3072 bits to ensure the finite-field discrete-log problem
is difficult [35] per NIST recommendations [19]; with an
embedding degree of two, this results in a ciphertext of more
than 990 bytes. Given the fact that a typical transaction is
roughly 200-300 bytes long, using CH would at least double
the transaction size, thereby increasing network costs.

The pairing operation with pairing-friendly elliptic curves
is at least an order of magnitude slower than exponentiation on
normal elliptic curves [24,25], which would make PIN transla-
tion significantly slower than an HSM. Overall, the combina-
tion of increased transaction size and computation slowdown
would increase latency and bandwidth requirements, thereby
making CH an unattractive solution in practice.
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D Additional Cryptographic Definitions

Definition 13 (Unidirectional Proxy Re-encryption Scheme).
A Unidirectional Proxy Re-Encryption scheme is a public-
key encryption scheme with re-key generation RKG and re-
encryption RE functionalities. Re-key generation has the fol-
lowing interface:

RKG(ski, pki, pk j)→ rki→ j: on input a source key pair
(ski, pki) and destination public key pk j, RKG outputs a
re-encryption key rki→ j.

Re-encryption has the following interface:

RE(rki→ j,c)→ c′ or ⊥: on input a re-encryption key rki→ j
and a ciphertext c, RE outputs a transformed ciphertext
c′ or error symbol, ⊥.

Definition 14 (KEM Correctness). For all (pk,sk) output by
KG, with probability one it holds that

(c,k) = Encaps(pk) (11)
k = Decaps(sk,c) . (12)

Definition 15 (`-hop KREM Correctness). A KREM scheme
is `-hop correct if it is correct as a KEM and for all possible
(pki,ski) generated by KG for i ≤ i ≤ `+ 1, for all rki→i+1
generated by RKG for 1≤ i≤ `, with probability one it holds
that:

(c1,k) = Encaps(pk1) (13)
ci+1 = ReEncaps(rki→i+1,ci) 1≤ i≤ ` (14)

k = Decaps(sk`+1,c`+1) . (15)

Definition 16 (Multi-hop KREM Correctness). A KREM
scheme is multi-hop correct if it is `-hop correct for all `≥ 1.

Definition 17 (DEM Correctness). A DEM is correct if for all
k output by KG and all messages m, it holds with probability
one that

D(k,E(k,m)) = m . (16)

Definition 18 (KEM CCA Advantage). Consider a KEM
(KG,Encaps,Decaps), then the CCA advantage of an adver-
sary A is

Adv(A) := ∆
A

(
pk,c,k,Decapssk ; pk,c,k′,Decapssk

)
, (17)

where (pk,sk)← KG, (c,k)← Encaps(pk), k′ is chosen uni-
formly from all strings of length |k|, and A may not input c to
its Decapssk oracle.

Definition 19 (KREM-hrCCA Advantage). Con-
sider a key re-encapsulation mechanism KREM :=
(KG,Encaps,Decaps,RKG,ReEncaps). Let A be an ad-
versary playing game Gb denoting an execution of the

FIGURE 8: KREM-HRCCA GAME ORACLES

1: function ORKG(i, j) . ReKey Generation
2: if {i, j} 6⊆ H or {i, j} 6⊆C then return ⊥
3: return rki→ j

4: function OChall(i) . Challenge
5: if i 6∈ H then return ⊥
6: (c,K0)← KREM.Encaps(pki)

7: K1
$←{0,1}|K0|

8: return (c,Kb)

9: function OEncaps(i) . Encapsulation
10: return KREM.Encaps(pki)

11: function OReEncaps(i, j,c) . HRA Re-encaps.
12: if c 6∈ D∗∪D, or c ∈ D∗ and j ∈C then
13: return ⊥
14: return KREM.ReEncaps(rki→ j,c)

15: function ODecaps(i,c) . Decapsulation
16: if c ∈ D∗ then return ⊥
17: return KREM.Decaps(ski,c)

KREM-hrCCA game defined below, with bit b set to either 0
or 1. Then A’s KREM-hrCCA advantage is defined as

AdvKREM(A) := ∆
A
(G0 ; G1) . (18)

The KREM-hrCCA security games Gb (for b ∈ {0,1}) are
played in two phases as follows:

Setup: Run the KREM setup and give the public parameters
generated to the adversary. The adversary returns n, H,
and C, representing the total number of parties, the set of
honest parties, and corrupt parties, respectively. Generate n
keypairs (pki,ski) with KG, and divide the indices among the
sets H and C. For all i ∈ H give the adversary pki and for all
i ∈C give the adversary (pki,ski).

Attack: For all i, j ≤ n, i 6= j, compute the re-encryption key
rki→ j using RKG. We let D∗ denote the set of ciphertexts
which are derived from the challenge ciphertext (cf. Defini-
tion 6); D∗ = /0 before the challenge oracle is queried. Simi-
larly, we let D denote the set of ciphertexts which are derived
from any encapsulation oracle output. The adversary A is
given access to the oracles as specified in Figure 8, where A
may query OChall at most once. At the end of the attack phase
the adversary outputs a guess b′.

A family of function is a map E : K ×M → C . If K ∈K ,
then we denote the corresponding instance as EK(·) (and
inverse function DK(·)). We assume that |EK(M)| = l(|M|)
for some length function l(·). Let Rand(M , l) be the set of
all functions mapping strings in M to random l-bit strings.
Let Perm(M ) be the set of all length-preserving, one-to-one
and onto functions on M .
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Definition 20 (Pseudorandom Function/Permutation
(PRF/PRP) Family). Let A be a distinguisher with access to
an oracle. If E : K ×M → C is a function family with length
function l, the advantage of the distinguisher is defined as:

Advprf(A) := ∆
A
(EK ; f ) ,

Advprp(A) := ∆
A
(EK ; π) ,

where K $←K , f $← Rand(M , l) and π
$← Perm(M ).

Definition 21 (Strong Pseudorandom Permutation (SPRP)
Family). Let A be a distinguisher with access to an oracle. If
E : K ×M → C is a PRP with length function l, the advan-
tage of the distinguisher is defined as:

Advsprp(A) := ∆
A

(
EK ,DK ; π,π−1) ,

where K $←K and π
$← Perm(M ).

E Proof of Theorem 2

Recall that an adversary B’s advantage in playing the gap-
SDDH-RO game is

∆
B

(
F,Fv,gu,gv,g1/v,F(guv) ; F,Fv,gu,gv,g1/v,W

)
. (19)

We construct gap-SDDH-RO adversary B as follows.

1. B is given gu,gv,g1/v,W,Fv, where W is either F(guv) or
chosen uniformly at random.

2. B runs A and the setup procedure for the KREM hrCCA
game as follows. A gives B two disjoint subsets of
{1, . . . ,n}, H and C, representing the honest and corrupt
users, respectively. For i ∈C, B generates independent
keys (pki,ski) using KREM.KG. For i ∈ H, B generates
uniform random values ri. The adversary B gives A
pki = (gv)ri = gvri for i ∈ H, and (pki,ski) for i ∈C.

3. B initiates A’s attack phase, and responds to A oracle
queries as specified in Figure 9; if A makes a query to
the random oracle, then B just forwards the query to
its own random oracle F; B uses variables which are
initialized as follows:

(a) the table of rekeys computed for A, RK[·, ·], is ini-
tialized to ⊥ for all i, j,

(b) the ChallC variable, which keeps track of the output
of A’s single challenge query, is initialized to ⊥,
and

(c) the mapping R[·, ·], is initialized to ⊥ everywhere;
it represents the mapping from tuples (i,c) with
i ∈ {1, . . . ,n} and c a ciphertext to tuples (i′,r),
where i′ is the identity of the user that did the initial
encapsulation and r the random value used during
the initial encapsulation, .

We argue below that B simulates A’s KREM-hrCCA game
perfectly. Since the output of the challenge query includes
W , which is either F(guv) or uniform random, if A wins —
meaning it correctly guesses the bit b — then B wins its game.

The adversary B generates keys for the corrupt users as
done by the KREM-hrCCA game. The honest keys that B
generates are of the form gvri , which are distributed uniformly
since the ri are chosen uniformly at random. Hence B’s setup
procedure for A operates as the KREM-hrCCA’s setup proce-
dure.

We argue that each oracle that B simulates behaves as it
would in the KREM-hrCCA game, assuming the secret keys
of the honest users’ keys are vri:

1. ORKG(i, j): if both (i, j) are corrupt then B operates
normally; if both (i, j) are honest, then their rekey is
(vri)/(vr j) = ri/r j, hence B returns the correct rekey.

2. OChall(i): since u is chosen uniformly at random, u/ri
is distributed uniformly at random as well. Setting
r := u/ri, and interpreting r to be the randomness nor-
mally chosen during a challenge query, we see that gr is
returned along with W . The value W is either uniform
random, or

F(guv) = F
(
(gvri)u/ri

)
= F (pkr

i ) . (20)

3. OEncaps(i): encapsulation is the same as in the KREM-
hrCCA game.

4. OReEncaps(i, j,c): re-encapsulation starts by running the
isDerived procedure, to determine whether (i,c) is de-
rived from either the challenge ciphertext or some prior
OEncaps output. If isDerived works as intended, then it
should output ⊥ if (i,c) is not derived from either the
challenge ciphertext or a prior OEncaps output, and oth-
erwise isDerived outputs (i∗,r), where i is the OChall or
OEncaps input from which (i,c) is derived, and r is the
randomness used during that OChall or OEncaps query.

Assume isDerived works as intended. Then if isDerived’s
output is ⊥, (i,c) is neither derived from the challenge
query, nor from an encapsulation query, and so OReEncaps

should output ⊥. Similarly, if j ∈C and i∗ is the input
to the challenge query, i.e. i∗ = ChallC[1], (i, j,c) is an
invalid input to OReEncaps and ⊥ is returned.

Otherwise, re-encapsulation works as in the actual
KREM-hrCCA game. If both i, j are either corrupt or
honest, B can perform the proper re-encapsulation since
it has the correct re-encapsulation keys. If i is corrupt,
and j is honest, then B uses the recovered randomness r
to return

(g1/v)skir/r j = (gr)ski/(vr j) = (gr)ski/sk j = (gr)rki→ j .
(21)
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FIGURE 9: THE ORACLES SIMULATED BY B

1: function ORKG(i, j) . ReKey Generation
2: if {i, j} 6⊆ H or {i, j} 6⊆C then return ⊥
3: else if {i, j} ⊆C then
4: rk← KREM.RKG((pki,ski),(pk j,sk j))
5: else if {i, j} ⊆ H then
6: rk← ri/r j

7: RK[i, j]← rk
8: RK[ j, i]← 1/rk
9: return rk

10: function OChall(i) . Challenge
11: if i 6∈ H then return ⊥
12: ChallC← (i,(gu)1/ri); R[i,(gu)1/ri ]← (i,∗)
13: return ((gu)1/ri ,W )

14: function OEncaps(i) . Encapsulation

15: r $← Z∗q; c← gr; R[i,c]← (i,r)
16: return (c,F(pkr

i ))

17: function OReEncaps(i, j,c) . Re-encapsulation
18: x← ISDERIVED(i,c)
19: if x =⊥ then return ⊥
20: (i∗,r)← x
21: if j ∈C and i∗ = ChallC[1] then return ⊥
22: if {i, j} ⊆C then

23: y← KREM.ReEncaps(ski/sk j,c)
24: else if {i, j} ⊆ H then
25: y← KREM.ReEncaps(ri/r j,c)
26: else if i ∈C, j ∈ H then
27: y← (g1/v)ski∗r/r j

28: else if i ∈ H, j ∈C then
29: y← (gv)rri∗/sk j

30: R[ j,y] = R[i,c]
31: return y

32: function ODecaps(i,c) . Decapsulation
33: x← ISDERIVED(i,c)
34: if x =⊥ then return ⊥
35: (i∗,r)← x
36: if i∗ = ChallC[1] then return ⊥
37: if i ∈ H then
38: return Fv(cri)

39: return KREM.Decaps(ski,c)

40: function ISDERIVED(i,c)
41: if R[i,c] 6=⊥ then return R[i,c]
42: for all j where RK[i, j] 6=⊥ do
43: if R[ j,cRK[i, j]] 6=⊥ then
44: R[i,c] = R[ j,cRK[i, j]]

45: return R[i,c]

The adversary B performs a similar computation if i is
honest and j is corrupt.

We argue that isDerived works as intended. The is-
Derived procedure outputs either ⊥ or a tuple. If is-
Derived outputs ⊥, then R[i,c] =⊥. If R[i,c] =⊥, then

(a) there was no prior OChall(i) or OEncaps(i) query
with c as the left half of the output, and

(b) there was no prior OReEncaps(i′, i,c′) = c query, and

(c) either RK[i, j] = ⊥ for all j, meaning A never
queried ORKG( j, i) or ORKG(i, j), or
there is some j such that RK[i, j] 6= ⊥, but
R[ j,cRK[i, j]] =⊥.

Continuing the same reasoning by induction on
( j,cRK[i, j]), we conclude that (i,c) could not have been
derived from either a challenge or an encapsulation
query.

Conversely, say that isDerived outputs (i∗,r) = R[i,c] 6=
⊥. Then R[i,c] could have been set during an OChall(i) or
OEncaps(i) query, or it could have been set at line 30 of
Figure 9 during a OReEncaps(i, j,c). In those cases (i,c)
is the result of a challenge or encapsulation query, or
re-encapsulation of another ciphertext (i∗,c∗) for which
R[i∗,c∗] 6=⊥. The value R[i,c] also could have been set

during the loop in the isDerived call, which searches for
all rekeys for which A has queried ORKG, and (i,c) is a
re-encapsulation of some other ciphertext for which R
is not ⊥. Hence we conclude that if (i∗,r) is output by
isDerived, then (i,c) is derived from either an encapsula-
tion query or a challenge query. Furthermore, following
the code, we see that i∗ is the input to the encapsulation
or challenge query, and r is the randomness used.

5. ODecaps(i,c): following the discussion above, we know
that isDerived works as intended. Therefore B detects
whether (i,c) is derived from the challenge ciphertext
and returns⊥ if that is the case. Otherwise, if i is corrupt,
it can de-encapsulate as normal, and if i is honest, it
can de-encapsulate using Fv. Note that (i,c) does not
need to be derived from an encapsulation query during a
decapsulation query.

F Proof of Theorem 3

In this section we prove that the EPB defined in Figure 2 and
3 is a secure DEM. Our proof relies on the results of Bellare
and Rogaway [21] which formalize the Encode-then-Encipher
paradigm. We begin be recalling two definitions from Bellare
and Rogaway’s paper which define properties of encoding
schemes.
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An encoding scheme ES = (encode,decode) maps be-
tween a message space M and an encoded message space
M ∗. The function decode on input M∗ will either return
M ∈ M or the symbol ⊥ if an invalid message is submit-
ted. We require that for an encoding scheme to be correct
decode(encode(M)) = M for any M ∈M .

Definition 22 (Rare-Collision Encodings). An encoding
scheme ES = (encode,decode) is ε-colliding if for any ad-
versary A making q queries, the probability that two queries
create the same valid response is ε(q).

Definition 23 (Sparse Encodings). An encoding scheme ES=
(encode,decode) is δ-dense if for all n ∈ N,

P
[
M∗ $←{0,1}n : decode(M∗) ∈M

]
≤ δ.

Proof. In order to prove that the symmetric encryption
scheme SE of Figure 3 is a secure DEM we must show it
satisfies Definition 11, recall that the adversary is only per-
mitted one query to the encryption oracle. By the result of
Bellare and Namprempre [20, Theorem 3.2] we know that
a scheme which is both IND-CPA and INT-CTXT secure is
a CCA secure, we refer the reader to the original paper of
Bellare and Namprempre for the definitions and proof.

Next we use the results of Bellare and Rogaway [21, Theo-
rems 4.1 and 4.2]. First let us consider the IND-CPA security.
Here by Bellare and Rogaway’s first result we have that:

Advind−cpaSE (A′)≤ Advprf(B)+ ε(q),

since for a DEM we only consider q = 1, i.e. only a single
oracle call is permitted, we have that:

Advind−cpa
SE (A′)≤ Advprf(B)+ ε(1) = Advprf(B).

By making only one query there is never any chance of a
collision. Thus if F is a PRF we achieve IND-CPA security.

Next consider the INT-CTXT security. Here by Bellare and
Rogaway’s second result we have that for q≤ 1

2δ
:

Advint−ctxtSE (A′′)≤ Advsprp(C)+2δ.

It then remains to bound δ for the ISO-0 and ISO-3 encoding
schemes as defined in Figure 2. Note that in Bellare and
Rogaway’s original definition of an encoding scheme there is
only one input to the encode function. For the definition of
ISO-0 and ISO-3 we take two inputs, the PAN and the PIN.
However, we can view the PAN as associated data since it is
also sent separately to encoded/encrypted PIN and is required
as an additional input to the decode function. This allows us
to view the PAN as a fixed masked applied by the encoding
scheme. As a result we directly apply the result of Bellare and
Rogaway by purely focusing on the δ-density of the encoding
of the plaintext PIN field.

For ISO-0 and ISO-3 (due to our application we assume a
PIN length of 4 is mandated), the probability that a randomly

chosen string has a valid control field is 1/24, a valid PIN
length is 1/24 and a valid PIN digit is 10/24. For ISO-0 the
probably of having a valid fill digit is 1/24 and for ISO-3 it is
6/24. We therefore obtain the following bounds:

δISO−0 =
1
24 ·

1
24 ·

(
10
24

)4

·
(

1
24

)10

=
54

260 ≤ 2−48,

δISO−3 =
1
24 ·

1
24 ·

(
10
24

)4

·
(

6
24

)10

=
54 ·3
259 ≤ 2−45.

Therefore SE is secure in the sense of INT-CTXT assuming
that F is a SPRP.

By applying the result of Bellare and Namprempre [20,
Theorem 3.2] we achieve DEM-CCA security.
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