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ABSTRACT
Timed-release encryption (TRE) is a prominent distributed way

for sending messages to the future. Beyond its applications to e-

voting and auctions, TRE can be easily generalized to a threshold

information escrow (TIE) service, where a user can encrypt her

message to any condition instead of just expiration of time as in TRE.

Nevertheless, TRE and by extension TIE realized using threshold es-

crow agents is vulnerable to premature, selective, and undetectable

unlocking of messages through collusion among curious agents

offering the service. This work presents a novel provably secure

TIE scheme where any collusion attempt among the escrow agents

offering the service towards premature decryption results in penal-

ization through a loss of cryptocurrency and getting banned from

the system.

The proposed collusion-deterrent escrow (CDE) scheme intro-

duces a novel incentive-penalty mechanism using a user-induced in-

formation asymmetry among the agents such that they stay honest

until the user-specified condition for decryption is met. In particular,

each agent makes an escrow deposit before the start of the protocol

such that the cryptocurrency deposit amount is transferred back to

the agent when the condition specified by the user is met or can

be transferred by anyone who holds the secret key corresponding

to the public key of the protocol instance. CDE offers information

escrow as a service and ensures that whenever the agents collude

to decrypt the user data before the condition is met, there would be

at least one whistle-blower agent who can withdraw/transfer the

deposits of all other agents thereby penalizing them. We analyse

the CDE protocol and model collusion as a game induced among ra-

tional agents offering the service and show in game-theoretic terms

that the agents do not collude at equilibrium. We also present a

prototype implementation of the CDE protocol and demonstrate its

efficiency towards use in practice. We find this work to be an impor-

tant step towards weakening the strong non-collusion assumptions

across multi-party computation applications.

1 INTRODUCTION
Timed-release encryption (TRE) [25, 30, 55, 63] involves encrypting

a message for a specific time period such that the message cannot

be retrieved before the period ends. TRE allows sending messages

“to the future”, and has been found to be useful in different scenarios

including e-voting [23], sealed-bid auctions [22] and client puzzles

in the challenge-response systems [36]. In the cryptographic litera-

ture, the two prominent ways of implementing a TRE scheme are

time-lock puzzles and distributed/threshold escrows.

In (computation-based) time-lock puzzles [14, 54, 63], a pre-

defined number of computation steps need to be performed to

solve the puzzle and obtain a secret. Here, the puzzle creator is

expected to estimate the required time-release period in the form

of the number of computation steps. However, time-lock puzzles

suffer from the fact that the expected time of computation need

not remain the same into the future owing to various factors like

computational and technological advancements and evolving ad-

versary. Indeed, Rivest’s time-lock puzzle LCS35 [64] has been an

overestimation [40] and got solved 15 years before the expected

time recently by an architect called Frank Gehry [4]. In TRE based

on distributed/threshold escrow [15, 24, 25, 30, 60, 63, 71], the in-

put message is shared among a group of agents through a suitable

distributed cryptographic protocol such that a threshold number

of agents are expected to combine their shares to open the mes-

sage when the timed-release period expires. Here, the secrecy of

the message is maintained before the timed-release condition is

met as long as a lower than the threshold number of agents get

compromised. While this threshold-bounded adversary assumption

looks reasonable for many applications of distributed cryptography

(e.g., Random Beacon protocols [1], threshold signatures wallets),

it is indeed a strong assumption for TRE given the longevity of its

usages, possibly spanning years.

TRE can be generalized to even wider applications: Instead

of encrypting the data until a time period expires, the user can

encrypt data until a certain ‘condition’ is met. This condition can

be anything of user’s choice, for example, the value of shares of a

certain company hitting a certain value, temperatures rising to a

certain level to release funds for environmental programs, allegation

escrows [8, 47, 61] etc. When the encryption is to a certain general

condition, we call it threshold information escrow (TIE) [9], making

TRE a special case of TIE. As we see later (expanded in Section 3.3),

this condition can be anything that can be checked by a program (or

smart contract). Offering information escrows, especially software

escrows is a prevalent practice in the industry with companies

like Escrowtech [2], Iron Mountain [3] providing software escrow

services to technological companies which routinely appear in

Fortune 500 list. However, firms offering the service act as trusted

third parties for the service.

Unlike most other applications of threshold cryptography [16,

29, 31], for TIE, the trust of the distributed (escrow) agents may

have to last for several years. If the escrow agents running a TIE

service decide to collude and selectively open a message from a

particular user, they can do it passively in an undetectable manner

and without affecting the secrecy of others’ messages. Maintaining

the non-collusion assumption among escrow agents continuously
over a long duration of time is indeed a challenge. As the agents

may collude among themselves in an undetectable manner, it is

difficult if not impossible to prevent such a collusion in longevity;

unless the protocol design itself makes collusion non-profitable. In

this work, we aim to design such a protocol where the best strategy

for any rational agent is to not collude.

Contributions. In the form of collusion deterrent escrow (CDE),

this work offers a novel solution direction and a provably secure

protocol to address the longitudinal trust issue with threshold in-

formation escrows. If more than a threshold number of escrow
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agents collude to open some particular locked message from a

user (say Alice), the proposed distributed protocol ensures that

the locked deposits of the agents get released to an anonymous

subset of agents (among the colluding agents) prescribed by Alice.

Thus, the protocol dis-incentivizes collusion, the agents will not

attempt to collude to open any user message for the fear of losing

their deposits and getting banned from offering any future services.

Non-collusion assumption is extremely prevalent in the distributed

cryptographic literature [15, 24, 37, 38, 59, 71] and overcoming it

has been a significant barrier for the community for a long time.

To the best of our knowledge, this is the first work where collu-

sion among the multi-party computation agents is being addressed

though dis-incentivizing the agents instead of just binding them

with the non-collusion assumption.
It is typically assumed that out of n agents, a maximum of t

agents can be corrupted who can act maliciously while the other

n−t are honest and follow the protocol without collusion. However,

in this work, we let all the agents be rational rather than honest,

allowing collusions. They act only to maximize their utilities. The t
corrupted parties can deviate arbitrarily from the protocol. Through

game-theoretic analysis we show that with the proposed mecha-

nism, offering the encryption service in a non-collusive manner is

the best response strategy of the agents.

We define our collusion deterrent escrow concept as an ideal

functionality FCDE ; towards realizing it, we propose a crypto-

graphic primitive called distributed receiver oblivious transfer (DROT).

DROT is a distributed version of the two party oblivious transfer

[31] protocol, where multiple receivers share the choice bit in a

threshold manner. Our CDE protocol employs a novel combination

of DROT, robust bit watermarking, distributed key generation, and

secure bit decomposition to securely realize FCDE . The protocol

supports any condition that can be checked through a cryptocur-

rency smart contract (even through interaction with real world) as

a condition of data release in the protocol.

We provide an implementation of the CDE protocol using

SCALE-MAMBA [26] and HoneybadgerMPC [52] frameworks. Our

prototype implementation shows that the system realizing the CDE

takes less than a minute to setup and ∼ 120 milliseconds of interac-

tion to transfer key shares to the agents offering the service.

1.1 Organization of the paper
Section 2 describes the system setup, problem definition and gives

an overview of the solution. Section 3 introduces the different multi-

party computation modules,robust watermarking, and a claim-or-

refund smart contract required to realize the collusion deterrent

escrow (CDE) protocol. Section 4 describes the different steps and

algorithms of the proposed CDE protocol, and Section 5 models the

CDE protocol as a mechanism inducing a game among the agents

to show that the agents do not collude while playing their best

response strategies. Section 6 offers the security definition, Section

7 provides the implementation details and the various times taken

for different steps of the protocol. The related work and conclusion

are discussed in sections 8, 9.

2 SYSTEM SETUP AND SOLUTION
OVERVIEW

2.1 System Setup
The system consists of n agents who offer the information escrow

service and a user engaging the service, in a multi-party compu-

tation (MPC) setting. All the communication is over secure and

authenticated channels. We consider a mixed-behaviour model [53]

where the agents are either rational or malicious, the rational agents
aim to maximize their utility at any given point of time, the ma-

licious ones can deviate from the protocol arbitrarily. However,

no more than t agents can be malicious at any time. The agents

are associated with fixed identities (typically connected with real

world identities), the user verifies the identities of the agents before

engaging the service.

Adversary Model. We consider a t−bounded adversary under a

static corruption setting. Up-to t of n parties can be corrupted before

the start of the protocol and the corrupted parties remain corrupted

throughout the protocol. We consider a malicious adversary who

can make the corrupted parties deviate arbitrarily from the protocol.

However, any number of parties among the n parties can collude.1

Problem Definition. The user has a secret message that she

wishes to encrypt to a certain condition and n agents offer the

information escrow service. Each of the agents makes a cryptocur-

rency deposit to the public key pk of the protocol instance, with

an embedded condition in the smart contract such that the funds

can be transferred when the user-specified condition is met or with

the associated secret key sk . The user requires that her secret in-
formation would not be revealed before the condition is met. The

agents can collaborate to selectively open the user message at any
point of time; however, if the agents open the message, the system

should ensure that all the agents’ deposits are available to a subset
of agents. This subset is chosen by the user at the time of using

the service. Within this setting, we wish to achieve the following

security and privacy goals:

• Privacy : No secret information can be retrieved from the system

unless more than a threshold number of agents collaborate.

• Correctness : Any secret message can be retrieved if more than

threshold number of agents collaborate (even before the user

specified condition is met).

• Revealing : If the data of a user is decrypted, all other secret

information of the protocol will be available to a certain subset

of agents chosen by the user.

Notation: Secret key sk corresponds to public key pk , we de-

note the jth bit of key sk as skj , a share of a secret key sk as [sk]

and the vector of all the such shares as ⟨[sk]⟩. [sk]i indicates the i
th

share of sk . An (n, t + 1) threshold secret sharing requires at-least

t + 2 agents to reconstruct the secret.

2.2 Key Idea
The solution is based on a multi-agent model, where the agents offer

the information escrow service for a condition (eg: time period)

τ . A public key - secret key pair (pk, sk )τ is associated with the

1
Protocols secure against static adversary can be made secure against adaptive adver-

sary using standard techniques [19, 43].
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condition, corresponding to which the documents of the user are

encrypted. Each secret key sk2 is (n, t + 1) secret-shared among

the agents, where at-least t + 2 agents are needed to reconstruct

the secret. The solution involves a multi-party computation among

the agents and the user such that the user transfers a copy of

the document to the agents, watermarked with the secret key sk ,
corresponding to pk used for encryption. None of the agents or

the user knows the watermark of the transferred document and

hence have no information about the secret key sk , unless at-least
t + 2 agents collaborate. If they indeed collaborate and decrypt the

document, the watermark of the document would reveal the secret

key. The secret key is revealed to a subset of agents who can detect

the watermark, the user chooses this subset and provides them with

the detection key.

Before interacting with the user, all the agents make a claim-

or-refund crypto-currency deposit to an address associated with

pk with a user-defined condition such the funds can be transferred

before the condition is met using sk or the funds return to the

respective agents after the expiry of the condition. If the agents

collude to reveal the user document, any agent with access to the

detection key forwarded by the user can read the watermark sk
and transfer all the deposits of other agents including his own. In

case the deposits are transferred (visible publicly on the blockchain)

before the condition is met, all the agents except the transferring
agent are banned from offering any future service. Since the agents

do not have information on which agent has access to the correct

detection key, no agent attempts to collude for the fear of losing

the deposit and getting banned from the system; the best response-

strategy of the agents is to not-collude (refer Section 5 for further

details). Figure 1 depicts the three steps of making conditional

deposit, document transfer from the user, and agents attempting

collusion attack with one of the agents with watermarking key

transferring the deposits of all agents to himself.

2.3 Protocol Overview
At the beginning of the protocol, the agents run a distributed key

generation (DKG) scheme [37] to generate a public key pk and the

(n, t + 1) threshold secret shares [sk] of the corresponding secret
key sk , with each agent Ai , 1 ≤ i ≤ n receiving the share [sk]i .
The agents run a secure bit decomposition (MPC) protocol on the

secret shares to obtain the shares of the bits of the secret key sk i.e.,

each agent Ai will have a secret share of the bit skj , 0 ≤ j ≤ κ − 1

(skj is the j
th

bit of the κ-bit secret key sk), denoted by [skj ]i . A
public server or public bulletin board is available to all the users

and agents where they store non-secret information and different

encryptions whenever needed. The public key pk is stored on the

server, each agent Ai , 1 ≤ i ≤ n makes a crypto-currency claim-

or-refund deposit using a smart contract to the address associated

with pk with the condition τ embedded in it such that the deposit

can be transferred if the condition is met or by anyone with the

key sk .

Document transfer. When the user wants to use the IE service

for the messagem, she splits the message/document into κ parts (κ
is the bit length of secret key sk) and watermarks each part with

robust bit watermarking to generate two versions of each part. For

2
for ease of exposition, we drop the index τ further.

Agents perform DKG to
generate shares of 

Agents make conditional
deposit to

User transfers encrypted document
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key reads       and

transfers whole deposit

Agents perform
selective open 

 

Step1: Deposit

Step2: Document Transfer

Step3: Collusion attack and deposit transfer

Figure 1: Steps involved in the collusion deterrent escrow
mechanism

each partmk , 0 ≤ k ≤ κ − 1, she obtains two watermarked parts

(mk,0,mk,1)withwatermarks corresponding to bit 0 and 1. She then

symmetric-key encrypts all the partsmk, ℓ , 0 ≤ k ≤ κ − 1, ℓ ∈ {0, 1}
using randomly sampled keys kk, ℓ to obtain the ciphertexts ck, ℓ .
She performs 2−party computation with each of the servers such

that each agent obtain shares of key kk,skk = k0+(k1−k0)[skk ];k ∈
{0, 1, · · ·κ − 1} (Refer Section 4.2 for details). Note that the equation

is a representation of oblivious transfer functionality but with a

share value instead of choice bit. This functionality is realized by

running a version of oblivious transfer protocol where the input of

the agent is share of the secret key bit [skk ] and the input of the user
is the key pair (k0, k1). The user runsκ such computationswith each

server such that the servers obtain key shares for κ document parts.

The ciphertexts ck, ℓ are published and so are available to all the

agents. When the agents collaborate, they can reconstruct the keys

kk,skk and decrypt the corresponding ciphertexts ck,skk . However,
even through collaboration they will not be able to decrypt the

ciphertexts ck,1−skk . The transfer of the document from the user

to the agents is depicted in Figure 2.
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Figure 2: Watermarking the document blocks and transfer-
ring to the agents

The aim of the user is to transfer an encrypted version of

each document part such that the transferred part is watermarked

with a secret key bit that is shared among all the agents. If the

encrypted document part is decrypted, the decrypted part would

reveal a secret key bit to whoever can read the watermark. At a

later point of time, when the agents decrypt the encryption ck,skk
of the watermarked messagemk,skk , the detection key would be

necessary to detect the watermark. The user forwards this detection

key to a subset of agents of her choice as soon as she watermarks

the message parts. Once the transfer of the keys and the two-party

computation with each of the servers is performed, the interactive

part of the user is complete. During the transfer, the agents prove

in zero-knowledge to the user that the input share of each agent is

indeed the share obtained by bit-wise sharing of the secret-key.

When the condition is met (e.g.: time period expires), the

agents can come together and reconstruct the keys kk,skk , 0 ≤ k ≤
κ − 1 by combining the shares [kk,skk ]. The cipher texts ck,skk , 0 ≤
k ≤ κ − 1 are decrypted using the reconstructed keys to reveal the

message partsmk,skk . All the revealed message parts are combined

to form a watermarked versionm′ of the message/documentm.

Collusion and Key revelation. The agents may decide to collude

and decrypt the messagem by reconstructing the keys k( ·, ·) even
before the user condition is met. However, the decrypted message

version m′ would contain the secret key sk as watermark. The

two-party computation of oblivious transfer functionality ensures

that each version of the message part that can be decrypted by the

agents contains the secret key bit skk as watermark. When all the

watermarked bits are read from the message parts, the secret key

is revealed. Any agent who has access to the watermark detection

key can read the secret key sk (and any information encrypted

to the public key pk) and transfer all the deposits to an address

of his choice. This is the revealing and penalizing property of the

protocol. When the funds are publicly transferred on the blockchain

before the user condition is met, all the agents except the agent

who performed the transfer are banned from the system.

In case the agents try to attack by removing the watermark

in the received documents, the robustness of the watermarking

ensures that when the agents try to remove the watermark, the

data itself is damaged or rendered useless. This is the property

which necessitates the use of robust binary watermarking in our

protocol.

With the penalizing and banning policy of the protocol, no

rational agent would attempt to collude for the fear of loss of deposit

and future service offering. As will be shown in Section 5, in the

game induced by the protocol the equilibrium strategy of rational

agents is to not collude. The threshold requirement of t + 1 where
t + 2 agents are needed from reconstruction follows from the game

theoretic analysis in Section 5. The threshold of t + 1 prevents the
adversary from publishing t shares and influencing the equilibrium
in the game. In the event of collusion among the agents, even if

the agents agree not to transfer the deposit after collusion, any of

the agents can unilaterally deviate from such an agreement and

increase his pay-off by trying to transfer the deposit. Thus agents

inevitably transfer the deposit (and act as whistle-blower) after

collusion. This is further expanded in Section 5.2.

3 FUNCTIONAL BLOCKS
The basic building blocks that the proposed Collusion Deterrent

Escrow protocol employs are described below.

3.1 Multi-party computation
Secure multi-party computation (MPC) [10, 26, 52, 58] is an ap-

proach allowing mutually distrusting parties to collaboratively com-

pute some functions with their private input. We use MPC modules

for distributed key-generation, bit-decomposition and two-party

computation between user and each of the agents. We follow the

standard online/offlineMPC paradigm such that an offline phase can

be leveraged to generate input-independent pre-processed values.

These values are used in the online phase to speed up the com-

putations where the actual input is involved. For instance, Beaver

triples [11] are used to multiply two secret shares.

Distributed key generation (DKG). A (n, t + 1) DKG [37, 59]

mechanism allows n parties to generate a public key and shares of

the corresponding secret key in a distributed manner. At the end

of the generation phase, each node has a share of the secret key

sk and at-least t + 2 parties are needed to reconstruct the key. No

subset of parties with size less than t + 2 has any knowledge of it.

A DKG mechanism is defined by two phases, the sharing phase at

the end of which every party holds a share ski of the key sk , and
the reconstruction phase involving every node broadcasting their

share and running the reconstruction algorithm on the collected

shares. The two algorithms for share generation and reconstruction

are:

• dkg.share(n, t ,κ) takes in the total number of parties n, the
threshold t+1, the security parameterκ and returns to each party

i , a share of secret key [sk]i and the public key pk corresponding

to sk .
• dkg.recon⟨[sk]i ⟩ takes in the vector of shares with at least t + 2

valid shares and returns the reconstructed value sk .

Bit Decomposition. A bit decomposition protocol [21, 66, 69]

takes a secret share as input and transforms the share into bit-wise

shared values i.e., for a value sk , upon input of all the shares ⟨[sk]⟩,
the protocol outputs the shares ⟨[ski ]⟩, where ski , 0 ≤ i ≤ κ − 1 are
the bits of the value sk . It is defined by two algorithms:
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• bit.decomp(n, ⟨[sk]⟩) takes in the total number of users and the

shares of the secret key sk and returns the vectors ⟨[ski ]⟩ of
shares of the bits of the secret key.

• bit.recon⟨[ski ]⟩ takes in the vector of shares of a particular bit

and returns the reconstructed bit ski .

3.2 Robust Bit Watermarking
A robust watermarking scheme is defined by the property that the

watermark can not be removed without loss of information from

the watermarked data. The watermarking scheme is defined by

three algorithms, one each for key generation, embedding the wa-

termark and detection of the watermark.M is the set of all possible

documents,WM ∈ {0, 1} the set of all possible watermarks, K

is the set of all keys and κ is the security parameter. The three

algorithms define the scheme:

• wm.gen (κ): Given κ, outputs keys kemd ,kdet ∈ K probabilisti-

cally.

• wm.embed (M,w,kemd ): Takes the document M , watermark

w ∈ WM and embedding key kemd as inputs and generates a

watermarked documentM ′.
• wm.detect (M ′,kdet ,w ): Takes the watermarked documentM ′,

the detection key kdet and the watermarkw as input and outputs

⊤ if the watermark inM ′ matchesw , else outputs ⊥.

The watermarking scheme is expected to satisfy the properties

of imperceptibility and robustness. To describe the properties, we

adapt the watermarking definition suggested by Adelsbach et al. [5].
We assume a given similarity function sim(M,M ′) which returns

⊥ if the two documentsM andM ′ are not similar and ⊤ if they are.

• Imperceptibility: The watermarked and the original versions

of the document should be similar i.e., ∀M ∈ M,∀kemd ∈

K and ∀w ∈ WM, if wm.embed(M,w,kemd ) → M ′, then
sim(M,M ′) = ⊤.

• Robustness: No known algorithm [65] should be able to effec-

tively change or remove the watermark in the watermarked

document without leaving the document itself unusable, even

with the detection key.

The CDE protocol uses a robust watermarking scheme to water-

mark either the bit 0 or bit 1. The actual watermarking scheme

varies depending on the type of the data being watermarked. While

theoretically an algorithm may exist which can remove the water-

mark from the data, we just require that such an algorithm should

not be available or known to humans; this approach was formalized

as one having explicit-reduction in the work by Rogaway[65].

3.3 Claim-or-refund deposit
A claim-or-refund escrow deposit involves a deposit which can be

claimed when possession of certain information like secret keys is

proven or is returned to the creator upon the embedded condition

being satisfied. In a timed-release scenario with a time-lock deposit,

any party which produces the valid signature will be able to transfer

the funds before the time period specified in the contract expires,

else the funds are returned to the party creating the deposit. We

depict below in Algorithm 1, the claim-or-refund contract logic

used in the CDE protocol.

Before the start of the CDE protocol, every agent makes a

deposit locking the funds to the contract which requires the signa-

ture using the secret key sk of the protocol instance. The condition

specified by the user and agreed on by all the agents is embedded

into the contract such that as soon as the condition is met (like the

expiry of a time period), the funds are transferred back to the agents.

Depending on the complexity of the condition and the choice of

the user, different cryptocurrency systems can be used for the con-

tract creation. Cryptocurrencies like Bitcoin offer operators like

OP_CHECKLOCKTIMEVERIFY and OP_CHECKMULTISIGVERIFY

for checking the time lock and verify multiple-signatures. However,

the operator set of Bitcoin is limited intentionally, Turing-complete

languages supported by systems like Ethereum can be used when

the user-specified condition is complex. The cryptocurrency script

or smart contract implements the required claim-or-refund func-

tionality with the embedded condition.

Algorithm 1 Claim-or-refund contract

1: if Escrow Condition == True then
2: Direct the locked funds back to the contract creator

3: else
4: if signature corresponding to public key pk of protocol instance is

valid then
5: Direct the funds to the mentioned recipient

6: else
7: Transaction is invalid

Oracles. Based on the condition specified by the user, the smart

contract can indeed interact with the parameters outside the cryp-

tocurrency system. Systems like Ethereum support Oracles which
interact with outside world with different APIs for information like

weather parameters etc. Depending on the trust imposed on the

oracles by the user and the agents, they can agree on the oracles

and the value of the deposit before the start of the protocol.

4 CRYPTOGRAPHIC CONSTRUCTION
The Collusion Deterrent Escrow (CDE) protocol consists of algo-

rithms for generating the shares of the secret key sk , setting up the

message blocks by the user, the distributed receiver oblivious trans-

fer (DROT ) to transfer the message blocks to the agents and to open

the message by the agents. The CDE protocol with a user/sender U
and n agents (A1, · · ·An ) constitutes the following algorithms:

• KeySetup(n, t ,κ) generates a bit-wise shared secret key sk for the

n participating agents with threshold t + 1. It also generates the

corresponding public key pk and the other public components.

• MessageSetup(m,κ,pk ) outputs κ pairs of encryptions of binary-

watermarked parts of the messagem encrypted to the public key

pk .

• DROT
(
(kk,0, kk,1), ⟨[skk ]⟩) The DROT protocol takes the keys

kk,0, kk,1 from the sender and the shares of the bit skk from the

receivers and transfers kk,skk corresponding to the bit skk to

the receivers for 0 ≤ k ≤ κ − 1.
• Open (⟨[s0]⟩, · · · , ⟨[sκ−1]⟩), (c0,0, c0,1), · · · , (cκ−1,0, cκ−1,1)) takes

the shares of secret key bits along with the cipher texts, decrypts

the ciphertexts forming the message blocks and outputs the final

combined message.
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4.1 Cryptographic Setup
KeySetup(n, t ,κ). It provides the bit-wise shared secret key sk
using (n, t + 1)-secret sharing and the corresponding public key to

the n agents. The algorithm first generates the public parameters

using grp.gen(·) which takes the security parameter κ as input. It

generates the cyclic group G of prime order p and two generators

д,h. The agents run the distributed key generation (DKG) algorithm
dkg.gen() to generate the public key pk and the vector of secret key

shares ⟨[sk]⟩, with each agent Ai , 1 ≤ i ≤ n obtaining the share

[sk]i . The agents run a bit decomposition algorithm bit.decomp(·)
with the shares to obtain the bit-wise threshold-shares [skj ]i of
the bits skj , 0 ≤ j ≤ κ − 1 for each agent i . KeySetup is depicted in

Algorithm 2.

Algorithm 2 KeySetup (n, t ,κ)

1: G, д, h, p ← grp.gen(κ )
2:

(
⟨[sk]⟩, pk

)
← dkg.gen(n, t, κ )

3:

(
⟨[s0]⟩, · · · , ⟨[sκ−1]⟩

)
← bit.decomp

(
⟨[sk]⟩

)

MessageSetup(m,κ,kw ). It is run by the sender who takes

the message m and use an algorithm split(m,κ) to divide it

into κ parts (m0, . . . ,mκ−1) where κ is the bit-length of the

secret key sk . The sender forms the robust binary watermarked

versions of the message parts (using wm.embed(·)) with the

watermark embedding key kw , watermarked with {0, 1} to

obtain {(m0,0,m0,1), · · · , (mκ−1,0,mκ−1,1)} and encrypts them

using the randomly chosen symmetric keys kk, ℓ to produce

ck, ℓ , 0 ≤ k ≤ κ − 1, ℓ ∈ {0, 1}. MessageSetup is described in

Algorithm 3.

Algorithm 3MessageSetup(m,κ,kw )

1: (m0, . . . ,mκ−1) ← split(m, κ )
2: for k = 0 . . . κ − 1 do
3: mk,0 ← wm.embed(mk , 0, kw )
4: mk,1 ← wm.embed(mk , 1, kw )

5: kk,0, kk,1
$

←− K ; K − key space

6: ck,0 ← enc(kk,0,mk,0)
7: ck,1 ← enc(kk,1,mk,1)

4.2 Distributed Receiver Oblivious
Transfer—DROT

Oblivious Transfer is a two party computation protocol, in which

the sender has two messagesm0,m1 and the receiver has the bit

c; at the end of the protocol, the receiver receives the message

mc . The protocol ensures that sender has no information of c and
the receiver has no information aboutm1−c . We develop a multi-

party version of oblivious transfer called the Distributed Receiver

Oblivious Transfer protocol (DROT ) which is used in the Collusion

Deterrent Escrow protocol to transfer the document to the agents.

The DROT protocol involves n + 1 parties with one sender and n
receivers. The sender has the messages k0, k1 and the receivers have
the shares [s] for the bit s . At the end of the computation, each of

The functionality FDROT interacts with the sender S and n receivers

Rj , 1 ≤ j ≤ n. Each receiver Rj has share [s]j of a random, unknown

secret bit s and the sender S has two messages k0, k1. The sender
and a maximum of t receivers can be corrupted by the adversary

A.

Init Session and Sender Input:
• Upon receiving the message (INIT, sid, k0, k1) from

sender S, record ⟨S, k0, k1, sid⟩, forward the message

(INITD, S, sid ) to each receiver Rj
Receiver input:

• Receive the message (INPUT, sid, [s]j , j ) from the agent

Aj and add ⟨j, [s]j ⟩ to the set Isid .

• When |Isid | = n, compute the secret bit s from the

shares [s]j and send a ⊤ to S and each Rj for 1 ≤ j ≤ n
Release:

• Receive the message (REL, sid, S) from the receiver Rj
and store j in the set Rsid if s is computed.

• When |Rsid | ≥ t + 2 send ks to the receivers Rj for
1 ≤ j ≤ n.

Functionality FDROT

Figure 3: Ideal Functionality Of DROT

the receiver receives the shares [ks ]. The receivers can reconstruct

ks by collaboration, however, they cannot reconstruct k1−s . This
is similar to the standard oblivious transfer protocol in which the

other valuem1−c cannot be computed by the receiver.

Ideal functionality of DROT: The functionality (refer Figure 3)

interacts with the sender S and the n receivers Rj , 1 ≤ j ≤ n. S has

the messages k0, k1 and each receiver Rj has the share [s]j of the
bit s . The adversary A can corrupt the sender and upto t receivers.
The sender initiates the transfer by sending the INIT message with

a session id sid and forwarding the two messages k0, k1 to FDROT.
The functionality stores them and forwards a INITD message to

all the receivers informing that the sender initiated a session. The

receivers forward their shares as INPUT to the functionalityFDROT
which computes s by combining the shares [s] after which it sends

a message ⊤ to all the parties acknowledging that the shares have

been received. The receivers can then send the REL message to the

functionality. When it receives the REL message from at least t + 2
receivers, it forwards (releases) the message ks to every receiver.

Protocol. We realize DROT using multiple instances of two-party

computation, realizing an oblivious linear function evaluation (OLE)

[32] between the sender and the receivers. Before explaining the

DROT protocol, we briefly introduce the realization of OLE in this

work using two-party computation as depicted in Figure 5. The

sender has two messages (a,b) and the receiver has a value x . These
three values (x ,a,b) are secret shared between the two parties by

sending a share of each value to the other party correspondingly.We

depict the sender side shares using as ([x], [a], [b])S and receiver

side shares as ([x], [a], [b])R . Using standard two-party protocols

to generate shares of addition and multiplication, both the parties

generate shares of the equation y = a + (a − b) · x . The sender

forwards his share yS to the receiver who computes the value y.
To transfer the keys using DROT , the above described two-party
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OLE

Figure 4: Oblivious linear function evaluation (OLE)

Sender Receiver

a,b ∈ Zp x ∈ Zp
a = aS + aR
b = bS + bR x = xS + xR

[x ]=xS
←−−−−−−−−−−−

([a],[b])R=(aR,bR )
−−−−−−−−−−−−−−−−→

([x], [a], [b])S ([x], [a], [b])R
= (xS ,aS ,bS ) = (xR ,aR ,bR )

yS
Using 2PC

←−−−−−−−→ yR
= [a] + [(b − a) · x] = [a] + [(b − a) · x]

yS
−−−−−−−→

y = a + (a − b) · x
y = recon(yS ,yR )

Figure 5: OLE realization using two-party computation

computation is run by the sender with all the agents where the input

of the sender is messages (k0, k1) and the input of each receiver is

share [s] of the bit s . The receivers prove in zero-knowledge that

the input shares indeed correspond to a bit s .
The Collusion Deterrent Escrow uses the DROT protocol to

transfer the encrypted message blocks and the corresponding keys’

shares to the agents. The user encrypts the message blocksmk, ℓ ,

using keys kk, ℓ to obtain ck, ℓ for k ∈ {0, 1 · · · ,κ − 1} and ℓ ∈ {0, 1}
and broadcasts the ciphertexts to all the agents. User transfers

shares of keys kk,skk to the agents using DROT . As a part of DROT
the user runs κ instances of OLE, for each instance k , the input
of the user is (kk,0, kk,1) where as the inputs of the agents would
be shares [skk ] of the bit skk of the signing key sk . At the end of

the runs, each agent Rj has the values [kk,skk ]j which are share of

the values kk,skk = k0 − (k1 − k0) · skk . While running DROT for

Collusion Deterrent Escrow, the agents need to prove to the user

that the input bit shares indeed correspond to bits of the secret key

sk . This way of directly computing the shares of the keys kk,skk
prevents the agents from learning the other key corresponding

to kk,1−skk . The oblivious transfer functionality can be realized

using standard oblivious transfer primitives, however, they involve

computing hash functions in a distributed manner which is compu-

tationally intensive. Realizing the oblivious transfer functionality

as oblivious linear function evaluation using secret sharing based

2-party computation avoids the computational bottlenecks.

Let [skk ]j be the share of the bit skk of agent Rj . As a part of
DROT , while realizing the OLE the agent shares this value with the

user by generating two shares [skk ]j,S , [skk ]j,R and forwarding

[skk ]j,S to the user. The user shares values kk,0, kk,1 with agent

Rj . Both participate in a two-party computation to generate shares

of the value kk,skk as discussed in OLE equation evaluation. To

provide verifiability of the validity of the input shares, the agent

commits to [skk ]j,R by publishing д[skk ]j,Rhvk, j ;vk, j ∈ Zp . After

interacting with the agents, the client verifies if the shares obtained

indeed correspond to shares of valid bits of secret key sk by check-

ing:

κ−1∏
k=0

τ∏
j=0

(
д[skk ]j,Sд[skk ]j,Rhvk, j

)λj ·2k
= дskhv (1)

where v =
∑κ−1
k=0

∑τ
j=0 (λj · vk, j )2

k
is computed by all agents

and published. λj are the reconstruction coefficients and τ > t + 2
is the number of shares employed for reconstruction.

The security analysis for DROT is postponed to Section 6.1.

Algorithm 4
Open (⟨[s0]⟩, . . . , ⟨[sκ−1]⟩, (c0,0, c0,1) · · · (cκ−1,0, cκ−1,1))

1: sk = (sk0, . . . , skκ−1)
2: for k = 0 . . . κ − 1 do
3: kk,skk ← recon([kk,skk ]1, . . . , [kk,skk ]t+1)
4: ck ← dec(ck,skk , kk,skk )
5: mk ← dec(ck , sk )
6: m′ ← combine(m0, . . . ,mκ−1)
7: returnm′

4.3 Post-processing
Open. The algorithm open decrypts a message with the collab-

oration of t + 2 or more agents. The agents combine their shares

for every key bit [kk,skk ], 0 ≤ k ≤ κ − 1 for each k and the corre-

sponding ciphertext ck,skk is decrypted to ck . This ciphertext ck
decrypts to the watermarked message partmk . After all parts of the

messagesmk ,k ∈ {0, . . . ,κ − 1} are recovered, they are combined

to form the final messagem′ which is a watermarked version ofm.

m′ contains the whole of the secret key sk as watermark embedded

in it. The Open algorithm is presented in Algorithm 4.

Detection key distribution. In the CDE protocol, the user for-

wards the detection keys of the watermark she employed to some

of the agents to ensure that if the agents decide to decrypt the

user message, the agents with the watermark detection key will

be able to detect the watermark sk embedded in the document.

These agents will be able to transfer the deposit of all other agents.

The user distributes the correct detection key to a subset of agents

such that any subset of t + 2 agents has at least one agent with

the detection key. The user forwards either a correct or an incor-

rect (dummy) key to all the agents, who can not distinguish if the

received key is a correct detection key unless they collude and

decrypt the document.

4.4 Escrow deposits
Before the start of the protocol, the user and the agents agree on

the deposit valueD. The agents proceed to deploy the scripts/smart-

contracts embedding the condition τ specified by the user to the

address corresponding to the public key pk . Each agent i creates a
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deposit transaction TXi for the value D and the user verifies that

the agreed on value of funds have been held in the deposit. When

the condition τ is met, the deposits are automatically transferred

back to the agents. Any agent with sk can transfer all the deposits to

the address of his choice at any point in time. In the non-colluding

scenario, after the condition τ is met, the agents take a non-zero

time to compute the secret key sk . The deposits are transferred

back instantaneously to all the agents by the smart contracts before

the sk is computed by the agents once τ is met. If the deposit

is ever transferred before τ , all the agents except the agent that
transferred the deposit is banned from offering any future service

there by penalizing them. This ban can be either permanent or

for a specified period of time. Before the transfer of the document

by the user, she includes partial payment in the cryptocurrency

deposit smart contract which will be paid to the agents when the

condition is met and if the agent deposits are not transferred by

then. This payment can be in addition to partial initial payment

made by the client to the agents for the service. The agents provide

strong identities linked to their physical identities, hence the agents

can not launch any sybil attack to target and ban other agents.

5 GAME-THEORETIC MODELLING AND
ANALYSIS

We model and analyze the collusion deterrent escrow (CDE) proto-

col as a mechanism through which the user induces a game [57]

between the agents offering the service. Two collusion scenarios are

possible: (i) collude and reconstruct the keys such that the document

can be decrypted (ii) reconstruct the secret key sk from the shares.

These two scenarios are modelled as collusion strategies played by

the agents. For simplicity, we initially analyze the scenario with

one regulator (user) and two agents A1,A2.
When the user engages the agents for the escrow service, she

induces a trivial game between the agents. They have a choice

of either accepting to offer the service or rejecting, indicated by

accept or reject in Table 1. If both the agents accept, the user offers

a transfer of value v to each of the agents. This results in a trivial

pay-off matrix as shown in Table 1 with only the accept and reject
strategies. accept indicates the strategy of offering the service with-

out collusion. Each of the agents makes a deposit of value D before

the user interacts with them.

Table 1: (Trivial) Pay-off matrix for the two agent threshold
escrow without collusion-deterrence.

A2
A1

reject accept (not
collude)

accept and
collude

reject (0,0) (0,0) (0,0)

accept (not collude) (0,0) (v,v) (v,v)

accept and collude (0,0) (v,v) (v + d
2
,v +

d
2
)

Here, v is the fee offered by the user and d is the value of the escrowed document to

the agents.

The agents are free to interact, they can collude with each

other to open the user’s escrow message and share the value of

the document among themselves. We assume the agents are sym-

metrical and value the document equally. If d is the value of the

document and if agents are assumed to share the value equally

under collusion, the pay-off of each of the agents is α = v + d
2
. This

extends the pay-off matrix in Table 1 to include the collude strategy.
If only one of the agents wishes to collude and the other does not,

collusion does not occur and the pay-off of each is still v . Since
the agents accrue a pay-off strictly greater than v , colluding is a

dominant strategy equilibrium of the game [57] and hence both the

agents play the accept and collude strategy at equilibrium.

To prevent such a collusion attack and to prevent

accept and collude as the equilibrium strategy, the user who acts as

a principal/regulator designs a mechanism implemented by offering

the grand contract. Following [48], we model the collusion among

agents with a side contract which simplifies all the bargaining and

communication that may occur among the two agents. In our pro-

tocol, the agents collude to attack the system either by decrypting

the document or by reconstructing the secret key. These two cases

are considered as the collusion scenarios.

The grand contract induces a bayesian game among the agents

which is defined by the following:

• The set of agents N = {1, 2}
• The typeset of the agents Θ = {e, ie}
• The strategy space of each agent i is

Si = {reject, accept, wait1, transfer1, wait2, transfer2}
• The utilities corresponding to the strategy and the type of the

agentui (θi , si , s−i ),θi ∈ Θ, si ∈ Si . s−i indicates the strategy(ies)
of player(s) other than player i .

The user/regulator transfers information types {I,D} to the

agents such that the agent with information I is considered the

efficient agent and the agent with D, the inefficient agent. The

typeset Θ = {e, ie} indicates efficient and inefficient agents. The

regulator forwards the information I (resp. D) with probability

p (resp. 1 − p) to each of the agents. Thus the user induces an

information asymmetry among the agents. One can note that, unlike

a typical setting, in this model the regulator induces types on the

agents. The utilities of the players are defined as ui (θi , si , s−i ) =
v if both si , s−i are accept; ui (θi , si , s−i ) = 0 if either si or s−i is

reject ∀θi ∈ Θ. Utilities of other combinations of (θi , si , s−i ) are as
defined in the Tables 2, 3. The utilities of players playing wait2 and
transfer2 listed in Table 3 are for both the types.

5.1 Collusion
Once the regulator offers the grand contract, the agents are free

to collude among themselves which is captured by the side con-

tract. When the agents sign the side contract it entails them to

choose one of two collusion scenarios, Collusion-1 or Collusion-2.
In Collusion-1, the agents can only play the strategies {transfer1,
wait1}. Similarly in Collusion-2, the agents can only play the strate-

gies {transfer2,wait2}.
In the implementation of the game as a protocol, the infor-

mation I would correspond to the correct detection key and D,

an incorrect detection key. D > 0 is the value of conditional de-

posit made by each agent and F is the approximate sum of future

payments to be received if the agent/node is not banned from the

system. The two collusion scenarios Collusion-1, Collusion-2would
8



Table 2: Pay-offs of rational agents under different strategies inCollusion-1- document decryption (strictly dominant strategies
indicated in grey)

A2
A1 Efficient(e) Inefficient(ie)

wait1 transfer1 wait1
Efficient

(e)
wait1 (α ,α ) (α + D,α − F − D) (α ,α )

transfer1 (α − F − D,α + D) (α − F
2
,α − F

2
) (α − F − D,α + D)

Inefficient (ie) wait1 (α ,α ) (α + D,α − F − D) (α ,α )

Table 3: Pay-offs of rational agents under different strategies
in Collusion-2- secret key reconstruction

A2
A1

wait2 transfer2

wait2 (α ,α ) (α + D,α − F − D)

transfer2 (α − F − D,α + D) (α − F
2
,α − F

2
)

be collusion scenarios using document decryption and secret key

(sk ) reconstruction respectively. In the CDE protocol, when the de-

posits are transferred before the condition is met, whoever transfers

the deposits can gain the value D (deposit of the other agent apart

from getting back own deposit). However, every agent except the
agent that performs the transfer is banned from the system. Getting

banned would make the agents lose all future payments/pay-offs

that they can receive from other clients/users whose total is ap-

proximated to a value F ≫ 0.

When the agents/nodes collude and decrypt the document

version (Collusion-1), the agent that has access to the watermark

detection key can ‘transfer’ the deposit, however, he can choose

not to transfer the deposit and ‘wait’. The agent that does not have

the detection key can not transfer the deposit and hence can only

wait after collusion. In the second collusion attack where the agents

collude and reconstruct the secret key of the protocol (Collusion-
2), each agent can choose to transfer the deposit or wait without

transferring the deposit. These two scenarios are captured by the

following: in Collusion-1, any efficient agent (type-e) can play the

strategies {transfer1, wait1} whereas the inefficient agent (type-ie)
can only play the strategy {wait1}. Collusion-2 is independent of
the information I and hence agents of either type can play both

the strategies {transfer2,wait2}. The agents can both either play

the strategies {transfer1,wait1} or {transfer2, wait2} indicating two
collusion scenarios. For the ease of exposition we depict them in

separate matrices in Tables 2, 3.

Collusion game - Payoffs. The expected pay-offs of the agents in
the two collusion scenarios, Collusion-1, Collusion-2 are captured
by the pay-off matrices in Tables 2, 3. With document decryption -

Collusion-1, when both the efficient agents decrypt the user docu-

ment and not transfer the deposit (play wait1), they both can accrue

a pay-off of α = v+ d
2
. If one of the agents transfers (plays transfer1)

the deposit, he gets a pay-off of α + D where as, the other agent

loses his deposit and gets banned thereby accruing a pay-off of

α − (F + D). In the case when both the efficient agents attempt to

transfer the deposit simultaneously, since only one agent can suc-

ceed in the transfer, it creates a race condition and we assume that

each will succeed in the transfer with equal probability, hence in

expectation they accrue a pay-off 0.5(α+D)+0.5(α−F−D) = α− F
2
.

ui (e, transfer1, s−i ) > ui (e,wait1, s−i )∀s−i ∈ {transfer1,wait1}
(from Table 2), hence for an efficient agent transfer1 is a strictly
dominant strategy, he always plays transfer1. For the inefficient

agent, wait1 is the only strategy available to play in Collusion-1,
trivially, it is the dominant strategy. The dominant strategies have

been indicated in grey in Tables 2 and 3. They pay-offs of Table 3

and the pay-off submatrix of Table 2 when both the agents are effi-

cient are similar to the pay-offs in well known prisoners’ dilemma

[46].

In Collusion-2 when the agents reconstruct the secret key, the

obtained pay-offs are presented in Table 3. After the reconstruction

of the secret key, if both the agents wait and do not attempt to

transfer the deposit (play wait2), both the agents obtain a pay-

off of α , however if one of the agents transfers the deposit (plays
transfer2), he obtains α + D whereas the other agent obtains a

payoff of α − (F + D). In the case when both the agents attempt to

transfer the deposit, they obtain an expected payoff of α − F
2
. Again,

playing transfer2 is a strictly dominant strategy of every agent in

this collusion scenario and hence the agents always play transfer2.
Bargaining: Apart from the two collusion scenarios with the

actions defined, each agent may indulge in bargaining/bribing by

offering a positive payment through the side contract to other

agents to prevent them from playing transfer2. However, the agent
will always play his dominant strategy of transfer to improve his

pay-off even after accepting a payment from the other agent. Hence

at equilibrium no transfers are made through the side contract

between the agents making the side contract a null contract.

From the strictly dominant strategies, it is clear that whenever

the agents decide to collude, they always attempt to transfer the

deposit and act as whistle-blowers in the protocol irrespective of

the actions of other agents.

Expected payoffs. Collusion-1: The regulator chooses each agent

and transfers information I with probability p independently.

Hence the expected payoff of each agent playing their dominant

strategies (Table 2) is:

a = p2 (α −
F

2

) +p (1 −p) (α +D) + (1 −p)p (α − F −D) + (1 −p)2α

= α (p2 + 2p (1 − p) + (1 − p)2) −
p2F

2

− (p − p2)F

= α − F (p −
p2

2

)

Collusion-2: Both the agents play transfer2 as their dominant

strategy, accruing each a pay-off of b = α − F
2
as shown in Table 3.

Thus, the maximum expected pay-off that can be obtained by each
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agent through collusion is

β = max(a,b) = max

(
(α − F (p −

p2

2

)), (α −
F

2

)
)

As F is the sum of all future payments from many users, we

have, F ≫ D, F ≫ d,v . The regulator or the user sets the value of
p such that β < v . The expected pay-off from the collusion game β
is strictly less than v making collusion unviable.

5.2 Extending to the n agents scenario
As in the two agent scenario, in the n agent scenario, the regula-

tor transfers the information I to each agent independently with

probability p.
Collusion-1: Similar to the two agent scenario in Collusion-1 it is
a dominant strategy for the efficient agent to play transfer1. An
inefficient agent’s only strategy is to play wait1, so he always plays
wait1. If one agent plays transfer1, he obtains a pay-off ofα+(n−1)D
3
and every other agent obtains α − (F + D). When more than one

agent plays transfer1, each agent obtains α + (n − 1)D with equal

probability. With t other efficient agents in the system each playing

their dominant strategy transfer1, each agent obtains a positive

pay-off of α + (n− 1)D with a probability of
1

t and obtains a pay-off

of α − F −D with probability
t−1
t . Hence the expected pay-off of an

efficient agent playing his dominant strategy with t other efficient

agents is:

1

t + 1
(α + (n − 1)D) +

t

t + 1
(α − F − D)

With at-least one efficient agent present in the system (playing

his dominant strategy), the pay-off of an inefficient agent is (α −
F − D). When all the agents are inefficient, the pay-off obtained by

each agent in the system is α .
So the expected pay-off of agent under collusion-1 is:

a = p
n−1∑
t=0

(
n

t

)
pt (1 − p)n−1−t

·

(
1

t + 1
(α + (n − 1)D) +

t

t + 1
(α − F − D)

)
+ (1 − p)

n−1∑
t=1

(
n

t

)
pt (1 − p)n−1−t (α − F − D) + (1 − p)nα (2)

Collusion-2: In this scenario which is equivalent to the agents

reconstructing the secret key, the information I is irrelevant to the

agents and all the agents play their dominant strategy transfer2.
The expected pay-off of each agent is

b =
1

n
(α + (n − 1)D) +

n − 1

n
(α − F − D)

The total expected pay-off of each agent through the collusion

game is β =max (a,b). The regulator chooses a value p such that

β < v (where α = v + d
2
), for instance for p = 1,m = α −

(n−1)F
n ≪

v as F ≫ d,v . Thus, the agents do not play the accept and collude
strategy at equilibrium in the CDE protocol.

3
Pay-off of (n − 1)D is equivalent to the agent transferring deposit D of all other

agents to self.

Table 4: Pay-offmatrix of the two agents under CDE.v is the
pay-off when agents do not collude and β ≪ v is the pay-off
when the agents collude.

A2
A1

reject accept (not
collude)

accept and
collude

reject (0,0) (0,0) (0,0)

accept (not collude) (0,0) (v,v) (v,v)

accept and collude (0,0) (v,v) (β, β)

Theorem 5.1. In CDE protocol, under equilibrium with n = 2,
the agents do not collude; forn > 2, no more than threshold t+1 agents
collude when the secret key is shared in a (n, t + 1) threshold structure
(at least t + 2 agents are required to obtain secret information).

Proof. For n = 2 when the agents collude, the expected pay-

off as computed is 5.1 is β = max

(
(α − F (p −

p2
2
)), (α − F

2

)
. Since

F ≫ d,v,α = v + d
2
, we have β ≪ v . The maximum expected pay-

offs when the agents play accept and collude are (β , β ). Thus the
trivial pay-offmatrix of Table 1, under the CDE protocol mechanism

changes to Table 4. Since β < v , it is evident from Table 4 that accept
and collude is not an equilibrium as agents can deviate unilaterally

and improve their pay-offs. Thus at equilibrium the agents do not

collude. When the number of agents is n and the secret is shared

with (n, t + 1) threshold secret sharing, collusion occurs only when

at least t + 2 agents collude with each other. When t agents play the

collusion strategy, no rational t+2nd agent plays accept and collude

as his expected pay-off will drop from v to β . Thus irrespective of
the t + 1 agents, no rational agent attempts to collude and collusion

is not an equilibrium in the pay-off matrix. The equilibrium pay-off

of the agents is v .
This is also evident from the extensive-form game depiction

of the overall game played by the agents as shown in Figure 6.

‘Collude’ indicates the two collusion scenarios and the pay-off is

the maximum obtained from either of the two scenarios when the

agents play the collusion strategy. The leaf nodes are associated

with the pay-offs of the agents for a run of the game. As evident

from the last decision node of the tree, player 2 never chooses

to collude when agent 1 plays accept and collude as accept, not
collude offers strictly higher pay-off. Similarly, when the game tree

is formed for n agents, at a node where t + 1 agents collude, the

t + 2nd agent chooses not to collude as the equilibrium strategy.

It can be seen that ‘accept and not collude’ of every agent is the

strategy that survives the iterated deletion of weakly dominated

strategies and hence the unique equilibrium strategy profile of the

game consists of each player playing ‘accept and not collude’. □

After collusion. Tables 2, 3 show that during collusion irrespec-

tive of what the other agents’ strategy is, the dominant strategy of

any rational agent is to attempt to transfer the deposit to himself.

Thus whenever collusion occurs (with > t + 2 parties) irrespective
of which set of agents collude during the collusion phase, every

colluding rational agent attempts to transfer to himself leading to

an expected pay-off strictly lower than obtained without collusion.

The adversary controlling t agents can approach any rational agent

10



accept,not
collude

reject

Agent 1

Agent 2

reject reject

accept and
collude

accept,not
collude

accept and
collude

accept and
collude

accept,not
collude

Figure 6: Extensive form game induced by the user in CDE
between two agents. v is the pay-off when agents do not col-
lude and β ≪ v is the pay-off when the agents collude

to reveal all the secret shares with the adversary, however since the

threshold of secret information is t + 1, at least 2 rational agents
need to participate in collusion along with the adversary to transfer

all the deposit. If more than t + 1 agents participate in collusion,

the expected pay-off is strictly less than without collusion. Thus

no rational agent participates in the collusion.

In works involving rational secret sharing[39, 41], the authors

show with the utility structure where the parties do not prefer

others to know the secret information, the parties do not reconstruct

the shared secret in equilibrium. In CDE protocol, we have a similar

utility function structure, however in this protocol not sharing the

information (here, not colluding) survives the iterated deletion of

weakly dominant strategies and hence an equilibrium. What is a

road-block in works like [39, 41, 44] is actually made use of as an

advantage in the CDE protocol. After the condition set by the user

is met, the utilities of the agents change such that other agents

learning the secret information does not affect the agent and the

equilibrium strategy would be to decrypt and obtain the pay-off.

Remarks:

• Multiple-rounds: Even though the analysis considers only one

round of play of the game, since collusion and corresponding

banning of agents occurs only once for a set of agents, the same

analysis can be used to depict multiple-rounds by appropriately

modifying the values of d,v, β , F . As ‘future’ always exists and
the longer the system runs the longer can be the future service

offering, the value of F is still higher even if values of d,v, β
are considered cumulatively for multiple rounds and multiple

documents. Once the whistle-blower transfers the deposit, all

other colluding parties are banned from the system and the

whistle-blower can join another set of agents to continue offering

the service without any damage/change to his reputation.

• Partial Decryption: The receivers may try to decrypt the doc-

ument partially (and not the full document) so that the agents

with the detection key will not be able to detect the whole secret

key watermarked in the document. This can be prevented by

the user as follows: she can split the document into much more

number of parts (multiples of κ instead of just κ) and transfer

them to the agents. Through this she embeds multiple copies of

the secret key in the document such that any small decrypted

portion contains the whole secret key as the watermark. She can

introduce dummy blocks, randomize them in the total message

blocks and also embed multiple copies of the key in the part

of the document which has more information or high entropy,

whereby decrypting any useful part of the document reveals the

full key. Also, when an agent with the detection key obtains the

key partially, he can brute force the remaining bits of the key

whenever possible.

The functionality FCDE interacts with a user U and n agents Aj ,
1 ≤ j ≤ n. U has a messagemU to be locked and selects the subset

of agents SU = {Au1 , · · · ,Auq } whereU = {u1, · · · ,uq } is the set
of indices of agents chosen. The user and a maximum of t agents
can be corrupted by the adversary A.

Init Session and user input:
• Upon receiving the message (INIT, sid,SU ,mU) from

user U, record and store ⟨U,SU ,mU, sid⟩, forward the

message (INITD,U, sid ) to each agent Aj
Open message:

• Receive the message (OPEN, sid,U) from the agent Aj
and store j in the set Qsid .

• When |Qsid | ≥ t + 2, sendmU to all the agents Ak for

k ∈ Qsid and forward the message “KEY” to agents Ad
for d ∈ Qsid ∩U

Release message:
• Receive the message (REL, sid,U) from the agent Aj and

store j in the set Rsid .

• When |Rsid | ≥ t + 2, sendmU to all the agents Ak for

1 ≤ k ≤ n.

Functionality FCDE

Figure 7: Collusion Deterrent Escrow Ideal Functionality:
FCDE

6 SECURITY ANALYSIS
6.1 Security Definition
The system consists of n agents Aj , 1 ≤ j ≤ n and a user U with an

inputmU. The agents and the user are interactive Turing machines

that communicate with an ideal functionality FCDE .

The adversary is a PPT machine with access to an corrupt

interface that takes an agent/user identifier and returns the internal

state of the agent to the adversary. All subsequent incoming and

outgoing communication of the agent is then routed through the

adversary. The adversary is t-bounded, and can corrupt up to t
agents and the user. For formal security, as discussed earlier, we

consider the static corruption model; i.e., the adversary commits to

the identifiers of the agents it wishes to corrupt ahead of time. The

adversary is also informed whenever some communication happens

between two agents and it can arbitrarily delay the delivery of the

message between honest parties; however, it cannot drop messages

between two honest agents or between the honest user and the

honest agent.

Ideal Functionality. In our ideal functionality FCDE (See Fig-

ure 7), the user chooses a set of agents SU = {Au1 , · · · ,Auq } where
11



U = {u1, · · · ,uq } is the set of indices. The user initiates the docu-
ment transfer using the INIT message and forwards the datamU
and the set SU to FCDE with the session id sid . FCDE receives

and stores ⟨U,SU ,mU⟩. An INITD message is sent to all the agents

indicating that the session has been initiated by the user. The t-
bounded adversary A corrupts the user, he chooses a set of agents

SU ′ where U
′
is a set of agent indices. If t + 2 or more number

of agents decide to selectively open the user message by sending

a OPEN request, the functionality stores the indices of subset of

agents sending the request in the index set Q and opens the user

message to the collaborating agents. The functionality forwards a

message “KEY” informing all the agents from the index setU ∩Q -

agents selected by user who are among the collaborating agents.

The KEY message models the release of secret key sk to such agents

in the real world protocol. If at-least t + 2 agents decide to release

the user message by forwarding REL, the functionality forwards

the user message to every agent.

From the different steps of the CDE protocol described in

Section 4 it can be seen that, when the agents decide to decrypt the

secret message, they reconstruct the keys kk,skk and the decrypted

message consists the secret key embedded as watermark. A subset

of agents who have the correct detection key will be able to detect

the watermarked secret key, this corresponds to receiving the ‘KEY’

message in the ‘OPEN’ phase of the ideal functionality.

Towards analyzing the security of our protocols under the

mixed-behaviour model [53], we offer theorem statements and

proof sketches for ideal-real world security paradigm. We employ

all our functional blocks in a black-box manner and find that the

formal cryptographic analysis to be canonical. We first consider

the security of the the DROT protocol from Section 4.2, which is

the key cryptographic construction of CDE. DROT uses multiple

instances of UC-Secure OLE protocol for forwarding the key shares

to the agents. We present the simulator SOLE for OLE functionality

of Figure 8 before we proceed to provide a proof-sketch for the

DROT protocol.

Definition 6.1. Universal Composability: Let the ensemble

of the outputs of the environment E, with attacker A and users

running the protocol π be EXEπ ,A,E . A Protocol π UC-realizes

the ideal functionality F , if there exists a simulator S for any PPT

adversary A such that the ensembles EXEπ ,A,E and EXEF ,S,E
are computationally indistinguishable for any environment E.

Simulator SOLE : The sender and receiver running the pro-

tocol for Oblivious Linear Evaluation (OLE) presented in Figure 5

publish Pedersen commitments for each of the values in the protocol.

For the corrupted sender, the simulator chooses two random values

k ′
0
,k ′

1
are forwards the message (INIT, sid,k ′

0
,k ′

1
) to the function-

ality. The receiver forwards the value x to the functionality using

the message (INPUT, sid,x ) and obtains the value k ′
0
+ (k ′

1
−k ′

0
) ·x .

The sender and receiver do not interact beyond the evaluation and

hence any output is equally likely for the receiver. The simulator

can open the commitments to values of its choice at any later point

of time. For the corrupted receiver case, when the receiver forwards

the value xS , the simulator forwards two random values a1,b1 to
the receiver and forwards the message (INPUT, sid,xS ) to the func-
tionality FOLE . It receives the value yS = a + (a − b)xS from the

The functionality FOLE interacts with the sender S and receiver R.
The sender S has two messages k0, k1 ∈ Zp and the receiver has a

random value x ∈ Zp .

Init Session and Sender Input:
• Upon receiving the message (INIT, sid, k0, k1) from

sender S, record ⟨S, k0, k1, sid⟩, forward the message

(INITD, S, sid ) to the receiver R.
Receiver input:

• Receive the message (INPUT, sid,x ) from the receiver

R. Compute and forward the value k0+ (k1−k0) ·x ∈ Zp
to R. Send ⊤ to sender S.

Functionality FOLE

Figure 8: Ideal Functionality Of OLE protocol

functionality and forwards to the receiver the value y′S such that

yS = recon(y
′
S ,yR ).

Theorem 6.2. Assuming a secure two-party computation of the
OLE protocol, the DROT protocol (Section 4.2) securely implements
the ideal functionality FDROT (in Fig. 3) under the mixed-behaviour
model [53].

Proof sketch. The simulator SDROT interacts with the user

U and n agents P1, P2, · · · Pn , the adversaryA corrupts a maximum

of t parties. The simulator presents an indistinguishable view to

the adversary in the real-world ideal-world paradigm. In the DROT
protocol, the user inputs pair of of keys k0,k1 where as the agents
input shares [s] of a secret key bit s which is (n, t + 1) threshold
shared among the agents. The transfer of secret key shares from

user to the agents is realized using the secure 2-party computation

of oblivious linear function evaluation (OLE) between the user

and each of the agents. The simulator SDROT invokes SOLE with

corresponding inputs while generating the view for the adversary.

For the corrupted sender case,SDROT simulatesn agents to the
sender with inputs k0,k1 and invokesSOLE for each of the instance

of OLE between the sender and the agents. It forwards two random

input values k ′
0
,k ′

1
as the message (INIT, sid,k ′

0
,k ′

1
) to the function-

ality FDROT . The receiver on input of value x to the functionality

obtains the value k ′
0
+ (k ′

1
− k ′

0
) · x . For the corrupted receiver case,

where a maximum of t receivers are corrupted, the sender forwards
(INIT, sid,k0,k1) and the honest parties Pj forward the message

(INPUT, sid, [s]j , j ) to the functionality. The simulator interacts

with the t corrupted agents and forwards initial randomized in-

formation such that the de-randomization values can be used to

set any input information. It forwards random valid share inputs

as the t agents to FDROT using the message (INPUT, sid, [s]j , j ).
When the functionality forwards the ks value, the simulator sets

the de-randomization values such that the output shares computed

by the agents correspond to shares of the value ks . For the case
of corrupted sender and t − 1 corrupted receivers, the simulator

forwards the message (INIT, sid,k ′
0
,k ′

1
) to the functionality like in

the corrupted sender case. Apart from that it relays, all the proto-

col messages as is between the sender and the t − 1 agents. The

adversary can not distinguish the views owing to the fact that the
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randomization information in the OLE scheme is uniform over the

whole group chosen and the fact that the commitments can be

opened to any value by the simulator.

From Theorem 5.1, we know that any collusion during or

after the document transfer with secret information being revealed

to the agents, results in a lower expected pay-off as computed in

Section 5.1 and Table 4. No rational agent deviates from the protocol

as participating in the protocol without abort results in a positive

non-zero pay-off. Hence the agents neither collude nor deviate from

the protocol realizing the functionality securely. □

Next, we analyze the security of the CDE protocol assuming

that we have access to secure protocols for dkg, bit-decomp, robust
bit watermarking and DROT .

Theorem 6.3. Let dkg, bit-decomp be secure MPC protocols,
wm(·) is a robust bit watermarking algorithm, and DROT is secure (as
in Theorem 6.2). The CDE protocol πCDE securely realizes the ideal
functionality FCDE under the mixed-behaviour model[53].

Proof Sketch. The system consists of user U and n agents

P1, · · · , Pn ; at any instance of time a maximum of t parties can
be corrupted by the adversary A. The CDE protocol involves dis-

tributed key generation, bit-decomposition and DROT protocols,

where DKG and bit-decomposition are performed among the agents

and DROT protocol is run between the user and the agents. We use

these three protocols in a black-box manner with their correspond-

ing simulators. We refer the reader to the works [37] and [62, 67]

for the simulators for DKG and bit-decomposition algorithms. We

refer to them as SDKG and SBitDec.

The simulator SCDE generates an indistinguishable view for

the adversary in the real-world ideal-world paradigm. It invokes the

three simulators SDKG , SBitDec and SDROT for each of the phases

of the protocol run. The DKG protocol [37] is based on polynomial

evaluation and Pedersen commitments for generating verifiable

secret shares for the parties. Each of the parties generates shares of

a random value and locally compute the secret share value from

the shares of the qualified set of parties. The bit-decomposition

algorithm takes the shares values and generates bit-wise shares

of each of the bits of the secret key shared among the users. The

simulator SCDE invokes SDKG , SBitDec during these phases of the

protocol simulation. Any deviation from the protocol is detected

and the instance is aborted in-case of such deviation. However,

before the next two party computation phase commences between

the user and the agents, the simulator answers all oracle queries

of the user and stores the values qi . These queries are used by the

user to sample keys to encrypt the different message blocks. The

simulator SCDE invokes κ instances of SDROT once for each of

the bits of the secret key. With the only difference being, in cases

with corrupted sender, the simulator computes the keys used for

encryption ki by checking over all the stored queries qi and inputs

those keys instead of random values.

Since the rational parties have an incentive to obtain the cor-

rect key shares for the protocol to proceed, they have an incentive

to not deviate from the protocol during the setup. After obtaining

the watermarked and encrypted user data and the corresponding

key shares through DROT , the agents do not collude at equilibrium

as was proved by From Theorem 5.1. If the watermark can be re-

moved without destruction of the data, the agents would collude

and decrypt the user data. Thus, robust watermarking ensures that

collusion is not an equilibrium of the collusion-game. The agents

neither deviate nor collude at any point of the protocol there by

securely realizing the functionality. □

7 IMPLEMENTATION
We implement the Collusion Deterrent Escrow protocol using Honey-

badgerMPC [52], SCALE-MAMBA [26], and Charm cryptographic

library [6]. Our implementation includes realizing the DROT pro-

tocol to transfer encrypted watermarked images and their corre-

sponding key shares. Each run of the protocol involves splitting the

data into blocks, watermarking the blocks and transferring them.

The DKG and bit-decomposition protocols are run by the agents as

setup before the user enters the system. The code for running the

protocols can be found at the anonymous link https://anonymous.

4open.science/r/1aa37eb3-1f77-4c35-991a-0c7643faf060/.

Distributed Key Generation—DKG. The DKG protocol is real-

ized using HoneybadgerMPC [52], a secret sharing based python

MPC framework supporting malicious security.
4
We implement the

DKG protocol proposed by Gennaro et al. [37], we realize Pedersen
verifiable secret sharing (VSS) leveraging the communication layer

of HoneybadgerMPC. The DKG is realized by letting each agent

perform VSS of random values, sum them up to get the shared

private key, and compute the public key from the commitments

obtained. The agents generate shares of the 256−bit secret key

with the key pair on the curve secp256k1. The DKG protocol has a

message complexity of O (n3) for n parties. From section 5.2, when

adversary can corrupt t agents, the threshold of secret sharing is

t + 1 (at-least t + 2 agents are needed for reconstruction ), requiring

n > 3t + 2 for safety and liveness of the DKG protocol.

Bit-Decomposition. The bit-decomposition protocol is imple-

mented through HoneybadgerMPC framework and the protocol

realized is based on the one proposed by Catrina et al. [21]. The
round complexity of protocol is O (loд(κ)) where κ is the number

of bits that we want to extract. We implement its variant with con-

stant round complexity by using an alternative sub-protocol for

bit-wise addition [67]. Moreover, we use the prefix multiplication

protocol introduced in [20] to replace the prefix AND sub-protocol

in [67]. Finally, we achieve a bit decomposition protocol withO (κ2)
communication complexity. The protocol requires O (κ2) beaver
triples and O (κ2) random shares as the offline cost. The field size

for bit-decomposition is the same as the curve sect571k1 to sup-

port decomposing 256-bit values with a sufficiently large security

parameter. With a large number of multiplications involved, this is

the most expensive operation in our protocol.

Two-party computations. Two party computation is required for

the DROT protocol (Refer Section 4.2) and we implement it using

SCALE-MAMBA [26] since HoneybadgerMPC does not support

a full threshold protocol. In SCALE-MAMBA, fully homomorphic

encryption is used in the offline phase and SPDZ-style secret shar-

ing [26] is leveraged in the online phase. The whole two-party

4
HoneybadgerMPC supports the robust reconstruction of secret shared values and

requires the adversary to control up to t < n/3 parties. All test cases we run on

honeybadgerMPC satisfy this threshold.
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computation involves one multiplication and one reconstruction.

The computation is performed by the user with each agent so the

total communication complexity is O (n) for n agents.

Watermarking. The user splits the data into blocks and generates
two versions of each block by watermarking with bits 0, 1. For a

256-bit secret key of the agents, the user divides his data into 256

blocks. While the data can be of any form including multi-media

and document data, we use bit map images for the prototype. For

image watermarking we use the combined DWT-DCT watermark-

ing algorithm proposed by Ali Al-Haj [28] and the implementation

based on [27]. The DWT-DCT algorithm works by altering the

wavelets of the Discrete Wavelet Transform (DWT) sub-bands and

applies Discrete Cosine Transform (DCT) on few sub-bands.

7.1 Experimental results
To evaluate the performance of our building blocks, we deploy our

prototype on AWS clusters and run the protocols on the c5.2xlarge

instances (8 cores and 16GB RAM). The instances are allocated in

5 regions across 4 continents. The benchmark data has been aver-

aged over 10 runs of the protocol each for n = 5, 8. The times taken

and the data transferred by each node for the DKG and the bit-

decomposition (BitDec) phases are provided in Table 6. The DKG

and the bit-decomposition take around 40 seconds, which would

be the time for setup of the protocol before the users interact. We

observe that the running time for n = 5, 8 are almost the same. The

reason is that when n increases, the number of instances in each

region also increases, thus parties can receive shares from geometri-

cally closer parties, and this advantage cancels the workload caused

by larger threshold. DROT realized through SCALE-MAMBA, in-

volves two-party computation (n = 2) between the user and an

agent. The interaction takes around 120 milliseconds, which is

dominated by network latency (the local computation takes only

around 0.1 milliseconds). Table 5 shows the times taken for image

watermarking including splitting the image, watermarking each

block and extracting the watermark from the whole reconstructed

image after the revelation. The mean and variance have been re-

ported when each step is run 100 times. The user performs the

watermarking offline before interaction with the agents.

8 RELATEDWORK
Timed-release encryption (TRE) was first introduced by May [55].

Several applications and approaches using TRE have been proposed

including sealed bids [22] electronic voting systems [23], spam and

denial of service preventions [33] and proof-of-work systems [42].

For time-lock puzzles, a well known puzzle was created by Rivest et
al. in 1996 [63] based on the RSA assumption which required non-

parallelizable repeated squaring. Many other primitives based on

their idea for time-lock-puzzles have been proposed including com-

mitments [18], signatures [35, 36] and key escrow [12, 13]. Besides

the RSA-based construction of a time-lock puzzles recent results

from Bitansky et al. show constructions based on random encodings

[7, 14]. Their security is based on the existence of non-parallelizing

languages. The inherent problem with time-lock puzzles is that the

time needed for solving the puzzle is dependent on the computing

speed which can not be accurately predicted into the future.

In the category of schemes using trusted party, one of the first

was presented by Rivest et al. [63] where a trusted party creates pub-

lic keys for encryptions of messages and publishes the correspond-

ing secret keys for different time-periods regularly. This idea was

employed by Rabin and Thorpe with multiple trusted agents, using

a distributed key generation [60] to distribute the secret key used

for encryptions among different parties. There are other schemes

based on different approaches, like the timed-release encryption

scheme from Crescenzo et al. [30] which uses a trusted time-server

and a newly created primitive called ‘Conditional oblivious transfer’.

They create an efficient protocol based on the quadratic residuosity

assumption which in addition offers sender anonymity. Watanabe

et al. used secret sharing where the dealer can chose a time. The

shareholders can not reconstruct the secret shared before the time

specified is over [70]. Many schemes based on identity based en-

cryption were proposed, where the trusted key distribution center

is also used for ensuring the correct time [17, 24, 25, 56]. In these

models, any criterion which can be verified by the trusted party

can be used as a reason to open a capsule.

For watermarking schemes, depending on the data type and

application, many robust watermarking schemes have been pro-

posed in the literature. Works such as [50], [51], [34] present dif-

ferent audio watermarking schemes while works like [49], [72]

deal with robust video watermarking. For software watermarking,

schemes suggested in [68], [45] can be considered. The proposed IE

protocol admits any robust watermarking scheme with no known

attacks [65]. Lysyanskaya et al.
Halpern and Teague [41] introduce rational secret sharing

where the agents sharing a secret are rational rather than honest

or malicious . They show that at equilibrium, the agents do not

contribute shares for reconstruction and propose a randomized

protocol for perform the reconstruction. Gordon et al. [39] improve

on the randomized protocol of [41] by overcoming the impossibility

result. Lysyanskaya et al. [53] introduce the mixed behaviour model

where the parties are either rational or adversarial, the authors

provide a frame work for multi-party computation in the proposed

model. We adopt the mixed-behaviour model in this work.

9 CONCLUSION AND FUTUREWORK
We propose a novel Collusion Deterrent Escrow (CDE) mechanism

to realize a distributed approach for information escrows that dis-

incentivizes collusion. In the CDE mechanism the escrow is offered

as a service and the user availing it transfers an encrypted version

of her data to be decrypted only when the user-defined condition is

met. The proposedmechanism dis-incentivizes any collusion among

the agents offering the service to selectively decrypt the user’s data.

The agents make a conditional deposit on a cryptocurrency system

before the start of the data transfer. If they collude to decrypt the

data, the mechanism ensures that at-least one agent will be able

to transfer all the deposits while the rest of the agents are banned

from the system. This penalty mechanism eliminates the risk of

selective opening encountered in such protocols proposed till now.

We analyse the protocol as a game-theoretic mechanism inducing

a bayesian game among the agents and show that it is the best

response strategy of the agents to not collude. The cryptographic

construction of CDE protocol employs robust watermarking, a
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Table 5: Time (mean ± standard deviation) taken in seconds for different steps of watermarking for different images

Image Size(KB) Splitting Watermarking Extraction

Cameraman.bmp 66 0.00710 ± 1.2e-05 0.0542 ± 2.2e-04 0.023 ± 1.6e-04

Bridge.bmp 263 0.04176 ± 4.8e-08 0.1241 ± 6.7e-04 0.046 ± 3.2e-04

Sailboat.bmp 769 0.0713 ± 2.8 e-06 0.1827 ± 17.8e-04 0.065 ± 7.6e-04

Airplane.bmp 769 0.0785 ± 1.09e-06 0.1811 ± 3.69e-04 0.062 ± 5.4e-04

Table 6: Time taken and data transferred for DKG and bit-
decomposition phases for number of parties n = 5, 8. DROT
involves two-party computation with n = 2.

n Phase Time Data

5

DKG 2.155sec 3.6 KB

BitDec 34.2sec 92MB

8

DKG 2.165sec 6.3 KB

BitDec 34.1sec 108MB

2 DROT 124.6msec -

claim-or-refund smart contract and a proposed multi-party exten-

sion of oblivious transfer primitive called the distributed-receiver

oblivious transfer. The prototype implementation shows the ease

of setup and the feasibility of the protocol.

While this work focuses on realizing secure information es-

crow using MPC, we find that our work can be extended to other

MPC applications specially those using MPC-as-a-service for sev-

eral users such as allegation escrow [8, 47], private information

retrieval, and distributed setups for identity and attribute-based

cryptography. In general, this work can offer a key-step towards de-

veloping a comprehensive strategy to deal with passive collusions

in the MPC applications in the near future.
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