
A Lattice-based Provably Secure Multisignature Scheme in Quantum
Random Oracle Model⋆

Masayuki Fukumitsu1 and Shingo Hasegawa2

1 Faculty of Information Media, Hokkaido Information University,
Nishi-Nopporo 59-2 Ebetsu, Hokkaido, 069–8585 Japan.

fukumitsu@do-johodai.ac.jp
2 Graduate School of Information Sciences, Tohoku University,

41 Kawauchi, Aoba-ku, Sendai, Miyagi, 980–8576 Japan.
shingo.hasegawa.b7@tohoku.ac.jp

Abstract. The multisignature schemes are attracted to utilize in some cryptographic applications such as
the blockchain. Though the lattice-based constructions of multisignature schemes exist as quantum-secure
multisignature, a multisignature scheme whose security is proven in the quantum random oracle model
(QROM), rather than the classical random oracle model (CROM), is not known.
In this paper, we propose a first lattice-based multisignature scheme whose security is proven in QROM.
Although our proposed scheme is based on the Dilithium-QROM signature, whose security is proven in
QROM, their proof technique cannot be directly applied to the multisignature setting. The difficulty of
proving the security in QROM is how to program the random oracle in the security proof. To solve the prob-
lems in the security proof, we develop several proof techniques in QROM. First, we employ the searching
query technique by Targi and Unruh to convert the Dilithium-QROM into the multisignature setting. For
the second, we develop a new programming technique in QROM since the conventional programming tech-
niques seem not to work in the multisignature setting of QROM. We combine the programming technique
by Unruh with the one by Liu and Zhandry. The new technique enables us to program the random oracle in
QROM and construct the signing oracle in the security proof.

Keywords: Lattice Cryptography · Multisigature · Quantum Random Oracle Model · CRYSTALS-Dilithium

1 Introduction

The multisignature scheme [IN83] is a variant of digital signature schemes in the sense that a group of signers
can prove their authenticity of a single message. One of the advantages is that these can reduce the size of an
issued multisignature compared with that of all signatures generated by each signer individually. This property
is suitable for IoT devices, and the multisignature schemes are recently employed in the blockchain to realize a
transaction by a multi-user.

Although many multisignature schemes were proposed, most of them are based on the discrete logarithm
assumption or the integer factoring assumption. Such schemes have the threat by quantum computers because
Shor [Sho99] presented the quantum algorithm for breaking these assumptions. The lattice-based multisigna-
ture schemes are one of the promising candidates for quantum-resistant multisignature schemes. El Bansarkhani
and Sturm [EBS16] proposed the first lattice-based multisignature scheme for the constant number of signers.
Their multisignature scheme is based on a lattice-based standard signature scheme by Güneysu, Lyubashevsky
and Pöppelmann (GLP) [GLP12], which is a Fiat-Shamir-type signature scheme [FS87]. Its security is proven
from the Ring Short Integer Solution assumption. Fukumitsu and Hasegawa [FH19] recently enhanced their
multisignature scheme concerning the tightness of security reduction. The main idea of their construction is
replacing the GLP signature scheme part with the Abdalla-Fouque-Lyubashevsky-Tibouchi (AFLT) signature
scheme [AFLT16] which is known as a tightly-secure Fiat-Shamir-type signature scheme from the Ring Learn-
ing with Errors assumption.

The security of these lattice-based multisignature schemes was proven only in the classical random ora-
cle model (CROM). In CROM, an adversary is supposed to obtain any hash value from the random oracle.
However, a classical query is only allowed. In order to show that the schemes have the security against quan-
tum computers, an adversary should enable quantum queries to the random oracle. Boneh, Dagdelen, Fis-
chlin, Lehmann, Schaffner and Zhandry [BDF+11] proposed the quantum random oracle model (QROM). In
this model, an adversary can provide a quantum query to the random oracle. The security of several cryp-
tographic schemes, e.g. [BDF+11,Zha12,Unr15,TU16,KLS18,Zha19,DFMS19,LZ19] has been proven in this
model. However, there is no multisignature scheme that is provably secure in QROM.
⋆ The preliminary version of this paper appeared in [FH20].

1.1 Our Contribution
Overview We proposed a first multisignature scheme that is provably secure in QROM. The construction of our
scheme is started with replacing the AFLT signature scheme part of the Fukumitsu-Hasegawa multisignature
scheme with a variant of the candidates of the post-quantum cryptographic standard [NIS17], the Dilithium-
QROM [KLS18]. The Dilithium-QROM achieves the provable security in QROM under the Modulo-LWE
assumption. We aim to prove the plain-public key (ppk) security of our proposed scheme in QROM. The ppk
security [BN06] is considered as the standard security notion of the multisignature scheme. It means that on
a given challenge public key pk∗, any probabilistic polynomial-time (PPT), especially quantum polynomial-
time (QPT), adversary A cannot forge a new multisignature σ∗ under a group of signers which contains the
signer owning pk∗ beyond negligible probability. During that, A can adaptively obtain multisignatures under
an arbitrarily chosen pairs of a message µ and a group of signers which contains the signer owning pk∗ from
the signing oracle simulated by a challenger, where the challenger plays the role of the signer owning pk∗ while
A does that of the co-signers.

Proof Technique The main idea of proving the security of our proposed multisignature scheme is employing
the proof technique by Kiltz, Lyubashevsky, and Schaffner [KLS18]. They proved the security of the Fiat-
Shamir-type signature scheme in QROM. Their main feature is to naturally extend the security proof in CROM
by [KW03,AFLT16], which is called a lossy ID technique, to the QROM case. The result suggests that the
security proof given in CROM by the lossy ID technique can be converted to the one in QROM. On the other
hand, the security of the original scheme [FH19] of our proposed scheme was proven by using the lossy ID
technique. Therefore, we expect that we can prove the security of our multisignature scheme in QROM by
extending the security proof by [KLS18] to the multisignature scheme case. However, such a natural extension
of [KLS18] seems not to work well. We then describe the details of the problems and their solutions.

We first briefly recap the structure of Fiat-Shamir-type signature schemes and the security proof by [KLS18].
A signature generated by such types consists of a pair (w, z) such that z is determined by using a hash value
c = H2(w, µ) of the first component w and a message µ and a secret key of a signer. Their proof is divided
into three steps. In the first step, the signing oracle in the security game is replaced with a simulator that no
longer uses a secret key. To achieve security in QROM, all signatures that the signing oracle replied to A are
determined at the beginning of the game by utilizing a random function. In the second step, a public key given
toA is switched into a “lossy” one which intuitively means a public key that has no corresponding secret key.
In the third step, they evaluate the upper bound of the winning probability of the “changed” game at the previ-
ous steps. Then, they convert the challenger of the changed game into an unbounded algorithm that solves the
generic search problem with bounded probabilities (GSPB) [KLS18]. They also showed that any unbounded
quantum algorithm solves GSPB with negligible probability. These imply that the winning probability of the
original security game is almost bounded by the probability of distinguishing the distribution of a regular public
key and that of a lossy public key.

According to these steps, we attempt to prove the security of the proposed multisignature scheme. Namely,
we shall construct a simulator of the signing oracle and evaluate the security game for a lossy public key by
converting the challenger of the changed game into an algorithm for solving GSPB. However, it turns out that
two problems obstruct the naive application of [KLS18] to our multisignature case. Furthermore, we have to
overcome them to succeed in the security proof.

The first one is how to search queries to the random oracle by A in the QROM case. Intuitively says, a
multisignature during our signing protocol consists of the summation (w, z) =

∑
(wv, zv) of all solo signa-

tures (wv, zv) of the Dilithium-QROM issued by all signers individually. Following the signing protocols by
[EBS16,FH19], each signer broadcasts the hash value gv = H0(wv) of wv to the co-signers before broadcast-
ing wv. By utilizing this process, we aims to construct a simulator which recovers each of wv from gv as in
[EBS16,FH19] before broadcasting wv. In the CROM case, this is done by using the hash table of H0. However,
this technique cannot be immediately utilized in the QROM case as mentioned in [BDF+11,Zha19]. This is be-
cause hash queries and these responses in QROM are in a superposition, and then recording such values to the
hash table is in general difficult. To solve this problem, we employ the technique by Targi and Unruh [TU16]
which is used to prove the security of a variant of the Fujisaki-Okamoto transformation [FO13] in QROM. They
overcame the difficultly by simulating the random oracle using an efficiently invertible function, i.e., a polyno-
mial. Namely, it recovers a hash query to the random oracle by computing the root of the polynomial. Since
the polynomial has multiple roots, to determine a hash query from the multiple roots, they utilize a one-way
injection of a public key encryption scheme under fixed public key and randomness. To employ their method,
we involve a one-way injective function in our signing protocol. We also note that the post-quantum public-key
encryption schemes and the one-way injective functions such as [dC17,GPV08,PW08] can be adapted as a
one-way injective function.

2

The second one is how one can program the hash values in QROM. The simulator of the signing oracle,
which plays the role of the signer owning pk∗, is required to issue a solo signature of the Dilithium-QROM
without the secret key corresponding to pk∗. Recall that [KLS18] succeeded in constructing such a simulator
by determining the signatures of all messages queried by A at the beginning of the game. However, this tech-
nique cannot be applied immediately in our case. This is because in the signing protocol of the multisignature
scheme, a multisignature (w, z) is issued by combining each of solo signatures (wv, zv) from all co-signers
which are played by A, and hence the simulator no longer issues all multisignatures up-front. In order to re-
solve this problem, we employ a programing technique proposed by Unruh [Unr15]. Their technique supports
programming a hash value on H2 of an input value known just before the programming. Although their tech-
nique seems suitable in our case, it requires that an input value to be hashed by H2 must be determined just
before the programming by using new random coins. On the other hand, the input values w and µ are deter-
mined before broadcasting wv in our construction, and hence these values include no new random coin. This
is a new problem to be addressed. For this new problem, we combine the programming technique by Liu and
Zhandry [LZ19]. Their technique realizes the programming of an arbitrary value as a hash value. By using the
technique by [LZ19], the new random coins are programmed as a hash value given by employing a new hash
function H1, and then the technique by [Unr15] can be applied to our multisignature case by adding the new
random coins as the input value of H2. Our new programming technique, which combines the two conventional
techniques [Unr15,LZ19] enables us to construct the simulator in the multisiganture case even in QROM, and
then realizes the natural extension of the security proof in CROM into the QROM.

1.2 Future Works

We employ a new cryptographic assumption called the rMLWE assumption which is a lattice analog of the
rDCK assumption [BBE+18] to simulate the signing oracle. Showing the validity of the new assumption or
removing it from the security proof is important future work.

Another important future work is concerning the parameters of our multisignature scheme. Although we
will show the bound and the relationship among the parameters in Table 1, the concrete recommended values
have not been discussed. We will determine them so that our proposed scheme takes significance in the real
world.

2 Preliminaries

Let A be an algorithm. y ← A(x) means that A outputs y on input x when A is deterministic. When A is
probabilistic, we denote this by y ← A(x; r), where r is an internal coin of A. And then, A(x) is a random
variable over the choice of r. For any Boolean formula B, ¬B means that B is not satisfied. Let N be the set of
natural numbers. A function ϵ in κ is said to be negligible if for any polynomial p, there exists κ0 ∈ N such that
ϵ(κ) < 1/p(κ) for any κ ≥ κ0.

Let Z, Zn, and Fq be the ring of integers, that of residues and the finite field over q respectively, where n ∈ N
and q is a prime or a power of 2. Consider a finite set X. For a probabilistic distribution D over X, x ∈D X
means that x is chosen according to D. x ∈U X means that x is chosen uniformly at random from X. Let Uni
be a probabilistic algorithm that outputs x ∈U X on a given set X. Although the length of the representation of
X may be beyond polynomial in a security parameter, we use Uni only in unbounded algorithms in this paper.
For any real number 0 ≤ λ ≤ 1, Bλ is the Bernoulli distribution, namely Prx∈Bλ {0,1}[x = 1] = λ. For a set X, |X|
stands for the number of elements in X, while |a| does for the absolute value of a for any number a.

2.1 Quantum Computation

The state |ψ⟩ of n qubits is expressed by |ψ⟩ = ∑
s∈{0,1}n αs|s⟩, where each of αs is a complex number such that∑

s∈{0,1}n |αs|2 = 1. And, {|s⟩}s∈{0,1}n is called computational basis. The qubit is said to be in superposition if
there exists s ∈ {0, 1}n such that 0 < |αs| < 1, whereas it is classical otherwise. Any string s ∈ {0, 1}n can be
measured in the computational basis with probability |αs|2. The evolution of a quantum system in a state |ψ⟩ is
defined by using a unitary matrix U of size 2n × 2n. For the detail, please refer to a textbook such as [NC00].

Consider an oracle O which returns an m-bit string on input n-bit string. Following [BDF+11], the quantum
access to O is expressed by a unitary matrix UO which maps |x⟩|ψ⟩ to |x⟩|ψ ⊕ O(x)⟩, where x ∈ {0, 1}n, ψ ∈
{0, 1}m and ⊕ denotes the bitwise exclusive-or operation. For an quantum algorithm A, A|O⟩ means that A is
allowed to access the oracle O in superposition.

3

ExpGSPB
λ,A (κ)

(1)
({λ(x)}x∈X , st

)← A1(1κ)
(2) return 0 if ∃x ∈ X s.t. λ(x) > λ.
(3) For each x ∈ X, set g(x) ∈Bλ(x) {0, 1}
(4) x← A|g⟩2 (st)
(5) return g(x)

Fig. 1. The generic search problem with bounded probabili-
ties 0 ≤ λ ≤ 1

ExpReprog
D,R,b′ ,A(κ)

(1) H ∈U Fun(D,R).
(2) st0 ← A|H⟩0 (1κ).
(3) (w, stc)← AC(st0).
(4) c = H(w) if b′ = 1, or c ∈U R and set H(w) = c other-

wise.
(5) returnA|H⟩2 (c, stc).

Fig. 2. The reprogram problem in QROM

We recall the generic search problem with bounded probabilities (GSPB), which is defined in [KLS18]
(Fig. 1). Intuitively, the adversary A = (A1,A2) in the GSPB game aims to find a string x ∈ X such that
g(x) = 1. Here, A can declare the probability λ(x) that g(x) = 1 for each x ∈ X under the constraint that
λ(x) < λ for some designated 0 ≤ λ ≤ 1, and then the challenge C determines the function g(x) according to
Bλ(x) for each x ∈ X.

Lemma 1 ([KLS18, Lemma 2.1], Generic Search Problem with Bounded Probabilities). For any real
number 0 ≤ λ ≤ 1, and any unbounded quantum algorithm A = (A1,A2) making at most Q queries to
g : X → {0, 1}, we have Pr

[
ExpGSPB

λ,A (κ) = 1
]
≤ 8λ(Q + 1)2.

2.2 Quantum Random Oracle Model

In this subsection, we explain the notion of the quantum random oracle model and the ways to simulate it.
Let Fun(D,R) be the set of all functions H : D → R. Then, the quantum random oracle model (QROM) is a
security model in which any adversary A obtains hash values from the random oracle by accessing the oracle
in superposition. For a hash function H ∈ Fun(D,R), we writeA|H⟩ to denote thatA can access to the random
oracle H in superposition.

The several ways to simulate the random oracle are known. We recall the techniques of replacing the random
oracle with several functions and that of involving the compressed oracle proposed by [Zha19].

The first way to simulate the random oracle is to replace the random oracle with a random function H ∈U
Fun(D,R). In this way, a challenger selects H at the beginning of the security game, and replies H(x) on a given
query x in superposition. The random oracle is simulated perfectly by this technique, because the uniformly
random choice of a function from Fun(D,R) implies that the hash value H(x) is uniformly distributed over
R for any value x. The following lemma says that we can replace a hash value with a random value even in
QROM. Namely, we can use the programming technique with random values in this simulation. The collision-
entropy [Unr15] of a random variable X is defined by − log Pr [X = X′], where X′ is a random variable X′ which
is independent of X, but has the same distribution.

Lemma 2 ([Unr15]). Let D, R be finite sets, and letA = (A0,AC ,A2) be an algorithm such thatA0 andA2
are quantum algorithms which can access to the random oracle, andAC is a probabilistic classical algorithm.
Assume that AC(st0) has collision-entropy at least ι for any input st0. For ExpReprog

D,R,b′,A depicted in Fig. 2, and
the number qA of queries byA0, we have∣∣∣∣Pr

[
ExpReprog

D,R,0,A(1κ) = 1
]
− Pr

[
ExpReprog

D,R,1,A(1κ) = 1
]∣∣∣∣ ≤ (4 +

√
2)
√

qA2−ι/4.

Moreover, the following lemma guarantees that H can be replaced with a 2Q-wise independent function in
the simulation of the random oracle.

Lemma 3 ([Zha12]). Let A be a quantum algorithm, which can access the random oracle in superposition
at most Q times. Then, a simulator of the random oracle which uses a function H ∈U Fun({0, 1}n, {0, 1}m)
is perfectly indistinguishable from the one which uses a 2Q-wise independent function from A. A random
polynomial f2Q of degree 2Q over the finite field F2m is 2Q-wise independent.

Note that the roots of f2Q can be computed in polynomial-time.

The second way to replace the random oracle is the use of the compressed oracle [Zha19]. The concept of
compressed oracles was introduced to simulate the random oracle, as in the case of the classical ROM. Namely,
a database of all pairs of a random oracle query and its hash value is utilized in the simulation. We now briefly

4

recall the notion of the compressed Fourier oracle and the compressed phase oracle, respectively. For the detail,
please refer to the papers such as [Zha19,LZ19]. Consider that R = {0, 1}θ, and a superposition of databases
D which contains pairs (x, y) of an input and an output of a hash function H Hence, (x, y) ∈ D means that
H(x) = y. At the beginning of a security game, D is initialized to a pure state over empty databases. For each
query, the compressed Fourier oracle returns its hash value in superposition after operating D ⊕ (x, y). The
operation D ⊕ (x, y) is defined in the following way:

– D if y = 0,
– D ∪ {(x, y)} else if y , 0 ∧ D(x) = ⊥,
– D \ {(x, y)} else if there exists x such that D(x) = y′ ∧ y + y′ ≡ 0 (mod 2θ), or
– D \ {(x, y)} ∪ {(x, y + y′)} otherwise.

The compressed phase oracle is intuitively obtained by applying the quantum Fourier transformation to D. For
a tuple |x, y,D⟩, it proceeds as follows:

– If there exists y′ such that (x, y′) ∈ D, then y′ part is updated to y + y′. Namely, a phase ωyy′

R
will be added

to the state, where ωR = e2πi/|R|.
– Otherwise, (x, y) is added to D. Namely, a superposition is appended to |x⟩ ⊗∑

y′ ω
yy′

R
|y′⟩.

– Finally, it checks that there exists no (x, 0) by converting it into the compressed Fourier oracle model. If
there are such pairs, then these are deleted.

Moreover, any QPT algorithm can simulate both the compressed Fourier oracle and the compressed phase
oracle straightforwardly.

Lemma 4 ([Zha19]). LetA be a quantum algorithm which makes queries to a random oracle H : D→ {0, 1}n,
and outputs tuples (x1, . . . , xk, y1, . . . , yk, z). Let R be a collection of such tuples. Suppose that with probability
p, A outputs a tuple such that (1) the tuple is in R and (2) for all i, H(xi) = yi. Now consider running A with
each of the compressed Fourier oracle and the compressed phase oracle, and suppose that the database D is
measured after A produces its output. Let p′ be the probability that the conditions (1) and (2) hold in this
running case. Then, we have

√
p ≤ √p′ +

√
k/2n.

Liu and Zhandry [LZ19] recently introduced a new compressed oracle, which is called almost compressed
Fourier oracle, by combining the compressed Fourier oracle with the compressed phase oracle. In the use of
the almost compressed Fourier oracle, some points are called special points. Moreover, they are dealt with
the (uncompressed) phase oracle. On the other hand, other points are dealt with by the compressed Fourier
oracle. Namely, the entire initial state of the oracle is expressed by

∑
x,y αx,y|x, y⟩ ⊗ (|D0⟩ ⊗

∑
r |r⟩), where D0

is an empty database. For each query, the pair (x, y) of the input and the output is dealt with the one on the
compressed Fourier oracle if x is not a special point. Otherwise, the second part of the oracle is updated as a
phase oracle: αx,y,D,y′ |x, y⟩ ⊗ |D⟩ ⊗

∑
r ω

y′r
R
|r⟩ =⇒ αx,y,D,y′ |x, y⟩ ⊗ |D⟩ ⊗

∑
r ω

(y′+y)r
R

|r⟩.
As a programming technique on the almost compressed Fourier oracle, the following lemma holds. This

lemma can be extended to a case for several special points as noted in [LZ19].

Lemma 5 ([LZ19, Corollary 7]). Consider a random oracle which maps an element in {0, 1}n into the one
in {0, 1}n. Assume that an adversary A is interacting with a simulator of an almost compressed phase oracle
where the i-th oracle query x∗ is regarded as the special point. Instead of appending

∑
y |y⟩ into the database

for the i-th query, |r⟩ for randomly chosen r is appended. Then,A and the simulator continue the running, and
eventually the simulator measures the output registers. Then,A cannot distinguish such a replacement.

More precisely, consider the following situation. Let S be a set of all possible entire states w of A and
compressed database D ∪ {(x∗, r)}. We define a measurement as follows: Let γ be the probability that the
measurement gives 0 in the game where

∑
y |y⟩ is appended into D as the hash value of x∗, and γ′ be the one

where |r⟩ is appended. Then, we have γ = γ′.

2.3 Lattice

Consider q, n ∈ N. Let R and Rq be the rings Z[X]/(Xn + 1) and Zq/(Xn + 1), respectively. An element a =∑n−1
i=0 aixi in R or Rq is represented by its coefficients vector (a0, a1, . . . , an−1). Regular font letters stand for

elements in R or Rq, while bold font letters stand for vectors and matrices over R or Rq.
For α ∈ N, r = x mod +α denotes the ordinary residue of the division over α, namely 0 ≤ r < α, while

r = x mod ±α does the centered residue such that −α/2 < r ≤ α/2 when α is even, or −(α−1)/2 ≤ r ≤ (α−1)/2
otherwise. Hereafter, each element x in Zq including coefficients of a ∈ Rq is represented by the centered

5

Init C generates pp← Setup(1κ) and C’s key pair (pk∗, sk∗)← KGen(pp). Then C sends (pp,pk∗) to F .
Sign For a query (µ(i),PK(i)) of a message µ(i) and a public key set PK(i) =

{
pk(i)

u

}U

u=1
including pk∗, C runs the protocol by

playing the role of the signer which generates pk∗ and then returns a multisignature σ(i) to F . We assume without loss
of generality that pk(i)

1 = pk∗. Here, F plays the role of the co-signers.
Challenge For a final output (PK∗, µ∗, σ∗) of F , F is said to win this game if the following conditions hold:

(1) pk∗ ∈ PK∗,
(2) (µ∗,PK∗) is not queried in Sign phase, and
(3) Ver(pp,PK∗, µ∗, σ∗) = 1.

Fig. 3. The description of the ppk game

residue instead of the ordinary one. For any r ∈ Zq, ||r||∞ is defined by |r mod ±q|. By using this notation, any
element r = x mod ±α satisfies that ||r||∞ ≤ α/2 for any natural number α ≤ q and integer x. The L∞-norm
and the L2-norm of a polynomial a = (a0, a1, . . . , an−1) ∈ Rq are represented by ||a||∞ = max0≤i≤n−1 ||ai||∞ and

||a||2 =
√∑n−1

i=0 ||ai||2∞, respectively. The L∞-norm and the L2-norm of a vector a = (a1, . . . , aℓ) ∈ Rℓ
q for any ℓ ∈ N

are represented by ||a||∞ = max1≤i≤ℓ ||ai||∞ and ||a||2 =
√∑ℓ

i=1 ||ai||2∞, respectively. For any η ∈ N, let S η be a set of
all elements a ∈ R such that ||a||∞ ≤ η.

Consider k, ℓ ∈ N, a probability distribution D over Rq. For any polynomial TMLWE and any function ϵMLWE,
the (TMLWE, ϵMLWE,D)-Modulo-LWE assumption ((TMLWE, ϵMLWE,D)-MLWE assumption) states that for any
QPT adversary A whose running time is at most TMLWE, it holds that

∣∣∣PMLWE
0 − PMLWE

1

∣∣∣ ≤ ϵMLWE(κ) for any κ,
where

PMLWE
0 = Pr

[
A(A, t) = 1 : A ∈U Rk×ℓ

q , s1, ∈D Rℓ
q, s2 ∈D Rk

q, t = As1 + s2

]
,

PMLWE
1 = Pr

[
A(A, t) = 1 : A ∈U Rk×ℓ

q , t ∈U Rk
q

]
.

We also consider another assumption which is an analog of the rejected-DCK assumption [BBE+18] to the
MLWE case. Let

CH =
{
c ∈ R | ||c||∞ = 1 ∧ ||c||2 =

√
46

}
.

For any polynomial TrMLWE, any function ϵrMLWE and any constants γ′ and β, the (TrMLWE, ϵrMLWE,D, γ′, β)-
rejected-MLWE assumption ((TrMLWE, ϵrMLWE,D, γ′, β)-rMLWE assumption) states that for any QPT adversary
A whose running time is at most TrMLWE, it holds that

∣∣∣PrMLWE
0 − PrMLWE

1

∣∣∣ ≤ ϵrMLWE(κ) for any κ, where

PrMLWE
0 = Pr

A(A,w, c) = 1 :
A ∈U Rk×ℓ

q , s ∈D Rℓ
q,

y ∈U S ℓ
γ′−1,

w = Ay, c ∈U CH
| y + cs ≥ γ′ − β

,
PrMLWE

1 = Pr

A(A,w, c) = 1 :
A ∈U Rk×ℓ

q , s ∈D Rℓ
q,

y ∈U S ℓ
γ′−1,

w ∈U Rk
q, c ∈U CH

| y + cs ≥ γ′ − β

.
2.4 Multisigature Scheme

We now introduce the notion of the multisignature and its security. A multisignature scheme consists of the
following four tuples (Setup,KGen,Sig,Ver). Setup and KGen are PPT algorithms. Setup(1κ) returns a system
parameter pp on a security parameter κ. Each signer generates a pair (sk,pk) of a secret key sk and a public
key pk by KGen(pp). The signing process can be done by running the designated multiparty protocol during
multiple signers to issue a signature σ on a message µ and a set PK of public keys. Each signer executes the
interactive polynomial-time algorithm Sig(pp, sk,PK, µ) in order to execute this protocol. Ver is a deterministic
polynomial-time algorithm which returns 1 on input (pp,PK, µ, σ) if σ is a valid signature for (PK, µ).

Correctness Let MSig = (Setup,KGen,Sig,Ver) be a multisignature scheme. For any pp ← Setup(1κ)
and any message µ, consider the situation where for each 1 ≤ v ≤ U, a v-th signer generates own key pair(
skv,pkv

)← KGen(pp), executes Sig(pp, skv,PK, µ) in order to run the protocol, and then obtains a signature
σ, where PK =

{
pku

}U
u=1. MSig satisfies the correctness if it always holds Ver(pp,PK, µ, σ) = 1.

6

Power2Roundq(r ∈ Zq, d ∈ N):
(1) r = r mod +q.
(2) rL = r mod ±2d.
(3) return (r − rL)/2d.

UseHintq(h ∈ {0, 1}, r ∈ Zq, α ∈ 2N):
(1) m = (q − 1)/α.
(2) (rH, rL)← Decomposeq(r, α).
(3) return rH if h = 0.
(4) return (rH + 1) mod +m if rL > 0.
(5) return (rH − 1) mod +m if rL ≤ 0.

MakeHintq(z ∈ Zq, r ∈ Zq, α ∈ 2N):
(1) rH ← HighBitsq(r, α).
(2) vH ← HighBitsq(r + z, α).
(3) return 0 if rH = vH, or 1 otherwise.

Decomposeq(r ∈ Zq, α ∈ 2N):
(1) r = r mod +q.
(2) rL = r mod ±α.
(3) return (rH, rL) = (0, rL − 1) if r − rL = q − 1.
(4) rH = (r − rL)/α.
(5) return (rH, rL).

HighBitsq(r ∈ Zq, α ∈ 2N):
(1) (rH, rL)← Decomposeq(r, α)
(2) return rH

LowBitsq(r ∈ Zq, α ∈ 2N):
(1) (rH, rL)← Decomposeq(r, α)
(2) return rL

Fig. 4. Supporting algorithms [DKL+18]

Security The plain public key (ppk) security [BN06] for multisignatures is defined by the ppk game between
the challenger C and the forger F (Fig 3).

Definition 6. Let T be a polynomial, ϵ be a function and U be the number of signers. A multisignature scheme
MSig with U signers is (T,U, ϵ,QS)-ppk secure if for any forger F running in time T which makes at most QS

queries in Sign phase, the probability that F wins the ppk game is ϵ.
Especially, MSig is said to be (T,U, ϵ,QS ,Q0,Q1, . . .)-ppk secure in QROM if MSig is (T,U, ϵ,QS)-ppk

secure and the number of queries to the random oracle Hi is at most Qi for all i.

3 A Dilithium-based Multisignature Scheme

We propose a multisignature scheme that is based on the Dilithium-QROM signature scheme [KLS18]. In their
scheme, several supporting algorithms are employed to optimize efficiency. We start by introducing several
supporting algorithms in the next subsection.

3.1 Supporting Algorithms

The basic strategy of the Dilithium-QROM signature scheme is to reduce the key size and the signature size is to
ignore the residues of values by dividing them by some designated even number α < q. In order to apply such a
strategy to a signature scheme, the Dilithium-QROM signature scheme employs several supporting algorithms
which are summarized in Fig. 4.

We note that the supporting algorithms can be applied to vectors or polynomials rather than scalars, by
applying each of these elements in the vectors. For example, Decomposeq(a, α) for a = (a0, a1, . . . , an−1) ∈ Rq

means that Decomposeq is applied to each coefficients of a with the same modulus α. Namely, we have

Decomposeq(a, α) = (Decomposeq(a0, α), . . . ,Decomposeq(an−1, α)).

We can employ the same manner for a vector over Rq. For a vector h = (h0, . . . , hn−1) ∈ {0, 1}n, UseHintq(h, a, α)
means (UseHintq(h0, a0, α), . . . ,UseHintq(hn−1, an−1, α)). MakeHintq is also applied to the same manner.

3.2 Proposed Scheme

We present our Dilithium-based multisignature scheme in this subsection. We consider the number U of signers
and parameters (q, n, k, ℓ, d, γ, γ′, η, β, θ) which are defined as Table 1. Let Sam be an algorithm which outputs
a matrix A ∈U Rk×ℓ

q on input ϱ ∈ {0, 1}256. And, let H0,H1 and H2 be functions that H0 : D0 → R0, H1 :
D1 → {0, 1}θ and H2 : D2 → CH , respectively. We use a one-way injective function OW. The proposed
multisignature scheme is given in Fig. 5.

7

Table 1. Parameters of the proposed multisignature scheme, where A, t, wH, s1, s2 and H1 will be defined in Fig. 5.
U # of signers constant
q ring modulus q ≡ 5 (mod 8)
n ring dimension
(k, ℓ) dimension of matrix A ℓ ≤ k
d dropped bit from t 46 · 2d−1 ≤ γ, 2d < 4U(γ′ − β) − 4
γ max. coefficient of wH q > 4Uγ, q ≡ 1 (mod 2Uγ), β ≪ γ, 4Uγ + 2 ≤

√
q/2

γ′ ≈ max. sig. coefficient β ≪ γ′, 2γ′ ≤
√

q/2, 2U(γ′ − β) − 2 ≤
√

q/2
η max. coefficients of s1, s2

β β = 46η ∀c ∈ CH ,∀s ∈ S η, ||cs||∞ < β
θ length of hash values of H1 polynomial

Setup(1κ) returns ϱ ∈U {0, 1}256.
KGen(ϱ) returns a key pair

(
skv,pkv

)
which is computed as follows:

(1) A = Sam(ϱ).
(2) skv =

(
sv,1, sv,2

) ∈U S ℓ
η × S k

η.
(3) tv = Asv,1 + sv,2.
(4) decomposite tv into

(
tv,H, tv,L

)
according to Power2Roundq such that tv = 2d · tv,H + tv,L.

(5) pkv =
(
tv,H, tv,L

)
.

Sig(ϱ,PK, skv, µ) returns σ = (wH,z,h) on the message µ under the public key set PK =
{
pku

}U
u=1 by running the following

protocol, where pku =
(
tu,H, tu,L

)
for each 1 ≤ u ≤ U. The following protocol is described in the viewpoint of the signer

owning the public key pkv which corresponds to skv. If the time of the iteration exceeds E which is the expected time
of the iteration, it returns σ = ⊥.
1st stage proceed to the followings, and then broadcast (gv,pv) to the co-signers:

(1.1) A = Sam(ϱ); yv ∈U S ℓ
γ′−1; wv = Ayv.

(1.2) gv = H0(wv); pv = OWgv (wv).
2nd stage After receiving {(gu,pu)}u,v, broadcast wv to the co-signers.
3rd stage After receiving {wu}u,v, proceed as follows, and then broadcast zv to the co-signers:

(3.1) abort if ¬(gu = H0(wu) ∧ pu = OWgu (wu)
)

for some u , v.
(3.2) w =

∑U
u=1 wu; wH = HighBitsq(w, 2Uγ).

(3.3) τv = H1(pkv,wH,PK, µ).
(3.4) cv = H2(pkv,wH,PK \ {pkv

}
, µ, τv).

(3.5) zv = yv + cvsv,1.
(3.6) restart if ¬(||zv||∞ < γ′ − β).

4th stage After receiving {zu}u,v, proceed as follows:
(4.1) z =

∑U
u=1 zu.

(4.2) restart if ¬
(∣∣∣∣∣∣∣∣LowBitsq

(
Az −∑U

u=1 cutu, 2Uγ
)∣∣∣∣∣∣∣∣∞ < U(γ − β)

)
.

(4.3) h = MakeHintq
(
−∑U

u=1 cutu,L,Az − 2d ∑U
u=1 cutu,H, 2Uγ

)
.

Ver(ϱ,PK, µ, (wH,z,h)) returns 1 if the following holds, where A = Sam(ϱ), PK =
{
pku

}U
u=1, pku =

(
tu,H, tu,L

)
, τu =

H1(pku,wH,PK, µ) and cu = H2(pku,wH,PK \ {pku
}
, µ, τu), for each 1 ≤ u ≤ U:

(a) ||z||∞ < U(γ′ − β).
(b) wH = UseHintq(h,x, 2Uγ), where x = Az − 2d ∑U

u=1 cutu,H.

Fig. 5. Proposed multisignature scheme

3.3 Correctness

In this subsection, we show the correctness of our proposed multisignature scheme. We use the following
lemmas for the supporting algorithms.

Lemma 7 (Lemma 4.1 [KLS18]). Suppose that q and α are positive integers such that q > 2α, q ≡ 1 (mod α)
and α is even. Let r, z be vectors over Rq satisfying that ||z||∞ ≤ α/2, and let h,h′ be vectors of bits. Then, we
have the followings:

(1) UseHintq(MakeHintq(z, r, α), r, α) = HighBitsq(r + z, α).
(2) If vH = UseHintq(h, r, α), then ||r − vHα||∞ ≤ α + 1.
(3) For any h,h′, if UseHintq(h, r, α) = UseHintq(h′, r, α), then h = h′.

Lemma 8 (Lemma 4.2 [KLS18]). If ||s||∞ ≤ β and
∣∣∣∣∣∣LowBitsq(r, α)

∣∣∣∣∣∣∞ < α/2 − β, then HighBitsq(r, α) =
HighBitsq(r + s, α).

8

Verifying Conditions Let ϱ ← Setup(1κ). Consider the following situation. For each 1 ≤ v ≤ U, a v-th signer
generates own key pair

(
skv,pkv

) ← KGen(ϱ), executes Sig(ϱ,PK, skv, µ), and then obtains a signature σ =
(wH, z,h), where PK =

{
pku

}U
u=1. Assume that σ , ⊥. Namely, the protocol has passed the conditions in the

processes (3.6) and (4.2). This implies that ||zv||∞ < γ′−β for any 1 ≤ v ≤ U and
∣∣∣∣∣∣∣∣LowBitsq

(
Az −∑U

u=1 cutu, 2Uγ
)∣∣∣∣∣∣∣∣∞ <

U(γ − β). It follows that

||z||∞ =
∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

U∑
u=1

zu

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

≤
U∑

u=1

||zu||∞ <
U∑

u=1

(
γ′ − β) = U

(
γ′ − β),

from the processes (3.6) and (4.1). Then the verifying condition (a) of Ver is satisfied.
For each 1 ≤ u ≤ U, since zu = yu + cusu,1, wu = Ayu and tu = 2d · tu,H + tu,L = Asu,1 + su,2, we have

Azu − cutu = A
(
yu + cusu,1

) − cutu = Ayu + cu
(
Asu,1 − tu

)
= wu − cusu,2. (1)

It follows that

Az −
U∑

u=1

cutu = A
U∑

u=1

zu −
U∑

u=1

cutu =

U∑
u=1

(Azu − cutu) =
U∑

u=1

(
wu − cusu,2

)
= w −

U∑
u=1

cusu,2. (2)

By the setting 46 · 2d−1 ≤ γ in Table 1, we have∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

U∑
u=1

cutu,L

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

≤
U∑

u=1

∣∣∣∣∣∣cutu,L

∣∣∣∣∣∣∞ ≤ U∑
u=1

46 · 2d−1 ≤
U∑

u=1

γ ≤ Uγ.

By using the settings q > 4Uγ and q ≡ 1 (mod 2Uγ) in Table 1, it follows from Lemma 7 and Eq. (2) that

UseHintq

h,Az − 2d
U∑

u=1

cutu,H, 2Uγ


= UseHintq

MakeHintq

− U∑
u=1

cutu,L,Az − 2d
U∑

u=1

cutu,H, 2Uγ

,Az − 2d
U∑

u=1

cutu,H, 2Uγ


= HighBitsq

Az − 2d
U∑

u=1

cutu,H −
U∑

u=1

cutu,L, 2Uγ


= HighBitsq

Az −
U∑

u=1

cu

(
2d · tu,H + tu,L

)
, 2Uγ


= HighBitsq

Az −
U∑

u=1

cutu, 2Uγ


= HighBitsq

w − U∑
u=1

cusu,2, 2Uγ

.

(3)

Since the setting ||cs||∞ < β implies that
∣∣∣∣∣∣∑U

u=1 cusu,2
∣∣∣∣∣∣∞ < Uβ and the assumption that the protocol does not

restart at (4.2) of the signing process, Lemma 8 implies that

HighBitsq

w − U∑
u=1

cusu,2, 2Uγ

 = HighBitsq(w, 2Uγ) = wH. (4)

Putting together Eqs. (3) and (4), we can show that the verifying condition (b) of Ver holds.

Expected Time of Iteration In order to evaluate the expected time E of iteration on Sig, we introduce the
following lemma.

Lemma 9 ([KLS18, Lemma 4.3]). Let c ∈ CH and s ∈ S ℓ
η. Assume that ||cs||∞ < β. Then,

For any z ∈ S ℓ
γ′−β−1, Pr

y∈US ℓ
γ′−1

[z = y + cs] =
1∣∣∣∣S ℓ
γ′−1

∣∣∣∣ , (5)

Pr
y∈US ℓ

γ′−1

[
y + cs ∈ S ℓ

γ′−β−1

]
=

∣∣∣∣S ℓ
γ′−β−1

∣∣∣∣∣∣∣∣S ℓ
γ′−1

∣∣∣∣ . (6)

9

Putting together Eqs. (5) and (6), the following holds.

Lemma 10. Let c ∈ CH and s ∈ S ℓ
η. Assume that ||cs||∞ < β. For any z ∈ S ℓ

γ′−β−1, we have

Pr
y∈US ℓ

γ′−1

[
z = y + cs | y + cs ∈ S ℓ

γ′−β−1

]
=

1∣∣∣∣S ℓ
γ′−β−1

∣∣∣∣ . (7)

We first evaluate the probability that the protocol does not restart at (3.6) for each signer. Since β ≪ γ′,
Eq. (6) implies that

Pr
y∈US ℓ

γ′−1

[
y + cs ∈ S ℓ

γ′−β−1

]
=

∣∣∣∣S ℓ
γ′−β−1

∣∣∣∣∣∣∣∣S ℓ
γ′−1

∣∣∣∣
=

(
2(γ′ − β − 1) + 1

2(γ′ − 1) + 1

)nℓ

=

(
1 − β

γ′ − 1/2

)nℓ

≈ e−nℓβ/γ′ .

(8)

We next evaluate the probability that the protocol does not restart at (4.2). It follows from Lemma 10 that zu

is uniformly distributed over S ℓ
γ′−β−1 provided that zu ∈ S ℓ

γ′−β−1. In a smilar manner to [KLS18, Lemma 4.4],
this implies that for any B, Az − B mod ±2Uγ can be regarded as it is uniformly distributed over S k

Uγ−1. Since
β ≪ γ, we have

Pr


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣LowBitsq(Az −

U∑
u=1

cutu, 2Uγ)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

< U(γ − β)

 =
∣∣∣∣S k

U(γ−β)−1

∣∣∣∣∣∣∣∣S k
Uγ−1

∣∣∣∣
=

(
1 − β

γ − 1/2U

)nk

≈ e−nkβ/γ.

(9)

Thus the probability that the signing protocol does not restart at the processes (3.6) and (4.2) is evaluated
by

(
e−nℓβ/γ′

)U
e−nkβ/γ = e−nβ(ℓU/γ′+k/γ). And then, we can set the parameter E, which is the expected time of

iteration, to enβ(ℓU/γ′+k/γ).

4 Security

In this section, we show the security proof of the proposed multisignature scheme. Before that we prepare the
auxiliary lemma.

Lemma 11 ([KLS18, Lemma 4.6]). Assume that q ≡ 5 (mod 8). Let α1, α2 be positive integers less than√
q/2, and let C be a set of elements in R \ {0} with coefficients less than

√
q/2. Let 2d < 2α1. Then,

Pr
A∈URk×ℓ

q ,t∈URk
q

[
∃(z1, z2, c) ∈ S ℓ

α1
× S k

α2
×C s.t. Az1 + z2 = ct1 · 2d

]
≤ 2|C|

(
(2α1 + 1)ℓ(2α2 + 1)k

qk

)n

,

where t1 = Power2Roundq(t, d).

We now state our theorem.

Theorem 12. Let (q, n, k, ℓ, d, γ, γ′, η, β, θ) be parameters as in Table 1, and let OW be a one-way injec-
tive function such that any QPT adversary breaks the one-wayness with probability at most ϵOW. Assume
that the

(
TMLWE, ϵMLWE,Uni(S η)

)
-MLWE assumption and

(
TrMLWE, ϵrMLWE,Uni(S η), γ′, β

)
-rMLWE assumption

hold. Then, the proposed multisignature signature scheme is (T,U, ϵ,QS ,Q0,Q1,Q2)-ppk secure in QROM,

10

where

T = TMLWE − O(QS EU), T = TrMLWE − O(QS EU),

ϵ < ϵMLWE +
2
√

Q1

2θ/2
+

QS E(4 +
√

2)
√

Q2 + (QS E − 1)U
2θ/4

+ QS EϵrMLWE

+ 8 ·
 1
|CH| + 2|CH|2

(
32U2γ′γ

q

)kn · (Q2 + QS UE + 1)2 + ϵwH + ϵOW + negl.

Here, ϵwH denotes the probability that wH = HighBitsq

(
Ay +

∑U
u=2 wu, 2Uγ

)
over the choices of A ∈U Rk×ℓ

q

and y ∈U S ℓ
γ′−1 for any wH which would be output by HighBitsq(w, 2Uγ) and any fixed set {wu}Uu=2.

For the probability ϵwH , the following lemma holds.

Lemma 13. It holds that

ϵwH ≤
1

(2γ′ − 1)nℓ +

(
(4Uγ + 1)(4γ′ + 1)

q

)nk

.

Proof. For fixed wH and A, let SetwH denote the set of all vectors y such that wH = HighBitsq

(
Ay +

∑U
u=2 wu, 2Uγ

)
.

Assume that
∣∣∣SetwH

∣∣∣ = 1. Then, we can obtain the probability that wH = HighBitsq

(
Ay +

∑U
u=2 wu, 2Uγ

)
is

evaluated by 1/
∣∣∣∣S ℓ

γ′−1

∣∣∣∣ = (2γ′ − 1)−nℓ, where the probability is taken over the choice of y ∈U S ℓ
γ′−1.

We now consider the probability ξ that
∣∣∣SetwH

∣∣∣ ≥ 2 holds for any wH, where the probability is taken over
the choice of A ∈U Rk×ℓ

q .
Assume that there exist two vectors y and y′ which satisfy the followings:

– y , y′; and
– HighBitsq

(
Ay +

∑U
u=2 wu, 2Uγ

)
= HighBitsq

(
Ay′ +

∑U
u=2 wu, 2Uγ

)
.

We let

(wH,wL) = Decomposeq

Ay +
U∑

u=2

wu, 2Uγ

; and

(
w′H,w

′
L

)
= Decomposeq

Ay′ +
U∑

u=2

wu, 2Uγ

.
If HighBitsq

(
Ay +

∑U
u=2 wu, 2Uγ

)
= HighBitsq

(
Ay′ +

∑U
u=2 wu, 2Uγ

)
, then it holds that wH = w′H. Therefore,

we have

Ay +
U∑

u=2

wu = 2Uγ ·wH +wL, ||wL||∞ ≤ Uγ; and

Ay′ +
U∑

u=2

wu = 2Uγ ·wH +w
′
L,

∣∣∣∣∣∣w′L∣∣∣∣∣∣∞ ≤ Uγ.

By letting ỹ = y − y′ and w̃ = wL −w′L, we have Aỹ − w̃ = 0, ||ỹ||∞ ≤ 2γ′ and ||w̃||∞ ≤ 2Uγ. By the settings
of γ in Table 1, 2Uγ <

√
q/2 follows. Then we have

ξ ≤
(

(4Uγ + 1)(4γ′ + 1)
q

)nk

,

by using a similar manner to [KLS18, Lemma 4.7]. Let WwH be the event that wH = HighBitsq

(∑U
u=1 wu, 2Uγ

)
holds for any wH. Then we have

ϵwH = Pr
[
WwH

]
≤ Pr

[
WwH ∧

∣∣∣SetwH

∣∣∣ = 1
]
+ Pr

[
WwH ∧

∣∣∣SetwH

∣∣∣ ≥ 2
]

≤ Pr
[
WwH |

∣∣∣SetwH

∣∣∣ = 1
]
+ Pr

[∣∣∣SetwH

∣∣∣ ≥ 2
]

≤ 1
(2γ′ − 1)nℓ + ξ

≤ 1
(2γ′ − 1)nℓ +

(
(4Uγ + 1)(4γ′ + 1)

q

)nk

.

11

Init C proceeds as follows:
(1) H0 ∈U Fun(D0,R0);
(2) H2 ∈U Fun(D2,CH).
(3) ϱ← Setup(1κ).
(4) (sk∗,pk∗)← KGen(ϱ), where sk∗ =

(
s∗1, s

∗
2

)
and pk∗ =

(
t∗H, t

∗
L

)
.

(5) send (ϱ,pk∗) to F .
H0 oracle On |w⟩|ψ⟩, reply |w⟩|ψ ⊕ H0(w)⟩.
H1 oracle On |pk,wH,PK, µ⟩|τ⟩, reply the hash value by using a database D.
H2 oracle On |(pk,wH, P, µ, τ)⟩|ψ⟩, reply |(pk,wH, P, µ, τ)⟩|ψ ⊕ H2((pk,wH, P, µ, τ))⟩.
Sign When F makes an i-th query (PK(i), µ(i)) of a set PK(i) = {pk(i)

u }
U
u=1 and a message µ(i) such that pk(i)

1 = pk∗, C finally
returns σ(i) = (w(i)

H ,z
(i),h(i)) after running the following protocol, where pk(i)

u = (t(i)
u,H, t

(i)
u,L) for each 2 ≤ u ≤ U:

1st stage proceed as follows, and then send (g(i)
1 ,p

(i)
1) to F :

(1.1) A = Sam(ϱ); y(i)
1 ∈U S ℓ

γ′−1; w(i)
1 = Ay(i)

1 .
(1.2) g(i)

1 = H0(w(i)
1); p(i)

1 = OW
g

(i)
1

(w(i)
1).

2nd stage After receiving {(g(i)
u ,p

(i)
u)}Uu=2, send w(i)

1 to F .

3rd stage After receiving {w(i)
u }

U
u=2, proceed as follows, and then send z(i)

1 to F :
(3.1) abort if ¬(g(i)

u = H0(w(i)
u) ∧ p(i)

u = OW
g

(i)
u

(w(i)
u)) for some 2 ≤ u ≤ U.

(3.2) w(i) =
∑U

u=1 w
(i)
u ; w(i)

H = HighBitsq(w(i), 2Uγ).
(3.3) τ(i)

1 = H1(pk∗,w(i)
H ,PK(i), µ(i)).

(3.4) c(i)
1 = H2(pk∗,w(i)

H ,PK(i) \ {pk∗}, µ(i), τ(i)
1).

(3.5) z(i)
1 = y(i)

1 + c(i)
1 s∗1.

(3.6) restart if ¬(||z(i)
1 ||∞ < γ′ − β).

4th stage After receiving {z(i)
u }

U
u=2, proceed as follows:

(4.1) z(i) =
∑U

u=1 z
(i)
u .

(4.2) restart if ¬(||LowBitsq(Az(i) −∑U
u=1 c(i)

u t(i)
u , 2Uγ)||∞ < U(γ − β)).

(4.3) h(i) = MakeHintq(−∑U
u=1 c(i)

u t(i)
u,L,Az(i) − 2d ∑U

u=1 c(i)
u t(i)

u,H, 2Uγ).

Challenge Given (PK∗, µ∗, σ∗) by F , C returns 1 if the followings hold, where PK∗ =
{
pk∗u

}U
u=1, σ∗ =

(
w∗H,z

∗,h∗
)
, and for

each 1 ≤ u ≤ U, pk∗u =
(
t∗u,H, t

∗
u,L

)
, τ∗u = H1

(
pk∗u,w∗H,PK∗, µ∗

)
, and c∗u = H2

(
pk∗u,w∗H,PK∗ \ {pk∗u

}
, µ∗, τ∗u

)
:

– pk∗ ∈ PK∗,
– (µ∗,PK∗) does not queried,
– σ∗ is valid, i.e.

(a) ||z∗||∞ < U(γ′ − β), and
(b) w∗H = UseHintq(h∗,x∗, 2Uγ), where x∗ = Az∗ − 2d ∑U

u=1 c∗ut
∗
u,H.

Fig. 6. ⅁0

⊓⊔

Proof (Theorem 12). The theorem is proven by the hybrid argument. Let F be a forger against the proposed
multisignature scheme. We denote by Wink the event that F wins ⅁k for each 0 ≤ k ≤ 6 except k = 5, and
Win5,t the event that F wins ⅁5,t for each 0 ≤ t ≤ QsE.

⅁0 (ppk game with simulating the random oracles) This game coincides with the ppk game of the proposed
multisignature scheme as in Fig. 6. Here, the hash functions H0 and H2 are simulated by random functions,
whereas H1 is done by the almost compressed Fourier oracle. As mentioned in Subsection 2.2, the random
oracles are perfectly simulated by using random functions H0 and H2. Since H1 is simulated by the almost
compressed random oracle with the database D, there is a possibility that some tuple (pk,wH,PK, µ) is not
contained in D, but H1(pk,wH,PK, µ) = τ for some τ in the case where H1 is a perfectly random function. It
follows from Lemma 4 and the (T,U, ϵ,QS ,Q0,Q1,Q2)-ppk security of the proposed multisignature scheme
that
√
ϵ ≤
√

Pr [Win0] +
√

Q1/2θ. Since ϵ ≤ 1, we have

Pr [Win0] ≥
√ϵ − √

Q1

2θ

2

= ϵ +
Q1

2θ
− 2

√
Q1

2θ
· ϵ ≥ ϵ − 2

√
Q1

2θ
. (10)

⅁1 At (1) of Init phase,C chooses H0 uniformly at random from a set of all polynomials of degree 2(Q0 + QS UE),
instead of H0 ∈U Fun(D0,R0). Since F makes at most Q0 queries, and C computes at most UE hash values of

12

2nd stage After receiving {(g(i)
u ,p

(i)
u)}Uu=2, proceed as follows, and then send w(i)

1 to F :
(2.1) for each 2 ≤ u ≤ U,

(2.1a) compute the roots {r(i)
u, j} j of H0 − g(i)

u ,

(2.1b) find r(i)
u ∈ {r(i)

u, j} j such that p(i)
u = OW

g
(i)
u

(r(i)
u), and

(2.1c) abort if there is no such r(i)
u .

(2.2) w(i) = w(i)
1 +

∑U
u=2 r

(i)
u .

(2.3) w(i)
H = HighBitsq(w(i), 2Uγ).

(2.4) τ(i)
1 = H1(pk∗,w(i)

H ,PK(i), µ(i)).
(2.5) c(i)

1 = H2(pk∗,w(i)
H ,PK(i) \ {pk∗}, µ(i), τ(i)

1).

3rd stage After receiving {w(i)
u }

U
u=2, proceed as follows, and then send z(i)

1 to F :
(3.1) abort if ¬(r(i)

u = w(i)
u) for some 2 ≤ u ≤ U.

(3.2) z(i)
1 = y(i)

1 + c(i)
1 s∗1.

(3.3) restart if ¬(
∣∣∣∣∣∣z(i)

1

∣∣∣∣∣∣∞ < γ′ − β).

Fig. 7. Description of ⅁2 changed from ⅁1

H0 for each signing oracle query, it follows from Lemma 3 that

Pr [Win1] = Pr [Win0]. (11)

⅁2 In this game, c(i)
1 is computed at 2nd stage in Sign phase, instead of 3rd stage in⅁1. In order to accomplish

this change, w(i)
H is also required to be computed at 2nd stage. Hence, 2nd stage and 3rd stage in Sign phase

are replaced with Fig. 7.
Before showing the relationship between Win1 and Win2, we note the process (2.1a). As mentioned in

Subsection 2.2, the roots of the polynomials of degree 2(Q0 + QS UE) can be computed in polynomial time,
and hence the process (2.1a) can be done in polynomial time.

Assume that C does not abort at (2.1c) on ⅁2. In this case, the injectivity of OW implies that the condition
r(i)

u = w(i)
u checked in (3.1) on ⅁2 is equivalent to the condition g(i)

u = H0(w(i)
u)∧ p(i)

u = OWg(i)
u

(w(i)
u) checked in

(3.1) on ⅁1. Thus we can consider that C also does not abort in (3.1) on ⅁2 under the assumption that C does
not abort at (2.1c).

We now evaluate the abort probability in (2.1c) on ⅁2. To proceed to Sign phase, F must send a set{(
g(i)

u ,p
(i)
u

)}U

u=2
to C, such that there exist w(i)

u ’s which satisfy g(i)
u = H0

(
w(i)

u

)
and p(i)

u = OWg(i)
u

(
w(i)

u

)
. It follows

from the injectivity of OW that there is at most one w(i)
u for each i and u. Therefore there must exist r(i) which

satisfies p(i)
u = OWg(i)

u

(
r(i)

u

)
, and hence we can consider that C never abort in (2.1c).

We have

Pr [Win2] = Pr [Win1], (12)

⅁3 At (2.4) during each execution of Sign in this game, C is changed to abort if D have already con-
tained the tuple

(
pk∗,w(i)

H ,PK(i), µ(i)
)
. Otherwise,

(
pk∗,w(i)

H ,PK(i), µ(i)
)

is regarded as a special point on the

almost compressed Fourier oracle, and then C appends
∑
τ(i)

1

∣∣∣τ(i)
1

〉
into the database D as the hash value of(

pk∗,w(i)
H ,PK(i), µ(i)

)
.

In order to evaluate the abort probability due to the change in ⅁3, we focus on the probability that F finds
w(i)

H before querying
(
pk∗,w(i)

H ,PK(i), µ(i)
)
. There are two ways that F finds w(i)

H .

The first one is to find it from g(i)
1 and p(i)

1 , because g(i)
1 and p(i)

1 are computed from w(i)
1 . Since H0 is a

polynomial of degree 2(Q0 + QS UE) and its coefficients are hidden to F , it is difficult for F to determine w(i)
1

from H0 [TU16]. Moreover, it follows from the one-wayness of OW that such a vector cannot be determined
from OW. Therefore, the abort probability due to these reasons is at most ϵOW + negl.

The second one is that w(i)
H has been found at the process (2.3) for a randomly chosen y(i)

1 ∈U S ℓ
γ′−1 and any{

w(i)
u

}U

u=2
given fromF . This can be evaluated by the probability ϵwH that wH = HighBitsq

(
Ay +

∑U
u=2 wu, 2Uγ

)
holds for any wH which would be output by HighBitsq(w, 2Uγ) and any fixed set {wu}Uu=2, where the probability
is taken over the choices of A ∈U Rk×ℓ

q and y ∈U S ℓ
γ′−1.

Then we have

|Pr [Win3] − Pr [Win2]| ≤ ϵOW + ϵwH + negl, (13)

13

A0(1κ) executes ⅁5,t by playing the role of C and interacting with F just until the (t + 1)-th execution of (2.1c), and then

returns st =
(
H0, sk∗,pk∗,PK(i), µ(i),y(i)

1 ,w
(i)
1 ,

{
g(i)

u

}U

u=1
,
{
p(i)

u

}U

u=1
,
{
r(i)

u

}U

u=2

)
.

AC(st) executes (2.2), (2.3) and (2.4) on the (t + 1)-th execution, and then outputs
(
pk∗,w(i)

H ,PK(i) \ {pk∗}, µ(i), τ(i)
1

)
and st.

A2(c(i)
1 , st) executes ⅁5,t until the end, and then returns C’s final output.

Fig. 8. AdversaryA of the reprogram problem from ⅁5,t

1st stage proceed as follows, and then send (g(i)
1 ,p

(i)
1) to F :

(1.1) A = Sam(ϱ).
(1.2) c(i)

1 ∈U CH .
(1.3) z(i)

1 ∈U S ℓ
γ′−β−1.

(1.4) ν ∈Bω1
{0, 1}, where ω1 = 1 − e−nℓβ/γ′ .

(1.5) w(i)
1 = Az(i)

1 − c(i)
1 (t∗ − s∗2) if ν = 0, or w(i)

1 ∈U Rq otherwise.
(1.6) g(i)

1 = H0(w(i)
1); p(i)

1 = OW
g

(i)
1

(w(i)
1).

2nd stage After receiving {(g(i)
u ,p

(i)
u)}Uu=2, proceeds as follows, and then send w(i)

1 to F :
(2.1) for each 2 ≤ u ≤ U,

(2.1a) compute the roots {r(i)
u, j} j of H0 − g(i)

u ,

(2.1b) find r(i)
u ∈ {r(i)

u, j} j such that p(i)
u = OW

g
(i)
u

(r(i)
u),

(2.1c) abort if there is no such r(i)
u .

(2.2) w(i) = w(i)
1 +

∑U
u=2 r

(i)
u .

(2.3) w(i)
H = HighBitsq(w(i), 2Uγ).

(2.4) abort if D has already contained (pk∗,w(i)
H ,PK(i), µ(i)).

(2.5) τ(i)
1 ∈U {0, 1}θ; append ((pk∗,w(i)

H ,PK(i), µ(i)), τ(i)
1) to D.

(2.6) set H2(pk∗,w(i)
H ,PK(i) \ {pk∗}, µ(i), τ(i)

1) = c(i)
1 .

3rd stage After receiving {w(i)
u }

U
u=2, proceed as follows, and then send z(i)

1 to F :
(3.1) abort if ¬(r(i)

u = w(i)
u) for some 2 ≤ u ≤ U.

(3.2) restart if ν = 1.

Fig. 9. Description of ⅁6 changed from ⅁5,QS E

⅁4 At (2.4) during each execution of Sign in this game, C is changed to appends
∣∣∣τ(i)

1

〉
for τ(i)

1 ∈U {0, 1}θ into

the database as the hash value of
(
pk∗,w(i)

H ,PK(i), µ(i)
)
, instead of

∑
τ(i)

1

∣∣∣τ(i)
1

〉
in ⅁3. From Lemma 5, this change

does not affect the probability of the measurement of D. Then we have

Pr [Win4] = Pr [Win3]. (14)

⅁5,t In this game, we consider the process (2.5) of Sign. Sign phase is queried at most Qs times byF . Moreover,
for each query by F , the process (2.5) is executed at most E times. Then the total number of the execution of
(2.5) during the game is at most QsE. Fix an index 0 ≤ t ≤ QsE. In ⅁5,t, on the k-th execution of (2.5) for 1 ≤
k ≤ t, C sets the hash value c(i)

1 as follows: chooses c(i)
1 ∈U CH and set H2

(
pk∗,w(i)

H ,PK(i) \ {pk∗}, µ(i), τ(i)
1

)
= c(i)

1 .

When t = 0, the replacement on c(i)
1 does not happen, and hence we have

Pr
[
Win5,0

]
= Pr [Win4]. (15)

Otherwise, we employ Lemma 2 to evaluate the difference between the probability of Win5,t and that of
Win5,t+1. We construct an algorithm A = (A0,AC ,A2) depicted in Fig. 8. Observe that ExpReprog

D2,CH ,1,A and

ExpReprog
D2,CH ,0,A coincide with ⅁5,t and ⅁5,t+1, respectively. Since F queries to H2 at most Q2 times and C acted

byA0 queries at most tU times, the number of access H2 byA0 is at most Q2 + tU. The uniform choice of τ(i)
1

over {0, 1}θ byAC at (2.4) implies that the collision-entropy can be evaluated by θ.
Then, for 0 ≤ t ≤ QsE − 1, it follows from Lemma 2 that∣∣∣Pr

[
Win5,t+1

] − Pr
[
Win5,t

]∣∣∣ ≤ (4 +
√

2)
√

Q2 + tU2−θ/4. (16)

⅁6 In this game, the way of generating
(
w(i)

H , c
(i)
1 , z

(i)
1

)
is changed. Concretely, 1st stage, 2nd stage and 3rd

stage in Sign phase are replaced with Fig. 9.

14

In order to discuss the difference between the probability of Win5,QsE and that of Win6, we estimate the
restart probabilities in both games and the difference between the distributions of the communicated compo-
nents

(
g(i)

1 ,p
(i)
1 ,w

(i)
1 , c

(i)
1 , z

(i)
1 , z

(i),h(i)
)

in both games. We also check that the change of ⅁6 does not affect the
validness of simulated signatures concerning verifying conditions when ν = 0 determined at (1.4).

For the restart probability, the challenger C restarts ⅁6 if ν = 1 which is determined at (1.4). Namely, the
probability that ν = 1 is 1 − e−nℓβ/γ′ . On the other hand, it follows from Eq. (8) that the restart probability
1 − e−nℓβ/γ′ here is the same to the one at (3.3) in ⅁5,QsE as defined in Fig. 7.

We now fix an execution of Sign phase and an iteration during the exection of Sign phase. We now evaluate
the difference between the distribution of the communicated components

(
g(i)

1 ,p
(i)
1 ,w

(i)
1 , c

(i)
1 , z

(i)
1 , z

(i),h(i)
)

in

⅁5,QsE and that of ⅁6. Since
(
g(i)

1 ,p
(i)
1 , z

(i),h(i)
)

is generated by
(
w(i)

1 , c
(i)
1 , z

(i)
1

)
with other components given by

F , the difference between the distributions of
(
w(i)

1 , c
(i)
1 , z

(i)
1

)
in both games implies those of

(
g(i)

1 ,p
(i)
1 , z

(i),h(i)
)
.

It suffices to estimate the difference between the distributions of
(
w(i)

1 , c
(i)
1 , z

(i)
1

)
in both games.

We now assume that the restart does not occur. In both games, the element c(i)
1 is chosen uniformly at random

from CH . The element z(i)
1 is set as y(i)

1 + c(i)
1 s∗1 in (3.2) on ⅁5,QsE , while it is chosen uniformly at random from

S γ′−β−1 in (1.3) on⅁6. We now have
∣∣∣∣∣∣z(i)

1

∣∣∣∣∣∣∞ < γ′−β, since the restart condition at (3.3) of⅁5,QsE does not occur
by the assumption. It follows from Lemma 10 that z(i)

1 on⅁5,QsE is distributed uniformly at random over S ℓ
γ′−β−1

under the assumption. w(i)
1 of ⅁5,QsE can be seen as Az(i)

1 − c(i)
1

(
t∗ − s∗2

)
with z(i)

1 ∈U S γ′−β−1 and c(i)
1 ∈U CH . It

is the same with (1.5) in ⅁6.
Otherwise, when C restarts, the distributions in both games are identical except w(i)

1 . C of ⅁5,QsE broadcasts
w(i)

1 which induces the aborts at (3.3) of ⅁5,QsE . On the other hand, C broadcasts w(i)
1 which is uniformly

distributed over Rq in this case on ⅁6. Namely, the difference between such w(i)
1 is bounded by the rMLWE

assumption. 3

We finally estemate that the verifying conditions holds when ν = 0. The process z(i)
1 ∈U S ℓ

γ′−β−1 of (1.3)

and the requirement that
∣∣∣∣∣∣z(i)

u

∣∣∣∣∣∣∞ < γ′ − β for each 2 ≤ u ≤ U imply that the verifying condition (a) holds. Since(
w(i)

1 , c
(i)
1 , z

(i)
1

)
in ⅁6 satisfies that Az(i)

1 − c(i)
1 t∗ = w(i)

1 − c(i)
1 s∗2 as in Eq. (1), the verifying condition (b) is always

satisfied.
Since A makes at most QS queries to Sign phase and the iteration is happened at most E times for each

Sign phase, we have ∣∣∣Pr [Win6] − Pr
[
Win5,QsE

]∣∣∣ ≤ QS EϵrMLWE. (17)

⅁7 In this game, (1.5) of 1st stage in Sign phase is replaced with w(i)
1 = Az(i)

1 − c(i)
1 (t∗ − s(i)) where s(i) ∈U S k

η

instead of w(i)
1 = Az(i)

1 − c(i)
1 (t∗ − s∗2), if ν = 0.

Since for any S ∈ Rq, the map x ∈ Rq to x + S ∈ Rq is bijective, the distributions of w(i)
1 in both games are

identical for the same choices of A ∈U Rk×ℓ
q and z(i)

1 ∈U S ℓ
γ′−β−1 between the both games.

We now check that the verifying conditions hold after the replacement of ⅁7. Since the set from which z(i)
u

is chosen does not changed, the verifying condition (a) holds. For the verifying condition (b), we have

Az(i) −
U∑

u=1

c(i)
u t(i)

u = A
U∑

u=1

z(i)
u −

U∑
u=1

c(i)
u t(i)

u

=

U∑
u=1

(
Az(i)

u − c(i)
u t(i)

u

)
= w(i)

1 − c(i)
1 s(i) +

U∑
u=2

(
w(i)

u − c(i)
u su,2

)
= w(i) − c(i)

1 s(i) −
U∑

u=2

c(i)
u su,2.

3 [DOTT21] pointed out that w(i)
1 in the case where C restarts should be simulated strictly. We employ a method

by [BBE+18] to deal with the case.

15

By
∣∣∣∣∣∣c(i)

1 s(i) +
∑U

u=2 cusu,2
∣∣∣∣∣∣∞ < Uβ, as in Eqs. (3) and (4), we have

UseHintq

h(i),Az(i) − 2d
U∑

u=1

c(i)
u t(i)

u,H, 2Uγ


= UseHintq

MakeHintq(−
U∑

u=1

c(i)
u t(i)

u,L,Az(i) − 2d
U∑

u=1

c(i)
u t(i)

u,H, 2Uγ),Az(i) − 2d
U∑

u=1

c(i)
u t(i)

u,H, 2Uγ


= HighBitsq

Az(i) − 2d
U∑

u=1

c(i)
u t(i)

u,H −
U∑

u=1

c(i)
u t(i)

u,L, 2Uγ


= HighBitsq

Az(i) −
U∑

u=1

c(i)
u

(
2d · t(i)

u,H + t
(i)
u,L

)
, 2Uγ


= HighBitsq

Az(i) −
U∑

u=1

c(i)
u t(i)

u , 2Uγ


= HighBitsq

w(i) − c(i)
1 s(i) −

U∑
u=2

c(i)
u su,2, 2Uγ


= HighBitsq

(
w(i), 2Uγ

)
= w(i)

H ,

and the verifying condition (b) of Ver holds. Then, it holds

Pr [Win7] = Pr [Win6]. (18)

⅁8 In this game, pk∗ =
(
t∗1, t

∗
0

)
is generated in a way that t∗ = 2d · t∗1+ t∗0 for t∗ ∈U Rk

q, instead of t∗ = As∗1+s
∗
2

in Init phase. Therefore, we have

|Pr [Win8] − Pr [Win7]| ≤ ϵMLWE. (19)

Upper bound of winning probability of ⅁8 We evaluate the upper bound of the winning probability of ⅁8
by using the GSPB game. We first construct a GSPB adversary A = (A1,A2) from ⅁8 which is depicted in
Fig. 10. On the evaluation of the winning probability of A, we first fix pk∗. A1 decides the probability that
g(wH, P,C, µ, τ) = 1 from the fraction of c ∈ CH such that c induces the win of F on ⅁8. While A2 aims to
find

(
w∗H,PK∗ \ {pk∗},C∗, µ∗, τ∗1

)
such that g

(
w∗H,PK∗ \ {pk∗},C∗, µ∗, τ∗1

)
= 1 by playing ⅁8 with running F

and simulating the random oracle H2.
We now verify that H2 depicted in Fig. 10 is indistinguishable from H2 of ⅁8. Observe that H2 depicted in

Fig. 10 returns a hash value in the same way as ⅁8 when an input (pk,wH, P, µ, τ) satisfies pk , pk∗ or has
been programmed. Otherwise, H2 chooses a hash value by using Uni, where the internal random coins of Uni
are given by the 2(Q2 + QS UE)-wise independent function F(wH, P,C, µ, τ), and its value is chosen according
to δ. In order to estimate the validness, we now consider that Uni is used with purely random coins instead of
the output of F. Since λpk∗ (wH, P,C, µ, τ) is defined by

∣∣∣CHGood
pk∗ (wH, P,C)

∣∣∣/|CH|, the hash value of H2 in this
case is uniformly distributed over CH . We return to the situation where the output of F is used. It follows from
Lemma 3 that F cannot distinguish the random oracle on H2 in the case of Fig. 10 from that of ⅁8. Lemma 1
implies that under the fixed challenge public key pk∗, we have

Pr
[
Win8 | pk∗

] ≤ Pr
[
ExpGSPB

λpk∗ ,A(κ) = 1 | pk∗
]
≤ 8λpk∗ (Q2 + QS UE + 1)2, (20)

where

λpk∗ = max
wH,P,C,µ,τ

λpk∗ (wH, P,C, µ, τ).

From Eq. (20), the winning probability of ⅁8 can be evaluated by averaging Eq. (20) over the choice of pk∗.
Therefore, we have

Pr [Win8] ≤ 8E
[
λpk∗

]
(Q2 + QS UE + 1)2, (21)

16

A1(1κ)
(i) choose H0 uniformly at random from a set of all polynomials of degree 2(Q0 +QS UE), initialize a database D for H1,

choose H′2 ∈U Fun(D2,CH), and choose a 2(Q2 + QS UE)-wise independent functions F.
(ii) ϱ← Setup(1κ); A = Sam(ϱ).

(iii) t∗ ∈U Rk
q; pk∗ =

(
t∗1, t

∗
0

)
satisfies that t∗ = 2d · t∗H + t∗L.

(iv) for all wH, C = (c2, . . . , cU), P =
(
pk2, . . . , pkU

)
, µ, τ,

(iv.1) set CHGood
pk∗ (wH, P,C) to the following:c ∈ CH | ∃(z,h) s.t.

||z||∞ ≤ U(γ′ − β)∧
wH

= UseHintq
(
h,Az − 2dct∗H − 2d ∑U

u=2 cutu,H, 2Uγ
)
,

where pku =
(
tu,H, tu,L

)
and

(iv.2) λpk∗ (wH, P,C, µ, τ) =
∣∣∣CHGood

pk∗ (wH, P,C)
∣∣∣/|CH|.

(v) return
({
λpk∗ (wH, P,C, µ, τ)

}
wH ,P,C,µ,τ

,
(
H0,D,H′2, F, ϱ, pk∗

))
.

A|g⟩2 (H0,D,H′2, F, ϱ, pk∗)

(i) run F (ϱ,pk∗) with emulating C of ⅁8 to finally obtain (PK∗, µ∗, σ∗), where σ∗ =
(
w∗H,z

∗,h∗
)
. Here, the random

oracle on H2 is simulated as below. Let PK∗ =
{
pk∗,pk∗2, . . . , pk∗U

}
(ii) abort if ¬(pk∗ ∈ PK∗ ∧ (µ∗,PK∗) does not queried ∧ Ver(PK∗, µ∗, σ∗) = 1

)
.

(iii) for each 1 ≤ u ≤ U, τ∗u = H1

(
pk∗,w∗H,PK∗, µ∗

)
.

(iv) for each 2 ≤ u ≤ U, c∗u = H2

(
pk∗u,w∗H,PK∗ \ {pk∗u

}
, µ∗, τ∗u

)
.

(v) C∗ =
(
c∗2, . . . , c

∗
U

)
.

(vi) return
(
w∗H,PK∗ \ {pk∗},C∗, µ∗, τ∗1

)
.

H |g⟩2 (pk,wH, P, µ, τ), where P =
(
pk2, . . . , pkU

)
(i) return H′2(pk,wH, P, µ, τ) if pk , pk∗.

(ii) return the reprogrammed value c if (pk∗,wH, P, µ, τ) has been programed in Sign phase.
(iii) PK =

(
pk∗,pk2, . . . , pkU

)
.

(iv) for each 2 ≤ u ≤ U, τu = H1
(
pku,wH,PK, µ

)
and cu = H′2

(
pku,wH,PK \ {pku

}
, µ, τu

)
.

(v) C = (c2, . . . , cu).
(vi) τ = H1(pk∗,wH,PK, µ).

(vii) δ = g(wH, P,C, τ, µ).
(viii) return c = Uni

(
CHGood

pk∗ (wH, P,C); F(wH, P,C, µ, τ)
)

if δ = 1.

(ix) return c = Uni
(
CH \ CHGood

pk∗ (wH, P,C); F(wH, P,C, µ, τ)
)

if δ = 0.

Fig. 10. GSPB adversaryA from ⅁8

where E
[
λpk∗

]
denotes the expected value of λpk∗ over the choice of pk∗.

We next evaluate E
[
λ∗pk

]
. As in (iv) of A1, λpk∗ (wH, P,C, µ, τ) is defined by

∣∣∣CHGood
pk∗ (wH, P,C)

∣∣∣/|CH|.
This implies that E

[
λ∗pk

]
is at most the probability of Loss: Loss denotes the event that any unbounded

adversary meets c ∈ CHGood
pk∗ (wH, P,C) for an arbitrary chosen tuple (wH, P,C) when c ∈U CH , where

P =
(
pk2, . . . , pkU

)
and C = (c2, . . . , cU). In order to evaluate the probability of Loss, we now show that∣∣∣CHGood

pk∗ (wH, P,C)
∣∣∣ = 1 with high probability over the choice of pk∗. Namely, we estimate the probability that∣∣∣CHGood

pk∗ (wH, P,C)
∣∣∣ ≥ 2.

Assume that for a tuple (wH, P,C) where P =
(
pk2, . . . , pkU

)
and C = (c2, . . . , cU), there exist different

values c, c′ ∈ CHGood
pk∗ (wH, P,C). Namely, there exist (z,h) and (z′,h′) such that ||z||∞, ||z′||∞ < U(γ′ − β), and

wH = UseHintq

h,Az − 2dct∗H − 2d
U∑

u=2

cutu,H, 2Uγ

; and

wH = UseHintq

h′,Az′ − 2dc′t∗H − 2d
U∑

u=2

cutu,H, 2Uγ

,
17

where pku =
(
tu,H, tu,L

)
for 2 ≤ u ≤ U. It follows from Lemma 7 that∣∣∣∣∣∣∣
∣∣∣∣∣∣∣Az − 2dct∗H − 2d

U∑
u=2

cutu,H −wH · 2Uγ

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

≤ 2Uγ + 1; and∣∣∣∣∣∣∣
∣∣∣∣∣∣∣Az′ − 2dc′t∗H − 2d

U∑
u=2

cutu,H −wH · 2Uγ

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∞

≤ 2Uγ + 1.

This implies that ∣∣∣∣∣∣A(
z − z′) − 2d(c − c′

)
t∗H

∣∣∣∣∣∣∞ ≤ 4Uγ + 2.

This means that there exists u ∈ S k
4Uγ+2 such that

A
(
z − z′) + u = 2d(c − c′

)
t∗H.

Let Γ = {c − c′ | c, c′ ∈ CH ∧ c , c′}. Note that |Γ| ≤ |CH|2. By letting z∗ = z − z′ ∈ S k
2U(γ′−β)−2 and

c∗ = c − c′, we have

Az∗ + u = 2dc∗t∗H
By the settings ℓ ≤ k and 2d < 4U(γ′ − β) − 4 in Table 1 and Lemma 11, it holds that

Pr
A∈URk×ℓ

q ,t∗∈URk
q

[
∃(z∗,u, c∗) ∈ S ℓ

2U(γ′−β)−2 × S k
4Uγ+2 × Γ

s.t. Az∗ + u = c∗t∗H · 2d

]
≤ 2|Γ|

(
(2(2U(γ′ − β) − 2) + 1)ℓ(2(4Uγ + 2) + 1)k

qk

)n

≤ 2|CH|2
(

(2(2U(γ′ − β) − 2) + 1)ℓ(2(4Uγ + 2) + 1)k

qk

)n

= 2|CH|2
(

(4Uγ′ − 4Uβ − 3)ℓ(8Uγ + 5)k

qk

)n

< 2|CH|2
(

(4Uγ′)k8Uγk

qk

)n

= 2|CH|2
(

32U2γ′γ

q

)kn

.

(22)

On the other hand, the probability of Loss when
∣∣∣CHGood

pk∗ (wH, P,C)
∣∣∣ = 1 is evaluated by 1/|CH|. This is

because we now consider the event that c ∈ CHGood
pk∗ (wH, P,C) for c ∈U CH . By Eq. (22), the probability of

Loss is evaluated as follows: for arbitrary chosen tuple (wH, P,C),

Pr [Loss] = Pr
[
Loss ∧

∣∣∣CHGood
pk∗ (wH, P,C)

∣∣∣ = 1
]
+ Pr

[
Loss ∧

∣∣∣CHGood
pk∗ (wH, P,C)

∣∣∣ ≥ 2
]

≤ Pr
[
Loss |

∣∣∣CHGood
pk∗ (wH, P,C)

∣∣∣ = 1
]
+ Pr

[∣∣∣CHGood
pk∗ (wH, P,C)

∣∣∣ ≥ 2
]

<
1
|CH| + 2|CH|2

(
32U2γ′γ

q

)kn

.

(23)

Putting together with Eqs. (21) and (23), we have

Pr [Win8] ≤ 8E
[
λpk∗

]
(Q2 + QS UE + 1)2

≤ 8 Pr [Loss](Q2 + QS UE + 1)2

< 8 ·
 1
|CH| + 2|CH|2

(
32U2γ′γ

q

)kn · (Q2 + QS UE + 1)2,

Thus, we have

ϵ < ϵMLWE +
2
√

Q1

2θ/2
+

QS E(4 +
√

2)
√

Q2 + (QS E − 1)U
2θ/4

+ QS EϵrMLWE

+ 8 ·
 1
|CH| + 2|CH|2

(
32U2γ′γ

q

)kn · (Q2 + QS UE + 1)2 + ϵwH + ϵOW + negl.

The proof is completed. ⊓⊔

18

Acknowledgements. We would like to thank anonymous reviewers for their valuable comments and sugges-
tions. We are also grateful to Akira Takahashi for his fruitful comments on the security proof. A part of this
work is supported by JSPS KAKENHI Grant Numbers 18K11288 and 19K20272.

References

[AFLT16] Michel Abdalla, Pierre-Alain Fouque, Vadim Lyubashevsky, and Mehdi Tibouchi. Tightly secure signatures
from lossy identification schemes. Journal of Cryptology, 29(3):597–631, Jul 2016.

[BBE+18] Gilles Barthe, Sonia Belaı̈d, Thomas Espitau, Pierre-Alain Fouque, Benjamin Grégoire, Mélissa Rossi, and
Mehdi Tibouchi. Masking the GLP lattice-based signature scheme at any order. In Jesper Buus Nielsen and
Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018, pages 354–384, Cham, 2018. Springer
International Publishing.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark Zhandry. Ran-
dom oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology –
ASIACRYPT 2011, pages 41–69, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a general forking lemma.
In Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS ’06, pages 390–
399, New York, NY, USA, 2006. ACM.

[dC17] Alexandre de Castro. Quantum one-way permutation over the finite field of two elements. Quantum Information
Processing, 16(6), Apr 2017.

[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security of the Fiat-Shamir transformation
in the quantum random-oracle model. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in
Cryptology – CRYPTO 2019, pages 356–383, Cham, 2019. Springer International Publishing.

[DKL+18] Léo Ducas, Eike Kiltz, Tancréde Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2018(1):238–268, Feb. 2018.

[DOTT21] Ivan Damgård, Claudio Orlandi, Akira Takahashi, and Mehdi Tibouchi. Two-round n-out-of-n and multi-
signatures and trapdoor commitment from lattices. In Juan A. Garay, editor, Public-Key Cryptography – PKC
2021, pages 99–130, Cham, 2021. Springer International Publishing.

[EBS16] Rachid El Bansarkhani and Jan Sturm. An efficient lattice-based multisignature scheme with applications to
bitcoins. In Sara Foresti and Giuseppe Persiano, editors, Cryptology and Network Security, pages 140–155,
Cham, 2016. Springer International Publishing.

[FH19] Masayuki Fukumitsu and Shingo Hasegawa. A tightly-secure lattice-based multisignature. In Proceedings of the
6th on ASIA Public-Key Cryptography Workshop, APKC ’19, pages 3–11, New York, NY, USA, 2019. ACM.

[FH20] Masayuki Fukumitsu and Shingo Hasegawa. A lattice-based provably secure multisignature scheme in quantum
random oracle model. In Khoa Nguyen, Wenling Wu, Kwok Yan Lam, and Huaxiong Wang, editors, Provable
and Practical Security, pages 45–64, Cham, 2020. Springer International Publishing.

[FO13] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric encryption schemes.
Journal of cryptology, 26(1):80–101, 2013.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature problems.
In Andrew M. Odlyzko, editor, Advances in Cryptology — CRYPTO’ 86, pages 186–194, Berlin, Heidelberg,
1987. Springer Berlin Heidelberg.

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical lattice-based cryptography: A signature
scheme for embedded systems. In Emmanuel Prouff and Patrick Schaumont, editors, Cryptographic Hardware
and Embedded Systems – CHES 2012, pages 530–547, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC ’08,
pages 197–206, New York, NY, USA, 2008. ACM.

[IN83] K. Itakura and K. Nakamura. A public-key cryptosystem suitable for digital multisignature. NEC Research and
Development, 71:1–8, 1983.

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment of Fiat-Shamir signatures in the
quantum random-oracle model. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology –
EUROCRYPT 2018, pages 552–586, Cham, 2018. Springer International Publishing.

[KW03] Jonathan Katz and Nan Wang. Efficiency improvements for signature schemes with tight security reductions. In
Proceedings of the 10th ACM Conference on Computer and Communications Security, CCS ’03, pages 155–164,
New York, NY, USA, 2003. ACM.

[LZ19] Qipeng Liu and Mark Zhandry. Revisiting post-quantum Fiat-Shamir. In Alexandra Boldyreva and Daniele Mic-
ciancio, editors, Advances in Cryptology – CRYPTO 2019, pages 326–355, Cham, 2019. Springer International
Publishing.

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge Uni-
versity Press, 2000.

[NIS17] NIST. Post-quantum cryptography, 2017. Online: https://csrc.nist.gov/Projects/Post-Quantum-Cryptography,
Accessed: November 17, 2019.

19

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In Proceedings of the Fortieth
Annual ACM Symposium on Theory of Computing, STOC ’08, pages 187–196, New York, NY, USA, 2008.
ACM.

[Sho99] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum com-
puter. SIAM Review, 41(2):303–332, 1999.

[TU16] Ehsan Ebrahimi Targhi and Dominique Unruh. Post-quantum security of the Fujisaki-Okamoto and OAEP trans-
forms. In Martin Hirt and Adam Smith, editors, Theory of Cryptography, pages 192–216, Berlin, Heidelberg,
2016. Springer Berlin Heidelberg.

[Unr15] Dominique Unruh. Non-interactive zero-knowledge proofs in the quantum random oracle model. In Elisa-
beth Oswald and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015, pages 755–784, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

[Zha12] Mark Zhandry. Secure identity-based encryption in the quantum random oracle model. In Reihaneh Safavi-
Naini and Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012, pages 758–775, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[Zha19] Mark Zhandry. How to record quantum queries, and applications to quantum indifferentiability. In Alexandra
Boldyreva and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019, pages 239–268, Cham,
2019. Springer International Publishing.

20

