
SCA-secure ECC in software – mission impossible?
Lejla Batina

Radboud University, The Netherlands

lejla@cs.ru.nl

Łukasz Chmielewski

Radboud University, The Netherlands

Riscure, The Netherlands

lukaszc@cs.ru.nl

Björn Haase

Endress+Hauser Liquid Analysis GmbH&Co.

KG, Germany

bjoern.m.haase@web.de

Niels Samwel

Radboud University, The Netherlands

nsamwel@cs.ru.nl

Peter Schwabe

Max Planck Institute for Security and Privacy,

Bochum, Germany

Radboud University, The Netherlands

peter@cryptojedi.org

ABSTRACT
This paper describes an ECC implementation computing the X25519

key-exchange protocol on the ARM-Cortex M4 microcontroller.

This software comes with extensive mitigations against various

side-channel and fault attacks and is, to our best knowledge, the first

to claim affordable protection against multiple classes of attacks

that are motivated by distinct real-world application scenarios. We

also present results of a comprehensive side-channel evaluation. We

distinguish between X25519 with ephemeral keys and X25519 with

static keys and show that the overhead to protect the two is about

36% and 239% respectively. While this might seem to be a high price

to pay for security, we also show that even our (most protected)

static implementation is more efficient than widely-deployed ECC

cryptographic libraries, which offer much less protections.

KEYWORDS
Elliptic Curve Cryptography; Side-Channel Analysis; Fault Injec-

tion

1 INTRODUCTION
Elliptic-curve cryptography (ECC) presents the current state of the

art in public-key cryptography, both for key agreement and for digi-

tal signatures. The reason for ECC getting ahead of RSA is mainly in

its suitability for constrained devices due to much shorter keys and

certificates, which results in ECC consuming much less energy and

power than RSA. Also, ECC has an impressive security record: while

certain classes of elliptic curves have shown to be weak [76, 99],

attacks against ECC with a conservative choice of curve have not

seen any substantial improvement since ECC was proposed in the

mid-80s independently by Koblitz [63] and Miller [77]. The best

known attack against ECC is still the Pollard rho algorithm [88]

and its parallel version by van Oorschot and Wiener [106].

The situation is different for implementation attacks against

elliptic-curve cryptosystems. Since Kocher put forward the concept

of side-channel analysis (SCA) against cryptographic implemen-

tations and fault injection (FI) analysis, i.e., the Bellcore attacks,

was introduced in the late 90s [22, 64, 65], research into attacks

against implementations of ECC and suitable countermeasures has

been a very active area. The most common forms of SCA are Sim-

ple Power Analysis (SPA) and Differential Power Analysis (DPA)

(both introduced in [65]), and profiled attacks. SPA involves visually

interpreting power consumption traces over time to recover the

secret key while DPA relies on performing a statistical analysis be-

tween intermediate values of cryptographic computations and the

corresponding side-channel traces
1
. Profiling attacks, most notably

template attacks (TAs), were introduced in [25]. Here the adversary

first uses a device (for instance, a copy of the attacked device) that

is under his/her full control to characterize device leakage; this

characterization information is called a template for TAs. Then the

adversary uses that information to efficiently recover the secret

data from the device under attack.

We will review the relevant classes of attacks later in the paper,

but to name a few recent real-world examples of such implemen-

tation attacks against ECC consider the “Minerva” timing attack

against multiple implementations of ECDSA [59], or the power-

analysis attack recovering the secret key from a TREZOR hardware

bitcoin wallet [52]. In fact, the research area has been so active

that it produced at least four survey papers reviewing the state

of the art in attacks and countermeasures at different points in

time [1, 30, 35, 36].

In this paper we also survey the state of the art in attacks and

countermeasures and consequently parts of this paper have the

character of a SoK paper. However we go further than just system-

atizing knowledge: In this paper we aim at consolidating knowledge
by bringing together (and extending) the state of the art through

implementations of one of the most widely used ECC primitives

with extensive SCA and FI countermeasures.

Complete, specific, additive, and public. The survey by Fan

and Verbauwhede from 2013 [36] concludes that a side-channel-

protected implementation of ECC needs to satisfy three properties:

• the protection mechanisms need to be complete, i.e., protect
against all relevant attacks;

• they need to be specific to the application scenario and

resulting attacker model; and

• they need to additive, i.e., combined in a way that does not

introduce new vulnerabilities.

In this paper we add a fourth attribute to this list: to enable inde-

pendent verification of these properties, the implementation needs

to be public.
Surprisingly, despite the extensive body of literature on imple-

mentation attacks on ECC, we are not aware of a single paper

describing an implementation fulfilling these four properties or

1
Nowadays DPA is rarely used in favor of an improved method called Correlation

Power Analysis (CPA) [23] that replaces difference of means with Pearson correlation.

1

even making somewhat substantiated claims to do so. For a more

detailed discussion see the section on related work below.

Note that there are implementations of ECC that claim to fulfill

the three properties introduced in [36]. For example, NXP adver-

tises the SmartMX2-P40 “secure smart card controller” as supporting
“DES, AES, ECC, RSA cryptography, hash computation, and random-
number generation” and claims that the protection mechanisms are

“neutralizing all side channel and fault attacks as well as reverse engi-
neering efforts” [84]. However, like essentially all commercial smart

cards, all implementation details are kept secret, which actively pre-

vents academic discourse and public evaluation of these claims. As

a result of this situation many papers are presenting side-channel

attacks against ECC target implementations that never claimed

protection against such attacks; for example, see [43, 93].

We do not mean to say that there are no public implementations

of ECC including certain countermeasures against some specific at-

tacks. On the contrary: most papers describing attacks also suggest

countermeasures and some of these papers also present implemen-

tations of those countermeasures; see the section on related work

below. However, more than 3 decades after the invention of ECC

and 2 decades after the invention of side-channel attacks we still

don’t know the cost of ECC implementations with complete, specific,
and additive SCA countermeasures, or if such implementations are

even achievable with respect to the budgets in area, memory, power

and energy that are typically sparse for low-cost devices.

In this paper we present the first—to our knowledge—publicly

available implementation of a widely used ECC primitive claiming

to fulfill the three properties for a concrete real-world application

scenario and assuming a rather strong adversarial model on both,

side-channel and fault analysis.

The overhead required by our protected implementations is

about 36% for the ephemeral implementation and 239% for the

static one. While this might seem a relatively hefty price to be paid

for security, note that it is rather modest in comparison to securing

AES on ARM architectures. In particular, Schwabe et al. [97] show

that masked bitsliced AES has an overhead of 458% compared to

unprotected bitsliced AES and of 1339% compared to a table-based

AES; all on the same ARM Cortex-M4 platform we consider in

this paper. Moreover, we also show in Section 5.1 that even our

most protected static implementation is more efficient than widely-

deployed ECC cryptographic libraries, which provide much less

SCA protections.

Security evaluation vs. formal proofs. The current state of the
art of formally verifying side-channel protection of asymmetric

crypto is to prove the absence of timing leakage with tools such

as ct-verif [4] (on LLVM IR level) or Binsec/Rel [67] (on binary

level). Computer-verified proofs of side-channel protections beyond

timing-attack resistance are much further in the symmetric-crypto

realm (see, e.g., [8, 9, 13, 33, 79]) and we believe that it is a very

important direction of research to extend such results also to asym-

metric cryptography. For example, we believe that it is possible

to prove that our static X25519 implementation is secure against

first-order DPA attacks, but such a proof would require significant

advances of the currently available tools for formal verification.

For many attacks that are we aim to protect against in this paper

because of their real-world importance—most notably profiling

attacks and fault-injection attacks—we are not even aware of a

widely accepted sound and complete definition of what it means

for an implementation to be secure. This is why we follow the

current state of the art in practical security evaluation and provide

extensive experimental evidence to evaluate the security of our

implementations.

Application scenario. Long-term secrets as used in authentication

protocols typically form the most precious assets of any security

infrastructure. Today, sophisticated communication capabilities

are incorporated in more and more systems that formerly used

to operate in a stand-alone setting. One prominent example are

Internet-of-Things (IoT) devices, serving applications both for in-

dustry as well as consumer applications. Most of these devices today

do not incorporate dedicated cryptographic hardware designed for

adequately protecting long-term-keys.

Moreover, physical access to many devices cannot be effectively

restricted, making installations significantly more vulnerable to

implementation attacks exploiting all kinds of leakage such as elec-

tromagnetic emanation, power consumption etc., than typical for

the traditional office or server-room setting. This notably applies

to large-scale or de-centralized industrial plants such as common

in petrochemistry or local drinking-water wells.

In most critical-infrastructure systems, conventional smart-card

circuits cannot not be used, specifically when considering con-

straints imposed by power-budget or rough environmental condi-

tions or frequent update requirements.

For instance, wireless modules for off-the shelf industrial sensors

often have to operate within a power budget of less than 2mW [48]

clearly exceeded by most off-the-shelf smart-card chips. Appliances

for medical use or for production of food and drugs might have to

withstand high sterilization temperatures. Conventional smart-card

circuits are typically not designed for these environments, forcing

implementers to choose conventional microcontrollers specifically

designed for the respective constraints.

Moreover note that in many consumer applications, commercial

pressure pushes designers to use conventional microcontrollers for

cryptographic operations instead of dedicated smart-card circuitry.

One aspect which should be considered is that customization of

typical smart-card chipsets is often impossible. For high-volume ap-

plications specialized software, such as java-card applets is common.

However, the access to freely programmable circuits is limited. For

applications with smaller market volumes tailored solutions mostly

could not be realized. The common "turn-key" smart-card prod-

ucts on the other hand often allow only for very limited flexibility

regarding the supported cryptographic protocols.

Why consider software only? The side-channel and fault-attack-
protected implementation of X25519 that we present in this paper

is a software-only implementation targeting the ARM Cortex-M4

microcontroller. Some would argue that applications that are seri-

ously concerned about side-channel security will rely (at least to

some extent) on countermeasures implemented in hardware.

The main reason that we go for a software-only implementation

is the application scenario described above, which cannot afford to

2

use specialized hardware
2
Clearly this application scenario calls for

an evaluation of how far we can go in software-only countermea-

sures. We also stress that, while we use this application as a moti-

vation, there are other scenarios —for example, many open-source

projects—that cannot afford producing special-purpose hardware.

However, another reason for following a software-only approach

is our goal to encourage independent security evaluation of our

implementation. Development boards featuring our target platform

are widely available for around US$ 20, allowing any side-channel

researcher to try to attack our implementation.

Why target X25519? The concrete primitive we target with side-

channel and fault-attack protections in this paper is the X25519

elliptic-curve key-exchange originally proposed under the name

“Curve25519” by Bernstein in [16]. To avoid confusion between nam-

ing of the specific elliptic-curve used in the protocol and the pro-

tocol itself, Bernstein later suggested to call the curve Curve25519

and the protocol X25519 [17].

One reason to target this primitive is its widespread use in many

state-of-the-art security protocols like in TLS [83], SSH [2], the

Noise Framework [104, Sec. 12], the Signal protocol [101], and

Tor [73]. For a more extensive list see [54]. Moreover X25519 is now

also considered as primitive for the OPC/UA protocol family [37]

by the OPC/UA security working group, specifically targeting IoT

applications with both increased protection demands and low com-

putational resources.

Another reason is that in this paper we make an attempt to

settle discussions about the cost of SCA-protected X25519 imple-

mentations. On the one hand it is generally acknowledged that

the “Montgomery ladder” (see Section 2), which is typically used in

X25519 implementations, is a good starting point for SCA protected

implementations. On the other hand, during standardization of

Curve25519 for TLS, concerns were expressed about the structure

of the underlying finite field and group order [69, Sec. 3.1] leading

to a significant increase of the cost of side-channel protections. The

main argument refers to the presumed need of significantly larger

scalar blinding. We show that these concerns can be resolved with-

out excessive performance penalties in comparison to, e.g., curves

over fields without structure allowing for fast reduction.

Also the fact that the full group of curve points has a co-factor

of 8 has raised concerns in the context of SCA [44]. As one way to

alleviate these subgroup concerns it is often suggested to validate

inputs [5, 7, 32]; however Bernstein’s Curve25519 FAQ [15] states

“How do I validate Curve25519 public keys? Don’t.”. For the sake

of security we have decided to include a full on-curve check for

the static implementation and an early-abort strategy on certain

malicious inputs for the ephemeral case.

Related work. There is a vast amount of literature devoted to the

topic of side-channel secure implementations of ECC in both, soft-

ware and hardware. Most related work considers different types

of curves, but on the same platform, i.e., the ARM Cortex-M4 mi-

crocontroller such as [68] or the same curve but without such a

comprehensive side-channel protection [42, 94].

2
While we concentrate on software only, note that our implementation can be relatively

easily modified to use a hardware co-processor for modular arithmetic instead of our

assembler arithmetic routines, without modifying higher-level SCA countermeasures.

In [68] a range of high-speed implementations are proposed,

including: scalar multiplication, ECDH key exchange, and digital

signatures on various embedded devices using the FourQ ellip-

tic curve of Costello and Longa. They also add countermeasures

to thwart a variety of side-channel attacks. All implementations

are constant time and include countermeasures such as scalar and

projective coordinate randomizations and point blinding. The im-

plementation with the countermeasures resulted in a slowdown

of factor 2 for the ARM platform. To validate the effectiveness of

the countermeasures, leakage detection is performed using test

vector leakage assessment (TVLA) [14]. They show an improved

resistance to SCA, as expected. DPA also failed when countermea-

sures were deployed. However, active and profiling adversaries are

not considered. Hence, this work does not offer a comprehensive

evaluation but rather a solid benchmark in evaluating trade-offs

for certain classes of side-channel attacks (SPA and DPA).

Fujii and Aranha [42] present an X25519 implementation that is

protected against timing attacks by constant-time execution and

also randomized projective coordinates and constant-time condi-

tional swaps were implemented. However, the authors do not spec-

ify any details about those countermeasures and they do not con-

sider protection against other side-channel attacks.

Considering hardware implementations, Sasdrich and Güneysu

performed extensive investigations of costs for countermeasures in

hardware, i.e., on an FPGAplatform for Curve 25519 andCurve448 [95,

96]. In both cases, the Montgomery ladder was deployed to provide

a basic protection against timing and Simple Power Analysis (SPA).

To offer some DPA protection, point randomization and scalar blind-

ing were added, increasing the amount of look-up tables (LUTs) by

5% and of flip-flops (FFs) by 40% and increasing the overall latency

in terms of clock cycles by 45% for Curve448. For Curve25519 the

performance penalty was 30% with a similar increase in required

LUTs and FFs. In addition, the authors add memory address scram-

bling to secure the memory accesses against side-channel attacks

and correspondingly make DPA more complex. For this purpose 2
6

different random addresses were used.

A protected implementation of the new complete formulas for

Weierstrass curve from [90] is presented in [26]. The implementa-

tion is put on an FPGA and evaluated against SCA.More specifically,

three different versions were evaluated: (1) an unprotected archi-

tecture; (2) an architecture protected through coordinate random-

ization; and (3) an architecture with both coordinate randomization

and scalar splitting. The evaluation is done through timing analysis

and TVLA. The results show that applying an increasing level of

countermeasures leads to an improved resistance against SCA, but

they only consider a side-channel adversary of a limited capacity

i.e. being only passive and not capable of profiling.

Availability of the software We place all software described in

this paper into the public domain. It is available from an anony-

mous GitHub repository at https://anonymous.4open.science/r/

40fe2d05-17f5-439c-9e89-7a4737e3322e/.

2 PRELIMINARIES
In this section we introduce the necessary background on the

X25519 key-exchange protocol and on the ARM Cortex-M4 mi-

crocontroller. Furthermore we introduce our attacker model.

3

https://anonymous.4open.science/r/40fe2d05-17f5-439c-9e89-7a4737e3322e/
https://anonymous.4open.science/r/40fe2d05-17f5-439c-9e89-7a4737e3322e/

2.1 X25519 key exchange
The X25519 elliptic-curve key-exchange protocol is based on arith-

metic on the elliptic curve in Montgomery form [78]:

𝐸 : 𝑦2 = 𝑥3 + 486662𝑥2 + 𝑥

over the finite field F𝑝 with 𝑝 = 2
255 − 19. The group of F𝑝 -rational

points on 𝐸 has order 8 · ℓ , where ℓ is a 252-bit prime. The central

operation is scalar multiplication smult(𝑘, 𝑥𝑃), which receives as

input two 32-byte arrays 𝑘 and 𝑥𝑃 . Each of those arrays is inter-

preted as a 256-bit integer in little-endian encoding; the integer 𝑥𝑃
is further interpreted as an element of F𝑝 . The scalar-multiplication

routine first sets the most significant bit of 𝑥𝑃 to zero (ensuring

that 𝑥𝑃 ∈ {0, . . . , 2255 − 1} and sets the least significant 3 bits of

𝑘 and the most significant bit of 𝑘 to zero, and the second-most

significant bit of 𝑘 to one (ensuring that 𝑘 ∈ 8 · {2251, . . . , 2252 − 1}).
This operation on bits of the input 𝑘 is often referred to as “clamp-

ing”, in our pseudocode we denote it by clamp. Subsequently, scalar
multiplication outputs the 𝑥-coordinate 𝑥 [𝑘]𝑃 of the point [𝑘]𝑃
where 𝑃 is one of the two points with 𝑥-coordinate 𝑥𝑃 on 𝐸 (if there

are such points) or the quadratic twist of 𝐸 (otherwise), and where

[𝑘] denotes scalar multiplication by 𝑘 . The scalar multiplication is

commonly implemented using the Montgomery ladder [78] using

a projective representation (𝑋 : 𝑍) of an 𝑥-coordinate 𝑥 = 𝑋/𝑌 .
Pseudocode for this ladder is given in Algorithm 1.

Algorithm 1 The Montgomery ladder for 𝑥-coordinate-based

scalar multiplication on 𝐸 : 𝑦2 = 𝑥3 + 486662𝑥2 + 𝑥

Input: 𝑘 ∈ {0, . . . , 2255 − 1} and the 𝑥-coord. 𝑥𝑃 of point 𝑃

Output: 𝑥 [𝑘]𝑃 , the 𝑥-coordinate of [𝑘]𝑃
𝑋1 ← 1; 𝑍1 ← 0; 𝑋2 ← 𝑥𝑃 ; 𝑍2 ← 1, 𝑝 ← 0

for 𝑖 ← 254 downto 0 do
𝑐 ← 𝑘 [𝑖] ⊕ 𝑝 ⊲ 𝑏 [𝑖] denotes bit 𝑖 of 𝑘
𝑝 ← 𝑏 [𝑖]
(𝑋1, 𝑋2) ← cswap(𝑋1, 𝑋2, 𝑐)
(𝑍1, 𝑍2) ← cswap(𝑍1, 𝑍2, 𝑐)
(𝑋1, 𝑍1, 𝑋2, 𝑍2) ← ladderstep(𝑥𝑃 , 𝑋1, 𝑍1, 𝑋2, 𝑍2)

end for
return (𝑋1, 𝑍1)

This algorithm uses two sub-routines cswap and ladderstep. The
cswap (“conditional swap”) routines swaps the first two inputs iff

the last input is 1. The ladderstep routine, on input coordinates

𝑥𝑄−𝑃 , 𝑋𝑃 , 𝑍𝑃 , 𝑋𝑄 , 𝑍𝑄 , computes (𝑋 [2]𝑃 , 𝑍 [2]𝑃 , 𝑋𝑃+𝑄 , 𝑍𝑃+𝑄). This
computation takes 5 multiplications, 4 squarings, one multiplication

by a small constant, and a few additions and subtractions in F
2
255−19.

The key-exchange protocol uses this smult function and the fixed
basepoint 𝑥𝐵 = [9, 0, . . . , 0] and proceeds with straight-forward

elliptic-curve Diffie Hellman.

2.2 The ARM Cortex-M4 microcontroller
Our target platform is the ARM Cortex-M4 microprocessor, which

implements the ARMv7ME 32-bit RISC architecture [100]. The most

relevant features of this platform for the software described in this

paper are the following:

• it features 16 general-purpose 32-bit registers, out of which

14 are freely usable (one is used as instruction pointer and

one as stack pointer);

• it features a single-cycle 32 × 32-bit multiplier producing a

64-bit result, which can be accumulated for free through a

fused multiply-accumulate instruction.

The Cortex-M4 features a three-stage pipeline. Recent findings

[74, 98, 114] indicate that specific properties of the internal pipeline

architecture are highly relevant for the amount of side-channel leak-

age generated. In the instruction set, input and output operands

of the ALU are retrieved from and stored to the register file. How-

ever, based on the analysis of [114] and own findings, we presume

that the Cortex-M4 features also shortcut data paths which gen-

erate additional leakage when the result of a first arithmetic or

logic instruction in the pipeline is required as input operand for a

subsequent instruction within the pipeline.

Randomness generation. The side-channel countermeasures re-

quire a source of uniformly random bytes. Random-number genera-

tion is not part of the Cortex-M4, however the specific STM32F407

device that we used for evaluation features a hardware random

number generator, which generates 4 random bytes every 40 clock

cycles [100]. We use this hardware RNG for all randomness genera-

tion. In some contexts we need uniformly random values modulo 𝑝

or modulo ℓ . In those cases we sample a 512-bit integer and reduce

modulo 𝑞 or ℓ . This approach is also used, for example, for sam-

pling close to uniformly random modulo ℓ in the Ed25519 signature

scheme [18, 19]. Compared to a software RNG, the hardware RNG

provides faster and higher quality randomness.

Fast X25519 on the Cortex-M4. Multiple earlier papers describe

optimized implementations of X25519 on the ARM Cortex-M4 [41,

42]. The speed-record within the scientific literature is currently

held by an implementation by Haase and Labrique described in [49].

They report 625 358 cycles for one scalar multiplication on an

STM32F407 running at 16MHz. The optimized routines for field

arithmetic from this implementation are in the public domain and

available from https://github.com/BjoernMHaase/fe25519. They are

the starting point for our protected implementations.

2.3 Attacker model
Our attacker model is motivated by typical capabilities of a real-

world attacker. We assume that an attacker controls the input to the

scalar multiplication and obtains the contents of the output buffer

after the computation has finished. Furthermore, we assume certain

capabilities with respect to the side-channel leakage that becomes

available (passive attacker) and FI capability (active attacker).

Passive side-channel attacker.We assume that an attacker can

collect sufficiently many (noisy) traces of power or EM leakage

together with the chosen input and corresponding output. In addi-

tion, we allow for the attacker to generate templates (as in profiled

attacks) for self-controlled inputs on a device of the same make

and model as the target device. For our experiments we generate

templates on the same device as the one we target in the attack.

As mentioned above, instead of proving the side-channel security

of our implementation in a certain model (e.g., the noisy leakage

model [89]), we use the TVLAmethodology (𝑡-test analysis) to show

4

https://github.com/BjoernMHaase/fe25519

the absence of leakage in traces collected from an actual device

running our implementation. This kind of analysis, although not

perfect, is standard for security evaluation labs [55, 110].

A limited fault attacker. A software-only implementation, such

as the one we describe in this paper, cannot be protected against

arbitrarily powerful fault attackers. The reason is that such an at-

tacker could simply skip the execution of the program over any

dedicated countermeasure or rewrite values in registers and mem-

ory to eliminate all effects of fault-attack countermeasures. The

fault attacker we consider in this paper is therefore limited to in-

jecting only one fault per scalar multiplication. We assume that

this fault may either skip a short block of consecutive instructions,

set an arbitrary register value to zero, or set an arbitrary register

value to a random value not controlled by or known to the attacker.

These faults are the most common to occur in practice based on

our experience and on reviewed literature; see, for example, [103].

Restricting instruction skips to “short” blocks is motivated by the

fact that in practice attacks are typically able to skip only up to 2–3

instructions. Furthermore allowing arbitrarily long blocks of code

to be skipped would enable trivial attack skipping all cryptographic

computations. For similar reasons we also exclude the instruction

pointer from the set of “arbitrary” registers that the attacker may

fault. Note also that we consider attacks skipping over the function

call to our protected implementations out of scope – such attacks

need to be protected by the surrounding context.

3 SCA-PROTECTED EPHEMERAL X25519
In this section we describe our implementation of X25519 pro-

tected against side-channel and fault attacks when deployed in

an ephemeral key-exchange scenario. In such a scenario each se-

cret scalar is used only twice, once in public-key generation and

once in the computation of the shared secret key. By itself such an

ephemeral key exchange makes little sense in most communication

scenarios because communication partners are unauthenticated.

However, combined with either signatures in a SIGMA-style proto-

col [66] or in combination with static key exchanges in, for example,

3DH [72], it is a critical building block to achieve forward secrecy.

The goal of an SCA or FI attacker against such an ephemeral key

exchange is to learn the shared secret. This goal can be achieved

either by learning the secret scalar or by influencing the scalar

multiplication through FI during both key generation and shared-

key computation (and scalar multiplication is the main part of that)

to an easily guessable value. The advantage of having two instead of

just one trace is very small for a passive attacker – it is certainly too

few traces to allow any kind of differential attacks (see Section 4).

As we focus on protecting the scalar multiplication, we consider

generation of the 32-byte secret key as out of scope and assume

that it is provided as an input by the user of the library.

In Subsection 3.1 we list most relevant passive attacks and in

Subsection 3.2 we list most relevant active attacks for the ephemeral

setting. Due to space constraints we do not list all possible SCA or

FI attacks, but only focus on the most relevant ones. For a complete

list of attacks we refer the reader to either [36] or [61].

3.1 Relevant passive attacks

SPA. Simple power analysis (SPA) attacks were introduced in [65].

Note that we do not emphasize on the word “power”, but also

include attacks that use a trace of electromagnetic radiation or

any other side-channel. Modern definitions of SPA often include

any attack that works with side-channel information of a single

execution. This definition would include horizontal and certain

template attacks. We discuss those separately and hence define

SPA attacks in the more classical sense as attacks that visually

identify secret-data-dependent control flow. Simply speaking, SPA

attacks typically target instruction-dependent leakages that are

often data-dependent.

Horizontal (collision) attacks. A class of single-trace attacks is

often called horizontal attacks. These attacks trace back to [107],

and was applied against ECC in [12, 28, 50]. The general idea of

horizontal collision is to use key-dependent collisions of the same

values across multiple iterations of the scalar multiplication loop.

Consider, for example, an attacker able to distinguish whether two

finite-field multiplications have an input in common. If this is the

case then the attacker can learn whether two scalar multiplication

iterations share the same scalar bit. Such single-trace attacks have

been described against RSA [107] and ECC [50].

Horizontal correlation attacks. In [28], the authors proposed

an attack based on predictions of intermediate arithmetic results

within a single trace. Although this method is effective against

private-key blinding countermeasures, other mitigation methods,

e.g., message or point randomization, prevent this horizontal attack.

Template attacks. Template attacks (TAs), introduced in [25], re-

quire a profiling stage in which the adversary estimating the proba-

bility distribution of the leaked information to make a better use of

information present in each sample. TA is the best attack technique

from an information-theoretic point of view but it makes strong as-

sumptions on the attacker, e.g., that they can collect an unbounded

number of template traces and the noise is close to Gaussian.

An approach from [75], is to target the internal state of the ladder

step after a small number of scalar bits are processed. If a single-

trace TA is successful then the number of bits is recovered and the

attack can continue on the subsequent bits targeting the same trace.

Another relevant profiling attack is the TA targeting the con-

ditional move (cmov) instruction as introduced in [82]. The cmov
instructions is often used to implement cswap. The idea of this

attack in our context is to learn about the behavior of cswap and

create the corresponding templates (from multiple traces). Subse-

quently, the templates can be used to recover scalar bits from all

cswap operations used in a single scalar multiplication. The attack

is complex, but it can be successful even against a single trace.

The third relevant class for TA attacks key-transfer [85]. Note

that inmost implementations the scalar is copied, from flash to RAM

or within RAM, just before the scalar multiplication is executed.

This might allow the attacker to template the copy process and try

to recover information about the scalar or the session key (i.e., the

output of the scalar multiplication) from a single attacked trace.

Deep Learning Attacks. Another class of profiled attacks, similar

to TAs, are deep learning (DL) side-channel attacks [24, 62, 71].

5

These attacks use algorithms like multilayer perceptron (MLP) or

convolutional neural networks (CNNs) to recover the secret keys

from cryptographic implementations. Their main advantage over

TAs is that they do not require pre-processing of leakage traces,

require less trace alignment, and make the attack simpler to run.

They can be applied to attack ECC as demonstrated in [108, 109,

116]. A similar attack, but unsupervised, is presented in [87].

Online Template Attacks. Online template attacks (OTA) [11]

use horizontal techniques to exploit the fact that an internal state

of scalar multiplication depends only on the known input and the

scalar. Advanced types of those attacks need only one leakage trace

and can defeat implementations protected only with scalar blinding

or splitting. OTA traces back and extends the doubling and collision

attacks [40, 53]. These kind of attacks are thwarted by randomizing

the internal state using point blinding and projective coordinate

randomization [29] or coordinate re-randomization [82].

Horizontal cmov attacks. Horizontal cmov attacks [81] are sim-

ilar to TA from [82], but they are unsupervised. They combine a

heuristic approach based on clustering with multiple-trace unsu-

pervised points-of-interest selection. Due to the relaxation of the

attack setting, these attacks have slightly lower success rate and

their complexity is increased in comparison to [82].

3.2 Relevant active attacks

Weak curve attacks. The first weak-curve attack on ECC was

introduced in [20]. The key observation is that 𝑎6 in the definition

of 𝐸 is not used in the addition. Hence, the addition formula for

curve 𝐸 generates correct results for any curve 𝐸 ′ that differs from
𝐸 only in 𝑎6: 𝑦

2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥2 + 𝑎4𝑥 + 𝑎′
6
. Therefore, the

adversary can cheat by providing a point 𝑃 on the insecure curve 𝐸 ′.
Then the adversary can solve ECDLP on 𝐸 ′ and find out the scalar.

The method of moving a scalar multiplication from a strong

curve 𝐸 to a weak curve 𝐸 ′ often requires fault induction. With the

help of faults, the adversary can make use of invalid points [20],

invalid curves [27], and twist curves [38] to hit a weak curve.

Loop-abort attacks. A rather simple fault-injection attack is to

jump out of the scalar multiplication main loop after only a few

iterations or completely skip over the loop, which makes the result-

ing output easily predictable. An attacker against an ephemeral key

exchange who is able to jump out of the loop in the same iteration

in both key generation and shared-key computation can force the

device into generating a weak, easily predictable shared key.

Key Shortening.Another simple fault injection attack is to shorten

the scalar. The idea of the attacker is to stop the copy loop of the

scalar before it is being used in the scalar multiplication. This way

entropy in the scalar is reduced, if the previous memory content is

predictable (e.g., if it is zeroed).

Fixing scalar-multiplication output. A straightforward attack

to enforce predictable output is to prevent copying of the final result

or use a fault to directly write, e.g., zero values, to the output buffer.

3.3 Protected implementation
Algorithm 2 presents a pseudocode of our protected implementation

of ephemeral X25519. Like most previous X25519 implementations

it is running in “constant time”, i.e., is not leaking any information

about the scalar through timing. Furthermore, we add the following

countermeasures: re-randomizing the projective representation in

the cswaprr procedure and control-flow counter.

The strategy of our cswaprr, which merges conditional swapping

with projective re-randomization, takes into account that memory

access leaks significantly more than register operations. We thus

fetch input words from memory, conditionally swap and randomize

in registers and then store the results back. Randomization here

means multiplying both the 𝑋 and the 𝑍 coordinate by a 29-bit ran-

dom value. We also considered the risk of increased leakage due to

shortcut data paths in the core’s pipeline. We avoided using a result

from an immediately preceding instruction as input for the subse-

quent operations if operands hold information on the secret scalar.

We moreover take into account that the CPU core always pro-

cesses 32 bits simultaneously in its single-cycle multiplication and

logic instructions. We aim at increasing the noise level by em-

bedding random data into unused operand bits in addition to the

confidential information. For instance, conditional moves are im-

plemented on a half-word basis by using two multiplicative masks

𝑀1,𝑀2 having random data in bits 16 to 31. Bits 15 to 0 are zeroed

and the condition (𝑀1) and negated condition (𝑀2) is held in bit 0.

For inputs𝐴, 𝐵, the calculation𝐴′ ← 𝑀1 ·𝐴+𝑀2 ·𝐵;𝐵′ ← 𝑀1 ·𝐵+𝑀2 ·
𝐴; yields the swapped lower half-words of the inputs in bits 0 to 15.

In the following we explain why this implementation is not

vulnerable against the attacks from the last two subsections.

SPA attacks are thwarted by using secret-independent control

flow. This is rather clearly achieved in the Montgomery ladder,

as long as the conditional-swap operation (implemented by us in

cswaprr) is carefully implemented without conditional branches.

Using a ladder to compute the scalar multiplication is a com-

monly recommended countermeasure against “classical” SPA at-

tacks; see, for example, [65].

Horizontal correlation attacks rely on the fact that identical

values (i.e., field elements) are used across two or more loop itera-

tions. In our implementation, this class of attacks is thwarted by

re-randomizing the projective representation of the two points in

the state in each iteration. This re-randomization is merged into

the cswaprr operation as detailed above. Each re-randomization is

using 29 bits of randomness, which leaves a small chance that oc-

casionally this random value is of a special form that does not fully

remove correlation (e.g., the randomizer could be 1 or 2). We do not

expect this to be a problem in practice, as an attacker would only

very occasionally be able to learn one or two bits of an ephemeral

scalar by exploiting these rare correlations.

Horizontal, Template, Deep Learning, and Online Template
attacks extract information about the secret scalar by identify-

ing temporary values used in the computation through matching

against templates. As a recommended [10, 11] countermeasure

against online-template attacks we employ projective randomiza-

tion [80] with a full-size randomizer chosen uniformly random

from F𝑝 . This countermeasure also stops template attacks that are

based on exploiting the internal ladder state leakage.

6

Algorithm 2 Pseudocode of side-channel and fault-attack protected ephemeral X25519

Input: A 255-bit scalar 𝑘 and the 𝑥-coordinate 𝑥𝑃 of some point 𝑃

Output: 𝑥 [𝑘]𝑃
1: 𝑐𝑡𝑟 ← 0 ⊲ Initialize iteration counter

2: 𝑥𝑃
$← {0, . . . , 2256 − 1} ⊲ Initialize output buffer to random bytes

3: 𝑘 ← clamp(𝑘)
4: 𝑘 ← 𝑘/8 ⊲ Divide scalar 𝑘 by 8 to account for initial 3 doublings

5: Increase(𝑐𝑡𝑟)
6: (𝑋𝑃 , 𝑍𝑃) ← montdouble(𝑥𝑝 , 1)
7: (𝑋𝑃 , 𝑍𝑃) ← montdouble(𝑋𝑝 , 𝑍𝑃)
8: (𝑋𝑃 , 𝑍𝑃) ← montdouble(𝑋𝑝 , 𝑍𝑃) ⊲ 3 doublings to multiply by co-factor 8

9: Increase(𝑐𝑡𝑟)
10: if 𝑍𝑃 = 0 then
11: go to Line 27 ⊲ Early-abort if input point is in order-8 subgroup

12: end if
13: 𝑥𝑃 ← 𝑋𝑃 · 𝑍−1𝑃

⊲ Return to affine 𝑥-coordinate

14: 𝑋1 ← 1, 𝑍1 ← 0

15: 𝑍2

$← {0, . . . , 2255 − 20}, 𝑋2 ← 𝑥𝑃 · 𝑍2 ⊲ Initial randomization of projective representation

16: 𝑘 ← 𝑘 ⊕ 2𝑘 ⊲ Precompute condition bits for cswap
17: Increase(𝑐𝑡𝑟)
18: for 𝑖 from 252 downto 1 do ⊲ Main scalar-multiplication loop

19: (𝑋1, 𝑍1, 𝑋2, 𝑍2) ← cswaprr (𝑋1, 𝑍1, 𝑋2, 𝑍2, 𝑘 [𝑖]) ⊲ projective re-randomization merged with cswap
20: (𝑋1, 𝑍1, 𝑋2, 𝑍2) ← ladderstep (𝑥𝑃 , 𝑋1, 𝑍1, 𝑋2, 𝑍2)

21: Increase(𝑐𝑡𝑟)
22: end for
23: (𝑋1, 𝑍1, 𝑋2, 𝑍2) ← cswaprr ((𝑋1, 𝑍1, 𝑋2, 𝑍2), 𝑘 [0])
24: 𝑥𝑃 ← 𝑋2 · 𝑍−1

2

25: Increase(𝑐𝑡𝑟)
26: if Verify(𝑐𝑡𝑟) then ⊲ Detected wrong flow, including iteration count

27: 𝑥𝑃
$← {0, . . . , 2256 − 1} ⊲ Set output buffer to random bytes

28: end if
29: return 𝑥𝑃

However, that countermeasure does not stop the single-trace

attacks. Therefore, the following attacks might be feasible: single-

trace TA or DL targeting cswaprr (see [82], for example) and single-

trace TA or DL targeting key loading. The ephemeral implemen-

tation does not explicitly protects against such attacks – see the

evaluation in Section 5.2. However, the static implementation adds

additional protections against such attack; for details, see Section 4.

Weak curve attacks. Since we are implementing Curve25519,

many weak-curve attacks are not possible; for example, see the

paragraph on small-subgroup attacks in [16, Sec. 3]. However, an

attacker can try to insert a point in the order-8 subgroup; such

inputs are mapped to the neutral element (represented by 𝑍𝑃 = 0)

through the three doubling steps in lines 5–7 of Algorithm 2. Lines

9–10 detect this neutral element and abort. In typical X25519 im-

plementations those doublings are performed at the end of the

scalar-multiplication loop, because the lowest 3 bits of the scalar

are set to zero through clamping. Moving them to the beginning en-

sures that the input to the main loop is either of order ℓ or of order

1; even if an attack skips the early-abort through an injected fault.

Loop-abort attacks. In order to protect against loop-abort attacks

we employ a flow-counter countermeasure [111]. Specifically, we

use a single counter monotonously incremented throughout the

scalar multiplication to detect changes in the execution flow. If the

value of this counter does not match the expected value at the end

of the computation then we return a random value.

Key Shortening. There are two ways how a fault-injection at-

tacker can reduce entropy in the secret scalar: either by setting

parts of the key to zero or by skipping over instructions that copy

the scalar. We do not implement any particular countermeasure

against those attacks for the following reasons. First, as we are on

a 32-bit architecture, an attacker can set at most 32 out of the 256

bits to zero with a single fault, which is not sufficient to allow any

practical attacks. Second, we have verified that the copying loop

is unrolled by the compiler so again, an attacker can control at

most 32 bits of the scalar with single FI. We did consider duplicat-

ing the scalar-copy operation, but while this would help against

fault-injection attacks, it would make SCA easier.

Fixing scalar-multiplication output. In order to prevent an at-

tacker from directly influencing the values in the output buffer, we

set the content of this buffer to a random value before starting with

the main computation and only copy the result to this buffer if the

flow-counter check was successful. An attacker who is restricted

to one fault can prevent either randomization or copying of the

valid result, but not both – which would be required to obtain a

predictable value.

Combined active/passive attacks. It might be possible for an

advanced attacker to combine SCA and FI attack as in [34]. This

specific attack is disabled by randomization of point coordinates and

point blinding. Another strategy for such an attacker could be to

use FI to disable some SCA countermeasures and then proceed with

SCA. In this paper we consider such an attacker largely out of scope,

but in particular the re-randomization of the projective coordinates

in every loop iteration makes life for even such a combined attacker

hard: skipping over one re-randomization step would not reveal

much information and skipping over re-randomization in multiple

steps would require more than one fault.

7

4 SCA-PROTECTED STATIC X25519
This section describes our implementation of X25519 protected

against SCA and FI attacks when deployed in an static key-exchange
scenario. In this scenario the secret scalar can be used an arbitrary

number of times, contrary to the implementation from Section 3.

The goal of an attacker against the static key exchange is to either

obtain the long-term secret key or the output, i.e., session key. This

goal can be either achieved by learning the scalar or by influencing

scalar multiplication through FI during both key generation and

shared-key computation to an easily guessable value.

The static scalar in our library is protected with various static

masks. The scalar and these masks need to be generated by the

user and then stored in the library. Afterwards the static masks

are automatically updated during scalar multiplication executions

and should not be modified or accessed by the user. If possible

they should be stored in the memory isolated from the user. The

Cortex-M4 does not feature memory isolation, thus for this work we

consider that protecting the private key in memory is out of scope.

Below in Section 4.1 we list most relevant passive attacks and in

Section 4.3 we list most relevant active attacks. Note that these lists

are extensions of the lists from Section 3. Moreover, since the static

implementation implements scalar blinding, a countermeasure that

randomizes a scalar for each scalar multiplication execution, most

of the attacks are effectively reduced to the ephemeral case.

4.1 Relevant passive attacks

DPA attacks. With the first publication introducing DPA [65] it

was clear that the technique applies to all cryptosystems relying on

long-term secrets. The idea is based on the fact that the same secret

is used over and over again, which allows the attacker to build a

statistical attack. The only requirement is to identify the so-called

selection function that takes as inputs some known data and the

secret he/she aims at recovering. In a static key exchange, the secret

is typically the scalar i.e. the private key and the known input is

the point it gets multiplied with. Considering this scenario, the

attacker can recover the secret key bit by bit, by simply collecting

enough traces for each loop of scalar multiplication and making

the hypothesis on intermediate results.

Cross-Correlation Attack Cross-correlation exploits collisions

in subsequent additions and doubling of a scalar multiplication al-

gorithm using many traces [112]. The horizontal correlation attacks

from Section 4.3 can be traced back to this multi-trace attack.

Special-point attacks. A refined power analysis (RPA) attack ex-

ploits the existence of special points: (𝑥, 0) and (0, 𝑦). Feeding to

a device a point 𝑃 that leads to a special point 𝑅(0, 𝑦) (or 𝑅(𝑥, 0))
at step 𝑖 under the assumption of processed bits of the scalar will

generate exploitable side-channel leakage [47]. A zero-value point

attack (ZPA) [3] is an extension of RPA. Not only considering the

points generated at step 𝑖 , a ZPA also considers values of auxiliary

registers. For some special points 𝑃 , some auxiliary registers might

predictably have zero value at step 𝑖 . The attacker can then use the

same procedure of RPA to incrementally reveal the whole scalar.

Carry-based attack. The carry-based attack [39] does not attack

the scalar multiplication itself but its countermeasures. It relies on

the carry propagation occurring when long-integer additions are

performed as repeated sub-word additions. For instance, on an 8-bit

processor, Coron’s first countermeasure, 𝑘 ′ = 𝑘 + 𝑟#𝐸, is normally

performed with repeated 8-bit additions. Let 𝑘𝑖 and 𝑟𝑖#𝐸 denote

the 𝑖-th sub-word of 𝑘 and 𝑟𝑖#𝐸, respectively. Note that 𝑘𝑖 is fixed

and 𝑟𝑖#𝐸 is random in different executions. The crucial observation

here is that, when adding 𝑘𝑖 to 𝑟𝑖#𝐸, the probability of the carry

out 𝑐 = 1 depends mainly on 𝑘𝑖 . The adversary can then monitor

the outgoing carry bit of the adder to estimate the probability of

𝑐 = 1. With this probability, the value of 𝑘𝑖 can be guessed reliably.

Address-bit DPA. The address-bit DPA attack [29] explores the

link between the register address and the key. It was the first time

applied to ECC in [56]. This attack is applicable if the addresses

of coordinates processed in the ladder step depend in some way

on the corresponding scalar bit. Essentially, the scalar bit can be

recovered if the attacker can distinguish between data read from

different addresses.

Address template attacks. The address leakage mentioned above

in the address-bit DPA, can be exploited using a template attack.

Observe that when attacking a single trace address TA is essen-

tially equivalent to the TA targeting the cswap [82] (Subsection 3.1),
even if the attacked leakage is not coming from the address but from

the cswap logic. Therefore, when we talk about address leakage in

this paper, we also mean the cswap leakage.

4.2 Relevant active attacks.

Safe-error attacks. The concept of safe-error was introduced

in [60, 115]. Two types of safe-error are reported: C safe-error and

M safe-error. The C safe-error attack exploits dummy operations

which are usually introduced to achieve SPA resistance, like add-

and-double-always, for example. The adversary can try to induce

temporary faults during the execution of the dummy operation. If

the result is unaffected then it means that indeed a dummy opera-

tion was affected. Otherwise, in case of different result, the attacker

learn that a real operation was affected. This is enough to learn a

scalar bit in the attacked iteration. The M safe-error attack exploits

the fact that faults in some memory blocks will be cleared. The

attack was first proposed in [60] to attack RSA, but it also applies

to scalar multiplication. The goal of the attack is to affect memory

that is only overwritten if a scalar bit has a certain value, e.g., 1.

Differential fault analysis. The Differential Fault Attacks (DFA)
on scalar multiplication [20, 21] use the difference between the

correct results and the faulty results to deduce certain bits of the

scalar. These attacks requiremultiple correct and incorrect results of

scalar multiplications to learn the static scalar. Since we randomize

the scalar, as described later, these attacks are not applicable and

we do not detail on them here due to the space constraints.

4.3 Protected implementation
The static protected scalar multiplication is presented in Algo-

rithm 3. Similarly to Section 3, we employ re-randomizing the

projective representation using cswaprr and control-flow counter.

Moreover, to prevent SCA attacks against key transfer, we imple-

ment scalar storage blinding: the scalar 𝑘 is stored as 𝑘𝑓 −1 = 𝑘 · 𝑓 −1
together with 𝑓 , which is a 64-bit random blinding. To protect

against attacks that use special points as input, we also use static

8

random points 𝑅 and 𝑆 for input point blinding, where 𝑅, 𝑆 = [−𝑘]𝑅.
These blindings 𝑓 , 𝑅, 𝑆 and 𝑘𝑓 −1 are always securely randomized

after each scalar multiplication. They should also be stored securely.

In particular, if possible in the given architecture, they should be

stored in a secure memory not accessible to users of the library.

That is why these values are marked as secure input in Algorithm 3.

To further improve security, the scalar is randomized with an

additional 64-bit value 𝑟 that multiplicatively masks each scalar mul-

tiplication. Then the mask is removed by performing an additional

64-bit scalar multiplication and is not stored.

To circumvent address leakage we follow the approach of [51]

and implement the address-randomization technique from [57].

This countermeasure adds additional random cswaprr executions
to make the cswaprr sequence in the scalar multiplication indepen-

dent from the scalar itself. Although this countermeasure is called

address-randomization for historical reasons, it also should thwart

cswap-like leakage as shown in [51].

Below we explain why our static implementation is not vulnera-

ble against the attacks from the last two subsections.

DPA attacks. To prevent DPA, Coron [29] suggested three coun-

termeasures for an EC-based key exchange: randomizing a point,

projective coordinates, and the scalar for every protocol execution.

We implement all these methods in our implementation and, as con-

firmed by the evaluation in Section 5, we show its DPA-resistance.

Cross-Correlation Attack Due to the scalar blinding this attack

is essentially reduced to horizontal correlation attack and this is

stopped by the projective re-randomization.

Special-point attacks. All special points attacks are stopped by

the initial point blinding with 𝑅, 𝑆 = [−𝑘]𝑅. This countermeasure

ensures that in each scalar multiplication iteration the point used

by the ladder is independent from the input point.

Carry-based attack. The carry-based attack is thwarted by the

usage of the storage scalar blinding. Essentially the scalar is re-

blinded after every usage and therefore, no single guess about 𝑘 or

𝑘𝑖 can be made between multiple blinding computations.

Address-bit DPA. This attack is not possible since scalar is freshly
randomized in each scalar multiplication execution.

Address template attacks. Only single-trace attacks are applica-

ble due to the employed randomizations. The single-trace horizon-

tal, template, and DL attacks can directly target whatever instruc-

tions involve the scalar bits and are much harder to thwart. To stop

them we implement the address-randomization [57] following the

approach from [51]. We check its effectiveness in Section 5.2.

An alternative countermeasure against address attacks is sug-

gested in [70]. It is shown to be effective, but the proposed cswap
implementation does not consider the risk of correlation between

memory loads and stores of the unchanged subwords, before and

after swapping. We choose the more conservative option of storing

conditionally swapped operands only after having them projec-

tively re-randomized first. Thus our implementation avoids the risk

of correlation between loaded and stored (swapped) operands.

Safe-error attacks and differential fault analysis. Due to the

scalar blinding, these attacks are not applicable.

5 EVALUATION
This section presents benchmark results of our implementations

(Section 5.1) and our side-channel evaluation results to support our

claims of resistance against DPA and profiled attacks (Section 5.2).

5.1 Performance Evaluation
Wemeasured clock cycles of the implementations on an STM32F407

Discovery development board and applied the common practice

of clocking it down to at 24MHz for obtaining reproducible cycle

counts that are not significantly affected by wait cycles of the

memory subsystem [49]. We use the gcc compiler, version 10.2.1

20201103 (release), GNU Arm Embedded Toolchain 10-2020-q4-

major. The performance evaluation results are presented in Table 1.

We see that both SCA and FI protections come at a significant

cost. However, the protections for the ephemeral implementation,

mostly the projective re-randomization, only incur a relatively small

penalty. The additional protections included in the static implemen-

tation, mainly against profiled attacks on key transfer and condi-

tional swap, have a more significant cost even when implemented

with efficiency in mind. The total overhead to protect the ephemeral

implementation is about 36% and the overhead of protecting the

static one is 239% in comparison to the unprotected case.

Table 1: Performance Evaluation (using -O2 optimizations).

Implementation / Countermeasure Clock cycles:

Complete unprotected: 683 061

Complete ephemeral: 930 915

Complete static: 2 316 986

Projective re-randomizationmergedwith cswap, cost

per iteration (ephemeral & static)

1041

Randomized Addressing (static): 330 481

Update static blinding points (static): 153 911

Update static scalar (static): 199 947

Blinding of the scalar (static): 197 376

Additional 64-bit scalar multiplication (static): 331 742

Comparison. As expected our countermeasures significantly re-

duce the speed. Still we believe our protected implementations to

be highly competitive. Speed-optimized versions of unprotected

off-the-shelf-libraries such as boringSSL, bearSSL or wolfSSL re-

quire in between roughly 2 and 2.5 million cpu cycles on our target

platform. They are, thus, more than two times slower than our

protected ephemeral and about as fast as our fully protected static

implementation. Amore detailed performance and security analysis

is presented in Appendix A.

5.2 Side-channel Evaluation
In this section we describe our SCA setup and then we present the

results of the evaluation of the unprotected, ephemeral, and static

implementations. We also discuss the resistance to profiled attacks.

Side-channel analysis setup We run our side-channel experi-

ments using a Cortex-M4 on an STM32F407IGT6 board clocked at

168MHz. We measure current with the Riscure Current Probe [91]

9

Algorithm 3 Pseudocode of side-channel and fault-attack protected static X25519

Input: the 𝑥-coordinate 𝑥𝑃 of 𝑃 . Secure Input: a 64-bit blinding 𝑓 , blinded scalar 𝑘
𝑓 −1 = 𝑘 · 𝑓 −1 , and blinding points 𝑅, 𝑆 = [−𝑘]𝑅

Output: 𝑥 [𝑘]𝑃
1: 𝑐𝑡𝑟 ← 0 ⊲ Initialize iteration counter

2: 𝑥𝑃
$← {0, . . . , 2256 − 1} ⊲ Initialize output buffer to random bytes

3: Copy 𝑘𝑓 to internal state while increasing 𝑐𝑡𝑟 . ⊲ Updating 𝑐𝑡𝑟 in a loop makes sure that copying cannot be affected by faults

4: 𝑦𝑃 ← ycompute(𝑥𝑃)
5: Increase(𝑐𝑡𝑟)
6: (𝑋𝑃 , 𝑌𝑃 , 𝑍𝑃) ← ecadd((𝑥𝑃 , 𝑦𝑃), 𝑅) ⊲ Point blinding, output of addition of 𝑅 is projective

7: (𝑋𝑃 , 𝑌𝑃 , 𝑍𝑃) ← ecdouble((𝑋𝑃 , 𝑌𝑃 , 𝑍𝑃))
8: (𝑋𝑃 , 𝑌𝑃 , 𝑍𝑃) ← ecdouble((𝑋𝑃 , 𝑌𝑃 , 𝑍𝑃))
9: (𝑋𝑃 , 𝑌𝑃 , 𝑍𝑃) ← ecdouble((𝑋𝑃 , 𝑌𝑃 , 𝑍𝑃)) ⊲ 3 doublings to multiply by co-factor 8

10: 𝑟 ← {1, ..., 264 − 1} ⊲ Sample 64-bit non-zero random value for scalar blinding

11: 𝑏 ← {0, ..., ℓ } ⊲ Sample blinding factor of non-constant-time inversion

12: 𝑡 ← 𝑟 · 𝑏 mod ℓ ⊲ Invert using extended binary gcd

13: 𝑠 ← 𝑡−1 · 𝑏 mod ℓ ⊲ Unblind result of inversion

14: 𝑘′
𝑓 −1
← 𝑘

𝑓 −1 · 𝑠 mod 𝑙 ⊲ Multiplicatively blind scalar 𝑘
𝑓 −1

15: 𝑘′ ← 𝑘′
𝑓 −1
· 𝑓 mod 𝑙 ⊲ Multiplicatively unblind scalar 𝑘′

𝑓 −1 with 𝑓

16: Increase(𝑐𝑡𝑟)
17: 𝑥𝑃 ← 𝑋𝑃 · 𝑍−1𝑃

⊲ Return to affine 𝑥-coordinate

18: 𝑦𝑃 ← 𝑌𝑃 · 𝑍−1𝑃
⊲ Return to affine 𝑦-coordinate

19: 𝑋1 ← 1, 𝑍1 ← 0

20: 𝑍2

$← {0, . . . , 2255 − 20}, 𝑋2 ← 𝑥𝑃 · 𝑍2 ⊲ Initial randomization of projective representation

21: 𝑘′ ← 𝑘′ ⊕ 2𝑘′ ⊲ Precompute condition bits for cswap
22: 𝑎 ← {0, ..., 2253 − 1} ⊲ Sample mask for address-randomization

23: 𝑘′ ← 𝑘′ ⊕ 𝑎 ⊲ Mask the scalar

24: Increase(𝑐𝑡𝑟)
25: (𝑋1, 𝑍1, 𝑋2, 𝑍2) ← cswaprr (𝑋1, 𝑍1, 𝑋2, 𝑍2, 𝑎 [252]) ⊲ projective re-randomization merged with cswap based on mask.

26: for 𝑖 from 252 downto 0 do ⊲ scalar multiplication by 𝑘′ = 𝑘 · 𝑟−1
27: (𝑋1, 𝑍1, 𝑋2, 𝑍2) ← cswaprr (𝑋1, 𝑍1, 𝑋2, 𝑍2, 𝑘

′ [𝑖]) ⊲ projective re-randomization merged with cswap based on masked 𝑘

28: if 𝑖 ≥ 1 then
29: (𝑋1, 𝑍1, 𝑋2, 𝑍2) ← ladderstep (𝑥𝑃 , 𝑋1, 𝑍1, 𝑋2, 𝑍2)

30: (𝑋1, 𝑍1, 𝑋2, 𝑍2) ← cswaprr (𝑋1, 𝑍1, 𝑋2, 𝑍2, 𝑎 [𝑖 − 1]) ⊲ projective re-randomization merged with cswap based on mask

31: Increase(𝑐𝑡𝑟)
32: end if
33: end for
34: 𝑦𝑃 ← yrecover(𝑋1, 𝑍1, 𝑋2, 𝑍2, 𝑥𝑃 , 𝑦𝑃)
35: 𝑥𝑃 ← 𝑋2 · 𝑍−1

2

36: 𝑋1 ← 1, 𝑍1 ← 0

37: 𝑍2

$← {0, . . . , 2255 − 20}, 𝑋2 ← 𝑥𝑃 · 𝑍2 ⊲ Again randomize projective representation

38: 𝑎′ ← {0, ..., 265 − 1} ⊲ Sample additional mask for address-randomization

39: 𝑟 ← 𝑟 ⊕ 2𝑟 ⊲ Precompute condition bits for cswap
40: 𝑟 ← 𝑟 ⊕ 𝑎′ ⊲ Mask the random scalar 𝑟

41: Increase(𝑐𝑡𝑟)
42: (𝑋1, 𝑍1, 𝑋2, 𝑍2) ← cswaprr (𝑋1, 𝑍1, 𝑋2, 𝑍2, 𝑎

′ [64]) ⊲ projective re-randomization merged with cswap based on mask

43: for 𝑖 from 64 downto 0 do ⊲ scalar multiplication by 𝑟

44: (𝑋1, 𝑍1, 𝑋2, 𝑍2) ← cswaprr (𝑋1, 𝑍1, 𝑋2, 𝑍2, 𝑟 [𝑖]) ⊲ projective re-randomization merged with cswap based on masked 𝑟

45: if 𝑖 ≥ 1 then
46: (𝑋1, 𝑍1, 𝑋2, 𝑍2) ← ladderstep (𝑥𝑃 , 𝑋1, 𝑍1, 𝑋2, 𝑍2)

47: (𝑋1, 𝑍1, 𝑋2, 𝑍2) ← cswaprr (𝑋1, 𝑍1, 𝑋2, 𝑍2, 𝑎
′ [𝑖 − 1]) ⊲ projective re-randomization merged with cswap based on mask

48: Increase(𝑐𝑡𝑟)
49: end if
50: end for
51: 𝑌2 ← yrecover(𝑋1, 𝑍1, 𝑋2, 𝑍2, 𝑥𝑃 , 𝑦𝑃)
52: (𝑋2, 𝑌2, 𝑍2) ← ecadd((𝑋2, 𝑌2, 𝑍2), 𝑆) ⊲ Remove point blinding, add in 𝑆 = [−𝑘]𝑅
53: 𝑥𝑃 ← 𝑋2 · 𝑍−1

2

54: Increase(𝑐𝑡𝑟)
55: if Verify(𝑐𝑡𝑟) then ⊲ Detected wrong flow, including iteration count

56: 𝑥𝑃
$← {0, . . . , 2256 − 1} ⊲ Set output buffer to random bytes

57: end if
58: Update(𝑅, 𝑆) ⊲ Perform double-and-add scalar multiplication with the same 8-bit random number on both 𝑅 and 𝑆

59: Randomize(𝑘
𝑓 −1 , 𝑓) ⊲ Generate new 64-bit random value 𝑓 , securely compute 𝑓 −1 and update 𝑘

𝑓 −1
60: Save(𝑅, 𝑆, 𝑘

𝑓 −1 , 𝑓)
61: return 𝑥𝑃

and we record traces using the LeCroy WaveRunner 610Zi oscillo-

scope. For analysis of the traces we use the Inspector software by

Riscure [92].

For all the results presented in this section we compile the code

using the standard -O2 optimization flag. However, we perform

every test also using no optimizations (-O0) as a double check (since

10

using no optimizations often inflate existing leakage). All results

are consistent for both flags with respect to detecting leakage.

We perform the leakage detection in the following scenarios:

• The unprotected implementation, without any countermea-

sures except constant-time implementations of all opera-

tions, including field arithmetic and Montgomery ladder;

• The ephemeral implementation, with projective coordinate

re-randomization enabled (see Algorithm 2);

• The static implementation as in Algorithm 3, with all coun-

termeasures enabled (projective re-randomization, random-

ized addressing, point, scalar, and storage blinding);

• A static implementation modified for the profiled-attacks

evaluation with scalar and storage blinding disabled. We

test this setting with and without the randomized address-

ing countermeasure to verify resistance to profiled attacks.

A comparison of power profiles of our standard unprotected, ephem-

eral, and static implementations is presented in Appendix B.

We apply a commonly-used TVLA methodology [14, 45, 58, 105]

to our implementations using the aforementioned measurement

settings. Following this leakage-evaluation methodology, we use

three sets of traces that are equal in size one third of the traces is

taken with a fixed input and a fixed scalar (group 0), another third
with a random input and the fixed scalar (group 1), and the last

group with the fixed input and a random scalar (group 2). If the null
hypothesis holds and no leakage is detected then there should be

little differences in the Welch’s 𝑡-test statistics measured between

group 0 and 1, and between 0 and 2.

Traditionally, in [58, 105] the TVLA confidence threshold to

detect leakage in the 𝑡-test statistic was set to 4.5. However, we

compute the confidence threshold for our experiments, using the

formula from [31] following the approach [86]. The threshold com-

puted this way is more accurate and ensures that false positives

are avoided in the leakage assessment. For all our experiments the

computed threshold is between 7 and 7.3 and therefore, we assume

that peaks above 7 indicate leakage.

In our evaluation we concentrate not only the scalar multiplica-

tion, but we also analyze the rest of the trace. Note that we usually

expect to see leakage at the beginning of the trace, due to varying

input or scalar, and at the end due to varying output.

The leakage is usually detected only around the area that we

align on
3
. This is caused by jitter and, especially for the static case,

by intended randomizations (e.g., for the inverse operations). There-

fore, it might happen that if the trace is aligned at the beginning

of trace then the leakage is only detected there, even if leakage is

present everywhere. To avoid that we align the traces in multiple lo-

cations (usually at the beginning, middle, and end of computational

blocks). Due to the space constraints, we report only the meaningful

results when leakage is detected or no leakage is confirmed.

In the following subsections we always first analyze the differ-

ence between groups 0 and 1. The goal is to evaluate the correlation

of the implementation leakage to a fixed or a random input point;

such leakage, if present, can be used to mount CPA. Secondly we

concentrate on groups 0 and 2. The aim is typically to checkwhether

3
We align on a distinctive pattern in the trace. We select such a pattern from the

first trace and then we match the pattern to all subsequent traces by shifting them

horizontally. For matching quality we use Pearson correlation – we simply choose the

shift in the trace with the maximum correlation coefficient.

the private key (i.e, scalar) leaks directly; such leakage might be

used to mount a template attack.

TVLA of the unprotected implementation. Figure 1 depicts the
results of the 𝑡-tests for groups 0 and 1. We also aligned the traces

at various locations and results were similar. The result for groups

0 and 2 is similar and is presented in the Appendix B. In both cases

each group consists of 1000 traces.

The highest peak is reaching 71 for groups 0 and 1, and 65 for

groups 0 and 2. Therefore, we conclude that the unprotected imple-

mentation leaks significantly.

Figure 1: TVLA results for the unprotected implementation:
fixed vs random point. The red color marks the alignment.

TVLA of the ephemeral scalar implementation. Similarly to

the unprotected implementation we perform the TVLA on the

ephemeral implementation, but this time due to the implemented

countermeasures, we expect less leakage. Therefore, we also in-

crease the size of each group to 2000 traces.

In Figure 2 we present the results of the 𝑡-tests for the ephemeral

scalar implementation. The leakage is less significant than for the

unprotected case. The highest peak is reaching 15 for groups 0 and

2, but it is to be expected since the ephemeral scalar should be

different in every execution. As we see if the same scalar is used

multiple times then the leakage can be detected.

Figure 2: TVLA for the ephemeral impl. (0.9ms-2.0ms): fixed
vs random point (top) and fixed vs random scalar (bottom).

We also note that the peak reaches 19 for groups 0 and 1. This

might be unexpected since we employ the coordinate projective re-

randomization. However, we have realized that the leakagemight be

present due to the using a non-randomized 𝑥 coordinate of the input

point in the ladder step. The input leakage is not exploitable but it

would generate 𝑡-test peak (since the input is a parameter to TVLA).

Essentially, we encounter a well-know limitation of TVLA [14].

To validate the above hypothesis we have modified the im-

plementation by removing the following line of the ladder step:

11

fe25519_mul(b4,b1,&pState->x0), where &pState->x0 corre-

sponds the affine coordinate of the input 𝑥𝑃 . Note that this op-

eration leakage is not exploitable since 𝑥𝑃 is public and constant

per execution and the other parameters to fe25519_mul, and there-
fore the output too, are randomized. The results produced by this

implementation are incorrect, but we only use it for the evaluation.

The result of 𝑡-test has shown that the leakage is not present any-

more, because the highest peak does not reach even 4.4; the plot

of the 𝑡-test values is presented in Appendix B. We can conclude

that the ephemeral implementation is protected against DPA and

CPA attacks and most likely against the cross-correlation attacks.

However, it might be vulnerable to single-trace profiled attacks.

We recommended to use the same key only once, otherwise

more attacks might be possible. Furthermore, it may be possible to

learn information about the ephemeral key when it is being copied.

However, this would be hard since the ephemeral key should be

used only once and copying is done in 32-bit chunks
4
.

TVLA of the static implementation. First we run 𝑡-test for the

traces collected from the static scalar multiplication that are aligned

at the beginning. For groups 0 and 1 we notice leakage at the

beginning of the execution, when the input point is being processed.

For groups 0 and 2 we detect no leakage (the highest peak is less

than 4.6), due to the scalar being stored blinded. The plot of the

𝑡-test values for these traces is presented in Appendix B.

For the static traces there are significant misalignments due to

jitter, but also due to the used countermeasures. Therefore, we per-

form another 𝑡-test for which we align the traces at the beginning of

the main scalar multiplication and the result is depicted in Figure 3;

it is zoomed in around the alignment moment. We can see that the

peaks in both experiments are below 4.3, and therefore leakage

is not detected. We repeated the experiment aligning at various

locations: the middle and the end of the main scalar multiplication,

and at the beginning of the additional scalar multiplication. No

leakage during both scalar multiplications is detected.

Figure 3: TVLA for the static impl. (2.9ms-4.0ms): fixed vs
random point (top) and fixed vs random scalar (bottom).

However, we have detected leakage in both cases just after the

scalar multiplication is finished: around 14.5ms. This leakage is

caused by computing the final affine output. After the output is

4
Since 32-bit words are being copied then we expect that 32-bit Hamming weight may

be leaking. If the key is used once then a profiled attack would require a single trace

and it might be infeasible due to measurement noise.

computed, the static key is updated and finally the output is sent.

We aligned the traces at the key update procedure and we detected

no leakage. At the end of the execution we discovered the leakage

corresponding to sending the output (17ms). Such output leakage

might be used for a sing-trace attack to recover the output point

(and effectively the session key). Although this may be possible, this

cannot be avoided since the library returns the unmasked output.

In this section we show that the static implementation is resistant

to standard attacks like DPA/CPA, cross-correlation, and OTA.

Profiled attacks. The first most relevant profiling attack is a TA

targeting the cswap introduced in [82]. Note that the blinded scalar

and the additional 64-bit scalar blinding would need to be recovered

from a single trace for the attack to succeed.

We verified the resistance of our implementation to this attack by

performing a TVLA experiment on an implementation with turned

off all scalar randomizations: the scalar and storage blinding. In this

setting we checked whether turning on the randomized addressing

countermeasure prevents scalar leakage from occurring.

Figure 4 depicts the 𝑡-test results for groups 0 and 1 for the traces

collected from the scalar multiplication with all scalar blindings

and address randomization turned off. The highest 𝑡-test peak is

reaching 12.5. This leakage and the indicated points of interest

might be used to recover the scalar from the cswaprr instructions
using the aforementioned TA. For groups 0 and 1, as expected, we

do not see any leakage, i.e., the peak is under 4.5; the plot of the

𝑡-test values for this case is presented in Appendix B.

Figure 4: TVLA for static impl. (no blindings& address rand.)
aligned at 1.65ms (1.7ms-4.3ms): fixed vs random scalar.

To validate whether the address randomization works we turned

on this countermeasure. We have discovered that if all scalar blind-

ing countermeasures are turned off, but the address randomization

is turned on, no leakage for the TA [82] is present. The plot of the

𝑡-test values for this case is presented in Appendix B.

Although we have discovered that the leakage that can be ex-

ploited by “classical” TA is not present, a DL-based attack might still

be theoretically possible. However, we are convinced that the ab-

sence of “classical” leakage provide enough assurance even against

more complex profiled attacks (including DL).

We consciously decided not to protect the ephemeral scalar mul-

tiplication with the address randomization for the sake of efficiency.

However, it would be easy to add address randomization in the

same way as for the static case.

The second relevant profiled attack, which we have not discussed

here yet, is against the scalar transfer, as presented in [109]. Observe

that the blinded scalar is copied just before the scalar multiplication.

We have verified that the scalar data is being copied word by word

in the disassembled code. Therefore, we can expect that even a

successful profiled attack on key transfer would recover Hamming

12

weight of 32-bit chunks of the blinded scalar. Furthermore, the

attack phase cannot use multiple traces, since a blinded scalar is

stored together with the blinding and these values are updated at

the end of every scalar multiplication. Therefore, we conclude that

it would be hard to mount a profiled attack along the lines of [109]

on the scalar transfer.

6 CONCLUSIONS AND FUTUREWORK
We have described software computing the X25519 key-exchange

on the ARM-Cortex M4 microcontroller, This software comes with

extensive protections against both side-channel and fault attacks. It

is, to the best of our knowledge, the first to claim such protections

motivated from a real-world application. We present an extensive

side-channel and fault-injection analysis and we also perform in-

depth side-channel evaluation that shows strong resistance of our

implementation.

We leave a detailed investigation into single-trace complex pro-

filed attacks (in particular, deep learning) for future work. Fur-

thermore, we leave formal proofs of side-channel resistance and

higher-order protection including corresponding evaluation for

future work.

REFERENCES
[1] Rodrigo Abarzúa, Claudio Valencia, and Julio López. 2019. Survey for Per-

formance & Security Problems of Passive Side-channel Attacks Countermea-

sures in ECC. Cryptology ePrint Archive, Report 2019/010. (2019). https:

//eprint.iacr.org/2019/010.

[2] A. Adamantiadis, S. Josefsson, and M. Baushke. 2020. Secure Shell (SSH) Key

Exchange Method Using Curve25519 and Curve448. IETF RFC 8731. (2020).

https://tools.ietf.org/html/rfc8731.

[3] Toru Akishita and Tsuyoshi Takagi. 2003. Zero-Value Point Attacks on Elliptic

Curve Cryptosystem. In Information Security (LNCS), Colin Boyd and Wenbo

Mao (Eds.), Vol. 2851. Springer, 218–233.

[4] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and

Michael Emmi. 2016. Verifying Constant-Time Implementations. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Secu-
rity (CCS ’17). ACM, 53–70. https://www.usenix.org/system/files/conference/

usenixsecurity16/sec16_paper_almeida.pdf.

[5] Adrian Antipa, Daniel Brown, Alfred Menezes, René Struik, and Scott Vanstone.

2003. Validation of Elliptic Curve Public Keys. In Public-Key Cryptography –
PKC 2003 (LNCS), Yvo G. Desmedt (Ed.), Vol. 2567. Springer, 211–223. https:

//iacr.org/archive/pkc2003/25670211/25670211.pdf.

[6] Arm 2021. Mbed TLS. (2021). https://github.com/ARMmbed/mbedtls (accessed

2021-05-05).

[7] Jean-Philippe Aumasson. 2017. Should Curve25519 keys be vali-

dated? (2017). https://research.kudelskisecurity.com/2017/04/25/

should-ecdh-keys-be-validated/ (accessed 2020-12-02).

[8] Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin Gré-

goire, and Francois-Xavier Standaert. 2019. maskVerif: Automated Verification

of Higher-Order Masking in Presence of Physical Defaults. In Computer Security
– ESORICS 2019 (LNCS), Kazue Sako, Steve Schneider, and Peter Y. A. Ryan (Eds.),

Vol. 11735. Springer, 300–318.

[9] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin

Grégoire, and Pierre-Yves Strub. 2015. Verified Proofs of Higher-Order Masking.

In Advances in Cryptology – EUROCRYPT 2015 (LNCS), Elisabeth Oswald and

Marc Fischlin (Eds.), Vol. 9056. Springer, 457–485.

[10] Lejla Batina, Łukasz Chmielewski, Louiza Papachristodoulou, Peter Schwabe, ,

and Michael Tunstall. 2014. Online Template Attacks. In Progress in Cryptology
– INDOCRYPT 2014 (LNCS), Willi Meier and Debdeep Mukhopadhyay (Eds.),

Vol. 21–36. Springer, 8885. http://cryptojedi.org/papers/#ota.

[11] Lejla Batina, Łukasz Chmielewski, Louiza Papachristodoulou, Peter Schwabe,

and Michael Tunstall. 2017. Online template attacks. Journal of Cryptographic
Engineering (2017), 1–16. http://cryptojedi.org/papers/#ota, see also short version
[11].

[12] Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, and Justine Wild. 2014. Hor-

izontal Collision Correlation Attack on Elliptic Curves. In Selected Areas in
Cryptography – SAC 2013 (LNCS), Tanja Lange, Kristin Lauter, and Petr Lisoněk

(Eds.), Vol. 8282. Springer, 553–570.

[13] Ali Galip Bayrak, Francesco Regazzoni, David Novo, and Paolo Ienne. 2013.

Sleuth: Automated Verification of Software Power Analysis Countermeasures.

In Cryptographic Hardware and Embedded Systems – CHES 2013 (LNCS), Guido
Bertoni and Jean-Sébastien Coron (Eds.), Vol. 8086. Springer, 293–310.

[14] Georg T. Becker, Jeremy Cooper, Elke DeMulder, Gilbert Goodwill, Joshua Jaffe,

Gary Kenworthy, Timofei Kouzminov, Andrew J. Leiserson, Mark E. Marson,

Pankaj Rohatgi, and Sami Saab. 2013. Test vector leakage assessment (TVLA)

methodology in practice. International Cryptographic Module Conference.

(2013).

[15] Daniel J. Bernstein. A state-of-the-art Diffie-Hellman function. https://cr.yp.to/

ecdh.html (accessed 2021-05-05).

[16] Daniel J. Bernstein. 2006. Curve25519: new Diffie-Hellman speed records. In

Public Key Cryptography – PKC 2006 (LNCS), Moti Yung, Yevgeniy Dodis, Aggelos

Kiayias, and Tal Malkin (Eds.), Vol. 3958. Springer, 207–228. http://cr.yp.to/papers.

html#curve25519.

[17] Daniel J. Bernstein. 2014. 25519 naming. Posting to the CFRG mailing list. (2014).

https://www.ietf.org/mail-archive/web/cfrg/current/msg04996.html.

[18] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.

2011. High-speed high-security signatures. In Cryptographic Hardware and
Embedded Systems – CHES 2011 (LNCS), Bart Preneel and Tsuyoshi Takagi (Eds.),

Vol. 6917. Springer, 124–142. see also full version [19].

[19] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.

2012. High-speed high-security signatures. Journal of Cryptographic Engineering
2, 2 (2012), 77–89. http://cryptojedi.org/papers/#ed25519, see also short version

[18].

[20] Ingrid Biehl, Bernd Meyer, and Volker Müller. 2000. Differential Fault Attacks on

Elliptic Curve Cryptosystems. In Advances in Cryptology – CRYPTO 2000 (LNCS),
Mihir Bellare (Ed.), Vol. 1880. Springer, 131–146.

[21] Johannes Blömer, Martin Otto, and Jean-Pierre Seifert. 2006. Sign Change Fault

Attacks on Elliptic Curve Cryptosystems. In Fault Diagnosis and Tolerance in
Cryptography (LNCS), Luca Breveglieri, Israel Koren, David Naccache, and Jean-

Pierre Seifert (Eds.), Vol. 4236. Springer, 36–52.

[22] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. 1997. On the Importance

of Checking Cryptographic Protocols for Faults. In Advances in Cryptology –
Eurocrypt ’97 (LNCS), Walter Fumy (Ed.), Vol. 1233. Springer, 37–51.

[23] Eric Brier, Christophe Clavier, and Francis Olivier. 2004. Correlation Power Anal-

ysis with a Leakage Model. In Cryptographic Hardware and Embedded Systems
– CHES 2004 (LNCS), Marc Joye and Jean-Jacques Quisquater (Eds.), Vol. 3156.

Springer, 16–29.

[24] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. 2017. Convolutional Neu-

ral Networks with Data Augmentation Against Jitter-Based Countermeasures -

Profiling Attacks Without Pre-processing. In Cryptographic Hardware and Em-
bedded Systems – CHES 2017 (LNCS), Wieland Fischer and Naofumi Homma

(Eds.), Vol. 10529. Springer, 45–68.

[25] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. 2002. Template Attacks. In

Cryptographic Hardware and Embedded Systems – CHES 2002 (LNCS), Burton
S. Kaliski Jr., Cetin K. Koc, and Christof Paar (Eds.), Vol. 2523. Springer, 13–28.

[26] Łukasz Chmielewski, Pedro Maat Costa Massolino, Jo Vliegen, Lejla Batina, and

Nele Mentens. 2017. Completing the Complete ECC Formulae with Counter-

measures. Journal of Low Power Electronics and Applications 7, 1, Article 3 (2017),
13 pages. https://www.mdpi.com/2079-9268/7/1/3.

[27] Mathieu Ciet and Marc Joye. 2005. Elliptic Curve Cryptosystems in the Presence

of Permanent and Transient Faults. Designs, Codes and Cryptography 36 (2005),

33–43.

[28] Christophe Clavier, Benoit Feix, Georges Gagnerot, Mylène Roussellet, and

Vincent Verneuil. 2010. Horizontal Correlation Analysis on Exponentiation. In

Information and Communications Security (LNCS), Miguel Soriano, Sihan Qing,

and Javier López (Eds.), Vol. 6476. Springer, 46–61. http://eprint.iacr.org/2003/237.

[29] Jean-Sébastien Coron. 1999. Resistance Against Differential Power Analysis For

Elliptic Curve Cryptosystems. In Cryptographic Hardware and Embedded Systems
(LNCS), Çetin K. Koç and Christof Paar (Eds.), Vol. 1717. Springer, 292–302.

[30] Jean-Luc Danger, Sylvain Guilley, Philippe Hoogvorst, Cédric Murdica, and

David Naccache. 2013. A synthesis of side-channel attacks on elliptic curve

cryptography in smart-cards. Journal of Cryptographic Engineering 3, 4 (2013),

1–25.

[31] A. Adam Ding, Liwei Zhang, François Durvaux, François-Xavier Standaert, and

Yunsi Fei. 2017. Towards Sound and Optimal Leakage Detection Procedure. In

Smart Card Research and Advanced Applications (LNCS), Thomas Eisenbarth and

Yannick Teglia (Eds.), Vol. 10728. Springer, 105–122.

[32] Thai Duong. 2015. Why not validate Curve25519 public keys

could be harmful. (2015). https://vnhacker.blogspot.com/2015/09/

why-not-validating-curve25519-public.html (accessed 2020-12-02).

[33] Hassan Eldib, Chao Wang, and Patrick Schaumont. 2014. SMT-Based Verifica-

tion of Software Countermeasures against Side-Channel Attacks. In Tools and
Algorithms for the Construction and Analysis of Systems (LNCS), Erika Ábrahám
and Klaus Havelund (Eds.), Vol. 8413. Springer, 62–77.

13

https://eprint.iacr.org/2019/010
https://eprint.iacr.org/2019/010
https://tools.ietf.org/html/rfc8731
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_almeida.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_almeida.pdf
https://iacr.org/archive/pkc2003/25670211/25670211.pdf
https://iacr.org/archive/pkc2003/25670211/25670211.pdf
https://github.com/ARMmbed/mbedtls
https://research.kudelskisecurity.com/2017/04/25/should-ecdh-keys-be-validated/
https://research.kudelskisecurity.com/2017/04/25/should-ecdh-keys-be-validated/
http://cryptojedi.org/papers/#ota
http://cryptojedi.org/papers/#ota
https://cr.yp.to/ecdh.html
https://cr.yp.to/ecdh.html
http://cr.yp.to/papers.html#curve25519
http://cr.yp.to/papers.html#curve25519
https://www.ietf.org/mail-archive/web/cfrg/current/msg04996.html
http://cryptojedi.org/papers/#ed25519
https://www.mdpi.com/2079-9268/7/1/3
http://eprint.iacr.org/2003/237
https://vnhacker.blogspot.com/2015/09/why-not-validating-curve25519-public.html
https://vnhacker.blogspot.com/2015/09/why-not-validating-curve25519-public.html

[34] Junfeng Fan, Benedikt Gierlichs, and Frederik Vercauteren. 2011. To infinity and

beyond: Combined attack on ECC using points of low order. In Cryptographic
Hardware and Embedded Systems – CHES 2011 (LNCS), Bart Preneel and Tsuyoshi
Takagi (Eds.), Vol. 6917. Springer, 143–159.

[35] Junfeng Fan, Xu Guo, Elke De Mulder, Patrick Schaumont, Bart Preneel, and

Ingrid Verbauwhede. 2010. State-of-the-art of secure ECC implementations:

a survey on known side-channel attacks and countermeasures. In 2010 IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST). IEEE,
76–87.

[36] Junfeng Fan and Ingrid Verbauwhede. 2012. An Updated Survey on Secure

ECC Implementations: Attacks, Countermeasures and Cost. In Cryptography and
Security: From Theory to Applications (LNCS), David Naccache (Ed.), Vol. 6805.

Springer, 265–282.

[37] OPC Foundation. 2008. Unified Architecture. (2008). https://opcfoundation.org/

about/opc-technologies/opc-ua/ (accessed 2021-05-05).

[38] Pierre-Alain Fouque, Reynald Lercier, Denis Réal, and Frédéric Valette. 2008.

Fault Attack on elliptic curve with Montgomery ladder implementation. In 2008
5th Workshop on Fault Diagnosis and Tolerance in Cryptography. IEEE, 92–98.
https://www.di.ens.fr/~fouque/pub/fdtc08.pdf.

[39] Pierre-Alain Fouque, Denis Réal, Frédéric Valette, and Mhamed Drissi. 2008. The

Carry Leakage on the Randomized Exponent Countermeasure. In Cryptographic
Hardware and Embedded Systems – CHES 2008 (LNCS), Elisabeth Oswald and

Pankaj Rohatgi (Eds.), Vol. 5154. Springer, 198–213.

[40] Pierre-Alain Fouque and Frederic Valette. 2003. The doubling attack — Why

upwards is better than downwards. In Cryptographic Hardware and Embedded
Systems – CHES 2003 (LNCS), Colin D. Walter, Çetin K. Koç, and Christof Paar

(Eds.), Vol. 2779. Springer, 269–280. www.ssi.gouv.fr/archive/fr/sciences/fichiers/

lcr/fova03.pdf.

[41] Hayato Fujii and Diego F. Aranha. 2018. Efficient Curve25519 implementation

for ARM microcontrollers. In Anais Estendidos do XVIII Simpósio Brasileiro em
Segurança da Informação e de Sistemas Computacionais. Sociedade Brasileira de
Computaçcão, 57–64. https://sol.sbc.org.br/index.php/sbseg_estendido/article/

view/4142/4071.

[42] Hayato Fujii and Diego F. Aranha. 2019. Curve25519 for the Cortex-M4 and

beyond. In Progress in Cryptology – LATINCRYPT 2017 (LNCS), Tanja Lange and
Orr Dunkelman (Eds.), Vol. 11368. Springer, 109–127. http://www.cs.haifa.ac.il/

~orrd/LC17/paper39.pdf.

[43] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran Tromer. 2016. ECDH

Key-Extraction via Low-Bandwidth Electromagnetic Attacks on PCs. (2016),

219–235 pages. https://web.eecs.umich.edu/~genkin/papers/ecdh.pdf.

[44] Daniel Genkin, Luke Valenta, and Yuval Yarom. 2017. May the fourth be with

you: A microarchitectural side channel attack on several real-world applications

of Curve25519. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS’17. ACM, 845–858.

[45] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. 2011. A

testing methodology for side-channel resistance validation, NIAT. Workshop

record of the NIST Non-Invasive Attack Testing Workshop. (2011). https:

//csrc.nist.gov/CSRC/media/Events/Non-Invasive-Attack-Testing-Workshop/

documents/08_Goodwill.pdf.

[46] Google 2021. BoringSSL. (2021). https://github.com/boringssl/boringssl (accessed

2021-05-05).

[47] Louis Goubin. 2002. A Refined Power-Analysis Attack on Elliptic Curve Cryp-

tosystems. In Public Key Cryptography – PKC 2003 (LNCS), Yvo G. Desmedt (Ed.),

Vol. 2567. Springer, 199–211.

[48] Björn Haase and Benoît Labrique. 2017. Making Password Authenticated Key

Exchange Suitable for Resource-Constrained Industrial Control Devices. In Cryp-
tographic Hardware and Embedded Systems – CHES 2017 (LNCS), Wieland Fischer

and Naofumi Homma (Eds.), Vol. 10529. Springer, 346–364.

[49] Björn Haase and Benoît Labrique. 2019. AuCPace: Efficient verifier-based PAKE

protocol tailored for the IIoT. IACR Transactions on Cryptographic Hardware and
Embedded Systems 2019, 2 (2019), 1–48. https://tches.iacr.org/index.php/TCHES/
article/view/7384.

[50] Neil Hanley, HeeSeok Kim, and Michael Tunstall. 2015. Exploiting Collisions in

Addition Chain-Based Exponentiation Algorithms Using a Single Trace. In Topics
in Cryptology – CT-RSA 2015 (LNCS), Kaisa Nyberg (Ed.), Vol. 9048. Springer,

431–448.

[51] Johann Heyszl, Stefan Mangard, Benedikt Heinz, Frederic Stumpf, and Georg Sigl.

2012. Localized Electromagnetic Analysis of Cryptographic Implementations.

In Topics in Cryptology – CT-RSA 2012 (LNCS), Orr Dunkelman (Ed.), Vol. 7178.

Springer, 231–244.

[52] Jochen Hoenicke. 2015. Extracting the Private Key from a TREZOR . . . with a 70$

Oscilloscope. (2015). https://jochen-hoenicke.de/crypto/trezor-power-analysis/

(accessed 2012-12-02).

[53] Naofumi Homma, Atsushi Miyamoto, Takafumi Aoki, Akashi Satoh, and Adi

Shamir. 2008. Collision-based power analysis of modular exponentiation using

chosen-message pairs. In Cryptographic Hardware and Embedded Systems – CHES
2008 (LNCS), Elisabeth Oswald and Pankaj Rohatgi (Eds.), Vol. 5154. Springer,

15–29. http://www.aoki.ecei.tohoku.ac.jp/crypto/pdf/CHES2008_homma.pdf.

[54] IANIX. Things that use Curve15519. https://ianix.com/pub/

curve25519-deployment.html (accessed 2021-05-05).

[55] ISO/IEC 17825 2016. Information technology – Security techniques – Testing
methods for the mitigation of non-invasive attack classes against cryptographic
modules. Standard. International Organization for Standardization, Geneva, CH.

[56] Kouichi Itoh, Tetsuya Izu, and Masahiko Takenaka. 2003. Address-Bit Differen-

tial Power Analysis of Cryptographic Schemes OK-ECDH and OK-ECDSA. In

Cryptographic Hardware and Embedded Systems – CHES 2002 (LNCS), Burton S.

Kaliski, çetin K. Koç, and Christof Paar (Eds.), Vol. 2523. Springer, 129–143.

[57] Kouichi Itoh, Tetsuya Izu, and Masahiko Takenaka. 2003. A Practical Coun-

termeasure against Address-Bit Differential Power Analysis. In Cryptographic
Hardware and Embedded Systems – CHES 2003 (LNCS), Colin D. Walter, Çetin

K. Koç, and Christof Paar (Eds.), Vol. 2779. Springer, 382–396.

[58] Josh Jaffe, Pankaj Rohatgi, and Marc Witteman. 2011. Efficient side-
channel testing for public key algorithms: RSA case study. Technical Report.

Cryptography Research Inc. & Riscure. http://csrc.nist.gov/news_events/

non-invasive-attack-testing-workshop/papers/09_Jaffe.pdf.

[59] Jan Jancar, Vladimir Sedlacek, Petr Svenda, and Marek Sys. 2020. Minerva: The

curse of ECDSA nonces (Systematic analysis of lattice attacks on noisy leakage

of bit-length of ECDSA nonces). IACR Transactions on Cryptographic Hardware
and Embedded Systems 2020, 4 (2020), 281–308. https://tches.iacr.org/index.php/
TCHES/article/view/8684.

[60] Marc Joye and Sung-Ming Yen. 2003. The Montgomery Powering Ladder. In

Cryptographic Hardware and Embedded Systems – CHES 2002 (LNCS), Burton S.

Kaliski, çetin K. Koç, and Christof Paar (Eds.), Vol. 2523. Springer, 291–302.

[61] Michael Kasper, Richard Petri, Dirk Feldhusen, Max Gebhardt, Georg Illies, Man-

fred Lochter, Oliver Stein, Wolfgang Thumserang, and Guntram Wicke. 2016.

Minimum Requirements for Evaluating Side-Channel Attack Resistance of El-

liptic Curve Implementations. (2016). http://publica.fraunhofer.de/documents/

N-487544.html (accessed 2021-05-05).

[62] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Hanjalic.

2019. Make SomeNoise. Unleashing the Power of Convolutional Neural Networks

for Profiled Side-channel Analysis. IACR Transactions on Cryptographic Hardware
and Embedded Systems 2019, 3 (2019), 148–179. https://doi.org/10.13154/tches.
v2019.i3.148-179.

[63] Neal Koblitz. 1987. Elliptic curve cryptosystems. Math. Comp. 48,

177 (1987), 203–209. http://www.ams.org/journals/mcom/1987-48-177/

S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf.

[64] Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman,

RSA, DSS, and Other Systems. In Advances in Cryptology – CRYPTO’96 (LNCS),
Neal Koblitz (Ed.), Vol. 1109. Springer, 104–113. http://www.cryptography.com/

public/pdf/TimingAttacks.pdf.

[65] Paul C. Kocher, Jushua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.

In Advances in Cryptology – CRYPTO ’99 (LNCS), Michael Wiener (Ed.), Vol. 1666.

Springer, 388–397.

[66] Hugo Krawczyk. 2003. SIGMA: The ’SIGn-and-MAc’ Approach to Authenticated

Diffie-Hellman and Its Use in the IKE Protocols. In Advances in Cryptology –
CRYPTO 2003 (LNCS), Dan Boneh (Ed.), Vol. 2729. Springer, 400–425. https:

//webee.technion.ac.il/~hugo/sigma-pdf.pdf.

[67] Tamara Rezk Lesly-Ann Daniel, Sébastien Bardin. 2020. Binsec/Rel: Efficient

Relational SymbolicExecution for Constant-Time at Binary-Level. In 2020 IEEE
Symposium on Security and Privacy. 1021–1038. https://people.csail.mit.edu/

jgross/personal-website/papers/2019-fiat-crypto-ieee-sp.pdf.

[68] Zhe Liu, Patrick Longa, Geovandro C. C. F. Pereira, Oscar Reparaz, and Hwajeong

Seo. 2017. FourQ on Embedded Devices with Strong Countermeasures Against

Side-Channel Attacks. In Cryptographic Hardware and Embedded Systems – CHES
2017 (LNCS), Wieland Fischer and Naofumi Homma (Eds.), Vol. 10529. Springer,

665–686. https://eprint.iacr.org/2017/434.

[69] Manfred Lochter, Johannes Merkle, Jörn-Marc Schmidt, and Torsten

Schütze. 2015. Requirements for Elliptic Curves for High-Assurance Ap-

plications. Workshop record of the NIST Workshop on Elliptic Curve

Cryptography Standards. (2015). https://csrc.nist.gov/csrc/media/events/

workshop-on-elliptic-curve-cryptography-standards/documents/papers/

session4-merkle-johannes.pdf.

[70] Antoine Loiseau, Maxime Lecomte, and Jacques J. A. Fournier. 2020. Template

Attacks against ECC: practical implementation against Curve25519. In 2020 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST). IEEE,
13–22.

[71] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. 2016. Breaking

Cryptographic Implementations Using Deep Learning Techniques. In Security,
Privacy, and Applied Cryptography Engineering (LNCS), Claude Carlet, M. Anwar

Hasan, and Vishal Saraswat (Eds.), Vol. 10076. Springer, 3–26.

[72] Moxie Marlinspike. 2013. Simplifying OTR deniability. (2013). https://signal.

org/blog/simplifying-otr-deniability/ (accessed 2021-05-05).

[73] Nick Mathewson. 2016. Cryptographic directions in Tor. Presenta-

tion at Real-World Crypto 2016. (2016). https://rwc.iacr.org/2016/Slides/

14

https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://www.di.ens.fr/~fouque/pub/fdtc08.pdf
www.ssi.gouv.fr/archive/fr/sciences/fichiers/lcr/fova03.pdf
www.ssi.gouv.fr/archive/fr/sciences/fichiers/lcr/fova03.pdf
https://sol.sbc.org.br/index.php/sbseg_estendido/article/view/4142/4071
https://sol.sbc.org.br/index.php/sbseg_estendido/article/view/4142/4071
http://www.cs.haifa.ac.il/~orrd/LC17/paper39.pdf
http://www.cs.haifa.ac.il/~orrd/LC17/paper39.pdf
https://web.eecs.umich.edu/~genkin/papers/ecdh.pdf
https://csrc.nist.gov/CSRC/media/Events/Non-Invasive-Attack-Testing-Workshop/documents/08_Goodwill.pdf
https://csrc.nist.gov/CSRC/media/Events/Non-Invasive-Attack-Testing-Workshop/documents/08_Goodwill.pdf
https://csrc.nist.gov/CSRC/media/Events/Non-Invasive-Attack-Testing-Workshop/documents/08_Goodwill.pdf
https://github.com/boringssl/boringssl
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://tches.iacr.org/index.php/TCHES/article/view/7384
https://jochen-hoenicke.de/crypto/trezor-power-analysis/
http://www.aoki.ecei.tohoku.ac.jp/crypto/pdf/CHES2008_homma.pdf
https://ianix.com/pub/curve25519-deployment.html
https://ianix.com/pub/curve25519-deployment.html
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/09_Jaffe.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/09_Jaffe.pdf
https://tches.iacr.org/index.php/TCHES/article/view/8684
https://tches.iacr.org/index.php/TCHES/article/view/8684
http://publica.fraunhofer.de/documents/N-487544.html
http://publica.fraunhofer.de/documents/N-487544.html
https://doi.org/10.13154/tches.v2019.i3.148-179
https://doi.org/10.13154/tches.v2019.i3.148-179
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf
http://www.cryptography.com/public/pdf/TimingAttacks.pdf
http://www.cryptography.com/public/pdf/TimingAttacks.pdf
https://webee.technion.ac.il/~hugo/sigma-pdf.pdf
https://webee.technion.ac.il/~hugo/sigma-pdf.pdf
https://people.csail.mit.edu/jgross/personal-website/papers/2019-fiat-crypto-ieee-sp.pdf
https://people.csail.mit.edu/jgross/personal-website/papers/2019-fiat-crypto-ieee-sp.pdf
https://eprint.iacr.org/2017/434
https://csrc.nist.gov/csrc/media/events/workshop-on-elliptic-curve-cryptography-standards/documents/papers/session4-merkle-johannes.pdf
https://csrc.nist.gov/csrc/media/events/workshop-on-elliptic-curve-cryptography-standards/documents/papers/session4-merkle-johannes.pdf
https://csrc.nist.gov/csrc/media/events/workshop-on-elliptic-curve-cryptography-standards/documents/papers/session4-merkle-johannes.pdf
https://signal.org/blog/simplifying-otr-deniability/
https://signal.org/blog/simplifying-otr-deniability/
https://rwc.iacr.org/2016/Slides/nickm-rwc-presentation.pdf
https://rwc.iacr.org/2016/Slides/nickm-rwc-presentation.pdf

nickm-rwc-presentation.pdf.

[74] David McCann, Elisabeth Oswald, and Carolyn Whitnall. 2017. Towards Prac-

tical Tools for Side Channel Aware Software Engineering: ’Grey Box’ Mod-

elling for Instruction Leakages. In Proceedings of the 26th USENIX Security Sym-
posium. USENIX, 199–216. https://www.usenix.org/system/files/conference/

usenixsecurity17/sec17-mccann.pdf.

[75] Marcel Medwed and Elisabeth Oswald. 2009. Template Attacks on ECDSA. In

Information Security Applications (LNCS), Kyo-Il Chung, Kiwook Sohn, and Moti

Yung (Eds.), Vol. 5379. Springer, 14–27.

[76] Alfred J. Menezes, Tatsuaki Okamoto, and Scott Vanstone. 1993. Reducing elliptic

curve logarithms to logarithms in a finite field. Transactions on Information Theory
39, 5 (1993), 1639–1646.

[77] Victor S. Miller. 1986. Use of Elliptic Curves in Cryptography. In Advances in
Cryptology – CRYPTO ’85: Proceedings (LNCS), Hugh C. Williams (Ed.), Vol. 218.

Springer, 417–426.

[78] Peter L. Montgomery. 1987. Speeding the Pollard and elliptic curve

methods of factorization. Math. Comp. 48, 177 (1987), 243–264.

http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/

S0025-5718-1987-0866113-7.pdf.

[79] AndrewMoss, Elisabeth Oswald, Dan Page, andMichael Tunstall. 2012. Compiler

Assisted Masking. In Cryptographic Hardware and Embedded Systems – CHES
2012 (LNCS), Emmanuel Prouff and Patrick Schaumont (Eds.), Vol. 7428. Springer,

58–75.

[80] David Naccache, Nigel P. Smart, and Jacques Stern. 2004. Projective Coordinates

Leak. In Advances in Cryptology – EUROCRYPT 2004 (LNCS), Christian Cachin

and Jan Camenisch (Eds.), Vol. 3027. Springer, 257–267. https://www.iacr.org/

archive/eurocrypt2004/30270258/projective.pdf.

[81] Erick Nascimento and Łukasz Chmielewski. 2017. Applying Horizontal Cluster-

ing Side-Channel Attacks on Embedded ECC Implementations. In Smart Card
Research and Advanced Applications (LNCS), Thomas Eisenbarth and Yannick

Teglia (Eds.), Vol. 10728. Springer, 213–231.

[82] Erick Nascimento, Łukasz Chmielewski, David Oswald, and Peter Schwabe. 2017.

Attacking embedded ECC implementations through cmov side channels. In

Selected Areas in Cryptology – SAC 2016 (LNCS), Roberto Avanzi andHowardHeys
(Eds.), Vol. 10532. Springer, 99–119. https://cryptojedi.org/papers/#cmovsca.

[83] Y. Nir, S. Josefsson, and M. Pegourie-Gonnard. 2018. Elliptic Curve Cryptography

(ECC) Cipher Suites for Transport Layer Security (TLS) Versions 1.2 and Earlier.

IETF RFC 8422. (2018). https://tools.ietf.org/html/rfc8422.

[84] NXP. 2015. SmartMX2 P40 family P40C012/040/072 Secure smart card controller.

(2015). https://www.nxp.com/docs/en/data-sheet/P40C040_C072_SMX2_FAM_

SDS.pdf.

[85] David Oswald and Christof Paar. 2011. Breaking Mifare DESFire MF3ICD40:

Power Analysis and Templates in the Real World. In Cryptographic Hardware
and Embedded Systems – CHES 2011 (LNCS), Bart Preneel and Tsuyoshi Takagi

(Eds.), Vol. 6917. Springer, 207–222.

[86] Louiza Papachristodoulou, Apostolos P. Fournaris, Kostas Papagianopoulos, and

Lejla Batina. 2019. Practical Evaluation of Protected Residue Number System

Scalar Multiplication. IACR Transactions on Cryptographic Hardware and Em-
bedded Systems 2019, 1 (2019), 259–282. https://doi.org/10.13154/tches.v2019.i1.
259-282.

[87] Guilherme Perin, Łukasz Chmielewski, Lejla Batina, and Stjepan Picek. 2021.

Keep it Unsupervised: Horizontal AttacksMeet Deep Learning. IACR Transactions
on Cryptographic Hardware and Embedded Systems 2021, 1 (2021), 343–372. https:
//doi.org/10.46586/tches.v2021.i1.343-372.

[88] John M. Pollard. 1978. Monte Carlo methods for index computation (mod 𝑝).

Math. Comp. 32, 143 (1978), 918–924. http://www.ams.org/journals/mcom/

1978-32-143/S0025-5718-1978-0491431-9/S0025-5718-1978-0491431-9.pdf.

[89] Emmanuel Prouff and Matthieu Rivain. 2013. Masking against Side-Channel

Attacks: A Formal Security Proof. In Advances in Cryptology – EUROCRYPT 2013,
Thomas Johansson and Phong Q. Nguyen (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 142–159.

[90] Joost Renes, Craig Costello, and Lejla Batina. 2016. Complete Addition Formulas

for Prime Order Elliptic Curves. In Advances in Cryptology - EUROCRYPT 2016
(LNCS), Marc Fischlin and Jean-Sébastien Coron (Eds.), Vol. 9665. Springer, 403–

428.

[91] Riscure. 2018. Current Probe. Security Test Tool for Embedded Devices. (2018).

https://www.riscure.com/product/current-probe/ (accessed 2021-05-05).

[92] Riscure. 2021. Side Channel Analysis Security Tools. (2021). https://www.riscure.

com/security-tools/inspector-sca/.

[93] Niels Samwel, Lejla Batina, Guido Bertoni, Joan Daemen, and Ruggero Susella.

2018. Breaking Ed25519 inWolfSSL. In Topics in Cryptology – CT-RSA 2018 (LNCS),
Nigel P. Smart (Ed.), Vol. 10808. Springer, 1–20. https://eprint.iacr.org/2017/985.

[94] Fabrizio De Santis and Georg Sigl. 2016. Towards Side-Channel Protected X25519

on ARM Cortex-M4 Processors. (2016), XXX pages. http://ccccspeed.win.tue.nl/

papers/SPEED-B_Final.pdf

[95] Pascal Sasdrich and Tim Güneysu. 2015. Implementing Curve25519 for Side-

Channel-Protected Elliptic Curve Cryptography. Transactions on Reconfigurable

Technology and Systems 9, 1 (2015), 1–15.
[96] Pascal Sasdrich and Tim Güneysu. 2017. Cryptography for Next Generation

TLS: Implementing the RFC 7748 Elliptic Curve448 Cryptosystem in Hardware.

In DAC ’17: Proceedings of the 54th Annual Design Automation Conference 2017.
IEEE, 1–6.

[97] Peter Schwabe and Ko Stoffelen. 2017. All the AES you need on Cortex-M3

and M4. In Selected Areas in Cryptology – SAC 2016 (Lecture Notes in Computer
Science), Roberto Avanzi and Howard Heys (Eds.), Vol. 10532. Springer-Verlag

Berlin Heidelberg, 180–194. Document ID: 9fc0b970660e40c264e50ca389dacd49,

https://cryptojedi.org/papers/#aesarm.

[98] Madura A. Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni,

Markus Wagner, and Yuval Yarom. 2022 (to appear). Rosita: To-

wards automatic elimination of power-analysis leakage in ciphers.

In Network and Distributed System Security Symposium (NDSS). In-

ternet Society, 17. https://www.ndss-symposium.org/ndss-paper/

rosita-towards-automatic-elimination-of-power-analysis-leakage-in-ciphers/.

[99] Nigel P. Smart. 1999. The Discrete Logarithm Problem on Elliptic Curves of

Trace One. Journal of Cryptology 12, 3 (1999), 193–196.

[100] STMicroelectronics. 2018. Reference manual – STM32F405/415,
STM32F407/417, STM32F427/437 and STM32F429/439 advanced Arm-based
32-bit MCUs. Technical Report RM0090 Rev 17. STMicroelectronics.

https://www.st.com/content/ccc/resource/technical/document/reference_

manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:

content/translations/en.DM00031020.pdf.

[101] Open Whisper Systems. Signal Protocol. https://signal.org/ (accessed 2021-05-

05).

[102] Thomas Pornin 2018. BearSSL. (2018). https://bearssl.org/ (accessed 2021-05-05).

[103] Niek Timmers, Albert Spruyt, and Marc Witteman. 2016. Controlling PC on

ARM Using Fault Injection. In 2016 Workshop on Fault Diagnosis and Tolerance in
Cryptography, FDTC. IEEE, 25–35.

[104] Trevor Perrin 2018. The Noise Protocol Framework (revision 34). (2018).

https://noiseprotocol.org/noise.pdf.

[105] Michael Tunstall and Gilbert Goodwill. 2016. Applying TVLA to Public Key

Cryptographic Algorithms. Cryptology ePrint Archive, Report 2016/513. (2016).

http://eprint.iacr.org/2016/513.

[106] Paul C. van Oorschot and Michael J. Wiener. 1999. Parallel Collision Search

with Cryptanalytic Applications. Journal of Cryptology 12, 1 (1999), 1–28. http:

//www.scs.carleton.ca/~paulv/papers/JoC97.pdf.

[107] Colin D. Walter. 2001. Sliding Windows Succumbs to Big Mac Attack. In

Cryptographic Hardware and Embedded Systems – CHES 2001 (LNCS), Çetin K.

Koç, David Naccache, and Christof Paar (Eds.), Vol. 2162. Springer, 286–299.

[108] Leo Weissbart, Lukasz Chmielewski, Stjepan Picek, and Lejla Batina. 2020.

Systematic Side-Channel Analysis of Curve25519withMachine Learning. Journal
of Hardware and Systems Security. 4 (2020), 314–328. https://doi.org/10.1007/

s41635-020-00106-w.

[109] Léo Weissbart, Stjepan Picek, and Lejla Batina. 2019. One trace is all it takes:

Machine Learning-based Side-channel Attack on EdDSA. In Security, Privacy,
and Applied Cryptography Engineering (LNCS), Shivam Bhasin, Avi Mendelson,

and Mridul Nandi (Eds.), Vol. 11947. Springer, 86–105.

[110] Carolyn Whitnall and Elisabeth Oswald. 2019. A Critical Analysis of ISO

17825 (’Testing methods for the mitigation of non-invasive attack classes against

cryptographic modules’). In Advances in Cryptology – ASIACRYPT 2019 (LNCS),
Steven D. Galbraith and Shiho Moriai (Eds.), Vol. 11923. Springer, 256–284.

[111] Marc Witteman. 2018. Secure Application Programming in the presence of Side
Channel Attacks. Technical Report. Riscure. https://www.riscure.com/uploads/

2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf.

[112] Marc F. Witteman, Jasper G. J. van Woudenberg, and Federico Menarini. 2011.

Defeating RSA Multiply-Always and Message Blinding Countermeasures. In

Topics in Cryptology – CT-RSA 2011 (LNCS), Aggelos Kiayias (Ed.), Vol. 6558.
Springer, 77–88. https://www.riscure.com/benzine/documents/rsacc_ctrsa_final.

pdf.

[113] wolfSSL Inc. 2021. The wolSSL crypto library as accessed at april 24th, 2021).

(2021). https://github.com/wolfSSL/wolfssl/tree/master/wolfcrypt.

[114] Yan Yan and Elisabeth Oswald. 2019. Examining the Practical Side Channel

Resilience of ARX-boxes. In Proceedings of the 16th ACM International Conference
on Computing Frontiers. ACM, 373–379. https://eprint.iacr.org/2019/335.

[115] Sung-Ming Yen and Marc Joye. 2000. Checking before output may not be

enough against fault-based cryptanalysis. Transactions on Computers 49, 9 (2000),
967–970.

[116] Yuanyuan Zhou and François-Xavier Standaert. 2019. Simplified Single-Trace

Side-Channel Attacks on Elliptic Curve Scalar Multiplication using Fully Convo-

lutional Networks. Proceedings of the 40thWIC Symposium on Information The-

ory in the Benelux. (2019). https://perso.uclouvain.be/fstandae/PUBLIS/219.pdf.

15

https://rwc.iacr.org/2016/Slides/nickm-rwc-presentation.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-mccann.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-mccann.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
http://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/S0025-5718-1987-0866113-7.pdf
https://www.iacr.org/archive/eurocrypt2004/30270258/projective.pdf
https://www.iacr.org/archive/eurocrypt2004/30270258/projective.pdf
https://cryptojedi.org/papers/#cmovsca
https://tools.ietf.org/html/rfc8422
https://www.nxp.com/docs/en/data-sheet/P40C040_C072_SMX2_FAM_SDS.pdf
https://www.nxp.com/docs/en/data-sheet/P40C040_C072_SMX2_FAM_SDS.pdf
https://doi.org/10.13154/tches.v2019.i1.259-282
https://doi.org/10.13154/tches.v2019.i1.259-282
https://doi.org/10.46586/tches.v2021.i1.343-372
https://doi.org/10.46586/tches.v2021.i1.343-372
http://www.ams.org/journals/mcom/1978-32-143/S0025-5718-1978-0491431-9/S0025-5718-1978-0491431-9.pdf
http://www.ams.org/journals/mcom/1978-32-143/S0025-5718-1978-0491431-9/S0025-5718-1978-0491431-9.pdf
https://www.riscure.com/product/current-probe/
https://www.riscure.com/security-tools/inspector-sca/
https://www.riscure.com/security-tools/inspector-sca/
https://eprint.iacr.org/2017/985
http://ccccspeed.win.tue.nl/papers/SPEED-B_Final.pdf
http://ccccspeed.win.tue.nl/papers/SPEED-B_Final.pdf
https://cryptojedi.org/papers/#aesarm
https://www.ndss-symposium.org/ndss-paper/rosita-towards-automatic-elimination-of-power-analysis-leakage-in-ciphers/
https://www.ndss-symposium.org/ndss-paper/rosita-towards-automatic-elimination-of-power-analysis-leakage-in-ciphers/
https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf
https://signal.org/
https://bearssl.org/
https://noiseprotocol.org/noise.pdf
http://eprint.iacr.org/2016/513
http://www.scs.carleton.ca/~paulv/papers/JoC97.pdf
http://www.scs.carleton.ca/~paulv/papers/JoC97.pdf
https://doi.org/10.1007/s41635-020-00106-w
https://doi.org/10.1007/s41635-020-00106-w
https://www.riscure.com/uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf
https://www.riscure.com/uploads/2018/11/201708_Riscure_Whitepaper_Side_Channel_Patterns.pdf
https://www.riscure.com/benzine/documents/rsacc_ctrsa_final.pdf
https://www.riscure.com/benzine/documents/rsacc_ctrsa_final.pdf
https://github.com/wolfSSL/wolfssl/tree/master/wolfcrypt
https://eprint.iacr.org/2019/335
https://perso.uclouvain.be/fstandae/PUBLIS/219.pdf

Table 2: Performance Evaluation (using -O2 optimizations).

Library CT SCA Clock cycles:
wolfSSL [113] size: yes no 45 930 947

wolfSSL [113] speed: yes no 1 974 047

bearSSL i31 [102]: yes no 2 576 639

boringSSL[46]: fixed base yes no 1 591 407

boringSSL[46]: var. base yes no 2 516 476

ARM MBed TLS [6] no no 6 438 233

This work

unprotected[49] yes no 683 061

ephemeral DH yes yes 930 915

static DH yes yes 2 316 986

A PERFORMANCE COMPARISON
For the purpose of comparison we have also benchmarked our

protected implementation against several commonly used crypto-

graphic libraries. We chose the libraries for their wide-spread use

(boringSSL) or because they claimed to be targeting smaller em-

bedded systems (bearSSL, wolfSSL, ARM MBed TLS). We included

both, publicly available commercial libraries and open source im-

plementations.

The cycle count results and the essential security features are

summarized in Table 2. Cycle counts were obtained by using the

same ARM Cortex-M4 and parameters as used in our work.

A.1 Security properties
None of the other benchmarked implementations exceed the pro-

tection level of conventional constant-time execution. According

to our assessment, the ARM Mbed TLS library even fails to provide

constant execution timing as detailed below.

Regarding the security properties, boringSSL and bearSSL roughly

should be comparable to our unprotected baseline algorithm, while

ARM MBed TLS does not even reach that level.

The fixed-basepoint algorithm from boringSSL uses arithmetics

on the Edwards curve and uses large precomputed tables, a strategy

which we do not believe suitable for smaller embedded targets due

to code size limitations. All other implementations use a Mont-

gomery ladder strategy on the Montgomery curve in projective

coordinates. The implementations essentially differ in the way field

elements are represented and reduction is carried out and how

aggressively optimization for code size and speed are carried out.

For instance, the arithmetic of boringSSL and the speed-optimized

strategy for wolfSSL represent field elements by using a 10-limb

representation using 10 32-bit words, where field multiplication

and reduction is merged together. Instead bearSSL uses a 9-limb

representation of 9 words of 31 bits each, resulting in somewhat

less memory consumption.

None of, wolfSSL, bearSSL and boringSSL include any SCA coun-

termeasures. ARM Mbed TLS on the other hand integrates projec-

tive randomization also for public input points. As ARM MBed TLS

uses an early-abort multiplication strategy that does not execute in

constant time we presume that this projective randomization was

considered to provide a mitigation for fending off simple timing-

based SPA attacks. Unfortunately, as input points are not validated

in ARM MBed TLS, this mitigation strategy does not actually work

here. Simple timing attacks using the strategy of [44] becomes feasi-

ble if the adversary inserts a low order point as multiplications with

zero could be distinguished due to the early-abort multiplication

strategy. As a result we conclude that the projective randomization

substep used in ARM MBed TLS adds additional computational

overhead (to the already slow implementation) without actually

providing a proper mitigation against timing-based attacks.

We have communicated our results and concerns regarding the

timing vulnerability of ARM Mbed TLS to the developers of [6]

and suggested different strategies for mitigating or resolving the

problem. They acknowledged the issue, and are working on imple-

menting countermeasures.

A.2 Speed comparison
The unprotected speed-optimized implementations of boringSSL,

wolfSSL and bearSSL result in cycle counts in between 1 974𝑘 and

2, 576𝑘 , roughly corresponding to the cycle count of 2 316𝑘 that

we obtain for our protected static implementation. Our protected

ephemeral implementation still outperforms any of these off-the-

shelf libraries while still providing stronger SCA and FI protections.

B SUPPLEMENTARY MATERIAL FOR
SIDE-CHANNEL EVALUATION

Power profiles of all three implementations are presented in Figure 5.

As mentioned in Section 5.1, the ephemeral implementation is only

slightly slower than the unprotected one. In both cases, as marked in

red, the implementations consists mainly of a scalar multiplication.

In the static case, the trace consist of initial randomizations, two

scalar multiplications (marked red), and the final update of the

static key and points.

Figure 5: Power profiles of unprotected (top), ephemeral
(middle), and static (bottom) implementations with scalar
multiplications marked with red.

Figure 6 depicts the results of the 𝑡-tests for groups 0 and 2 (fixed

versus random scalar) for the unprotected implementation.

16

Figure 6: Unprotected impl. TVLA: fixed vs random scalar.

The 𝑡-test result for the modified ephemeral implementation for

groups 0 and 1 (fixed vs random point) is presented in Figure 7. As

we can see the leakage is not present anymore, because the highest

peak does not reach 4.7. We perform also TVLA for groups 0 and 2

and in this case the leakage was still present, as expected.

Figure 7: TVLA results for the modified ephemeral imple-
mentation (0.9ms-2.0ms): fixed vs random point.

Figure 8 depicts the results of 𝑡-test for the traces collected for

the static implementation; these traces are aligned at the beginning.

Figure 8: TVLA results for the static implementation: fixed
vs random point (top) and fixed vs random scalar (bottom).

Figure 9 presents detected leakage after the static scalar multi-

plication is finished — around 14.5ms. This leakage is caused by

computing the affine output.

Figure 10 presents TVLA results for groups 0 and 1 (fixed vs.

random point) for the static scalar implementation with all scalar

blindings and address randomization turned off.

Figure 11 shows TVLA results for groups 0 and 2 for the static im-

plementationwithout scalar blindings, but with the address random-

ization turned on. For groups 0 and 1 we also do not detect leakage.

Figure 9: TVLA results for the static scalar implementation
(aligned at 13.0msand zoomed at 14.4ms-14.5ms): fixed vs ran-
dom point (top) and fixed vs random scalar (bottom).

Figure 10: TVLA results for the static implementation with
blindings and address randomization turned off (aligned at
1.65ms and zoomed at 1.7ms-4.3ms): fixed vs random point.

Figure 11: TVLA results for the static impl. with blindings
turned off and the address rand. turned on (aligned at 1.65ms
and zoomed at 1.7ms - 7.8ms): fixed vs random scalar.

17

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 X25519 key exchange
	2.2 The ARM Cortex-M4 microcontroller
	2.3 Attacker model

	3 SCA-protected ephemeral X25519
	3.1 Relevant passive attacks
	3.2 Relevant active attacks
	3.3 Protected implementation

	4 SCA-protected static X25519
	4.1 Relevant passive attacks
	4.2 Relevant active attacks.
	4.3 Protected implementation

	5 Evaluation
	5.1 Performance Evaluation
	5.2 Side-channel Evaluation

	6 Conclusions and Future Work
	References
	A Performance comparison
	A.1 Security properties
	A.2 Speed comparison

	B Supplementary Material for Side-channel Evaluation

