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Abstract. In this paper, we present a new perturbation for the design of
multivariate schemes that we call “Pepper”. From this idea, we present
some efficient multivariate signature schemes with explicit parameters
that resist all known attacks. In particular they resist the two main
(and often very powerful) attacks in this area: the Gröbner attacks (to
compute a solution of the system derived from the public key) and the
MinRank attacks (to recover the secret key). Pepper can also be seen as a
new perturbation that can be used to strengthen many other multivariate
schemes. The “Pepper” perturbation works only for public key equations
of degree (at least) 3. Despite this, the size of the public key may still
be reasonable since we can use larger fields (and also maybe non dense
equations). Furthermore, the size of the signatures can be very short.

Keywords: public-key cryptography, post-quantum multivariate cryptography,
UOV, HFE.

1 Introduction

Many schemes in Multivariate cryptography have been broken. Among the most
spectacular attacks we can mention that the C* scheme of Matsumoto and Imai
[13] has been broken in [14], the SFlash scheme submitted to the NESSIE compe-
tition has been broken in [4, 7, 8] , the LUOV scheme [3] submitted to the Post-
Quantum NIST competition has been broken in [6], and the GeMMS schemes
[5] has been broken in [16]. At present the two main general attacks in multi-
variate cryptography are the use of Gröbner bases in “direct attacks” (in order
to find a solution of the public equations involved without finding the secret
key, cf [9]), and the MinRank attacks in order to find the secret key [12, 2]. In
many schemes the Gröbner attack is dangerous because the degree of regularity
of the public equations is smaller than for random quadratic equations. Recently
the MinRank attacks have become much more powerful than before due to the
introduction of the Minor equations [2].

Despite these dangerous and powerful attacks, multivariate cryptography re-
mains an interesting area of research. This is mainly due to three facts. First,



the schemes, if they can resist non-quantum attacks, are also expected to re-
sist quantum computers, i.e. multivariate cryptography is one of the family of
“post-quantum” cryptography (with lattices, codes, hash-based cryptography,
isogenies, combinatorial schemes). Second, the MQ problem (solving a set of
Multivariate Quadratic equations on finite field) is NP-hard on any finite field,
and seems to be very difficult to solve when the equations are random and the
number of variables is about the same as the number of equations. Third, some
properties can be obtained at present only with multivariate cryptography such
as ultra-short public-key signatures, or encryption with ultra-short blocs [15].

In this paper, we present a new tool that can be useful to design new multi-
variate schemes, or to strengthen the security of existent multivariate schemes.
We call it “Pepper”.

2 Pepper: main ideas

2.1 Notations

As in all classical multivariate schemes, we use a finite field Fq with q elements
and we deal with the ring of polynomials in n variables (x1, . . . , xn) (or simply
x) over Fq, denoted Fq[x]. Therefore here Fq[x]m will refer to the algebra of n-
ary m-dimensional polynomials, that we call (n,m)-polynomials for short. The
internal product of this algebra is implicitly defined as the extension of the
product defined over Fmq , itself defined by the classical (field) product over Fqm
and transferred by a proper isomorphism between Fmq and Fqm . For instance

when n = m, the i-th iterate Frobenius mapping: x → xq
i

can be expressed
a (n, n)-polynomial of degree 1. We note deg(f) the degree of a polynomial f .
By extension, the degree of a (n,m)-polynomial is the maximum degree of its
(n, 1)-components.

2.2 The tweak

We start from some trapdoor scheme, y = f(x), where f is a degree-d (n,m)-
polynomial that we can invert somehow. Typical examples of f are HFE and
UOV among many others, but for the sake of our presentation, we can stick to
a generic f . Our purpose is to add a perturbation to f , in order to get a new
scheme, with stronger security, and in particular dismiss all possible ”low rank”
issues. We will discuss this point hereafter. Classical schemes have degree 2 such
as HFE or UOV; we will consider here larger degrees, mainly d = 3, that provide
more interest to our new perturbation.

We now introduce our new “tweak”: p(x)P (x), where p and P are respectively
random (n, 1)- and (n,m)-polynomials. We also require that deg(p)+deg(P ) = d.
The new trapdoor can be expressed as f̃(x) = f(x) + p(x)P (x). The advantages
of this new trapdoor are the followings.

– Its degree is still at most d.
– Whatever the degree of p, p(x) can only take q values (those of Fq).
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– It gives the opportunity to design “high rank” schemes, since the polynomials
p and P may be chosen adequately, and therefore this tweak thwarts the
MinRank attacks.

2.3 Pepper for signature

The Pepper perturbation is the conjunction of the tweak and a special mode
of inversion. In order to invert the trapdoor y = f(x) + p(x)P (x), we make an
exhaustive search on all the q possible values of p(x). For one possible value a, we
simply invert y = f(x) +aP (x), and keep only the solutions satisfying p(x) = a.
Of course, we have made here the additional assumption that y = f(x) + aP (x)
is indeed efficiently invertible. This assumption is highly related to the choice
of the initial scheme f but it is not difficult to fulfil. For instance for HFE, it
suffices to assume that the polynomial P has “HFE” shape, or for UOV, that it
is “UOV-compatible”, etc. This mode of operation may be suitable for signature
and encryption according to the original scheme f , but it also costs a factor q
compared to the original scheme.

3 Security analysis in degree 2

We first give a word about these new perturbations when d = 2, and show
that they have not much interest in this case. We analyse them particularly
in the light of the HFE and UOV schemes, but the analysis can certainly be
generalized to other schemes. The most restrictive condition we have to fulfil is
deg(p) + deg(P ) = 2, then we can imagine:

– deg(p) = 0, deg(P ) = 2. We skip this case, since p must be constant and
therefore does not add entropy.

– deg(p) = 1, deg(P ) = 1. In this case p and P are linear. For HFE and
regarding the MinRank attack, this perturbation simply increases the rank of
the secret polynomial by an amount of 1, which is not competitive, since the
perturbation already costs a factor q. For UOV, this perturbation amounts to
transform 1 ‘oil’ variable into 1 ‘vinegar’ variable, which is useless compared
to the original scheme.

– deg(p) = 2, deg(P ) = 0. Here, p is a random quadratic form, P is a random
element of Fmq . This case has already been described in literature as the “+”
perturbation, i.e. adding a small amount of random quadratic polynomials
to the original scheme. The effect of this perturbation can be cancelled by
considering the adequate projection, and the natural isomorphism between
Fmq and Fqm :

y = f(x) + p(x)P
yq = f(x)q + p(x)P q

yP q − yqP = f(x)P q − f(x)qP

In particular, regarding the Gröbner basis computation attack, this shows,
that the degree of regularity does not increase compared to the one of y =
f(x)
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4 UOV-Pepper in degree 3: example of parameters and
security results

We now propose a variant of UOV using the Pepper perturbation and degree 3,
for signature mode.

4.1 Description of UOV-Pepper

In what follows, no and nv are respectively the number of oil and vinegar
variables. We note n = no + nv, and the different vectors of variables xo =
(x1, . . . , xno

), xv = (x1+no
, . . . , xn), x = (x1, . . . , xn).

We set f(x) =
∑no

i=1 xiQi(xv) + C(xv), the “classical” UOV trapdoor ex-
tended in degree 3, where Qi are random degree-2 (nv, no)-polynomials, C is a
random degree-3 (nv, no)-polynomial. This is the same idea as in the original
scheme: the trapdoor is linear in xo, hence it can easily be inverted if xv is set.
The UOV perturbed scheme becomes: f̃(x) = f(x) + p(x)P (x), where p is a
degree-2 (n, 1)-polynomial, P is a degree-1 (n, no)-polynomial compatible with
the UOV structure. More precisely P (x) =

∑no

i=1 αixi + L(xv) where the αi are
random elements of Fno

q and L is a random degree-1 (nv, no)-polynomial. One
can easily check that when xv is set and p(x) is guessed, the perturbed trapdoor
can be inverted as claimed. The public key is a composition P = f̃ ◦ T where
T is some secret linear bijective map over Fnq . The secret key is a description
of Qi, C, p, P and T . See below sec. 4.3 for parameter selection and further
explanations.

4.2 Signature protocol

To sign a value y, the signer aims to find a value z such as P(z) = y, or equiv-
alently find x such as f̃(x) = y. In order to invert the trapdoor, the signer
chooses at random xv, makes all the q possible “guesses” on p(x), invert each
linear system on xo if possible, and stops as soon as one guess on p(x) is correct,
otherwise makes a new choice for xv. Then, once a value x is found, the signer
outputs z = T−1(x). To verify a signature z of y, the verifier, simply checks that
P(z) = y.

4.3 Rationale, sizes and performance

The direct attack using Gröbner basis computation can be performed by fixing
nv variables out of n. The resulting system has no equations in no variables and
we estimate with simulation that it behaves like a random system with the F4
algorithm as soon as nv ≥ no. So, the solving complexity of hybrid attacks can
be used when no = nv. We estimate that the Pepper perturbation thwarts the
Kipnis-Shamir attack, and as a rule of thumb, that qnv > 2λ and qno > 22λ

should be sufficient to thwart other obvious attacks.
There are many ways to choose the parameters (see Table 1). So, for a security

level of λ = 128, (assuming ω = 2.37) we propose the following parameters:
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q = 821, no = 27, nv = 27. The public key size is 936 Kilobytes, a signature size
is (27 + 27)∗10 = 540 bits (each element of F821 is coded on 10 bits), or 523 bits
if it is coded as a binary number smaller than 82154. On our Magma simulation,
on average, a signature takes 330ms. and a verification 130ms.

Note that the signature is parallelizable and could take benefit from multi-
core CPUs.

Table 1. Complexity of hybrid attacks for random systems of n equations in n variables
of degree 3. k: number of variables to fix for the best trade-off, Dreg: degree of regularity
for the best trade-off. C = qk

(
n−k+Dreg

Dreg

)ω
, ω = 2.37

.

q n log2 q
n log2 C Dreg k

5 56 130.03 130.03 1 56

7 47 131.95 129.72 5 36

8 45 135.00 130.90 6 32

9 42 133.14 128.60 9 24

11 40 138.38 128.63 9 22

13 39 144.32 131.30 8 23

16 37 148.00 130.41 11 17

19 36 152.93 130.38 11 16

q n log2 q
n log2 C Dreg k

23 34 153.80 128.42 10 16

29 33 160.31 128.74 16 9

37 32 166.70 129.24 18 7

49 31 174.06 128.19 16 8

73 30 185.69 128.06 18 6

121 29 200.65 128.31 19 5

277 28 227.18 128.04 22 3

821 27 261.39 128.02 24 2

4.4 Shorter signature thanks to UOV

In the previous section, we assumed that the input size of the signature function
was twice the size of the security level, which enables to “plug” the output of a
hash function of the same size, instead of the message itself, whenever the size
of the message exceeds this size. This is the classical mode of signature using a
hash function. In this section, we show how to reduce the size of the signature
by exploiting the special property of UOV, that the inversion of UOV is based
on the linearity of the oil variables. This idea was first exposed in [11].

Let’s now suppose that y is the hash to sign, its size is at least 2λ bits
as expected. Say it can be expressed as n′ elements of Fq. We define a UOV-
Pepper scheme P as previously, with a parameter no satisfying 2λ ≤ qno ≤ 22λ

(instead of qno ≥ 22λ previously). We now introduce a public function L(x, y):
Fnq × Fn′

q 7→ Fno
q . We require this function to have the following properties: to

be affine in x, to be easy to compute, and to be collision-free in y3 with good
probability. First we may write: L(x, y) = g0(y)+

∑n
i=1 xigi(y) which is by design

affine in x. Then for instance the public functions gi may be random degree-1
(n′, no)-polynomials. Or, in order to avoid to describe them, they can be also
output by a pseudo random generator with y used as a seed. In these two cases
obviously, we can assume that L is collision-free.

Now, to sign a value y, the signer must find a value z satisfying P(z) = L(z, y)
and proceeds as follows. As y is given, the term L(z, y) is evaluated in y and

3 It means that it should be difficult to find y and y′ such that L(., y) = L(.y′)
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the equation becomes P(z) = α0 +
∑n
i=1 αizi, where the αi belong to Fno

q .
Solutions in z can be found with the same method as before: make the change
of variables z = T−1(x), draw vinegar variables at random, guess p(x), solve the
system in degree 1 obtained in the oil variables, check if p(x) is correct, then go
back in z variable. To verify a signature z of y, the verifier, simply checks that
P(z) = L(z, y).

In table 2, S1 and S2 are two possible sizes for the signature, according to its
coding : n words of dlog2(q)e bits, or 1 big word of dlog2(qn)e bits. The public key
amounts to the coefficients of no homogeneous degree-3 polynomials in no + nv
variables, hence Pub= no

(
no+nv+2

3

)
dlog2 qe in bits. Example, for a security level

of λ = 128, we propose the following parameters: q = 8, no = 45, nv = 45. The
public key size is 2120 kilobytes, the signature is (45 + 45) ∗ 3 = 270 bits, times
for signature and verification are about 1.5s.

Table 2. Various sets of parameters, q, no = nv, λ: security level, S1, S2: size of
signature in bits, Pub: size of public key in kilobytes

q no λ S1 S2 Pub.

5 35 80 210 163 783

7 29 80 174 163 373

8 27 80 162 162 281

11 25 80 200 173 277

13 24 80 192 178 236

79 18 80 252 227 133

223 17 80 272 266 122

5 39 90 234 182 1202

7 33 90 198 186 621

8 31 90 186 186 485

11 28 90 224 194 432

13 27 90 216 200 375

131 20 90 320 282 230

281 19 90 342 310 212

q no λ S1 S2 Pub.

5 44 100 264 205 1939

7 36 100 216 203 876

8 34 100 204 204 698

11 31 100 248 215 646

13 30 100 240 223 568

157 22 100 352 321 334

457 21 100 378 372 313

5 56 128 336 261 5050

7 47 128 282 264 2519

8 45 128 270 270 2120

11 40 128 320 277 1772

121 29 128 406 402 869

277 28 128 504 455 972

821 27 128 540 523 936

q no λ S1 S2 Pub.

5 83 192 498 386 24160

7 71 192 426 399 12976

8 68 192 408 408 10928

11 62 192 496 429 10091

13 59 192 472 437 8285

277 43 192 774 698 5309

433 42 192 756 736 4836

7 96 256 576 540 43134

8 92 256 552 552 36406

11 83 256 664 575 32213

13 80 256 640 593 27821

23 71 256 710 643 21626

277 58 256 1044 942 17417

421 57 256 1026 994 16254

4.5 Other attacks

Since we have chosen degree-3 UOV with perturbation, we have searched for a
possible distinguisher of the public key or a statistical attack that may cancel
the perturbation (see [10]). To our best knowledge (see [1]), the most appro-
priate tool that could give insights of the secret trapdoor is the differential at
a point. We recall that the differential of f at k is defined as

(
∆k f

)
(x) =

f(x+ k)− f(x)− f(k) + f(0). When f is a degree-3 polynomial, its differential
is a degree-2 polynomial from which one can extract two homogeneous parts of
degree 2 and 1, that we note respectively H2 and H1. For example, since we have
deg(p) = 2 and deg(P ) = 1, then H2

(
∆k pP

)
(x) =

(
∆k p

)
(x)P (x) + p(x)P (k)
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and H1

(
∆k pP

)
(x) =

(
∆k p

)
(x)P (k) + p(k)P (x). More precisely in our case, p

is a random quadratic form that can be chosen without loss of generality with
full rank, and P (x) =

∑no

i=1 αixi + L(xv), where the family {αi} can be cho-
sen linearly independent, and L of full rank. Therefore the number of points k
cancelling p(k) and P (k) or ∆k p is negligible.

As explained in sec. 3, one can also get a new equation cancelling p(x),
using the fact that p(x)q = p(x), namely f̃q(x)P (x)− f̃(x)P q(x) = fq(x)P (x)−
f(x)P q(x). However, since P is a random linear polynomial in all variables, the
latter expression loses most certainly the properties due to the UOV-shape of f .

4.6 Variants and further directions

An immediate generalization of our idea is to replace the tweak p(x)P (x) by a
sum with similar terms:

∑s
i=1 pi(x)Pi(x), where s is a small number. This variant

seems to have significant effects on the signature scheme. First, the impact on
the performance is clearly a slow down factor qs on the search of a signature.
However, it has also an impact on the security, since it “hides” more deeply
the trapdoor inside the public key. Experiments show that it compensate for
a decrease of the number of vinegar variables. For instance, for the same level
λ = 128, we may propose the following parameters: q = 8, s = 3, no = 45,
nv = 42. The public key size is 1917 kilobytes, the signature is (45+42)∗3 = 261
bits.

As for the secret trapdoor f , we also have tried cubic HFE and cubic trian-
gular systems. This could have have been promising since these schemes may be
used in signature and encryption mode as well, but unfortunately the differential
attack still defeats the perturbation by revealing the rank defect.

5 Conclusion

“Pepper” is a new tool in Multivariate cryptography. From this idea and degree-
3 UOV, we have obtained multivariate schemes for signature with very nice
properties: they are fast, have a reasonable size of public key, and they resist all
the known attacks in multivariate cryptography. We think that it is particularly
important to notice that MinRank and Gröbner attacks are thwarted. However
since “Pepper” is very new, and since many failures have occurred in multivariate
cryptography, it is natural to be suspicious about new ideas and to wait for more
analysis before using these schemes in real life applications. The fact in this
paper we use public equations of degree 3 (instead of 2 usually in multivariate
cryptography) might also open the door to new and powerful attacks. . .
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Appendices

A Magma code for the complexity of the hybrid attacks

HilbertSeries:= function(q,n,DEGS);

//Input

// q size of the finite field

// n number of variables

// DEGS list of degree of equations

//Ouput

// The index of the first non negative coefficient

// of the Hilbert Series of the corresponding system

if #DEGS lt n then return "Under determined system"; end if;

if q eq 2 then return "Not implemented"; end if;

R<z>:= PowerSeriesRing(Rationals());

HS:= &*[ 1-z^d : d in DEGS] / (1-z)^n;

DREG := 0;

while Coefficient(HS,DREG) gt 0 do

DREG +:= 1;

end while;

return DREG;

end function;

complexity:=function(q,n,Degs: omega := 2.37);

//Input

// q size of the finite field

// n number of variables

// DEGS list of degree of equations

// Optional: algebraic constant

//Output
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// Log2 of complexity

// Estimated degree of regularity

// Use of Field equations

dreg:=HilbertSeries(n,Degs);

dreg2:=HilbertSeries(n,Degs cat [q: i in [1..n]]);

res:=dreg2 lt dreg;

dreg:=Minimum(dreg,dreg2);

return Log(2,Binomial(n+dreg,n)^omega),dreg, res;

end function;

hybrid:=function(q,n,Degs);

//Input

// q size of the finite field

// n number of variables

// DEGS list of degree of equations

//Output

// Log2 of complexity

// Estimated degree of regularity

// Number of variables to fix : best trade-off

// Use of Field equations

compmin:=1000;

dregmin:=0;

kmin:=0;

fieldmin:=false;

for k:=0 to n do;

comp,dreg,field:=complexity(q,n-k,Degs);

comp+:=k*Log(2,q);

if comp lt compmin then

compmin:=comp;

kmin:=k;

dregmin:=dreg;

fieldmin:=field;

end if;

end for;

return compmin, dregmin, kmin, fieldmin;

end function;
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