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Abstract At Crypto ’99, Nguyen and Stern described a lattice based algorithm for solving the hidden
subset sum problem, a variant of the classical subset sum problem where the n weights are also hidden.
As an application, they showed how to break the Boyko et al. fast generator of random pairs (x, gx

(mod p)). The Nguyen-Stern algorithm works quite well in practice for moderate values of n, but its
complexity is exponential in n. A polynomial-time variant was recently described at Crypto 2020, based
on a multivariate technique, but the approach is heuristic only. In this paper, we describe a proven
polynomial-time algorithm for solving the hidden subset-sum problem, based on statistical learning. In
addition, we show that the statistical approach is also quite efficient in practice: using the FastICA
algorithm, we can reach n = 250 in reasonable time.

1 Introduction

The hidden subset-sum problem. At Crypto ’99, Nguyen and Stern described a lattice-based
algorithm for solving the hidden subset sum problem [NS99], with an application to the cryptanalysis
of the fast generator of random pairs (x, gx (mod p)) from Boyko et al. from Eurocrypt ’98 [BPV98].
The hidden subset sum problem is a variant of the classical subset sum problem where the n weights
αi are also hidden.

Definition 1 (Hidden Subset Sum Problem). Let q be an integer, and let α1, . . . , αn be ran-
dom integers in Zq. Let x1, . . . ,xn ∈ Zm be random vectors with components in {0, 1}. Let h =
(h1, . . . , hm) ∈ Zm satisfying:

h = α1x1 + α2x2 + · · ·+ αnxn (mod q) (1)

Given q and h, recover the vector α = (α1, . . . , αn) and the vectors xi’s, up to a permutation of the
αi’s and xi’s.

Recall that the classical subset sum problem with known weights αi’s can be solved in polynomial
time by a lattice based algorithm [LO85], when the density d = n/ log q is O(1/n). Provided a
shortest vector oracle, the classical subset sum problem can be solved when the density d is less than
' 0.94. The algorithm is based on finding a shortest vector in a lattice built from h, α1, . . . , αn, q;
see [CJL+92]. For the hidden subset sum problem, the attack is clearly not applicable since the
weights αi’s are hidden.

The Nguyen-Stern algorithm. For solving the hidden subset-sum problem, the Nguyen-Stern
algorithm relies on the technique of the orthogonal lattice. If a vector u is orthogonal modulo q to
the public vector of samples h, then from (1) we must have:

〈u,h〉 ≡ α1〈u,x1〉+ · · ·+ αn〈u,xn〉 ≡ 0 (mod q)

This implies that the vector pu = (〈u,x1〉, . . . , 〈u,xn〉) is orthogonal to the hidden vector α =
(α1, . . . , αn) modulo q. Now, if the vector u is short enough, the vector pu will be short (since the
vectors xi have components in {0, 1} only), and if pu is shorter than the shortest vector orthogonal
to α modulo q, we must have pu = 0, and therefore the vector u will be orthogonal in Z to all
vectors xi. The orthogonal lattice attack consists in generating with LLL many short vectors u



orthogonal to h; this reveals the lattice of vectors orthogonal to the xi’s, and eventually the lattice
Lx generated by the vectors xi’s. In a second step, by finding sufficiently short vectors in the lattice
Lx, one can recover the original vectors xi’s, and eventually the hidden weight α by solving a linear
system.

While the Nguyen-Stern algorithm works quite well in practice for moderate values of n, its
complexity is actually exponential in the number of weights n; see [CG20]. Namely, in the first step
one only recovers a basis of the lattice Lx generated by the binary vectors xi, but not necessarily the
original vectors xi’s, because the basis vectors that we recover via LLL can be much larger than the
xi’s. In order to recover the xi’s, in a second step one must therefore compute a very short basis of
the n-dimensional lattice Lx. In principle, this takes exponential-time in n, as one must apply BKZ
reduction [Sch87] with increasingly large block-sizes; this was confirmed by practical experiments
in [CG20].

Cryptographic application. As an application, the authors of [NS99] showed how to break the
fast generator of random pairs (x, gx (mod p)) from Boyko, Peinado and Venkatesan from Eurocrypt
’98 [BPV98]. Such generator can be used to speed-up the generation of discrete-log pairs with fixed
base g, as in Schnorr identification, and in Schnorr, ElGamal and DSS signatures. Namely, for a
prime number p and for g ∈ Z∗p of order q, the generator first precomputes n values βj = gαj for
random αj ∈ Zq; it can then repeatedly generate a random x =

∑n
i=1 αi · xi mod q for xi ← {0, 1},

with the corresponding group element:

gx =

n∏
i=1

β xij mod p. (2)

This requires on average n/2 multiplications where n is the number of hidden weights αj , instead
of a full exponentiation in Z∗p.

The Coron-Gini algorithm. At Crypto 2020, Coron and Gini described a variant of the Nguyen-
Stern algorithm for solving the hidden subset sum problem that works in heuristic polynomial-time.
The first step is still the same orthogonal lattice attack with LLL as in Nguyen-Stern. In the
second step, instead of applying BKZ, the authors use a multivariate technique that recovers the
short lattice vectors and finally the hidden secrets in polynomial time. However, such multivariate
approach requires m ' n2/2 samples instead of m = 2n as in [NS99]. Asymptotically, the heuristic
complexity of the full algorithm is O(n9). The authors performed some practical experiments to
compare it with the BKZ approach; with the new multivariate approach they could reach n = 250
in a reasonable amount of time, instead of n = 170 with BKZ. The multivariate algorithm from
[CG20] enables to break the Boyko et al. generator in polynomial-time instead of exponential-time
as in the original Nguyen-Stern attack, albeit with a significantly larger number of samples from
the generator, namely m ' n2/2 samples instead of m = 2n, respectively.

Our contribution. Our main contribution is to describe a proven polynomial-time algorithm for
solving the hidden subset-sum problem, while the Coron-Gini algorithm was heuristic only. Our
algorithm proceeds in two steps. The first step is the same as in Nguyen-Stern’s algorithm, and
reveals a basis of the completed lattice L̄x generated by the n vectors xi, via an orthogonal lattice
attack. In the second step, we use a statistical learning technique to disclose the hidden vectors and
weights, using an approach introduced by Nguyen and Regev for the cryptanalysis of GGH and
NTRU signatures [NR09]. Indeed, our main observation is that from a basis of L̄x it is possible
to derive a set of samples from an unknown discrete distribution, and identifying such distribution
solves the hidden subset-sum problem.

We also describe a heuristic extension to a variant of the hidden subset-sum problem where
the coefficients xi’s lie in a discrete interval [0, B] ∩ Z instead of {0, 1}; we call this the hidden



linear combination problem. This corresponds to a generalisation of the Boyko et al. pseudo-random
generator of discrete-log pairs (g, gx (mod p)), where in Equation (2) the exponents xi lie in [0, B]∩Z
instead of {0, 1}; this allows to increase the entropy of the generator, for a fixed number n of pre-
computed group elements βj . The original Nguyen-Stern algorithm can still be adapted to the
generalised problem, and its heuristic complexity remains exponential in n, as in the binary case,
and polynomial in logB. For this variant the multivariate approach from [CG20] does not apply,
because it would lead to multivariate polynomials of degree B + 1; namely, the technique would
remain polynomial-time only for constant B, and be essentially unpractical. We argue that for the
generalised problem our statistical approach has heuristic complexity polynomial in n and B. We
summarise in Table 1 the algorithm complexities.

complexity status

Hidden subset sum (B = 1)

Nguyen-Stern [NS99] 2Ω(n) heuristic

Coron-Gini [CG20] O(n9) heuristic

Statistical attack poly(n) proven

Hidden linear combination
Nguyen-Stern [NS99] 2Ω(n) · logO(1) B heuristic

Statistical attack poly(n,B) heuristic

Table 1. Algorithmic complexity for solving the hidden subset sum problem (B = 1) and the hidden linear combination
problem.

Practical attack. We show that the statistical approach is also quite efficient in practice when
based on FastICA [HO97], which is an algorithm to solve the signal source separation problem in the
context of Independent Component Analysis (ICA). Namely, we describe a practical implementation
using m ' n2 samples as in [CG20], but with space complexity O(n3) instead of O(n4). We provide
the source code in:

https://pastebin.com/WzGXHmpW

2 Background on lattices

Lattices and bases. Let b1, . . . ,bk ∈ Zm be linearly independent vectors for k ≤ m. The (integral)
lattice generated by the basis B = {b1, . . . ,bk} is

L(B) =

{
k∑
i=1

vibi | v1, . . . , vk ∈ Z

}
.

A matrix B whose rows are a basis of a lattice is called base matrix. It is possible to prove that two
basis B,B′ generate the same lattice if and only if there exists a unimodular matrix U ∈ GLk(Z) such
that UB = B′. Given any basis B its Gram-determinant is d(B) =

√
det(BBᵀ); then this number

is invariant under base change. Thus, the determinant of a lattice L , i.e. the Gram-determinant
of any of its basis B, det(L) = d(B) is well defined. The dimension dim(L), or rank, of a lattice
is the dimension as vector space of EL := SpanR(L). If L′ ⊆ L, then we say that L′ is a sublattice
of a lattice L and L is a superlattice of L′. L′ is a full-rank sublattice of L if dim(L′) = dim(L).
In particular, if L ⊆ Zm is a full-rank sublattice, we simply say that L is full-rank. For a full-rank
sublattice it holds det(L) ≤ det(L′).



Orthogonal lattice. The orthogonal lattice of a lattice L ⊆ Zm is

L⊥ := {v ∈ Zm | ∀b ∈ L, 〈v,b〉 = 0} = E⊥L ∩ Zm

where 〈·, ·〉 denotes the standard scalar product of Rm. The completion of a lattice L is the lattice L̄ =
EL∩Zm = (L⊥)⊥. Moreover, a lattice is called complete if it coincides with its completion, i.e. L̄ = L.
Notice that L is a full-rank sublattice of L̄, and recall dimL+dimL⊥ = m and det(L⊥) = det(L̄) ≤
det(L) (proofs of these facts are recalled in [CG20, Appendix A]). By Hadamard’s inequality, we
have det(L) ≤

∏
b∈b ‖b‖ for any basis B of L; this implies that det(L⊥) ≤

∏
b∈B ‖b‖.

Lattice minima. For each 1 ≤ i ≤ dimL, the i-th minimum λi(L) of a lattice L is the minimum
of the maxj {‖vj‖} among all sets {vj}j≤i of i linearly independent lattice points. Notice that the
first minimum λ1(L) is the minimum of the norm of its non-zero vectors; hence, the lattice points
whose norm is λ1(L) are called shortest vectors, accordingly.

The Hermite constant γk (in dimension k) is the supremum of λ1(L)2/ det(L)
2
k over all the

lattices of rank k. Using Minkowski convex body theorem, one can prove that for each k ∈ N+,
0 ≤ γk ≤ k/4 + 1. This constant is also involved in the Minkowski’s Second Theorem, which asserts
that for each 1 ≤ i ≤ k  i∏

j=1

λi(L)

 1
i

≤ √γk det(L)
1
k .

Lattice reduction. The notion of LLL-reduced basis was introduced in [LLL82], along with an
algorithm to produce such bases. Those have many good proprieties, for instance the first vector of
an LLL-reduced basis is not much longer than the shortest vector of the lattice.

Lemma 1 (LLL-reduced basis). Let b1, . . . ,bk ∈ Zm an LLL-reduced basis of a lattice L. Then

‖b1‖ ≤ 2
k−1
2 λ1(L), and ‖bj‖ ≤ 2

k−1
2 λi(L) for each 1 ≤ j ≤ i ≤ k.

The LLL algorithm produces an LLL-reduced basis in timeO(k5m log3 β), given a basis of vectors
of norm less than β of a k-rank sublattice of Zm. Nguyen and Stehlé in [NS09] proposed a variant,
based on proven floating point arithmetic and called L2, whose complexity is O(k4m(k+log β) log β)
without fast arithmetic. In this paper, when we apply LLL, we always mean the L2 variant. There
exist other notions of reduced basis. If a better approximation of the shortest vector is needed, one
can use Schnorr’s algorithm BKZ [Sch87]. In this paper, when we apply BKZ, we generally refer to
BKZ 2.0 [CN11].

Heuristics. By the Gaussian Heuristic, for a ” random lattice” we can expect λ1(L) ≈
√
k det(L)

1
k .

In such case we can also expect that all lattice minima have approximately the same value. In general,
we can suppose that a lattice L generated by a set of k “random” vectors in Zm for k < m has rank
k, and that the short vectors of L⊥ have norm approximately (detL⊥)1/(m−k) ' (detL)1/(m−k) '
(
∏k
i=1 ‖bi‖)1/(m−k), up to a

√
k factor.

3 The Nguyen-Stern algorithm

We recall the Nguyen-Stern algorithm [NS99] for solving the hidden subset-sum. We also recall the
complexity analysis from [CG20]. In the hidden subset-sum problem, we are given a modulus q and
h = (h1, . . . , hm) ∈ Zm satisfying

h = α1x1 + α2x2 + · · ·+ αnxn (mod q) (3)

and we must recover the vector α = (α1, . . . , αn) ∈ Znq and the vectors xi ∈ {0, 1}m. The Nguyen-
Stern algorithm comprises two steps:



1. From the samples h, determine the lattice L̄x, where Lx is the lattice generated by the xi’s.

2. From L̄x, recover the hidden vectors xi’s using BKZ. From h, the xi’s and q, recover the weights
αi.

3.1 First step: orthogonal lattice attack

In the first step the goal is to recover L̄x from h and q. Let L0 be the lattice of vectors orthogonal
to h modulo q:

L0 := Λ⊥q (h) = {u ∈ Zm | 〈u,h〉 ≡ 0 (mod q) }

For any u ∈ L0, the vector

pu = (〈u,x1〉, . . . , 〈u,xn〉)

is orthogonal to the vector α modulo q, since from (3) we obtain:

〈u,h〉 ≡ α1〈u,x1〉+ · · ·+ αn〈u,xn〉 ≡ 0 (mod q).

Then, if pu is shorter than the shortest non-zero vector orthogonal to α modulo q, we must have
pu = 0, and therefore u ∈ L⊥x . Therefore, the orthogonal lattice attack first obtains an LLL-reduced
basis of L0, from which it extracts a generating set for L⊥x ; subsequently, it computes the orthogonal
of L⊥x obtaining L̄x.

Algorithm 1 Orthogonal lattice attack
Input: h, q, n.
Output: A basis of L̄x.
1: Compute an LLL-reduced basis u1, . . . ,um of L0.
2: Extract a generating set of u1, . . . ,um−n of L⊥x .
3: Compute a basis (c1, . . . , cn) of L̄x = (L⊥x )⊥.
4: return (c1, . . . , cn)

The orthogonal lattice attack described in Algorithm 1 is guaranteed to succeed with good
probability for sufficiently large q.

Theorem 1. ([CG20, Theorem 1]) Let m > n. Assume that the lattice Lx has rank n. With prob-
ability at least 1/2 over the choice of α, Algorithm 1 recovers a basis of L̄x in polynomial time,
assuming that q is a prime integer of bitsize at least 2mn logm. For m = 2n, the density of the
subset-sum problem is d = n/ log q = O(1/(n log n)).

Heuristic analysis. One can use a slightly smaller value of the modulus q via a heuristic analysis.
As shown in [CG20], for m = 2n samples, we can use log q = O(n2), which gives a knapsack
density d = n/ log q = O(1/n) as in the classical subset-sum problem. More concretely, one can take
log q ' 2ι · n2 + n log n with ι = 0.035.

Orthogonal lattice attack for large m. The multivariate attack described in [CG20] requires
a much larger number of samples, namely m ' n2 instead of m = 2n in Nguyen-Stern. In our
statistical attack (Section 4), we also require a similarly large number of samples. For such large
value of m, it would not be efficient to apply Algorithm 1 directly, as the lattice dimension of the
lattice L0 would be too large, namely m ' n2. Instead, a better approach is to apply LLL only
to the first 2n coordinates, which already gives n orthogonal vectors, and then compute the other
m− 2 · n orthogonal vectors using size reduction. We refer to [CG20] for the details.



3.2 Second step: the BKZ approach

The first step of the Nguyen-Stern algorithm produces an LLL-reduced basis (c1, . . . , cn) of the
completed lattice L̄x ⊂ Zm. Due to the LLL approximation factor, the recovered basis vectors
(c1, . . . , cn) can be much larger than the original vectors xi, which are among the shortest vectors
in Lx. Therefore, in the second step BKZ is applied to recover the original vectors xi. Indeed, BKZ
provides a better approximation factor than LLL. More precisely, the analysis in [CG20] shows that
the BKZ approximation factor 2ι·n must satisfy 2ι·n ≤

√
n/2. Since achieving an Hermite factor of

2ι·n heuristically requires time 2Ω(1/ι) with block-size β = ω(1/ι), the resulting heuristic running
time of the Nguyen-Stern algorithm is 2Ω(n/ logn), with BKZ block-size β = ω(n/ log n). Eventually,
from the vector h, the xi’s and q, one can recover the hidden weights αi by solving a linear system.

4 Our statistical algorithm for hidden subset-sums

In this section we describe our algorithm for solving the hidden subset-sum problem based on a
statistical learning technique.

As recalled in Section 3, the Nguyen-Stern algorithm comprises two steps.

1. From the samples h, determine the lattice L̄x, where Lx is the lattice generated by the xi’s.

2. From L̄x, recover the hidden vectors xi’s using BKZ. From h, the xi’s and q, recover the weights
αi.

Our algorithm uses the same first step as in Nguyen-Stern, but we replace BKZ in the second
step by a statistical approach. Let X ∈ Zn×m be the binary matrix of row vectors xi ∈ Zm, whose
components are randomly distributed in {0, 1}. From the first step, by Theorem 1, we obtain a basis
of the lattice L̄x, namely a matrix of row vectors C ∈ Zn×m such that

C = V ·X

for some unknown matrix V ∈ GLn(Q).

For the second step, our main observation is that the m columns of C are samples from the
discrete parallelepiped:

P{0,1}(V) =

{
n∑
i=1

xivi : xi ∈ {0, 1}

}
where v1, . . . ,vn ∈ Qn are the columns of V. Therefore, our approach consists in recovering the
matrix V from those samples, by using a statistical technique. Indeed, given V one can compute
the xi’s with X = V−1C. In the following, we show that the statistical approach allows to solve the
hidden subset-sum problem in polynomial time in a provable way.

Continuous and discrete parallelepipeds. The problem of learning a continuous parallelepiped
was solved by Nguyen and Regev in [NR09] for the cryptanalysis of GGH and NTRU signatures.
Given a matrix V ∈ GLn(R), the continuous parallelepiped is defined as:

P[−1,1](V) =

{
n∑
i=1

xivi : xi ∈ [−1, 1]

}

Problem 1 (Hidden Parallelepiped Problem) Let V ∈ GLn(R) be a matrix of column vectors
[v1, . . . ,vn] and let P[−1,1](V) = {

∑n
i=1 xivi : xi ∈ [−1, 1]}. The input to the HPP is a sequence

of poly(n) independent samples from U(P[−1,1](V)), the uniform distribution over P[−1,1](V). The
goal is to recover a good approximation of the columns of ±V.



More precisely, the authors proved the following theorem.

Theorem 2 (Nguyen-Regev). There exists an algorithm A such that for any c0 > 0, there exists
c1 > 0 such that given nc1 samples uniformly distributed over some parallelepiped P[−1,1](V), for
V ∈ GLn(R), the algorithm A returns with constant probability a vector Ve, where e is within `2
distance n−c0 of some standard basis vector ei.

As stated above, the Nguyen-Regev algorithm recovers an approximation of a single column of ±V,
but it can be easily modified to provably recover an approximation of all columns of ±V. However,
there are two main differences with our case:

– We obtain random samples from the finite parallelepiped set P{0,1}(V), whereas the Nguyen-
Regev algorithm uses samples from the continuous set P[−1,1](V).

– The Nguyen-Regev algorithm only recovers an approximation of the columns of ±V with relative
error 1/nc0 , whereas we must recover the exact value of the columns of ±V.

Note that in [NR09] for the cryptanalysis of NTRU and GGH signatures, the matrix V is an
integer matrix whose entries are polynomially bounded in absolute value; therefore even with relative
error n−c0 , for large enough c0, the absolute error becomes less than 1/2 in each coordinate, and
the columns of ±V can be exactly recovered simply by rounding to the nearest integer. Therefore
the authors of [NR09] obtain a rigorous proof that the secret key in NTRU and GGH signatures
can be recovered in polynomial time. However, in our case the entries of V are not polynomially
bounded in absolute value.

Nevertheless, in our discrete variant, even if the matrix V has large entries, we can use the above
equation C = V · X, and from an approximation of V obtain an approximation of X; since the
matrix X is binary, we can then recover X by rounding to the nearest integer, which enables us to
eventually recover V. Formally, we consider the following problem:

Problem 2 (Discrete Hidden Parallelepiped Problem) Let V ∈ GLn(Q), consider P{0,1}(V) :=
{Vx| x ∈ {0, 1}n} the discrete parallelepiped associated to V. Given poly(n) independent samples
from the uniform distribution over P{0,1}(V), recover the columns of V.

Our approach for solving the discrete hidden parallelepiped problem (Problem 2) is to reduce to the
continuous hidden parallelepiped problem (Problem 1). Namely, we show that we can easily generate
samples from the continuous distribution from samples from the discrete distribution. Then we can
use the Nguyen-Regev learning algorithm as a black-box. Clearly, computing the exact value of V
is not really necessary for the hidden subset sum problem, as we are only interested in recovering
the vectors xi’s.

4.1 From discrete to continuous

Our goal is to obtain a set of independent samples of the continuous P[−1,1](V) from a set of
independent samples of the discrete P{0,1}(V). Consider the continuous distribution x ← [0, 1];
we can approximate this distribution up to k-bit precision by generating a random k-bit binary
decomposition, i.e. we can let y =

∑k−1
i=1 bi2

−i. To approximate the continuous distribution x ←
[−1, 1], we can use one more bit b0, with y = −b0+

∑k−1
i=1 bi2

−i. Our main observation is that we can
proceed similarly with the samples from P{0,1}(V) to generate samples from P[−1,1](V). Moreover,
to obtain a continuous distribution, we add a small error e.

Formally, given parameters k ∈ Z and ε > 0, we define the random vector

v = −u0 +

k∑
i=1

2−iui + e



where ui ← U(P{0,1}(V)) for 0 ≤ i < k and e← U([0, ε)n). We want to show that for large enough
k and small enough ε, the distribution of v is statistically close to uniform in P[−1,1](V). Indeed,
this implies that we can produce samples from the continuous set P[−1,1](V) by combining those
from the discrete set P{0,1}(V).

We denote by D(V, k, ε) the distribution of the vector v. By definition, the vector v is distributed
as:

v = V ·

(
−b0 +

k∑
i=1

2−ibi

)
+ e

where for all 0 ≤ i ≤ k the components of bi ∈ Zn are randomly distributed in {0, 1}, and e← [0, ε)n.
Therefore the vector v is distributed as v = Vy + e, where e ← [0, ε)n and the components of y
are uniformly distributed in the set:

Jk =

{
−b0 +

k∑
r=1

br2
−r : (b0, . . . , bk) ∈ {0, 1}k+1

}
.

We define the statistical distance between two probability distributions µ and ν on E as

δ(µ, ν) = sup
A⊂E
|µ(A)− ν(A)|

Lemma 2. The statistical distance between U(P[−1,1](V)) and D(V, k, ε) with ε(k) = 2−k/2 is at

most n · 2−k/2 · (‖V‖∞ + ‖V−1‖∞).

Proof. We first consider an intermediate distribution D′(V, ε) of a = Vx + e where x ← [−1, 1]n

and e ∈ [0, ε)n. We have that a = V(x + V−1e). For a fixed u the statistical distance between x
and x + u is at most n · ‖u‖∞. Hence for a fixed e the statistical distance between x and x + V−1e
is at most n · ‖V−1‖∞ · ε. Therefore the statistical distance between U(P[−1,1](V)) and D′(V, ε) is
also at most n · ‖V−1‖∞ · ε.

Moreover any x ∈ [−1, 1] can be decomposed as x = y+d where y ∈ Jk and d ∈ [0, 2−k). Letting
a be a random vector distributed as D′(V, ε), we can therefore write

a = Vx + e = Vy + Vd + e

with y ← J nk , d ← [0, 2−k)n and e ← [0, ε)n. As previously, the statistical distance between
Vd + e and e is at most n · ‖V‖∞ · ε−1 · 2−k. This implies that the statistical distance between
a = Vy + (Vd + e) and Vy + e satisfies the same bound. This implies that the statistical distance
between D′(V, ε) and D(V, k, ε) is at most n · ‖V‖∞ · ε−1 · 2−k. Finally, combining the two bounds
and taking ε(k) = 2−k/2, we obtain the required bound.

4.2 The Nguyen-Regev learning technique

As recalled in Theorem 2, the Nguyen-Regev algorithm recovers an approximation of a column of
±V, from polynomially many samples from U(P[−1,1](V)). Repeating the algorithm multiple times
does not guarantee to recover all the columns. However, this can be fixed by slightly changing
the algorithm. Suppose V is an orthogonal matrix, and that we have computed a set of columns
V = {v1, . . . ,vi}; we know that the further target vectors must belong to Span (V )⊥. Therefore, at
each iterative step we can project on such space. Although projecting does not work when V is not
orthogonal, this idea can be integrated directly inside the Nguyen-Regev algorithm. More precisely,
the Nguyen-Regev strategy can be summarised in three steps [NR09]:

1. find a linear transformation of V into an orthogonal matrix A = LV;
2. recover a good approximation of a column ±A;



3. recover an approximation of a column of ±V by multiplying by L−1.

When A is an orthogonal matrix, one can prove that its columns a1, . . . ,an are global minima on
the unit sphere of Rn of a certain function. Hence, to obtain an approximation of all the columns of
V, we can simply modify the second step to return a full approximation of A, by using projections.
This gives the following corollary of Theorem 2.

Corollary 1. There exists an algorithm A such that for any c0 > 0, there exists c1 > 0 such that
given nc1 samples uniformly distributed over some parallelepiped P[−1,1](V), for V ∈ GLn(R), the

algorithm A returns with constant probability a matrix Ṽ = VẼ, where each column of Ẽ is within
`2 distance n−c0 of a different standard basis vector ±ei.

4.3 Our algorithm based on statistical learning

In this section we describe our main algorithm for solving the hidden subset-sum problem. Recall
that the first step of the original Nguyen-Stern algorithm returns a basis of the lattice L̄x. Given
X ∈ Zn×m the matrix of row vectors xi ∈ Zm, we obtain a matrix of row vectors C ∈ Zn×m such
that C = VX for V ∈ GLn(Q).

We observed that the columns of C can be interpreted as samples from a discrete parallelepiped
P{0,1}(V). As shown in Section 4.1, given a set C of independent samples of the uniform distribution
P{0,1}(V), we can generate a set of independent samples V of P[−1,1](V). Then, we can use V as
input for Nguyen-Regev algorithm to compute an approximation of V, and eventually the xi’s can
be recovered as V−1C.

Algorithm 2 Statistical attack
Input: h, q, n
Output: the vectors xi.
1: Compute a basis C of the lattice L̄x by using Algorithm 1.
2: Generate a set of independent samples V of P[−1,1](V) by using the m columns of C as shown in Section 4.1.

3: Use Nguyen-Regev algorithm to compute an approximation Ṽ of V.
4: Recover X from the rounding of X̃ = Ṽ−1C.
5: return (x1, . . . ,xn)

Theorem 3. There exist n0 ≥ 0 and ` > 0 such that for any n ≥ n0, and for any prime integer
q of bitsize at least 2mn log(m), Algorithm 2 solves the hidden subset sum problem with constant
probability in polynomial time, using m = n` samples.

Proof. We show in Appendix A that the lattice L̄x has rank n with constant probability. Therefore,
we can apply Theorem 1 and obtain a basis C of L̄x with constant probability. More precisely, we
recover a matrix C ∈ Zn×m such that C = VX for V ∈ GLn(Q). Moreover, we have WC = X
where W = V−1 and W ∈ Zn×n.

The columns of C can be interpreted as m samples from the discrete parallelepiped P{0,1}(V).
Lemma 2 implies that we can generate m′ = m/k samples from the continuous parallelepiped
P[−1,1](V). Hence, we can apply Corollary 1 with c0 = 2 and m′ = nc1 samples from P[−1,1](V),

and we can then recover a matrix Ṽ whose columns are close to the columns of ±V, with constant
probability. Without loss of generality, we can assume that the columns of Ṽ are close to the columns
of V (instead of ±V), by checking at Step 4 that the rows of X have components in {0, 1} instead
of {−1, 0}.

Namely, this implies that there exists a matrix Ẽ such that Ṽ = VẼ and each of its column is
within `2 distance ε = n−2 of some standard basis vector ei. Therefore, there exists a permutation
matrix P such that ẼP is close to the identity matrix, namely the respective columns have `2



distance smaller than ε. Without loss of generality, we can assume P = I. Thus, it holds true
‖Ẽ− I‖max < ε, where we define ‖A‖max := supi,j |ai,j |.

In order to recover the vectors xi’s by rounding the rows x̃i’s of X̃ = Ṽ−1C, we must have
‖xi − x̃i‖∞ < 1/2. For any column c of C there exists a corresponding column x ∈ {0, 1}n of X
such that c = Vx. So, if W̃ = Ṽ−1, then

W̃c− x = Ẽ−1V−1Vx− x = (Ẽ−1 − I)x

This implies that ‖W̃c−x‖∞ ≤ ‖Ẽ−1−I‖∞. Therefore, a sufficient condition to recover the columns
of X exactly is ‖Ẽ−1 − I‖∞ < 1

2 .
Given a matrix Q such that ‖Q‖∞ < 1, then (I−Q)−1 =

∑
j≥0 Qj . Moreover, if ‖Q‖∞ < α <

1/2, we get:

‖(I−Q)−1 − I‖∞ =
∥∥∑
j≥1

Qj
∥∥
∞ ≤

∞∑
j=1

αj =
α

1− α
≤ 2α

We can apply this inequality for Q = I − Ẽ. Indeed, using ‖Ẽ − I‖max < ε, we obtain ‖Q‖∞ ≤
n · ‖Q‖max < nε ≤ n−1. This gives ‖Ẽ−1 − I‖∞ ≤ 2n−1 ≤ 1

2 as required.
We proved that m′ = poly(n) samples of U(P[−1,1](V)) are sufficient for applying Nguyen-Regev

attack and computing the binary hidden vectors, and we observed that, from Lemma 2, those can
be produced by m = k ·m′ samples from the hidden subset-sum problem. In addition, we notice that
k can be choosen as polynomial in n, because both log ‖V‖∞ and log ‖V−1‖∞ are polynomial in n.
Indeed, if C0 is a n× n invertible submatrix of C ∈ Zn×m and X0 the corresponding submatrix of
X ∈ {0, 1}n×m, then we have W = V−1 = X0C

−1
0 where the coefficients of both C0 and X0 have

size polynomial in n; then log ‖W‖∞ is polynomial in n. The same holds for the matrix V = W−1.
Hence, a number of samples m polynomial in n is enough, i.e. there exist ` > 0 such that provided
m = n` hidden subset sum samples we can solve the problem, within some constant probability.

Moreover, this implies that the time complexity of Algorithm 2 is polynomial in n. Indeed, every
step is performed applying linear algebra operations on matrices of dimensions polynomial in n, and
whose coefficients have size polynomial in n, too. More specifically, if v is the size of the coefficients
of the elements in V, Nguyen-Regev algorithm’s complexity is poly(n,m′, v); see [NR09]. Moreover,
the values of v and m′ polynomially depend on n, k, m and the size of the coefficients of C, which
we already showed to be themselves polynomial in n.

5 The hidden linear combination problem

In this section we consider a natural generalisation of the hidden subset sum problem where the
coefficients of the vectors xi’s lie in a discrete interval [0, B] ∩ Z instead of {0, 1}; we call this the
hidden linear combination problem.

Definition 2 (Hidden Linear Combination Problem). Let q be a positive integer, and let
α1, . . . , αn be random integers in Zq. Let x1, . . . ,xn ∈ Zm be random vectors with components in
[0, B] ∩ Z. Let h = (h1, . . . , hm) ∈ Zm satisfying:

h = α1x1 + α2x2 + · · ·+ αnxn (mod q) (4)

Given q and h, recover the vector α = (α1, . . . , αn) and the vectors xi’s, up to a permutation of the
αi’s and xi’s.

We first describe an extension of the Nguyen-Stern algorithm for solving the above problem,
with heuristic complexity exponential in n and polynomial in logB. Namely, the orthogonal lattice
attack in the first step recovers as previously the completion of the lattice Lx generated by x1, . . . ,xn,
and in the second step, one can still apply BKZ to recover the original vectors xi. Note that the



multivariate approach from [CG20] does not apply to the generalised problem, as it it would lead to
multivariate polynomials of degree B + 1. The technique would then remain polynomial-time only
for constant B, and be essentially unpractical.

Secondly, we describe a statistical learning approach very close to Nguyen-Regev algorithm
[NR09]. As opposed to the previous section we do not claim to have a proven algorithm: for the
generalised problem, we only obtain a heuristic complexity poly(n,B).

5.1 Extending the Nguyen-Stern algorithm

The Nguyen-Stern algorithm can be adapted to the hidden linear combination problem; its heuristic
complexity remains exponential in n as in the binary case, and polynomial in logB. Recall that the
algorithm has two steps:

1. From the samples h, determine the lattice L̄x, where Lx is the lattice generated by the xi’s.
2. From L̄x, recover the hidden vectors xi’s using BKZ. From h, the xi’s and q, recover the weights
αi.

For the first step, the orthogonal lattice attack as recalled in Section 3.1 can be directly applied
with h, q, n as input. The only difference is that the minimal size of the modulus q now depends on
B. We prove the following generalisation of Theorem 1 in Appendix B.

Theorem 4. Let m > n. Assume that the lattice Lx has rank n. With probability at least 1/2
over the choice of α, Algorithm 1 recovers a basis of L̄x in polynomial time, assuming that q is
a prime integer of bitsize at least 2mn logm + (n + 1)n logB. For m = 2n, the density is d =
n log(B + 1)/ log q = O(1/(n log n)).

The second step of Nguyen-Stern for the hidden linear combination problem is also essentially
the same as for the hidden subset-sum problem. As previously, the first step of the Nguyen-Stern
algorithm produces an LLL-reduced basis (c1, . . . , cn) of the completed lattice L̄x ⊂ Zm; however,
the recovered basis vectors (c1, . . . , cn) can be much larger than the original vectors xi. Since we
expect the xi’s to be among the shortest vectors in Lx, one must apply BKZ to obtain a better
approximation factor. We provide a detailed analysis in Appendix B.2, following the analysis from
[CG20]. We show that we obtain a similar condition on the BKZ approximation factor as in the
binary case, and eventually the heuristic running time is 2Ω(n/ logn) ·logO(1)B. We provide in Section
6.1 the result of practical experiments.

5.2 Our statistical learning approach

In Section 4 we observed that a basis of the lattice L̄x of the hidden subset sum problem can be
interpreted as a set of samples of the uniform distribution over a discrete parallelepiped P{0,1}(V).
Similarly, in the hidden linear combination problem, the vector xi’s have coordinates uniformly
distributed over {0, . . . , B}. Given X ∈ Zn×m the matrix of row vectors xi’s, C ∈ Zn×m a basis of
L̄x and V ∈ GLn(Q) such that C = V ·X, then the m columns of C are samples from the discrete
parallelepiped P{0,...,B}(V) = {Vx : x ∈ {0, . . . , B}n}.

Instead of producing a continuous distribution and applying Nguyen-Regev as in Section 4 to
recover an approximation of the matrix V, it is more efficient in practice to apply the FastICA
algorithm [HO97]; notice this also applies to the binary case with B = 1. Indeed, the Nguyen-Regev
algorithm can be seen as an instantiation of the FastICA algorithm, i.e. an algorithm for solving
the signal source separation problem, with kurtosis chosen as cost function.

Recall that the Nguyen-Regev statistical attack is composed of three steps:

1. find a linear transformation of V into an orthogonal matrix A = LV;



2. recover a good approximation of a column ±A;

3. recover an approximation of a column of ±V by multiplying by L−1.

This is actually the same overall strategy of FastICA. In both algorithms, the first step is per-
formed by exploiting the sample covariance matrix leakage. For the second step, the Nguyen-Regev
algorithm uses a gradient descent for minimising a certain function associated to U(P[−1,1](A)). Ac-
tually, the choice of parameters in [NR09] makes such gradient descent coincide with the fixed-point
algorithm used in FastICA, when the distribution of the sources is U([−1, 1]).

Therefore, our approach consists of applying directly FastICA to solve the hidden linear combi-
nation problem. Our algorithm works as follows:

1. compute a basis C of the lattice L̄x using the orthogonal lattice attack;

2. use FastICA to compute an approximation Ṽ of V.

3. compute X from the rounding of X̃ = Ṽ−1C.

Here, we only provide a heuristic analysis of such algorithm. As in Nguyen-Regev, the FastICA
algorithm produces an approximation Ṽ of V, with relative distance n−c0 , using m = nc1 samples.
This gives an approximation X̃ of X with relative distance n−c

′
. Recall that the components of X

are integers in [0, B]. Therefore, if n−c
′
< 1/(2B), we can recover X by rounding to the nearest

integer. This shows that heuristically poly(n,B) samples are sufficient.

As the Nguyen-Regev algorithm, the complexity of FastICA is polynomial in the number of
samples and the size of such vector’s coefficients. Hence, the heuristic complexity of our statistical
approach is poly(n,B). Recall that the Nguyen-Stern attack from Section 5.1 has complexity expo-
nential in n but polynomial in logB. We do not know how to solve the problem with complexity
polynomial in both n and logB.

The statistical learning approach based on FastICA is quite efficient in practice. For the hidden
subset sum problem (B = 1), the approach requires m ' n2 samples and has space complexity O(n3)
only, instead of O(n4) in the multivariate approach from [CG20]; it is also much faster. Moreover,
notice that the statistical approach described in this section does not require to transform the
samples as in Step 2 of Algorithm 2. This is because applying FastICA allows us to manage discrete
distributions, directly. We provide in Section 6.2 the result of practical experiments.

6 Practical experiments

We performed experiments for both the Nguyen-Stern and our statistical attack for the hidden linear
combination problem when B = 1, i.e. when it coincides with the hidden subset sum problem, and
B = 10. To facilitate the comparison, the modulus choice and the first step implementation follow
the specifications of [CG20].

6.1 The Nguyen-Stern attack

We provide the result of practical experiments running the Nguyen-Stern algorithm in the binary
case (B = 1) in Table 2, and for B = 10 in Table 3. For the binary case, we obtain similar timings
as in [CG20]. In both cases we face an exponential barrier in the second step for n > 170.



Step 1 Step 2

n m log q LLL L0 LLL L⊥x Hermite Reduction Total

70 140 772 3 s 1 s 1.021n LLL 1 s 6 s

90 180 1151 10 s 5 s 1.017n BKZ-10 1 s 19 s

110 220 1592 30 s 12 s 1.015n BKZ-10 3 s 50 s

130 260 2095 78 s 24 s 1.013n BKZ-20 12 s 123 s

150 300 2659 3 min 49 s 1.012n BKZ-30 135 s 7 min

170 340 3282 6 min 106 s 1.011n BKZ-30 260 min 269 min

Table 2. Running time of the Nguyen-Stern attack for B = 1 under a 3,2 GHz Intel Core i5 processor.

Step 1 Step 2

n m log q LLL L0 LLL L⊥x Hermite Reduction Total

70 140 1237 7 s 4 s 1.021n LLL 1 s 12 s

90 180 1749 22 s 12 s 1.017n BKZ-10 1 s 37 s

110 220 2323 61 s 27 s 1.015n BKZ-10 2 s 96 s

130 260 2959 139 s 54 s 1.013n BKZ-20 8 s 4 min

150 300 3655 5 min 107 s 1.012n BKZ-30 3 min 12 min

170 340 4412 22 min 4 min 1.011n BKZ-30 139 min 167 min

Table 3. Running time of the Nguyen-Stern attack for B = 10 under a 3,2 GHz Intel Core i5 processor.

6.2 Statistical attack

We provide in Table 4 the results of practical experiments running our statistical attack for B = 1,
and in Table 5 for B = 10. We have used the implementation of FastICA iterative algorithm provided
in the scikit-learn package [PVG+11]. We see that for B = 1 the FastICA algorithm at Step
2 of the attack is very efficient, as we can reach n = 250, whereas with Nguyen-Stern we cannot
solve the hidden subset-sum problem for n > 170. In particular, for n = 250, FastICA takes only
76 seconds, whereas in the multivariate attack from [CG20], the second step takes 45 minutes.

Although, forB = 10, in our experiments the statistical attack is less efficient than Nguyen-Stern,
as one must generate a large number m of samples in the first step; the attack scales polynomially
with n. Therefore, we expect the statistical approach to eventually outperform Nguyen-Stern for
larger values of n. We provide the source code in:

https://pastebin.com/WzGXHmpW

n m log q Step 1: LLL Step 2: FastICA Total

70 4900 986 13 s 2 s 17 s

90 8100 1443 40 s 2 s 45 s

110 12100 1965 96 s 4 s 106 s

130 16900 2552 3 min 7 s 5 min

150 22500 3201 8 min 11 s 9 min

170 28900 3912 15 min 15 s 17 min

190 36100 4684 32 min 25 s 33 min

220 48400 5955 128 min 39 s 130 min

250 62500 7362 230 min 76 s 233 min

Table 4. Running time of our statistical attack for B = 1 under a 3,2 GHz Intel Core i5 processor.



n m log q Step 1: LLL Step 2: FastICA Total

70 147000 1237 4 min 27 s 6 min

90 189000 1749 9 min 50 s 12 min

110 231000 2323 17 min 71 s 21 min

130 273000 2959 31 min 98 s 36 min

150 315000 3655 66 min 139 s 73 min

Table 5. Running time of our statistical attack for B = 10 under a 3,2 GHz Intel Core i5 processor.

7 Conclusion

We have described a proven polynomial-time algorithm for solving the hidden subset-sum problem,
based on the Nguyen-Stern orthogonal lattice attack [NS99], and on the Nguyen-Regev statistical
learning attack [NR09]. The original Nguyen-Stern algorithm for the hidden subset-sum problem has
exponential complexity, while the multivariate attack in [CG20] is heuristic polynomial-time only.
We have also considered a natural generalisation of the hidden subset sum, with integer coefficients
uniformly distributed between 0 and B instead of binary. In that case the multivariate approach
from [CG20] does not apply, but our statistical approach can still be extended, at least heuristically,
to get polynomial-time complexity in both n and B.

Our proven polynomial-time algorithm for solving the hidden subset-sum problem is of theoret-
ical interest only, as it would require a huge number of samples. For our practical experiments, we
have used the FastICA algorithm, and for the hidden subset-sum problem, we obtained at least an
order of magnitude improvement in running time for the second step, compared to the multivariate
attack from [CG20], using a similar number of samples.
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A Rank of Lx

The lattice Lx is defined as the lattice generated by x1, . . . ,xn ∈ {0, 1}m for m ≥ n. The probability
that Lx has full rank n is lower bounded by the probability that a random n× n binary matrix is
invertible in F2. Let p(n) be this probability. We have:

p(n) = 2−n
2 ·

n∏
k=1

(
2n − 2k−1

)
=

n∏
i=1

(
1− 2−i

)
Namely, the first row must be non-zero, so there are 2n− 1 possibilities, and for 2 ≤ k ≤ n the k-th
row must be linearly independent from the first k − 1 rows, so there are 2n − 2k−1 possibilities.

Moreover, using 1− x ≥ exp(−2x) for 0 ≤ x ≤ 1/2, we obtain:

p(n) ≥
n∏
k=1

exp(−2 · 2−k) = exp

(
n−1∑
k=0

2−i

)
≥ e−2

Therefore the lattice Lx has full rank n with at least constant probability.

B The Nguyen-Stern algorithm

Nguyen and Stern in [NS99] present a lattice based algorithm for solving the hidden subset sum
algorithm. In this section we describe a straightforward generalisation of the Nguyen-Stern algorithm
for solving the hidden linear combination problem. We describe this attack following the analysis
of the Nguyen-Stern algorithm of [CG20].

Recall that in the hidden combination problem, given a modulus q and h = (h1, . . . , hm) ∈ Zm
satisfying

h = α1x1 + α2x2 + · · ·+ αnxn (mod q) (5)

we must recover the vector α = (α1, . . . , αn) ∈ Znq and the vectors xi ∈ ([0, B] ∩ Z)m. The hidden
subset-sum problem corresponds to B = 1. The Nguyen-Stern algorithm comprises two steps:

1. From the samples h, determine the lattice L̄x, where Lx is the lattice generated by the xi’s.
2. From L̄x, recover the hidden vectors xi’s using BKZ. From h, the xi’s and q, recover the weights
αi.

B.1 First step: orthogonal lattice attack

In the first step the goal is to recover L̄x from h and q. Let L0 be the lattice of vectors orthogonal
to h modulo q:

L0 := Λ⊥q (h) = {u ∈ Zm | 〈u,h〉 ≡ 0 (mod q) }

For any u ∈ L0, the vector
pu = (〈u,x1〉, . . . , 〈u,xn〉)

is orthogonal to the vector α modulo q, since from (5) we obtain:

〈u,h〉 ≡ α1〈u,x1〉+ · · ·+ αn〈u,xn〉 ≡ 0 (mod q).

Then if pu is shorter than the shortest non-zero vector orthogonal to α modulo q, we must have
pu = 0, and therefore u ∈ L⊥x .

Therefore, the orthogonal lattice attack first obtains an LLL-reduced basis of L0, from which it
extracts a generating set for L⊥x ; subsequently, it computes the orthogonal of L⊥x obtaining L̄x. In
the following we extend the analysis of [CG20] to B > 1.



Algorithm 3 Orthogonal lattice attack
Input: h, q, n,B.
Output: A basis of L̄x.
1: Compute an LLL-reduced basis u1, . . . ,um of L0.
2: Extract a generating set of u1, . . . ,um−n of L⊥x .
3: Compute a basis (c1, . . . , cn) of L̄x = (L⊥x )⊥.
4: return (c1, . . . , cn)

The orthogonal lattice attack described in Algorithm 3 is guaranteed to succeed with good
probability for sufficiently large q. The following theorem is a generalisation of [CG20, Theorem 1].

Theorem 5 (Theorem 4). Let m > n. Assume that the lattice Lx has rank n. With probability
at least 1/2 over the choice of α, Algorithm 3 recovers a basis of L̄x in polynomial time, assuming
that q is a prime integer of bitsize at least 2mn logm+ (n+ 1)n logB. For m = 2n, the density is
d = n log(B + 1)/ log q = O(1/(n log n)).

We denote by Λ⊥q (α) the lattice of vectors orthogonal to α = (α1, . . . , αn) modulo q. The proof
of Theorem 5 is based on the following two lemmas:

Lemma 3. Assume that the lattice Lx has rank n. Algorithm 3 computes a basis of the lattice L̄x
in polynomial time under the condition m > n and

√
mn ·B · 2

m
2 · λm−n

(
L⊥x
)
< λ1

(
Λ⊥q (α)

)
. (6)

Proof. As observed previously, for any u ∈ L0, the vector

pu = (〈u,x1〉, . . . , 〈u,xn〉)

is orthogonal to the vector α modulo q, i.e. pu ∈ Λ⊥q (α). Therefore, if pu is shorter than the shortest

non-zero vector orthogonal to α modulo q, we must have pu = 0, and consequently u ∈ L⊥x . Thus,
a sufficient condition for u ∈ L⊥x is ‖pu‖ < λ1

(
Λ⊥q (α)

)
.

Since ‖pu‖ ≤
√
mnB‖u‖, this implies that given any u ∈ L0 we must have u ∈ L⊥x if

√
mnB‖u‖ < λ1

(
Λ⊥q (α)

)
. (7)

Now, the lattice L0 is full rank of dimension m since it contains qZm. Therefore, we can consider
u1, . . . ,um an LLL-reduced basis of L0. From Lemma 1, for each j ≤ m− n we have

‖uj‖ ≤ 2
m
2 · λm−n(L0) ≤ 2

m
2 · λm−n

(
L⊥x
)

(8)

since L⊥x is a sublattice of L0 of dimension m− n. Combining (8) with (7), when

√
mn ·B · 2

m
2 · λm−n

(
L⊥x
)
< λ1

(
Λ⊥q (α)

)
the vectors u1, . . . ,um−n must belong to L⊥x . This means that 〈u1, . . . ,um−n〉 is a full rank sublattice
of L⊥x , and therefore 〈u1, . . . ,um−n〉⊥ = L̄x. Finally, Algorithm 3 is polynomial-time, because both
the LLL reduction step of L0 and the LLL-based orthogonal computation of L⊥x are polynomial-time.

We recall [CG20, Lemma 3]:

Lemma 4. Let q be a prime. Then with probability at least 1/2 over the choice of α, we have
λ1(Λ

⊥
q (α)) ≥ q1/n/4.



Proof (Proof of Theorem 5). In order to apply Lemma 3, we first derive an upper-bound on
λm−n

(
L⊥x
)
. The lattice L⊥x has dimension m − n, therefore by Minkowski’s second theorem we

have
λm−n

(
L⊥x
)
≤ √γm−nm−n det

(
L⊥x
)
≤ mm/2 det

(
L⊥x
)
. (9)

From detL⊥x = det L̄x ≤ detLx and Hadamard’s inequality with ‖xi‖ ≤ B
√
m, we obtain:

detL⊥x ≤ detLx ≤
n∏
i=1

‖xi‖ ≤ mn/2Bn (10)

which gives the following upper-bound on λm−n
(
L⊥x
)
:

λm−n

(
L⊥x
)
≤ mm/2mn/2Bn ≤ mmBn.

Thus, by Lemma 3, we can recover a basis of L̄x when
√
mn · 2

m
2 ·mm ·Bn+1 < λ1

(
Λ⊥q (α)

)
.

By Lemma 4, this implies that, with probability at least 1/2 over the choice of α, we can recover
the hidden lattice L̄x if: √

mn · 2
m
2 ·mm ·Bn+1 < q1/n/4.

For m > n ≥ 4, therefore it suffices to have log q ≥ 2mn logm+ (n+ 1)n logB.

Heuristic analysis. In practice we can use a smaller value for the modulus q than predicted by
Theorem 5. As in [CG20], we derive a heuristic size for the modulus q, using an approximation of
the terms in condition (6). We start with the term λm−n

(
L⊥x
)
. For a “random lattice” we expect the

lattice minima to be balanced, and therefore λm−n
(
L⊥x
)

to be roughly equal to λ1
(
L⊥x
)
. Therefore

we use the heuristic approximation:

λm−n

(
L⊥x
)
' √γm−n det(L⊥x )

1
m−n .

From (10) we obtain:

λm−n

(
L⊥x
)
/
√
γm−nB

n
m−nm

n
2(m−n) . (11)

For the term λ1
(
Λ⊥q (α)

)
, using the Gaussian heuristic, we expect:

λ1

(
Λ⊥q (α)

)
' √γnq

1
n .

Finally the 2m/2 factor in (6) corresponds to the LLL Hermite factor with δ = 3/4; in practice we
will use δ = 0.99, and we denote by 2ιm the corresponding LLL Hermite factor. Hence from (6) we
obtain the heuristic condition:

√
mn ·B · 2ι·m · √γm−n ·B

n
m−n ·m

n
2(m−n) <

√
γnq

1/n.

This gives the condition:

2ι·m
√
γm−n · n ·B

m
m−n ·m

m
2(m−n) <

√
γnq

1/n

which gives:

log q > ι ·m · n+
n

2
log(n · γm−n/γn) +

mn

2(m− n)
logm+

n ·m
m− n

logB (12)

For m = 2n we obtain the condition:

log q > 2ι · n2 +
3n

2
log n+ n+ 2n logB (13)

In practice for our experiments we can use m = 2n and log q ' 2ιn2 + n log n + 2n logB with
ι = 0.035.



B.2 Extended Nguyen-Stern attack: second step

The vectors xi ∈ Zm have coordinates distributed uniformly over the set {0, . . . , B}. Then the
expected value of ‖xi‖2 is m ·E[x2] = m ·µ′2,B = m ·B(2B+ 1)/6 for x any coordinate. This implies,

by Jensen inequality, that we expect the norm of the xi’s to be smaller than
√
mB(2B + 1)/6. In

addition, the expected value of the norm of the difference between some xi and xj is

E[‖xi − xj‖] ≤
√
m · 2 Var(x) =

√
m · 2σ2B =

√
m
B(B + 2)

6
.

Notice that these bounds on the xi and xi − xj for i 6= j coincide when B = 1. In general, we have
that both these classes of vectors are short vectors of Lx.

Hence, after BKZ reduction of the first step’s output basis C with a large enough block-size
β, we expect that each vector of the basis vectors c1, . . . , cn is either equal to ±xi, or equal to a
combination of the form xi − xj for i 6= j.

Therefore, first we can collect in a set L the ±ci’s whose coefficients are between 0 and B, i.e.
the set of candidate target vectors. Notice that L 6= ∅ since at least one the ci must be equal to
one of the ±xj ’s; this is because, otherwise, the vector of all ones would belong to the kernel of
the transition matrix M between (x1, . . . ,xn) and (c1, . . . , cn), i.e. the latter would not be a basis.
Without loss of generality, we can suppose L = {c1, . . . , ck} and

M =

(
Ik 0

Ak Mn−k

)
If k < n, for j = k + 1, . . . , n and for any v in L we compute c = ±cj − v, and check if either c or
−c are suitable to be added to the set L. Again, we must find at least a new vector, otherwise the
matrix Mn−k would be singular. Hence, iterating this reasoning and updating L at each step, we
recover all the rows of X.

The number of controls for round is O(n −#L). Therefore, while staying in the lattice Lx we
can recover each of the original vectors xi from the basis vectors C, by O(n3) tests.

BKZ block-size and running time. We can construct a “generic” short vector in Lx as a binary
combination of vectors of the form xi − xj . Namely, consider z =

∑n
k=1 bkzk with bj ∈ {0, 1} and

zk a xi − xj . The variance of any component of z is

Var(zi) =
∑
k

Var(bj) Var(zki) =
n

2
σ2B,

where σ2B is the variance of the uniform distribution over {0, . . . , B}. Thus the norm of the resulting

vector will be about
√
mnσ2B/2.

Then heuristically the gap between these generic vectors and the shortest vectors is:√
mnB(B + 2)/24√
mB(2B + 1)/6

=
1

2

√
n
B + 2

2B + 1
.

Therefore, in order to recover the shortest vectors, the BKZ approximation factor 2ι·n should be
less than such gap, namely:

2ι·n ≤ 1

2

√
n
B + 2

2B + 1
' 1

2

√
n

2
(14)

which gives ι ≤ (log(n/8))/(2n). Achieving an Hermite factor of 2ιn heuristically requires at least
2Ω(1/ι) time, by using BKZ reduction with block-size β = ω(1/ι) [HPS11]. This implies that to satisfy
(14), we should consider β = ω(n/ log n). Namely, the running time of the generalised Nguyen-Stern
algorithm results poly(n, logB) · 2Ω(n/ logn) = 2Ω(n/ logn) · logO(1)B.


