
Public-key Authenticated Encryption with Keyword Search:
Cryptanalysis, Enhanced Security, andQuantum-resistant

Instantiation
Zi-Yuan Liu

National Chengchi University

Taipei 11605, Taiwan

zyliu@cs.nccu.edu.tw

Yi-Fan Tseng

National Chengchi University

Taipei 11605, Taiwan

yftseng@cs.nccu.edu.tw

Raylin Tso

National Chengchi University

Taipei 11605, Taiwan

raylin@cs.nccu.edu.tw

Masahiro Mambo

Kanazawa University

Kanazawa 920-1192, Japan

mambo@ec.t.kanazawa-u.ac.jp

Yu-Chi Chen

Yuan Ze University

Kanazawa 920-1192, Japan

wycchen@saturn.yzu.edu.tw

ABSTRACT
With the rapid development of cloud computing, an increasing

number of companies are adopting cloud storage to reduce over-

head. However, to ensure the privacy of sensitive data, the uploaded

data need to be encrypted before being outsourced to the cloud.

The concept of public-key encryption with keyword search (PEKS)

was introduced by Boneh et al. to provide flexible usage of the

encrypted data. Unfortunately, most of the PEKS schemes are not

secure against inside keyword guessing attacks (IKGA), so the key-

word information of the trapdoor may be leaked to the adversary.

To solve this issue, Huang and Li presented public key authenticated

encryption with keyword search (PAEKS) in which the trapdoor

generated by the receiver is only valid for authenticated ciphertexts.

With their seminal work, many PAEKS schemes have been intro-

duced for the enhanced security of PAEKS. Some of them further

consider the upcoming quantum attacks. However, our cryptanaly-

sis indicated that in fact, these schemes could not withstand IKGA.

To fight against the attacks from quantum adversaries and support

the privacy-preserving search functionality, we first introduce a

novel generic PAEKS construction in this work. We further present

the first quantum-resistant PAEKS instantiation based on lattices.

The security proofs showed that our instantiation not only satis-

fied the basic requirements but also achieved an enhanced security

model, namely the multi-ciphertext and multi-trapdoor indistin-

guishability. Furthermore, the comparative results indicated that

with only some additional expenditure, this instantiation could

provide more secure properties, making it suitable for more diverse

application environments.

CCS CONCEPTS
• Security and privacy→ Public key encryption; Cryptanalysis
and other attacks; Privacy-preserving protocols.

KEYWORDS
Cryptanalysis, Generic construction, Trapdoor privacy, Post-quantum,

Keyword search, Public-key encryption.

1 INTRODUCTION
In recent years, with the widespread development of the cloud com-

puting technology, cloud applications, such as cloud storage, have

become increasingly widespread. In particular, with the support

of cloud storage, users and enterprises can easily reduce the cost

of local maintenance and storage. In addition, it can be combined

with IoT devices to provide more meta-services and applications.

As the uploaded data are usually critical and sensitive, ensuring

that service providers can properly protect the privacy of data is

an important issue. Therefore, to avoid privacy leakage, users need

to encrypt data before outsourcing them to the cloud. However,

the encrypted data will lose the flexibility of use, such as search

or modification. As the search function can considerably reduce

the transmission demand, this function is extremely important for

cloud storage. To resolve this issue, the concept of searchable en-

cryption was first introduced by Song et al. [56] and Boneh et al.
[8]. In these primitives, encrypted data are uploaded along with

multiple encrypted keywords by the sender, while the receiver can

generate trapdoors for specific keywords. With the trapdoor, the

cloud server can perform a search to find the matched encrypted

keywords, i.e., they are associated with the same keyword, and

return the corresponding encrypted data to the receiver. With the

distinction of whether the generation of encrypted keywords and

trapdoors is symmetric or asymmetric, searchable encryption can

be further divided into symmetric search encryption (SSE) and

public-key encryption with keyword search (PEKS).

The first SSE scheme was presented by Song et al. [56] in 2000.

Because SSE has an advantage in efficiency, it has been extensively

studied [18, 44, 46, 57]. However, in practical applications, SSE has

the same problem as symmetric encryption—the key distribution

problem. To resolve this problem, Boneh et al. [8] combined the

concept of public-key encryption and searchable encryption to

introduce the first PEKS scheme. In this scheme, the searchable

ciphertext (i.e., encrypted keyword) is generated by using the re-

ceivers’ public keys, while a receiver can generate a trapdoor by

using his/her private key and hand it to the cloud server to search

for the matching searchable ciphertexts. In addition, Boneh et al.
[8] formalized the security requirement of the PEKS, namely ci-

phertext indistinguishability (CI), i.e., indistinguishability against

chosen keyword attacks (CKA), which ensures that there exists

no adversary who can obtain any keyword information from the

ciphertext. However, Byun et al. [9] further considered the notion

of trapdoor privacy (TP), i.e., indistinguishability against keyword

1

Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, Masahiro Mambo, and Yu-Chi Chen

guessing attacks (KGA) [53], where the adversary may retrieve the

keyword information from the trapdoor by adaptively generating

ciphertext for a guessing keyword. As discussed in Byun et al.’s
work [9], the keyword space in PEKS schemes is small and limited,

e.g., only 225,000 (≈ 2
16
) words in Merriam-Webster’s collegiate

dictionary [11]. Therefore, upon a brute force attack, there is a

high probability (
1

2
16
) that the adversary can obtain the keyword

information hidden by the trapdoor.

The KGA can be divided into outside KGA launched by an exter-

nal adversary (e.g., eavesdropper) and inside KGA (IKGA) launched

by an internal adversary (e.g., malicious cloud server). Although

many KGA-secure PEKS schemes have been introduced [5, 13–

15, 20–22, 30, 31, 52, 53, 58, 59, 61], it was not until the concept of

public-key authenticated encryption with keyword search (PAEKS)

was proposed by Huang and Li [27] that the IKGA was solved in

the single-server context. In the PAEKS, the trapdoor generated by

the receiver is only valid to the ciphertexts that are authenticated

by a specified sender. In this way, the adversaries cannot perform

KGA by adaptively generating ciphertext for any keyword to test

the trapdoors. As the concept of PAEKS solves the privacy concern,

many variants PAEKS schemes [12, 26, 36–38, 40–42, 45, 47–49]

have been proposed to be suitable for various scenarios.

1.1 Motivation
MCI and MTP Security. Among various PAEKS schemes, Qin et
al. [49] first introduced an enhanced security notion called multi-

ciphertext indistinguishability (MCI). Compared with CI, MCI con-

siders whether the adversary can distinguish two tuples of search-

able ciphertexts related to some of the same keywords. In practical

scenarios, each encrypted file is related to multiple search cipher-

texts, so this notion captures the security that needs to be considered

in the real environment.

In addition, Pan and Li [48] followed this concept and introduced

the notion called multi-trapdoor privacy (MTP) to ensure that any

adversary cannot distinguish whether two tuples of trapdoors have

some of the same keywords. Unfortunately, Cheng and Meng [16]

recently showed that although Pan and Li’s scheme [48] satisfies

MTP, their scheme cannot satisfy MCI.

Quantum-resistant PAEKS. As Shor [54, 55] has confirmed that

there exists a quantum algorithm that can be used to crack the

foundation of many cryptographic primitives—the discrete loga-

rithm hard assumption, scholars have begun to explore how to

construct quantum-resistant PEKS schemes [6, 60]. To further sat-

isfy TP, Zhang et al. [62, 63] introduced two lattice-based PEKS

schemes that are secure against IKGA by restricting the cipher-

text to be authenticated by the sender. However, our cryptanalysis

shows that their schemes contain flaws, and therefore, an adversary

can directly obtain the keyword information of the trapdoor. In

addition, Liu et al. [39] introduced a generic PAEKS construction

and further presented an instantiation based on NTRU lattices. Un-

fortunately, their system model is not a “pure” public-key setting.

More specifically, their construction requires a trusted authority to

assist users in generating their private keys.

Hence, with the above description, it raises an urgent problem:

Can we obtain a quantum-resistant PAEKS that also satisfies MCI

and MTP?

1.2 Our Contribution
In this work, we first cryptanalyze Zhang et al.’s lattice-based PEKS
schemes [62, 63] and show that their schemes cannot resist against

IKGA. To resolve the above issues, we present a generic PAEKS

construction by adopting smooth projection hash function (SPHF)

and PEKS.

As a high-level idea, to prevent adversaries from being able to

adaptively generate ciphertexts for any keyword and further guess

the keyword hidden in the trapdoor, we restrict that the trapdoor

generated from a receiver is only valid to the ciphertext generated

from a specific sender. Tomeet this requirement, our strategy was to

enable the sender and the receiver to obtain high-entropy random-

ness without any interaction by utilizing (pseudo-random) SPHF.

Through this randomness, both parties could obtain an extended

keyword to generate a ciphertext and a trapdoor, respectively, in-

stead of generating them through the original low-entropy keyword.

Therefore, the adversary could not perform IKGA by randomly se-

lecting keywords.

In addition, to further achieve the MCI and MTP properties,

we provided a theoretical result in Theorem 3.3: if the PAEKS and

Trapdoor algorithms of a PAEKS scheme is probabilistic and the

PAEKS scheme satisfies CI and TP, then this PAEKS scheme also

satisfies MCI andMTP. This interesting result can boost the security

of many existing PAEKS schemes.

Eventually, we compiled Behnia et al.’s PEKS [6] and Ben-

hamouda et al.’s SPHF [7] by our generic construction and pro-

posed the first quantum-resistant PAEKS scheme based on lattices.

In terms of the computational cost and the communication cost, the

results showed that our instantiation could provide more secure

attributes with only a little additional expenditure.

2 PRELIMINARIES
This section introduces some requisite knowledge, including the

background of lattices and the definitions of cryptographic primi-

tives.

2.1 Background of Lattices
2.1.1 Lattices. Here, we briefly summarize the concept of lattices.

Let B = [b1 | · · · |b𝑛] ∈ R𝑚×𝑛 , where b1, · · · , b𝑛 are 𝑛 linear in-

dependent vectors. An𝑚-dimensional lattice Λ generated by B is

defined as Λ(B) := {∑𝑛𝑖=1
b𝑖𝑎𝑖 | 𝑎𝑖 ∈ Z}. Here, B is called the basis

of Λ. In addition, given 𝑛,𝑚,𝑞 ∈ Z, u ∈ Z𝑛𝑞 , and A ∈ Z𝑛×𝑚𝑞 , we can

define two 𝑞-ary lattices and a coset as follows:

• Λ𝑞 (A) := {y ∈ Z𝑚𝑞 | ∃𝑧 ∈ Z𝑛𝑞 , y = A⊤z mod 𝑞};
• Λ⊥𝑞 (A) := {e ∈ Z𝑚𝑞 | Ae = 0 mod 𝑞};
• Λu

𝑞 (A) := {e ∈ Z𝑚 | Ae = u mod 𝑞}.

2.1.2 Discrete Gaussian Distributions. For any positive real num-

ber 𝜎 , any center c ∈ Z𝑚 , and any x ∈ Z𝑚 , we define the Gauss-

ian distribution of D𝜎,c by the probability distribution function

𝜌𝜎,c (x) := exp(−𝜋 · ∥x − c∥2/𝜎2). Furthermore, for any lattice

Λ ⊂ Z𝑚 , we define 𝜌𝜎,c (Λ) :=
∑
x∈Λ 𝜌𝜎,c (x). Then, the discrete

2

Public-key Authenticated Encryption with Keyword Search: Cryptanalysis, Enhanced Security, andQuantum-resistant Instantiation

Gaussian distribution over lattice Λwith parameter (𝜎, c) is defined
as follows: For any x ∈ Λ, DΛ,𝜎,c (x) := 𝜌𝜎,c (x)/𝜌𝜎,c (Λ).

2.1.3 Lattices with Trapdoors. Next, we introduce the preimage

sampleable functions and lattice basis delegation technique.

(1) TrapGen(1𝑛, 1𝑚, 𝑞) [4, 43]: For input 𝑛,𝑚,𝑞 ∈ Z, this prob-
abilistic polynomial time (PPT) algorithm outputs a pair

(A ∈ Z𝑛×𝑚𝑞 ,TA ∈ Z𝑚×𝑚𝑞), where TA is a basis for Λ⊥𝑞 (A),
such that the following property holds: {A : (A,TA) ←
TrapGen(1𝑛, 1𝑚, 𝑞)} ≈ {A : A ← Z𝑛×𝑚𝑞 }. Here, TA is also

called a trapdoor of A.
(2) SamplePre(A,TA, u, 𝜎) [24]: For an input matrix A ∈ Z𝑛×𝑚𝑞

and its trapdoor TA ∈ Z𝑚×𝑚𝑞 , a vector u ∈ Z𝑛𝑞 , and param-

eter 𝜎 ≥ ∥T̃A∥ · 𝜔 (
√

log(𝑚)), this PPT algorithm outputs a

sample t ∈ Z𝑚𝑞 from a distribution that is statistically close

to DΛu
𝑞 (A),𝜎 such that At = u mod 𝑞.

(3) NewBasisDel(A,R,TA, 𝜎) [3]: For an input matrix A ∈
Z𝑛×𝑚𝑞 , a Z𝑞-invertible matrix R sampled from the distribu-

tion D𝑚×𝑚 , trapdoor TA, and parameter 𝜎 ∈ R, this PPT
algorithm outputs a short lattice basis TB of Λ⊥𝑞 (B), where
B = AR−1

.

(4) SampleLeft(A,M,TA, u, 𝜎) [2]: For an input matrix A ∈
Z𝑛×𝑚𝑞 and its corresponding trapdoor TA ∈ Z𝑚×𝑚𝑞 , a ma-

trix M ∈ Z𝑛×𝑚1

𝑞 , a vector u ∈ Z𝑛𝑞 , and a parameter 𝜎 ≥
∥T̃A∥ ·𝜔 (

√
log(𝑚 +𝑚1)), this PPT algorithm outputs a sam-

ple t ∈ Z𝑚+𝑚1
from a distribution statistically close to

DΛ𝑢
𝑞 ([A |M]),𝜎 such that [A|M] · t = u mod 𝑞.

2.2 Public-key Encryption with Keyword
Search

In this subsection, we recall the definition of PEKS defined by

Boneh et al. [8]. A PEKS scheme PEKS consists of the following

four algorithms:

• KeyGen(1𝜆): Taking as input a security parameter 𝜆, this

PPT algorithm outputs a pair of keys (pkPEKS, skPEKS),
where pkPEKS is the public key and skPEKS is the private

key.

• PEKS(pkPEKS, kw): Taking as input the public key pkPEKS
and a keyword kw, this PPT algorithm outputs a searchable

ciphertext ctPEKS,kw related to the keyword kw.
• Trapdoor(skPEKS, kw′): Taking as input the private key

skPEKS and a keyword kw′, this PPT algorithm outputs a

trapdoor tdPEKS,kw′ related to keyword kw′.
• Test(ctPEKS,kw, tdPEKS,kw′): Taking as input the searchable

ciphertext ctPEKS,kw and trapdoor tdPEKS,kw′ , this determin-

istic algorithm outputs 1 if ctPEKS,kw and tdPEKS,kw′ are re-
lated to the same keyword (i.e., kw = kw′); otherwise, it
outputs 0.

Correctness. For any security parameter 𝜆, any hon-

estly generated key pairs (pkPEKS, skPEKS), any keywords

kw, kw′, any ciphertext ctPEKS,kw ← PEKS(pkPEKS, kw), and
any trapdoor tdPEKS,kw′ ← Trapdoor(skPEKS, kw′), then

Pr[Test(ctPEKS,kw, tdPEKS,kw′) = 1] = 1 − negl(𝜆) when kw = kw′

and Pr[Test(ctPEKS,kw, tdPEKS,kw′) = 0] = 1 − negl(𝜆) when

kw ≠ kw′.

Ciphertext Indistinguishability of PEKS. The CI ensures that
there is no PPT adversary that can obtain any keyword informa-

tion from the given challenge ciphertext, even if it can adaptively

query the trapdoor oracle for any keyword, except for the challenge

keyword. This security requirement is modeled by the following

indistinguishability against the chosen keyword attack (IND-CKA)

game of PEKS that is interacted by a challenger C and an adversary

A.

• Setup. After receiving a security parameter 𝜆, C gener-

ates (pkPEKS, skPEKS) by performing the KeyGen algorithm.

Then, it sends the public key pkPEKS to A and keeps the

private key skPEKS secret.
• Phase 1. In this phase, A is allowed to adaptively issue

queries to the trapdoor oracle polynomially many times:

for any keyword kw, C generates a trapdoor tdPEKS,kw by

performing Trapdoor(skPEKS, kw) and returns tdPEKS,kw to

A.

• Challenge. AfterA terminates the Phase 1, it outputs two
challenge keywords kw∗

0
, kw∗

1
to C. The restriction is that

A never issue these two challenge keywords to the trap-

door oracle. C then randomly chooses a bit 𝑏 ∈ {0, 1} and
returns the challenge ciphertext ct∗ to A by performing

PEKS(pkPEKS, kw∗𝑏).
• Phase 2. A can continue to query the trapdoor oracle as

in Phase 1 for any keyword kw, except for the challenge
keywords (i.e., kw ∉ {kw∗

0
, kw∗

1
}).

• Guess. Finally,A outputs a bit 𝑏 ′ ∈ {0, 1} as its answer, and
wins the game if 𝑏 = 𝑏 ′.

The advantage of A winning the above game is defined as

𝐴𝑑𝑣𝐶𝐼−𝑃𝐸𝐾𝑆A (𝜆) :=

����Pr[𝑏 = 𝑏 ′] − 1

2

���� .
Definition 2.1 (Ciphertext Indistinguishability of PEKS). A PEKS

scheme is called CI (or IND-CKA) if, for any PPT adversary A,

𝐴𝑑𝑣𝐶𝐼−𝑃𝐸𝐾𝑆A (𝜆) is negligible.

2.3 Labelled Public-key Encryption Scheme
A labelled public-key encryption (PKE) scheme can be viewed as

the variant of PKE. As described in [1], a labelled PKE scheme PKE
consists of the following three algorithms:

• KeyGen(1𝜆): Taking as input a security parameter 𝜆, this

PPT algorithm outputs a pair of keys (ekPKE, dkPKE), where
ekPKE is the public encryption key and dkPKE is the private

decryption key.

• Encrypt(ekPKE, label,mPKE; 𝜌): Taking as input the public

encryption key ekPKE, a label label, a plaintext mPKE, and

a randomness 𝜌 , this PPT algorithm outputs a ciphertext

ctPKE.
• Decrypt(dkPKE, label, ctPKE): Taking as input the private de-
cryption key dkPKE, a label label, and a ciphertext ctPKE, this
deterministic algorithm outputs a plaintext mPKE or ⊥.

In addition, it must to satisfy the following correctness and se-

curity.

3

Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, Masahiro Mambo, and Yu-Chi Chen

• Correctness: For any security parameter 𝜆, any pair of keys

(dkPKE, ekPKE) ← KeyGen(1𝜆), any label label, any plain-

text mPKE, any randomness 𝜌 , and any ciphertext ctPKE ←
Encrypt(ekPKE, label,mPKE; 𝜌), a labelled public-key encryp-
tion scheme is correct if Pr[Decrypt(dkPKE, label, ctPKE) =
mPKE] = 1 − negl(𝜆).
• IND-CPA/IND-CCA1/IND-CCA2 security: Informally, we

say that a labelled public-key encryption scheme has indis-

tinguishability against chosen-plaintext attacks (IND-CPA)

if there is no adversary that can obtain any information

about the challenge plaintext. Suppose that the adversary is

allowed to query the decryption oracle for any ciphertext,

except for the challenge ciphertext, then the scheme has

indistinguishability against chosen-ciphertext attacks (IND-

CCA2). Furthermore, if the IND-CCA2 security restricts the

adversary from continuously querying the oracles after ob-

taining the challenge ciphertext, we call it IND-CCA1 secu-

rity.

2.4 Smooth Projective Hash Functions
The SPHF was first introduced by Cramer and Shoup [17] to trans-

form an IND-CPA secure encryption scheme into IND-CCA2 se-

curity. Informally, SPHF is defined for an NP language L over a

domain X that contains two keyed algorithms, namely Hash and

ProjHash that take as input the hashing key hk and a projection

key hp, respectively. The important property of SPHF is as follows:

for a word 𝜒 ∈ L, the outputs of both algorithms are indistinguish-

able, while for a word 𝜒 ∉ L, the outputs of Hash algorithms are

statistically indistinguishable with a random element.

Various extended definitions of SPHF are also introduced to

achieve password-based authenticated key exchange schemes [10,

19, 23, 25, 29, 32]. In this work, we focused on the stronger type

of SPHF, called “word-independent” SPHF defined by Katz and

Vaikuntanathan [33, 34]. Compared with general SPHF, the ProjKG
algorithm in word-independent SPHF does not require a word as

its input. The following formally define the languages and word-

independent SPHF.

We first consider a family of languages (ℒlpar,ltrap)lpar,ltrap in-

dexed by some language parameter lpar and some language trap-

door ltrap, together with a family of NP language (ℒ̃lpar)lpar in-
dexed by some parameter lpar, with witness relation 𝒦lpar, such

that ℒ̃lpar = {𝜒 ∈ Xlpar | ∃𝜔,𝒦lpar (𝜒,𝜔) = 1} ⊆ (ℒlpar,ltrap) ⊆
Xlpar, where (Xlpar)lpar is a family of sets and the parameter lpar is
generated by a polynomial-time algorithm Setup.lpar(1𝜆) for some

security parameter 𝜆. We suppose that the membership in Xlpar
and𝒦lpar can be checked in polynomial time by the given lpar, and
that the membership inℒlpar,ltrap by the given lpar and ltrap.

Then, let (ℒ̃lpar ⊆ ℒlpar,ltrap ⊆ Xlpar)lpar,ltrap be the languages
defined as above. An approximate word-independent SPHF scheme

SPHF for these languages consists of the following four algorithms:

• HashKG(lpar): Taking as input a language parameter lpar,
this PPT algorithm outputs a hashing key hk.
• ProjKG(hk, lpar): Taking as input a hashing key hk and the

language parameter lpar, this PPT algorithm outputs a pro-

jection key hp.

• Hash(hk, lpar, 𝜒): Taking as input a hashing key hk, the lan-
guage parameter lpar and a word 𝜒 ∈ Xlpar, this determin-

istic algorithm outputs a hash value H ∈ {0, 1}𝛿 for some

𝛿 ∈ N.
• ProjHash(hp, lpar, 𝜒, 𝜔): Taking as input a projection key

hp, the language parameter lpar, a word 𝜒 ∈ ℒ̃lpar, and a

witness 𝜔 (i.e., 𝒦(𝜒, 𝜔) = 1), this deterministic algorithm

outputs a projected hash value pH ∈ {0, 1}𝛿 for some 𝛿 ∈ N.
An approximate word-independent SPHF scheme has to fulfill

the following properties:

• Approximate correctness: For a word 𝜒 ∈
ℒ̃lpar and its corresponding witness 𝜔 , we

say SPHF is 𝜖-approximate correctness if

Pr[HD(Hash(hk, lpar, 𝜒), ProjHash(hp, lpar, 𝜒, 𝜔)) >

𝜖 · 𝛿] ≤ negl(𝜆), where HD(·, ·) outputs the Hamming

distance of two input values. In addition, if an approximate

SPHF is 0-correct, then it is called SPHF.

• Smoothness: For a word 𝜒 ∉ ℒ̃lpar, the hash value H is

statistically indistinguishable from a random element chosen

from {0, 1}𝛿 for some 𝛿 ∈ N.
In addition to these two properties, to prove the security of the

proposed generic construction, we need another property called

pseudo-randomness:

• Pseudo-randomness: For a word 𝜒 ∈ ℒ̃lpar, the hash value

H is indistinguishable from a random element chosen from

{0, 1}𝛿 for some 𝛿 ∈ N.
In fact, an (approximate word-independent) SPHF does not need

this property or even satisfy it. However, if the language for the

(approximate word-independent) SPHF is labelled CCA-secure ci-

phertext, it is easily satisfied because the ciphertexts are based on

hard-on-average problems [35].

3 DEFINITION AND SECURITY MODELS OF
PAEKS

Public-key authenticated encryption with keyword search (PAEKS),

first introduced by Huang and Li [27], can be viewed as inheriting

the existed PEKS scheme [8] but additionally satisfies TP. Next,

we will review the definition and security requirements of PAEKS

defined in [27].

3.1 Definition of PAEKS
A PAEKS scheme PAEKS consists of the following six algorithms:

• Setup(1𝜆): Taking as input a security parameter 𝜆, this PPT

algorithm outputs a public parameter pp.
• KeyGen𝑆 (pp): Taking as input the public parameter pp,
this PPT algorithm outputs a pair of public/private keys

(pk𝑆 , sk𝑆) of the sender.
• KeyGen𝑅 (pp): Taking as input the public parameter pp,
this PPT algorithm outputs a pair of public/private keys

(pk𝑅, sk𝑅) of the receiver.
• PAEKS(pp, pk𝑆 , sk𝑆 , pk𝑅, kw): Taking as input the public pa-
rameter pp, the public key pk𝑆 and private key sk𝑆 of the

sender, the public key pk𝑅 of the receiver, and a keyword

4

Public-key Authenticated Encryption with Keyword Search: Cryptanalysis, Enhanced Security, andQuantum-resistant Instantiation

kw, this PPT algorithm outputs a searchable ciphertext ctkw
related to the keyword kw.
• Trapdoor(pp, pk𝑆 , pk𝑅, sk𝑅, kw′): Taking as input the public
parameter pp, the public key pk𝑆 of the sender, the public key
pk𝑅 and the private key sk𝑅 of the receiver, and a keyword

kw′, this PPT/deterministic algorithm outputs a trapdoor

tdkw′ related to the keyword kw′.
• Test(ctkw, tdkw′): Taking as input the searchable ciphertext

ctkw and trapdoor tdkw′ , this algorithm outputs 1 if ctkw
and tdkw′ are related to the same keyword (i.e., kw = kw′);
otherwise, it outputs 0.

Correctness. For any security parameter 𝜆, any hon-

estly generated key pairs of the sender (pk𝑆 , sk𝑆) and

receiver (pk𝑅, sk𝑅), any keywords kw, kw′, any cipher-

text ctkw ← PAEKS(pp, pk𝑆 , sk𝑆 , pk𝑅, kw), and any

trapdoor tdkw′ ← Trapdoor(pp, pk𝑆 , pk𝑅, sk𝑅, kw′),
Pr[Test(ctkw, tdkw′) = 1] = 1 − negl(𝜆) when kw = kw′

and Pr[Test(ctkw, tdkw′) = 0] = 1 − negl(𝜆) when kw ≠ kw′.

3.2 Security Requirements of PAEKS
A secure PAEKS scheme should satisfy ciphertext indistinguisha-

bility (CI) and trapdoor privacy (TP). Informally, the notion of CI,

first proposed by Boneh et al. [8], aims to ensure that there is no

PPT adversary that can obtain any knowledge of the keyword from

the ciphertext. While the concept of TP, first introduced by Byun

[9] in 2006, aims to ensure that there is no PPT (inside) adversary

can obtain any knowledge of the keyword from the trapdoor.

These two requirements are formally modeled by the following

IND-CKA game and indistinguishability against IKGA (IND-IKGA)

game, respectively, interacted with a challenger C and an adversary

A.

IND-CKA Game of PAEKS:

• Setup. After receiving a security parameter 𝜆, C generates

the public parameter pp by executing the Setup algorithm.

Then, it executes the KeyGen𝑆 and KeyGen𝑅 algorithms to

obtain the public/private key pairs (pk𝑆 , sk𝑆) and (pk𝑅, sk𝑅)
of the sender and the receiver, respectively. Finally, it sends

(pp, pk𝑆 , pk𝑅) to A.

• Phase 1. In this phase, A is allowed to adaptively issue

queries to the following two oracles polynomially many

times.

– Ciphertext Oracle O𝐶 : For any keyword kw, C gen-

erates a searchable ciphertext ctkw by performing

PAEKS(pp, pk𝑆 , sk𝑆 , pk𝑅, kw) and returns ctkw to A.

– Trapdoor Oracle O𝑇 : For any keyword kw,
C generates a trapdoor tdkw by performing

Trapdoor(pp, pk𝑆 , pk𝑅, sk𝑅, kw) and returns tdkw to

A.

• Challenge. After A terminates Phase 1, it outputs two
challenge keywords kw∗

0
, kw∗

1
to C. The restriction is thatA

never issue the queries to O𝐶 and O𝑇 for these two challenge

keywords. C then randomly chooses a bit 𝑏 ∈ {0, 1} and
returns the challenge ciphertext ct∗ to A by performing

PAEKS(pp, pk𝑆, sk𝑆 , pk𝑅, kw∗𝑏).

• Phase 2.A can continue to query the oracles as in Phase 1
for any keyword kw, except for the challenge keywords (i.e.,
kw ∉ {kw∗

0
, kw∗

1
}).

• Guess. Finally,A outputs a bit 𝑏 ′ ∈ {0, 1} as its answer and
wins the game if 𝑏 = 𝑏 ′.

The advantage of A winning the above game is defined as

𝐴𝑑𝑣𝐶𝐼−𝑃𝐴𝐸𝐾𝑆A (𝜆) :=

����Pr[𝑏 = 𝑏 ′] − 1

2

���� .
Definition 3.1 (Ciphertext Indistinguishability of PAEKS). A

PAEKS scheme satisfies CI (or called IND-CKA secure) if, for any

PPT adversary A, 𝐴𝑑𝑣𝐶𝐼−𝑃𝐴𝐸𝐾𝑆A (𝜆) is negligible.

IND-IKGA Game of PAEKS:
• Setup. Like the IND-CKA game, C generates the public

parameter pp and public/private key pairs (pk𝑆 , sk𝑆) and
(pk𝑅, sk𝑅) of the sender and the receiver. Then, it sends

(pp, pk𝑆 , pk𝑅) to A.

• Phase 1. Like the IND-CKA game, A is allowed to adap-

tively issue queries to O𝐶 and O𝑇 polynomially many times.

• Challenge. After A terminates Phase 1, it outputs two
challenge keywords kw∗

0
, kw∗

1
to C. The restriction is that

A never issue the queries to O𝐶 and O𝑇 for these two chal-

lenge keywords. C then randomly chooses a bit 𝑏 ∈ {0, 1}
and returns the challenge trapdoor td∗ to A by performing

Trapdoor(pp, pk𝑆 , pk𝑅, sk𝑅, kw∗𝑏).
• Phase 2.A can continue to query the oracles as in Phase 1
for any keyword kw, except for the challenge keywords (i.e.,
kw ∉ {kw∗

0
, kw∗

1
}).

• Guess. Finally,A outputs a bit 𝑏 ′ ∈ {0, 1} as its answer and
wins the game if 𝑏 = 𝑏 ′.

The advantage of A winning the above game is defined as

𝐴𝑑𝑣𝑇𝑃−𝑃𝐴𝐸𝐾𝑆A (𝜆) :=

����Pr[𝑏 = 𝑏 ′] − 1

2

���� .
Definition 3.2 (Trapdoor Privacy of PAEKS). A PAEKS scheme

satisfies TP (or called IND-IKGA secure) if, for any PPT adversary

A, 𝐴𝑑𝑣𝑇𝑃−𝑃𝐴𝐸𝐾𝑆A (𝜆) is negligible.

To enhance the security requirements of PAEKS, Qin et al. [49]

introduced the notion called multi-ciphertext indistinguishability

(MCI). This notion aims to ensure that there is no PPT adversary

that can distinguish two tuples of challenge ciphertexts. In addition,

Pan and Li [48] considered a concept similar to TP, called multi-

trapdoor privacy (MTP), to ensure that there is no PPT adversary

that can distinguish two tuples of challenge trapdoors. Although we

do not consider multi-setting of the security requirements as in [49]

and [48], we introduce Theorem 3.3 to show that if the PAEKS and

Trapdoor algorithms of a secure PAEKS scheme are probabilistic,

then this scheme satisfies MCI and MTP.

Theorem 3.3. Suppose that a PAEKS scheme satisfies CI and its
PAEKS algorithm is probabilistic, then the PAEKS scheme satisfies
MCI. Similarly, suppose that a PAEKS scheme satisfies TP and its
Trapdoor algorithm is probabilistic, then the PAEKS scheme satisfies
MTP.

Proof. As the part of TP is similar to CI, we only prove the part

of CI. Suppose that an adversary A can break the MCI of a PAEKS

5

Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, Masahiro Mambo, and Yu-Chi Chen

scheme, then there is a challenger C who can use A as the black

box algorithm to break the CI of the same PAEKS scheme.

• Setup. Given a tuple of public information (pp, pk𝑆 , pk𝑅),
C passes this information to A.

• Phase 1. On receiving any ciphertext query or trapdoor

query for a keyword kw from A, C queries O𝐶 for the ci-

phertext query and queries O𝑇 for trapdoor query. Then, it

returns the answer to A.

• Challenge. After receiving two tuples of challenge key-

words (kw∗
0,1, · · · , kw

∗
0,𝑛) and (kw

∗
1,1, · · · , kw

∗
1,𝑛), C per-

forms the following steps. It randomly chooses a tuple

(kw∗
0,𝑖 , kw

∗
1,𝑖) for some 𝑖 such that kw∗

0,𝑖 ≠ kw∗
1,𝑖 . Then, it

takes this tuple as its challenge keyword and receives a

challenge ciphertext ct∗. In addition, it randomly chooses

𝑛 − 1 elements (𝑟1, · · · , 𝑟𝑖−1, 𝑟𝑖+1, · · · , 𝑟𝑛) from the out-

put space of the PAEKS algorithm. Finally, it returns

(𝑟1, · · · , 𝑟𝑖−1, ct∗, 𝑟𝑖+1, · · · , 𝑟𝑛) as the challenge ciphertext for
A.

• Phase 2.A can continue to query the oracles as in Phase 1
for any keyword kw, except for the challenge keywords (i.e.,
kw ≠ kw∗𝑖, 𝑗) for 𝑖 ∈ {0, 1} and 𝑗 ∈ {1, 𝑛}.
• Guess. A finally outputs a bit 𝑏 ′, then C takes A’s answer

as its answer.

As ct∗ is C’s challenge ciphertext and the PAEKS algorithm is

probabilistic, for the view of A, (𝑟1, · · · , 𝑟𝑖−1, ct∗, 𝑟𝑖+1, · · · , 𝑟𝑛) is
the same as the 𝑛 truly ciphertext. Therefore, suppose A’s answer

is right, then C can use A’s answer to break the CI of the PAEKS

scheme.

The proof for TP is the similar to that for CI, except for the

challenge part. More concretely, in the part of TP, C is given

a challenge trapdoor td∗, instead of a challenge ciphertext ct∗.
In addition, C returns (𝑟1, · · · , 𝑟𝑖−1, td∗, 𝑟𝑖+1, · · · , 𝑟𝑛) to A, where

(𝑟1, · · · , 𝑟𝑖−1, 𝑟𝑖+1, · · · , 𝑟𝑛) are randomly chosen from the output

space of the Trapdoor algorithm. Based on the above description,

with the answer of A, C can also take A’s answer as its answer.

Therefore, the proof is completed. □

4 CRYPTANALYSIS OF PREVIOUS
TRAPDOOR PRIVACY SCHEMES

In this section, we cryptanalyze two lattice-based (variant) PEKS

schemes proposed by Zhang et al. [62] at Inf. Sci. in 2019 and Zhang

et al. [63] at IEEE Trans. Dependable Secur. Comput. in 2021, respec-

tively. The core idea of these schemes against IKGA is to restrict

the malicious adversary from adaptively generating ciphertexts for

any keyword and to further test the trapdoor generated from the re-

ceiver. Although these schemes have been proven to satisfy TP (i.e.,
the schemes are secure against IKGA), we show that there exists

an adversary that can easily break the TP in polynomial time by

randomly choosing keywords, because the trapdoor directly leaks

the keyword information. In the following, we directly present our

cryptanalysis by two lemmas. Please refer to Appendix A for Zhang

et al.’s schemes).

Lemma 4.1. Zhang et al.’s [63] forward-secure PEKS scheme is
vulnerable to IKGA.

Proof. Here, we show how an inside adversary A can retrieve

the keyword information hidden in the trapdoor. Suppose that A
has received a trapdoor td𝑗 := tkw ∥ 𝑗 related to some time 𝑗 and

keyword kw. It tries to obtain the keyword information via the

following steps:

(1) Because tkw ∥ 𝑗 is generated from the receiver by performing

SamplePre(A𝑅 ∥ 𝑗 ·𝜷−1

𝑗
,Tkw ∥ 𝑗 , 𝝁, 𝜎), we know that 𝝁 = A𝑅 ∥ 𝑗 ·

𝜷−1

𝑗
· tkw ∥ 𝑗 = A𝑅 ∥ 𝑗 · 𝐻2 (kw∥ 𝑗)−1 · tkw ∥ 𝑗 .

(2) Then, A randomly selects a guessed keyword kw′ to test

whether 𝝁
?

= A𝑅 ∥ 𝑗 · 𝐻2 (kw′∥ 𝑗)−1 · tkw ∥ 𝑗 .
(3) If the equation in Step 2 holds, A outputs kw′ as its guess;

otherwise, A returns to Step 2 and continues to select and

test other keywords.

Therefore, by a brute force attack, there is a high probability that

A can obtain the keyword related to the trapdoor as the keyword

space is limited. □

Lemma 4.2. Zhang et al.’s [62] proxy-oriented identity-based PEKS
scheme is vulnerable to IKGA.

Proof. Let id𝑃 and id𝑅 be two identities of the proxy and the

receiver, respectively. Here, we show that how the inside adversary

A can retrieve the keyword information hidden in the trapdoor.

Suppose that A has received a trapdoor td := dkw related to some

keyword kw. It tries to obtain the keyword information via the

following steps:

(1) Because dkw is generated from the receiver by perform-

ing SamplePre(Aid𝑅𝜸
−1,Dkw, v, 𝛿), we know that v =

Aid𝑅𝜸
−1dkw , where 𝜸 = 𝐻4 (id𝑃 ∥id𝑅 ∥kw).

(2) Then, A randomly selects a guessed keyword kw′ and com-

putes 𝜸 ′ = 𝐻4 (id𝑃 ∥id𝑅 ∥kw′).
(3) A tests whether v ?

= Aid𝑅𝜸
′−1dkw .

(4) If the equation in Step 3 holds, A outputs kw′ as its guess;
otherwise, A returns to Step 2 and continues to select and

test other keywords.

Therefore, by a brute force attack, there is a high probability that

A can obtain the keyword related to the trapdoor as the keyword

space is limited. □

5 PROPOSED GENERIC PAEKS
CONSTRUCTION

In this section, we propose a generic PAEKS construction based on

a secure PEKS and SPHF for the language of the labelled CCA2-

secure ciphertext. In particular, we require that the underlying PEKS

scheme satisfy CI and that SPHF scheme is word-independent, 𝜖-

correct for some negligible 𝜖 , and pseudo-random. The following

describes how to obtain this generic construction.

Let PEKS = (KeyGen, PEKS, Trapdoor, Test) be a PEKS with

keyword space KSPEKS, let PKE = (KeyGen, Encrypt, Decrypt)
be a labelled public-key encryption scheme with public key space

PKSPKE and plaintext space PSPKE, and let SPHF = (HashKG,
ProjKG, Hash, ProjHash) be the approximate word-independent

SPHF for the language of the ciphertext defined below.

6

Public-key Authenticated Encryption with Keyword Search: Cryptanalysis, Enhanced Security, andQuantum-resistant Instantiation

Language of Ciphertext. Let (lpar, ltrap) = (ekPKE, dkPKE),
where ekPKE ∈ PKSPKE and dkPKE is its corresponding decryption
key. We define the language of ciphertext as follows:

ℒ̃ = {(label, ctPKE,mPKE) | ∃𝜌, ctPKE = Encrypt(ekPKE, label,mPKE; 𝜌)};
ℒ = {(label, ctPKE,mPKE) | Decrypt(dkPKE, label, ctPKE) = mPKE, }

where the witness relation 𝒦 is implicitly defined as:

𝒦((label, ctPKE,mPKE), 𝜌) = 1 if and only if ctPKE =

Encrypt(ekPKE, label,mPKE; 𝜌).

Construction. The whole construction is described as follows:

• Setup(1𝜆): It first generates (ekPKE, dkPKE) ←
PKE.KeyGen(1𝜆). Then, it randomly chooses a

plaintext mPKE ← PSPKE and a label label ←
{0, 1}∗. It also chooses two secure hash functions

𝐻1 : PKSPKE × PSPKE × {0, 1}∗ → PKSPKE and

𝐻2 : KSPEKS × {0, 1}∗ → KSPEKS. In addition, it computes

mpk = 𝐻1 (ekPKE,mPKE, label). Finally, it outputs the public
parameter pp := (𝜆,mpk, ekPKE,mPKE, label, 𝐻1, 𝐻2).
• KeyGen𝑆 (pp): It first checks whether mpk =

𝐻1 (ekPKE,mPKE, label). If the equation is not

satisfied, it terminates. Otherwise, it performs

hk𝑆 ← SPHF.HashKG(mpk) and hp𝑆 ←
SPHF.ProjKG(hk𝑆 ,mpk). Then, it generates

ctPKE,𝑆 ← PKE.Encrypt(mpk, label,mPKE; 𝜌𝑆), where

𝜌𝑆 is the witness randomly selected such that

𝒦((label, ctPKE,𝑆 ,mPKE), 𝜌𝑆) = 1 is satisfied. Finally,

it outputs the public key pk𝑆 := (hp𝑆 , ctPKE,𝑆) and private

key sk𝑆 := (hk𝑆 , 𝜌𝑆) of the sender.
• KeyGen𝑅 (pp): It first checks whether mpk =

𝐻1 (ekPKE,mPKE, label). If the equation is not

satisfied, it terminates. Otherwise, it performs

hk𝑅 ← SPHF.HashKG(mpk) and hp𝑅 ←
SPHF.ProjKG(hk𝑅,mpk). Then, it generates

ctPKE,𝑅 ← PKE.Encrypt(mpk, label,mPKE; 𝜌𝑅), where

𝜌𝑅 is the witness randomly selected such that

𝒦((label, ctPKE,𝑅,mPKE), 𝜌𝑅) = 1 is satisfied. In addition, it

generates (pkPEKS, skPEKS) ← PEKS.KeyGen(1𝜆). Finally,
it outputs the public key pk𝑅 := (hp𝑅, ctPKE,𝑅, pkPEKS) and
private key sk𝑅 := (hk𝑅, 𝜌𝑅, skPEKS) of the receiver.
• PAEKS(pp, pk𝑆 , sk𝑆 , pk𝑅, kw): It runs H𝑆 ←
SPHF.Hash(hk𝑆 ,mpk, (ctPKE,𝑅,mPKE)) and pH𝑆 ←
SPHF.ProjHash(hp𝑅,mpk, (ctPKE,𝑆 ,mPKE), 𝜌𝑆). Then, it

computes der-kw𝑆 = 𝐻2 (kw,H𝑆 ⊕ pH𝑆) and generates

ctPKES,der-kw𝑆
← PEKS.PEKS(pkPEKS, der-kw𝑆). Finally, it

outputs a searchable ciphertext ctkw := ctPKES,der-kw𝑆
.

• Trapdoor(pp, pk𝑆 , pk𝑅, sk𝑅, kw′): It runs H𝑅 =

SPHF.Hash(hk𝑅,mpk, (ctPKE,𝑆 ,mPKE)) and pH𝑅 =

SPHF.ProjHash(hp𝑆 ,mpk, (ctPKE,𝑅,mPKE), 𝜌𝑅). Then, it

computes der-kw′𝑅 = 𝐻2 (kw′,H𝑅 ⊕ pH𝑅) and generates

tdPEKS,der-kw′𝑅 ← PEKS.Trapdoor(skPEKS, der-kw′𝑅).
Finally, it outputs a trapdoor tdkw′ := tdPEKS,der-kw𝑅

.

• Test(pp, ctkw, tdkw′): It outputs the result of

PEKS.Test(ctkw, tdkw′).
Correctness. Suppose that the public parameter pp and the pub-

lic/private key pairs (pk𝑆 , sk𝑆), (pk𝑅, sk𝑅) are honestly generated.

Let ctkw be the searchable ciphertext related with the keyword kw
generated by the sender, and tdkw′ be the trapdoor related with the

keyword kw′ generated by the receiver.

As the underlying SPHF is 𝜖-correct for some 𝜖 = negl(𝜆), it
follows that

H𝑆 = SPHF.Hash(hk𝑆 ,mpk, (ctPKE,𝑅,mPKE))
= SPHF.ProjHash(hp𝑆 ,mpk, (ctPKE,𝑅,mPKE), 𝜌𝑅) = pH𝑅 ;

H𝑅 = SPHF.Hash(hk𝑅,mpk, (ctPKE,𝑆 ,mPKE))
= SPHF.ProjHash(hp𝑅,mpk, (ctPKE,𝑆 ,mPKE), 𝜌𝑆) = pH𝑆 .

Therefore, H𝑆 ⊕ pH𝑆 = H𝑅 ⊕ pH𝑅 holds. Clearly, if kw = kw′, then
der-kw𝑆 = 𝐻2 (kw,H𝑆 ⊕ pH𝑆) = 𝐻2 (kw′,H𝑅 ⊕ pH𝑅) = der-kw′𝑅 ,
and therefore, ctPKES,der-kw𝑆

and tdPEKS,der-kw′𝑅 are related

to the same extended keyword. As the underlying PEKS

scheme is correct, PAEKS.Test(pp, ctkw, tdkw′) = 1 holds with

overwhelming probability. In contrast, if kw ≠ kw′, then

der-kw𝑆 = 𝐻2 (kw,H𝑆 ⊕ pH𝑆) ≠ 𝐻2 (kw′,H𝑅 ⊕ pH𝑅) = der-kw′𝑅 ,
and therefore, ctPKES,der-kw𝑆

and tdPEKS,der-kw′𝑅 are re-

lated to different extended keywords. Consequently,

PAEKS.Test(pp, ctkw, tdkw′) = 0 holds with overwhelming

probability.

Security Analysis. Below, we detail the rigorous security proofs

of the proposed generic construction. By adopting the sequence-

of-games strategy, Theorem 5.1 and Theorem 5.2 indicate that the

construction satisfies CI and TP under the standard model, respec-

tively. More concretely, we construct a sequence of games: the first

game is identical to the real attack game and A can only distin-

guish these games with a negligible advantage. For simplicity, let

𝐴𝑑𝑣
Game𝑖
A (𝜆) denote the advantage of A in game Game𝑖 , where

𝑖 ∈ [0, 𝑛]. Furthermore, Theorem 5.3 shows that the proposed con-

struction satisfies MCI and MTP.

Theorem 5.1. The proposed generic PAEKS construction satisfies
CI under the standard model if the underlying SPHF scheme satisfies
pseudo-randomness.

Proof. This proof consists of four games, illustrated as follows:

Game0: This game is identical to the real IND-CKA game defined

in Section 3.2. Suppose that the advantage of A in this game is

defined as 𝐴𝑑𝑣
Game0

A (𝜆) := 𝜖 . In addition, to simulate a real view

for A, on receiving the query for some keyword kw from A, the

challenger C responds as follows:

• O𝐶 : For keyword kw, C computes ctkw ←
PAEKS(pp, pk𝑆 , sk𝑆 , pk𝑅, kw) and returns ctkw to A.

• O𝑇 : For keyword kw, C computes tdkw ←
Trapdoor(pp, pk𝑆 , pk𝑅, sk𝑅, kw) and returns tdkw to

A.

Game1: This game is identical to Game0, except for the

generation of the challenge ciphertext ct∗ in the Chal-
lenge phase. More concretely, instead of generating H𝑆 ←
SPHF.Hash(hk𝑆 ,mpk, (ctPKE,𝑅,mPKE)), C randomly chooses H𝑆
from the output space of the SPHF.Hash algorithm. Because of the

pseudo-randomness of the underlying SPHF scheme, A cannot

distinguish the view between Game0 and Game1. Therefore, we

7

Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, Masahiro Mambo, and Yu-Chi Chen

obtain

|𝐴𝑑𝑣Game1

A (𝜆) −𝐴𝑑𝑣Game0

A (𝜆) | ≤ negl(𝜆).
Game2: This game further changes the generation of the chal-

lenge ciphertext ct∗ in the Challenge phase. In this game, der-kw𝑆
is chosen from KSPEKS, instead of by computing der-kw𝑆 ←
𝐻2 (kw∗𝑏 ,H𝑆 ⊕ pH𝑆) for 𝑏 ∈ {0, 1}. As H𝑆 is randomly chosen,

the output of 𝐻2 (kw∗𝑏 ,H𝑆 ⊕ pH𝑆) is random. Therefore, A cannot

distinguish the view between Game1 and Game2. Consequently,

we obtain

|𝐴𝑑𝑣Game2

A (𝜆) −𝐴𝑑𝑣Game1

A (𝜆) | ≤ negl(𝜆).

Game3: This game is the last game. Because the chal-

lenge ciphertext ct∗ = ctPKES,der-kw𝑆
is generated from

PEKS.PEKS(pkPEKS, der-kw𝑆) and der-kw𝑆 is now randomly cho-

sen from KSPEKS, the challenge ciphertext does not contain any

information about the challenge keywords (kw∗
0
, kw∗

1
) given by A.

The only way for A is to guess. Therefore, we have

𝐴𝑑𝑣
Game3

A (𝜆) = 0.

Finally, combining the above games, we have 𝜖 ≤ negl(𝜆). The
proof is completed. □

Theorem 5.2. The proposed generic PAEKS construction satisfies
TP under the standard model if the underlying SPHF scheme satisfies
pseudo-randomness.

Proof. This proof is similar to the proof of Theorem 5.1, again

with four games.

Game0: This game is identical to the real IND-IKGA game defined

in Section 3.2. Suppose that the advantage of A in this game is

defined as𝐴𝑑𝑣
Game0

A (𝜆) := 𝜖 . In addition, the view simulated by the

challenger C is the same as that in Game0 in the proof of Theorem

5.1.

Game1: This game is identical to Game0, except for the

generation of the challenge trapdoor td∗ in the Chal-
lenge phase. More concretely, instead of generating

H𝑅 ← SPHF.Hash(hk𝑅,mpk, (ctPKE,𝑆 ,mPKE)), C randomly

chooses H𝑅 from the output space of the SPHF.Hash algorithm.

Because of the pseudo-randomness of the underlying SPHF scheme,

A cannot distinguish the view between Game0 and Game1.

Therefore, we obtain

|𝐴𝑑𝑣Game1

A (𝜆) −𝐴𝑑𝑣Game0

A (𝜆) | ≤ negl(𝜆).

Game2: This game further changes the generation of the chal-

lenge trapdoor td∗ in the Challenge phase. In this game, der-kw𝑅
is chosen from KSPEKS, instead of by computing der-kw𝑅 ←
𝐻2 (kw∗𝑏 ,H𝑅 ⊕ pH𝑅) for 𝑏 ∈ {0, 1}. As H𝑅 is randomly chosen,

the output of 𝐻2 (kw∗𝑏 ,H𝑅 ⊕ pH𝑅) is random. Therefore, A cannot

distinguish the view between Game1 and Game2. Consequently,

we obtain

|𝐴𝑑𝑣Game2

A (𝜆) −𝐴𝑑𝑣Game1

A (𝜆) | ≤ negl(𝜆).

Game3: This game is the last game. Because the chal-

lenge trapdoor td∗ = tdPKES,der-kw𝑅
is generated from

PEKS.PEKS(pkPEKS, der-kw𝑅) and der-kw𝑅 is now randomly cho-

sen from KSPEKS, the challenge trapdoor does not contain any

information about the challenge keywords (kw∗
0
, kw∗

1
) given by A.

The only way for A is to guess. Therefore, we have

𝐴𝑑𝑣
Game3

A (𝜆) = 0.

Finally, combining the above games, we have 𝜖 ≤ negl(𝜆). The
proof is now complete. □

Theorem 5.3. The proposed generic PAEKS construction further
satisfies MCI and MTP if the PEKS and Trapdoor algorithms of the
underlying PEKS scheme are probabilistic.

Proof. In the proposed construction, the PAEKS and Trapdoor
algorithms actually perform the PEKS and Trapdoor algorithms of

the underlying PEKS scheme. To the best of our knowledge, for

the current well-known PEKS schemes (e.g., [6, 8, 28]), the PEKS
and Trapdoor algorithms are probabilistic. Hence, by combining

the result of Theorem 3.3, the proposed construction satisfies MCI

and MTP. □

6 LATTICE-BASED INSTANTIATION
In this section, we propose the first quantum-resistant PAEKS in-

stantiation based on lattices. This instantiation leverages three

lattice-based building blocks and inherits their securities to be

secure against quantum attacks. More concretely, we adopt the

labelled IND-CCA2-secure PKE scheme introduced by Micciancio

and Peikert [43], the word-independent SPHF introduced by Ben-

hamouda et al. [7], and the PEKS scheme introduce by Behnia et
al. [6]. Note that, for simplicity, we only provide the description

of the weaker version (IND-CCA1) of the PKE scheme [43] in the

following instantiation. Before introducing our instantiation, we

define some important notations. Let R be a ring andU be a sub-

set of R× of invertible elements. In addition, let G = I𝑛 ⊗ g⊤ be

the gadget matrix defined in [43], where g⊤ = [1, 2, · · · , 2𝑘] and
𝑘 = ⌈log𝑞⌉ − 1. We also define the encoding function Encode(𝜇 ∈
{0, 1}) = 𝜇 · (0, · · · , 0, ⌈𝑞/2⌉)⊤ and the deterministic rounding func-

tion R(𝑥) = ⌊2𝑥/𝑞⌉ mod 2. Finally, let ℎ be an injective ring homo-

morphism from R to Z𝑛×𝑛𝑞 .

The whole instantiation is described as follows:

• Setup(1𝜆): Given a security parameter 𝜆 and the parameters

𝑞, 𝑛,𝑚, 𝜎1, 𝜎2, 𝛼 (set as instructed in the following parameter

selection part), this algorithm first chooses 𝜅, 𝜌, ℓ = ploy(𝑛),
computes (ekPKE := A0, dkPKE := T) ← TrapGen(1𝑛, 1𝑚, 𝑞),
and sets mPKE := m = 𝑚1𝑚2 · · ·𝑚𝜅 ∈ {0}𝜅 . Then, it
randomly chooses element label := 𝑢 ← U and two se-

cure hash functions 𝐻1 : Z𝑛×𝑚𝑞 × {0, 1}𝜅 × U → Z𝑛×𝑚𝑞 ,

𝐻2 : {1,−1}ℓ × {0, 1}𝜅 → {1,−1}ℓ , and chooses an in-

jective ring homomorphism ℎ : R → Z𝑛×𝑛𝑞 . It also com-

putes mpk := A = 𝐻1 (A0,m, 𝑢) ∈ Z𝑛×𝑚𝑞 . Finally, it out-

puts pp := (𝜆, 𝑛,𝑚, 𝑞, 𝜎1, 𝜎2, 𝜅, 𝜌, ℓ, ekPKE := A0,mpk :=

A,mPKE := m, label := 𝑢, 𝐻1, 𝐻2, ℎ).
• KeyGen𝑆 (pp): Given the public parameter pp, this algorithm
first checks whether A = 𝐻1 (A0,m, 𝑢). Then, it computes

A𝑢 = A + [0;Gℎ(𝑢)], randomly chooses a matrix hk𝑆 :=

k𝑆 ← 𝐷𝑚
Z,𝑠

, and computes hp𝑆 := p𝑆 = A⊤𝑢 · k𝑆 ∈ Z𝑛𝑞 , where
𝑠 ≥ 𝜂𝜖 (Λ⊥ (A𝑢)) for some 𝜖 = negl(𝑛). For 𝑖 = 1, · · · , 𝜅, it
randomly chooses vectors s𝑆,𝑖 ← Z𝑛𝑞 and e𝑆,𝑖 ← 𝐷𝑚

Z,𝑡
(re-

select e𝑆,𝑖 if ∥e𝑆,𝑖 ∥ > 2𝑡
√
𝑚), and computes c𝑆,𝑖 ← A⊤𝑢 ·s𝑆,𝑖 +

8

Public-key Authenticated Encryption with Keyword Search: Cryptanalysis, Enhanced Security, andQuantum-resistant Instantiation

e𝑆,𝑖+Encode(𝑚𝑖) mod 𝑞, where 𝑡 = 𝜎1

√
𝑚 ·𝜔 (

√
log𝑛. Finally,

it outputs the public key pk𝑆 := (hp𝑆 := p𝑆 , ctPKE,𝑆 :=

{c𝑆,𝑖 }𝜅𝑖=1
) and the private key sk𝑆 := (hk𝑆 := k𝑆 , 𝜌𝑆 :=

{s𝑆,𝑖 }𝜅𝑖=1
) of the sender.

• KeyGen𝑅 (pp): Given the public parameter pp, this algorithm
first checks whether A = 𝐻1 (A0,m, 𝑢). Then, it computes

A𝑢 = A + [0;Gℎ(𝑢)], randomly chooses a matrix hk𝑅 :=

k𝑅 ← 𝐷𝑚
Z,𝑠

, and computes hp𝑅 := p𝑅 = A⊤𝑢 · k𝑅 ∈ Z𝑛𝑞 , where
𝑠 ≥ 𝜂𝜖 (Λ⊥ (A𝑢)) for some 𝜖 = negl(𝑛). For 𝑖 = 1, · · · , 𝜅,
it randomly chooses vectors s𝑅,𝑖 ← Z𝑛𝑞 and e𝑅,𝑖 ← 𝐷𝑚

Z,𝑡

(re-select e𝑅,𝑖 if ∥e𝑅,𝑖 ∥ > 2𝑡
√
𝑚), and computes c𝑅,𝑖 ← A⊤𝑢 ·

s𝑅,𝑖 + e𝑅,𝑖 + Encode(𝑚𝑖) mod 𝑞, where 𝑡 = 𝜎1

√
𝑚 ·𝜔 (

√
log𝑛.

In addition, it generates (B𝑅, S𝑅) ← TrapGen(1𝑛, 1𝑚, 𝑞), and
selects ℓ + 1 random matrices B𝑅,1, · · · ,B𝑅,ℓ ,C𝑅 ← Z𝑛×𝑚𝑞

and a random vector r𝑅 ← Z𝑛𝑞 . Finally, it outputs the pub-
lic key pk𝑅 := (hp𝑆 := p𝑅, ctPKE,𝑅 := {c𝑅,𝑖 }𝜅𝑖=1

, pkPEKS :=

{B𝑅, {B𝑅,𝑖 }ℓ𝑖=1
,C𝑅, r𝑅}) and the private key sk𝑅 := (hk𝑅 :=

k𝑅, 𝜌𝑅 := {s𝑅,𝑖 }𝜅𝑖=1
, skPEKS := S𝑅) of the receiver.

• PAEKS(pp, pk𝑆 , sk𝑆 , pk𝑅, kw): Given the public parameter

pp, the public key pk𝑆 and the private key sk𝑆 of the

sender, the public key pk𝑅 of the receiver, and a keyword

kw ∈ {1,−1}ℓ , this algorithm run as follows. For 𝑖 = 1, · · · , 𝜅 ,
it computes H𝑆 := ℎ𝑆,𝑖 = R(c⊤

𝑅,𝑖
· k𝑆 (mod 𝑞)), com-

putes pH𝑆 := 𝑝𝑆,𝑖 = R(s⊤
𝑆,𝑖
· p𝑅 (mod 𝑞)), and computes

𝑦𝑆,𝑖 = ℎ𝑆,𝑖 · 𝑝𝑆,𝑖 . Then, it sets y𝑆 = 𝑦𝑆,1𝑦𝑆,2 · · ·𝑦𝑆,𝜅 ∈ {0, 1}𝜅 .
It computes der-kw𝑆 := dk𝑆 = (dk𝑆,1dk𝑆,2 · · · dk𝑆,ℓ) =

𝐻2 (kw, y𝑆) ∈ {1,−1}ℓ . To generate a searchable cipher-

text for the derived keyword der-kw𝑆 , it runs the follow-

ing steps. It computes Bdk ← C𝑅 +
∑ℓ
𝑖=1

B𝑅,𝑖 and Fdk ←
(B𝑅 |Bdk) ∈ Z𝑛×2𝑚

𝑞 . For 𝑗 = 1, · · · , 𝜌 , it performs three

steps: (i) it chooses 𝑏 𝑗 ← {0, 1}, chooses a random s𝑗 ← Z𝑛𝑞
and matrices R𝑖 𝑗 ← {1,−1}𝑚×𝑚 for 𝑖 = 1, · · · , ℓ , and sets

R̄𝑗 ←
∑ℓ
𝑖=1

dk𝑆,𝑖R𝑖 𝑗 ∈ {−ℓ, · · · , ℓ}𝑚×𝑚 ; (ii) it chooses noise

vectors 𝑥 𝑗
Ψ̄𝛼←−− Z𝑞 and y𝑗

Ψ̄𝑚
𝛼←−−− Z𝑚𝑞 , and sets z𝑗 ← R̄⊤

𝑗
y𝑗 ∈

Z𝑚𝑞 ; (iii) it sets 𝑐0𝑗
← r⊤

𝑅
s𝑗 + 𝑥 𝑗 + 𝑏 𝑗 ⌊𝑞/2⌋ ∈ Z𝑞 and

c1𝑗
← F⊤dks𝑗 +

[
y𝑗
z𝑗

]
∈ Z2𝑚

𝑞 . Finally, it outputs a searchable

ciphertext ctkw := (ctPEKS,der-kw𝑆
:= {𝑐0𝑗

, c1𝑗
, 𝑏 𝑗 }𝜌𝑗=1

).
• Trapdoor(pp, pk𝑆 , pk𝑅, sk𝑅, kw′): Given the public param-

eter pp, the public key pk𝑆 of the sender, the public

key pk𝑅 and private key sk𝑅 of the receiver, and a key-

word kw′ ∈ {1,−1}ℓ , this algorithm runs as follows. For

𝑖 = 1, · · · , 𝜅, it computes H𝑅 := ℎ𝑅,𝑖 = R(c⊤
𝑆,𝑖
· k𝑅

(mod 𝑞)), computes pH𝑅 := 𝑝𝑅,𝑖 = R(s⊤
𝑅,𝑖
· p𝑆 (mod 𝑞)),

and computes 𝑦𝑅,𝑖 = ℎ𝑅,𝑖 · 𝑝𝑅,𝑖 . Then, it sets y𝑅 =

𝑦𝑅,1𝑦𝑅,2 · · ·𝑦𝑅,𝜅 ∈ {0, 1}𝜅 . It computes der-kw𝑅 := dk𝑅 =

(dk𝑅,1dk𝑅,2 · · · dk𝑅,ℓ) = 𝐻2 (kw′, y𝑅). To generate a trap-

door ciphertext for the derived keyword der-kw𝑅 , it com-

putes Bdk ← C𝑅 +
∑ℓ
𝑖=1

B𝑅,𝑖 and sample tdPEKS,der-kw𝑅
:=

tdk ← SampleLeft(B𝑅,Bdk, S𝑅, r𝑅, 𝜎2). Finally, it outputs
tdtw′ := (tdPEKS,der-kw𝑅

:= tdk).

• Test(pp, ctkw, tdkw′): Given the public parameter pp, the
searchable ciphertext ctkw , and the trapdoor tdkw′ , this al-
gorithm runs as follows. For 𝑗 = 1, · · · , 𝜌 , it first com-

putes 𝜈 𝑗 ← 𝑐0𝑗
− tdkc1𝑗

∈ Z𝑞 . It also checks whether

|𝜈 𝑗 − ⌊𝑞/2⌋ | < ⌊𝑞/4⌋; it yes, it sets 𝜈 𝑗 = 1, and otherwise,

𝜈 = 0. Then, If 𝜈 𝑗 = 𝑏 𝑗 for all 𝑗 = 1, · · · , 𝜌 , it outputs 1; else,

it outputs 0.

Correctness. To ensure that the construction works correctly,

there are two situations that need to be satisfies:

• If kw = kw′, the sender and the receiver obtain the same

derived keyword (i.e., der-kw𝑆 = der-kw𝑅).
• If ctkw and tdkw′ are related to the same derived keyword,

then the Test algorithm outputs 1.

We first consider the first situation by Lemma 6.1 followed by

the description in [7]. That is, if the norm of the first error term is

less than 𝑞, then dk𝑆 = dk𝑅 .

Lemma 6.1 (Suppose the norm of the first error terms

(e⊤
𝑅,𝑖
· k𝑆,𝑖 and e⊤

𝑆,𝑖
· k𝑅,𝑖) is less than 𝑞, then dk𝑆 = dk𝑅).

Proof. For 𝑖 = 1, · · · , 𝜅, we have
ℎ𝑆,𝑖 = R(c⊤𝑅,𝑖 · k𝑆,𝑖 (mod 𝑞))

= R((s⊤𝑅,𝑖 · A𝑢) · k𝑆,𝑖 + e⊤𝑅,𝑖 · k𝑆,𝑖︸ ︷︷ ︸
first error term

(mod 𝑞))

= R(s⊤𝑅,𝑖 · A𝑢) · k𝑆,𝑖 (mod 𝑞)) = 𝑝𝑅,𝑖 ;

ℎ𝑅,𝑖 = R(c⊤𝑆,𝑖 · k𝑅,𝑖 (mod 𝑞))
= R((s⊤𝑆,𝑖 · A𝑢) · k𝑅,𝑖 + e⊤𝑆,𝑖 · k𝑅,𝑖︸ ︷︷ ︸

first error term

(mod 𝑞))

= R(s⊤𝑆,𝑖 · A𝑢) · k𝑅,𝑖 (mod 𝑞)) = 𝑝𝑆,𝑖 .

Therefore, for 𝑖 = 1, · · · , 𝜅, 𝑦𝑆,𝑖 = ℎ𝑆,𝑖 · 𝑝𝑅,𝑖 = ℎ𝑅,𝑖 · 𝑝𝑆,𝑖 = 𝑦𝑅,𝑖 .

Then, we have y𝑆 = y𝑅 . □

As y𝑆 = y𝑅 and kw = kw′, we have der-kw𝑆 = dk𝑆 =

𝐻2 (kw, y𝑆) = 𝐻2 (kw′, y𝑅) = dk𝑅 = der-kw𝑅 .
Then, we consider the second situation in which the Test algo-

rithm will output a correct answer: For all 𝑗 = 1, · · · , 𝜌 , we have

𝜈 𝑗 = 𝑐0𝑗
− tdkc1𝑗

= r⊤𝑅 s𝑗 + 𝑥 𝑗 + 𝑏 𝑗 ⌊𝑞/2⌋ − tdk (F
⊤
dks𝑗 +

[
y𝑗
z𝑗

]
)

= 𝑏 𝑗 ⌊𝑞/2⌋ + 𝑥 𝑗 − t⊤dk
[
y𝑗 z𝑗

]︸ ︷︷ ︸
second error term

.

According to Lemma 22 in [2], if the norm of the second error

term is bounded by 𝑞 ·𝜎2 · ℓ ·𝑚 ·𝛼 ·𝜔 (
√

log𝑚) +O(ℓ𝜎2𝑚
3/2) ≤ 𝑞/5,

then 𝑏 𝑗 can be obtained correctly. Hence, we have 𝜈 𝑗 = 𝑏 𝑗 for

𝑗 = 1, · · · , 𝜌 if the derived keywords are the same.

Parameter Selection. For the system to work correctly, the pa-

rameters have the following restrictions [2, 7, 43]: (i)𝑚 > 5𝑛 log𝑞

so TrapGen can operate [43]; (ii) 𝑞 > 𝜎1𝑚
3/2𝜔 (

√
log𝑛) so that

y𝑆 = y𝑅 (iii) 𝛼 < [𝜎2ℓ𝑚𝜔 (
√

log𝑚)]−1
and 𝑞 = Ω(𝜎2𝑚

3/2) so
that the second error term is bounded by 𝑞/5; (iii) 𝜎1 = 2

√
𝑛 and

𝑞 > 2

√
𝑛/𝛼 so that Regev’s reduction [50, 51] can operate; (iv)

9

Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, Masahiro Mambo, and Yu-Chi Chen

(a) Encrypting keywords

(b) Generating trapdoors

(c) Performing tests

Figure 1: Comparison of Computation Costs with other
Lattice-based PEKS Schemes

𝜎2 > ℓ · 𝑚 · 𝜔 (
√

log𝑚) such that the security proof in [2] and

SampleLeft work correctly. To achieve these requirements, we set

𝑚 = 6𝑛1+𝛿 , 𝑞 =𝑚2.5 ·𝜔 (
√

log𝑛), 𝜎1 = 2

√
𝑛, 𝜎2 =𝑚ℓ ·𝜔 (

√
log𝑛), 𝛼 =

[ℓ2𝑚2 · 𝜔 (
√

log𝑛)]−1
, where 𝑛𝛿 > ⌈log𝑞⌉.

Security. The security of the proposed instantiation is directly

based on the underlying schemes. As the language of Benhamouda

et al.’s word-independent SPHF scheme [7] is for the ciphertext of

the labelled IND-CCA2 PKE scheme [43], the word of the scheme

is a ciphertext. Therefore, this SPHF trivially satisfies pseudo-

randomness. In addition, the PEKS and Trapdoor algorithms in

Behnia et al.’s PEKS scheme [6] are probabilistic. On the basis of

Theorem 5.3, we obtain the following theorem:

Theorem 6.2. The proposed lattice-based PAEKS scheme satisfies
MCI and MTP under the standard model.

7 COMPARISON
In this section, we present a comparison of our lattice-based instan-

tiation with other PEKS/PAEKS schemes (i.e., BOC+
04 [8], HL17

[27], ZTW
+
19 [62], QCH

+
20 [49], BOY20 [6], ZXW

+
21 [63], and

LTT
+
21 [39]) in terms of security properties, computation complex-

ity, computation cost, and communication cost. Table 1 presents

a comparison of the seven properties of each scheme, namely CI,

MCI, TP, MTP, quantum-resistance (QR), standard model (SM), and

no trusted authority (NTA). As we have cryptanalyzed ZTW
+
19

[62] and ZTW
+
21 [63] in the previous section, there are only the

QCH
+
20’s [49] and LTT

+
21’s [39] schemes satisfy TP. In addition,

only LTT
+
21 [39] provides quantum-resistant instantiation based

on the NTRU lattices. However, their solution requires an additional

trusted authority to help users generate their private keys, which

increases the difficulty of use in practice. To provide higher level

security, we removed this requirement. In general, our instantia-

tion is the first quantum-resistant PAEKS scheme that satisfies TP

and MTP under the standard model and does not require a trusted

authority.

We subsequently conducted two comparisons with three lattice-

based schemes (i.e., ZTW+
19, BOY20, and ZXW

+
21) in terms of

computational complexity and communication cost in Table 2

and Table 3, respectively. For simplicity, only five types of time-

consuming operations are considered, namely general multiplica-

tion (𝑇𝑀), general hash function (𝑇𝐻), SamplePre function (𝑇𝑆𝑃),

BasisDel function (𝑇𝐵𝐷), and SampleLeft function (𝑇𝑆𝐿). In addi-

tion, Fig. 1 presents the results of the experimental simulation,

where the simulation was carried out in the MATLAB language

on Windows 10 Enterprise Version 1909 with Inter(R) Core(TM)

i7-9700 CPU clocked at 3.00 GHz and 32GB of system memory.

To achieve the 80-bit security level, we set the parameters with

𝑛 = 256,𝑚 = 9753, 𝑞 = 4096, 𝜌 = 10, 𝜅 = 10, ℓ = 10, 𝜎1 = 8, 𝜎2 = 8,

where 𝜌, 𝜅 are the parameters related to the security parameter

(i.e., 𝜅, 𝜌 = poly(𝜆)) and ℓ is the length of the keyword. In ad-

dition, we adopted the internal .net classes of MATLAB, namely

System.Security.Cryptography.HashAlgorithm to implement

the SHA256 hash function.

As our instantiation adopted BOY20 [6] as the building block, we

first analyzed the differences with BOY20 [6]. The results indicated

that our instantiation only required some extra cost in terms of the

computational cost. In terms of the communication cost, as our in-

stantiation did not require additional elements to meet the required

securities (e.g., TP and MTP), the communication cost was the same

as that for BOY20 [6]. In contrast, although our instantiation took

approximately twice as long as ZTW
+
19 [62] and ZXW

+
21 [63] to

10

Public-key Authenticated Encryption with Keyword Search: Cryptanalysis, Enhanced Security, andQuantum-resistant Instantiation

Table 1: Comparison of security properties with those of PAEKS schemes

Schemes CI MCI TP MTP QR SM NTA

BOC
+
04 [8] ✓ ✓ ✗ ✗ ✗ ✗ ✓

HL17 [27] ✗ ✗ ✗ ✗ ✗ ✗ ✓

ZTW
+
19 [62] ✓ ✓ ✗ ✗ ✓ ✗ ✗

QCH
+
20 [49] ✓ ✓ ✓ ✗ ✗ ✗ ✓

BOY20 [6] ✓ ✓ ✗ ✗ ✓ ✓ ✓

ZXW
+
21 [63] ✓ ✓ ✗ ✗ ✓ ✗ ✓

LTT
+
21 [39] ✓ ✓ ✓ ✓ ✓ ✗ ✗

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓: The scheme supports the corresponding feature; ✗: The scheme fails in supporting the corresponding feature.

SM: Standard model; QR: Quantum-resistant. NTA: No trusted authority.

Table 2: Comparison of Required Operations with those for other Lattice-based PEKS Schemes

Schemes Ciphertext Generation Trapdoor Generation Testing

ZTW
+
19 [62] 2𝑇𝐻 + (𝜌𝑛 + 𝑛𝑚2 + 𝜌𝑛𝑚 + 𝜌)𝑇𝑀 +𝑇𝑆𝑃 𝑇𝐻 + 𝑛𝑚2𝑇𝑀 +𝑇𝐵𝐷 +𝑇𝑆𝑃 𝑇𝐻 + (ℓ𝑚 + 𝑛𝑚)𝑇𝑀

BOY20 [6] 𝜌 (𝑚2 + 2𝑛𝑚 + 𝑛 + ℓ + 1)𝑇𝑀 ℓ𝑇𝑀 +𝑇𝑆𝐿 2𝜌𝑚𝑇𝑀
ZXW

+
21 [63] 𝑇𝐻 + (𝜌𝑛 + 𝑛𝑚2 + 𝜌𝑛𝑚 + 𝜌)𝑇𝑀 +𝑇𝑆𝑃 𝑇𝐻 + 𝑛𝑚2𝑇𝑀 +𝑇𝐵𝐷 +𝑇𝑆𝑃 𝑇𝐻 + (ℓ𝑚 + 𝑛𝑚)𝑇𝑀

Ours 𝑇𝐻 + (𝜅 (𝑚 + 𝑛 + 1) + 𝜌 (𝑚2 + 2𝑛𝑚 + 𝑛 + ℓ + 1))𝑇𝑀 𝑇𝐻 + (𝜅 (𝑚 + 𝑛 + 1) + ℓ)𝑇𝑀 +𝑇𝑆𝐿 2𝜌𝑚𝑇𝑀

𝜅, 𝜌 : The parameters related to security parameter 𝜆; ℓ : The length of the keyword.

𝑇𝑀 , 𝑇𝐻 , 𝑇𝑆𝑃 , 𝑇𝐵𝐷 , and 𝑇𝑆𝐿 : The running time of a general multiplication, general hash function, SamplePre function, BasisDel function,
and SampleLeft function, respectively.

Table 3: Comparison of Communication Costs with other
Lattice-based PEKS Schemes

Schemes Ciphertext Trapdoor

ZTW
+
19 [62] (ℓ +𝑚ℓ +𝑚) |𝑞 | 𝑚 |𝑞 |

BOY20 [6] 𝜅 (|𝑞 | + 2𝑚 |𝑞 | + 1) 2𝑚 |𝑞 |
ZXW

+
21 [63] (ℓ +𝑚ℓ +𝑚) |𝑞 | 𝑚 |𝑞 |

Ours 𝜅 (|𝑞 | + 2𝑚 |𝑞 | + 1) 2𝑚 |𝑞 |

𝑛: The parameter related to security parameter;𝑚: Dimension;

𝑞: Modules; 𝜅: The parameter related to security parameter; ℓ :

The length of the keyword.

generate ciphertexts, the time it took to generate trapdoors and per-

form tests decreased by approximately 40% and 99%, respectively.

In terms of the communication cost, the ciphertext size and the

trapdoor size of our instantiation were both approximately twice

larger than those for ZTW
+
19 [62] and ZXW

+
21 [63]. Although the

communication cost increased, we believe that this additional cost

is acceptable under the trade-offs of more security and efficiency.

8 CONCLUSION
In this work, we proposed a generic PAEKS construction that could

transform the PEKS scheme to the PAEKS scheme by equipping a

pseudo-random SPHF scheme. Our security proofs demonstrated

that this construction satisfied two basic security notations—CI

and TP. In addition, on the basis of our theoretical result (Theorem

3.3), we demonstrated that the construction further satisfied MCI

and MTP if the PEKS algorithm and Trapdoor algorithms of the

underlying PEKS scheme were probabilistic.

Furthermore, by leveraging Behnia et al.’s [6] lattice-based PEKS
scheme, we introduced the first quantum-resistant PAEKS instan-

tiation that not only offered privacy-preserving keyword search

but also fought against multi-CKA and multi-IKGA. In a compari-

son with the existing quantum-resistant PEKS schemes, the results

indicates that although the communication cost increased, our in-

stantiation was safer and more suitable for environments with

security concerns.

ACKNOWLEDGMENTS
This research was supported by the Ministry of Science and Tech-

nology, Taiwan (ROC), under project numbers MOST 108-2218-E-

004-002-MY2, MOST 109-2628-E-155-001-MY3, MOST 109-2221-E-

004-011-MY3, MOST 109-3111-8-004-001-, MOST 110-2218-E-004-

001-MBK, and MOST 110-2221-E-004-003-.

REFERENCES
[1] Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. 2015. Public-Key

Encryption Indistinguishable Under Plaintext-Checkable Attacks. In PKC.
[2] Shweta Agrawal, Dan Boneh, and Xavier Boyen. 2010. Efficient Lattice (H)IBE in

the Standard Model. In EUROCRYPT.
[3] Shweta Agrawal, Dan Boneh, and Xavier Boyen. 2010. Lattice Basis Delegation

in Fixed Dimension and Shorter-Ciphertext Hierarchical IBE. In CRYPTO.
[4] Joël Alwen and Chris Peikert. 2011. Generating Shorter Bases for Hard Random

Lattices. Theory Comput. Syst. 48, 3 (2011), 535–553.
[5] Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. 2008. Public key en-

cryption with keyword search revisited. In ICCSA.

11

Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, Masahiro Mambo, and Yu-Chi Chen

[6] Rouzbeh Behnia, Muslum Ozgur Ozmen, and Attila Altay Yavuz. 2020. Lattice-

Based Public Key Searchable Encryption from Experimental Perspectives. IEEE
Trans. Dependable Secur. Comput. 17, 6 (2020), 1269–1282.

[7] Fabrice Benhamouda, Olivier Blazy, Léo Ducas, and Willy Quach. 2018. Hash

Proof Systems over Lattices Revisited. In PKC.
[8] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano.

2004. Public Key Encryption with Keyword Search. In EUROCRYPT.
[9] JinWook Byun, Hyun Suk Rhee, Hyun-A Park, andDongHoon Lee. 2006. Off-Line

Keyword Guessing Attacks on Recent Keyword Search Schemes over Encrypted

Data. In SDM.

[10] Ran Canetti, Dana Dachman-Soled, Vinod Vaikuntanathan, and Hoeteck Wee.

2012. Efficient Password Authenticated Key Exchange via Oblivious Transfer. In

PKC.
[11] Yan-Cheng Chang andMichael Mitzenmacher. 2005. Privacy Preserving Keyword

Searches on Remote Encrypted Data. In ACNS.
[12] Biwen Chen, Libing Wu, Sherali Zeadally, and Debiao He. 2019. Dual-server

public-key authenticated encryption with keyword search. IEEE Trans. Cloud
Comput. (2019).

[13] Rongmao Chen, Yi Mu, Guomin Yang, Fuchun Guo, Xinyi Huang, Xiaofen Wang,

and Yongjun Wang. 2016. Server-aided public key encryption with keyword

search. IEEE Trans. Inf. Forensics Secur. 11, 12 (2016), 2833–2842.
[14] Rongmao Chen, Yi Mu, Guomin Yang, Fuchun Guo, and Xiaofen Wang. 2015.

Dual-server public-key encryption with keyword search for secure cloud storage.

IEEE Trans. Inf. Forensics Secur. 11, 4 (2015), 789–798.
[15] Rongmao Chen, Yi Mu, Guomin Yang, Fuchun Guo, and Xiaofen Wang. 2015. A

new general framework for secure public key encryption with keyword search.

In ACISP.
[16] Leixiao Cheng and Fei Meng. 2021. Security analysis of Pan et al.’s “Public-key

authenticated encryption with keyword search achieving both multi-ciphertext

and multi-trapdoor indistinguishability”. J. Syst. Archit. (2021), 102248.
[17] Ronald Cramer and Victor Shoup. 2002. Universal Hash Proofs and a Paradigm

for Adaptive Chosen Ciphertext Secure Public-Key Encryption. In EUROCRYPT.
[18] Ioannis Demertzis, Javad Ghareh Chamani, Dimitrios Papadopoulos, and Char-

alampos Papamanthou. 2020. Dynamic Searchable Encryption with Small Client

Storage.. In NDSS.
[19] Pierre-Alain Dupont, Julia Hesse, David Pointcheval, Leonid Reyzin, and Sophia

Yakoubov. 2018. Fuzzy Password-Authenticated Key Exchange. In EUROCRYPT.
[20] Keita Emura. 2017. A generic construction of secure-channel free searchable

encryption with multiple keywords. In NSS.
[21] Keita Emura, AtsukoMiyaji, Mohammad Shahriar Rahman, and Kazumasa Omote.

2015. Generic constructions of secure-channel free searchable encryption with

adaptive security. Secur. Commun. Networks 8, 8 (2015), 1547–1560.
[22] Liming Fang, Willy Susilo, Chunpeng Ge, and Jiandong Wang. 2009. A secure

channel free public key encryption with keyword search scheme without random

oracle. In CANS.
[23] Rosario Gennaro and Yehuda Lindell. 2003. A Framework for Password-Based

Authenticated Key Exchange. In EUROCRYPT, Eli Biham (Ed.).

[24] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. 2008. Trapdoors for

hard lattices and new cryptographic constructions. In STOC.
[25] Adam Groce and Jonathan Katz. 2010. A new framework for efficient password-

based authenticated key exchange. In CCS.
[26] Debiao He, Mimi Ma, Sherali Zeadally, Neeraj Kumar, and Kaitai Liang. 2017.

Certificateless public key authenticated encryption with keyword search for

industrial internet of things. IEEE Trans. Ind. Informatics 14, 8 (2017), 3618–3627.
[27] Qiong Huang and Hongbo Li. 2017. An efficient public-key searchable encryption

scheme secure against inside keyword guessing attacks. Inf. Sci. 403 (2017), 1–14.
[28] Yong Ho Hwang and Pil Joong Lee. 2007. Public Key Encryption with Conjunctive

Keyword Search and Its Extension to a Multi-user System. In Pairing.
[29] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. 2018. OPAQUE: An Asymmetric

PAKE Protocol Secure Against Pre-computation Attacks. In EUROCRYPT.
[30] Ik Rae Jeong, Jeong Ok Kwon, Dowon Hong, and Dong Hoon Lee. 2009. Con-

structing PEKS schemes secure against keyword guessing attacks is possible?

Comput. Commun. 32, 2 (2009), 394–396.
[31] Peng Jiang, Yi Mu, Fuchun Guo, Xiaofen Wang, and Qiaoyan Wen. 2016. On-

line/offline ciphertext retrieval on resource constrained devices. Comput. J. 59, 7
(2016), 955–969.

[32] Jonathan Katz and Vinod Vaikuntanathan. 2009. Smooth Projective Hashing and

Password-Based Authenticated Key Exchange from Lattices. In ASIACRYPT.
[33] Jonathan Katz and Vinod Vaikuntanathan. 2011. Round-Optimal Password-Based

Authenticated Key Exchange. In TCC.
[34] Jonathan Katz and Vinod Vaikuntanathan. 2013. Round-Optimal Password-Based

Authenticated Key Exchange. J. Cryptol. 26, 4 (2013), 714–743.
[35] Franziskus Kiefer and Mark Manulis. 2014. Distributed Smooth Projective Hash-

ing and Its Application to Two-Server Password Authenticated Key Exchange. In

ACNS.

[36] Hongbo Li, Qiong Huang, Jian Shen, Guomin Yang, and Willy Susilo. 2019.

Designated-server identity-based authenticated encryption with keyword search

for encrypted emails. Inf. Sci. 481 (2019), 330–343.
[37] Xueqiao Liu, Hongbo Li, Guomin Yang, Willy Susilo, Joseph Tonien, and Qiong

Huang. 2019. Towards enhanced security for certificateless public-key authenti-

cated encryption with keyword search. In ProvSec.
[38] Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, Yu-Chi Chen, and Masahiro Mambo.

2021. Identity-certifying Authority-aided Identity-based Searchable Encryption

Framework in Cloud System. IACR Cryptol. ePrint Arch. (2021).
[39] Zi-Yuan Liu, Yi-Fan Tseng, Raylin Tso, Masahiro Mambo, and Yu-Chi Chen.

2021. Public-key Authenticated Encryption with Keyword Search: A Generic

Construction and Its Quantum-resistant Instantiation. IACR Cryptol. ePrint Arch.
(2021).

[40] Yang Lu and Jiguo Li. 2021. Lightweight Public Key Authenticated Encryption

with Keyword Search against Adaptively-Chosen-Targets Adversaries for Mobile

Devices. IEEE Trans. Mob. Comput. (2021).
[41] Yang Lu, Jiguo Li, and Fen Wang. 2020. Pairing-free certificate-based searchable

encryption supporting privacy-preserving keyword search function for iiots.

IEEE Trans. Ind. Informatics 17, 4 (2020), 2696–2706.
[42] Yang Lu, Jiguo Li, and Yichen Zhang. 2019. Secure channel free certificate-based

searchable encryption withstanding outside and inside keyword guessing attacks.

IEEE Trans. Serv. Comput. (2019).
[43] Daniele Micciancio and Chris Peikert. 2012. Trapdoors for Lattices: Simpler,

Tighter, Faster, Smaller. In EUROCRYPT.
[44] Tarik Moataz and Abdullatif Shikfa. 2013. Boolean symmetric searchable encryp-

tion. In ASIACCS.
[45] Mahnaz Noroozi and Ziba Eslami. 2019. Public key authenticated encryption

with keyword search: revisited. IET Inf. Secur. 13, 4 (2019), 336–342.
[46] Simon Oya and Florian Kerschbaum. 2021. Hiding the access pattern is not

enough: Exploiting search pattern leakage in searchable encryption. In USENIX
Security.

[47] Nasrollah Pakniat, Danial Shiraly, and Ziba Eslami. 2020. Certificateless authenti-

cated encryption with keyword search: Enhanced security model and a concrete

construction for industrial IoT. J. Inf. Secur. Appl. 53 (2020), 102525.
[48] Xiangyu Pan and Fagen Li. 2021. Public-key authenticated encryption with

keyword search achieving both multi-ciphertext and multi-trapdoor indistin-

guishability. J. Syst. Archit. 115 (2021), 102075.
[49] Baodong Qin, Yu Chen, Qiong Huang, Ximeng Liu, and Dong Zheng. 2020. Public-

key authenticated encryption with keyword search revisited: Security model and

constructions. Inf. Sci. 516 (2020), 515–528.
[50] Oded Regev. 2005. On lattices, learning with errors, random linear codes, and

cryptography. In STOC.
[51] Oded Regev. 2009. On lattices, learning with errors, random linear codes, and

cryptography. J. ACM 56, 6 (2009), 34:1–34:40.

[52] Hyun Sook Rhee, Jong Hwan Park, Willy Susilo, and Dong Hoon Lee. 2009.

Improved searchable public key encryption with designated tester. In ASIACCS.
[53] Hyun Sook Rhee, Jong Hwan Park, Willy Susilo, and Dong Hoon Lee. 2010.

Trapdoor security in a searchable public-key encryption schemewith a designated

tester. J. Syst. Softw. 83, 5 (2010), 763–771.
[54] Peter W Shor. 1994. Algorithms for quantum computation: discrete logarithms

and factoring. In FOCS.
[55] Peter W Shor. 1999. Polynomial-time algorithms for prime factorization and

discrete logarithms on a quantum computer. SIAM review 41, 2 (1999), 303–332.

[56] Dawn Xiaodong Song, David A. Wagner, and Adrian Perrig. 2000. Practical

Techniques for Searches on Encrypted Data. In IEEE S&P.
[57] Shi-Feng Sun, Xingliang Yuan, Joseph K Liu, Ron Steinfeld, Amin Sakzad, Viet Vo,

and Surya Nepal. 2018. Practical backward-secure searchable encryption from

symmetric puncturable encryption. In CCS.
[58] Tatsuya Suzuki, Keita Emura, and Toshihiro Ohigashi. 2018. A generic construc-

tion of integrated secure-channel free PEKS and PKE. In ISPEC.
[59] Tatsuya Suzuki, Keita Emura, and Toshihiro Ohigashi. 2019. A generic construc-

tion of integrated secure-channel free PEKS and PKE and its application to EMRs

in cloud storage. Journal of medical systems 43, 5 (2019), 1–15.
[60] Lei Xu, Xingliang Yuan, Ron Steinfeld, CongWang, and Chungen Xu. 2019. Multi-

writer searchable encryption: An LWE-based realization and implementation. In

ASIACCS.
[61] Peng Xu, Hai Jin, Qianhong Wu, and Wei Wang. 2012. Public-key encryption

with fuzzy keyword search: A provably secure scheme under keyword guessing

attack. IEEE Transactions on computers 62, 11 (2012), 2266–2277.
[62] Xiaojun Zhang, Yao Tang, Huaxiong Wang, Chunxiang Xu, Yinbin Miao, and

Hang Cheng. 2019. Lattice-based proxy-oriented identity-based encryption with

keyword search for cloud storage. Inf. Sci. 494 (2019), 193–207.
[63] Xiaojun Zhang, Chunxiang Xu, Huaxiong Wang, Yuan Zhang, and Shixiong

Wang. 2021. FS-PEKS: Lattice-Based Forward Secure Public-Key Encryption with

Keyword Search for Cloud-Assisted Industrial Internet of Things. IEEE Trans.
Dependable Secur. Comput. 18, 3 (2021), 1019–1032.

12

Public-key Authenticated Encryption with Keyword Search: Cryptanalysis, Enhanced Security, andQuantum-resistant Instantiation

A ZHANG ET AL.’S PEKS SCHEMES
A.1 Forward-secure PEKS
Here, we briefly review Zhang et al.’s lattice-based forward-secure

PEKS scheme [63], which consists of five algorithms.

• Setup(1𝜆): Taking as input a security parameter 𝜆, it first

randomly selects 𝝁 ← Z𝑛𝑞 and three secure hash func-

tions 𝐻1 : Z𝑛×𝑚𝑞 × {0, · · · , 𝜂} → Z𝑚×𝑚𝑞 , 𝐻2 : {0, 1}ℓ1 ×
{0, · · · , 𝜂} → Z𝑛×𝑚𝑞 , 𝐻3 : Z𝑚×ℓ𝑞 × {0, 1}ℓ → Z𝑛𝑞 . Then,

it generates (A𝑆 ∥0,T𝑆 ∥0) and (A𝑅 ∥0,T𝑅 ∥0) by performing

TrapGen(1𝑛, 1𝑚, 𝑞). Finally, it outputs the public parame-

ter pp := (𝜇, 𝐻1, 𝐻2, 𝐻3), the public/private key pairs of

the sender (pk𝑆,0 := A𝑆 ∥0, sk𝑆,0 := T𝑆 ∥0) and the receiver

(pk𝑅,0 := A𝑅 ∥0, sk𝑅,0 := T𝑅 ∥0) for time period 0.

• KeyUpdate(pk𝑅,𝑖 , sk𝑅,𝑖 , 𝑖, 𝑗): Taking as input an input pub-

lic/private key pair (pk𝑅,𝑖 := A𝑅 ∥𝑖 , sk𝑅,𝑖 := T𝑅 ∥𝑖) of the
receiver in the previous time period 𝑖 and the current time pe-

riod 𝑗 , it computesR𝑅 ∥𝑖→𝑗 = 𝐻1 (A𝑅 ∥ 𝑗)+· · ·+𝐻1 (A𝑅 ∥𝑖+1) ∈
Z𝑚×𝑚𝑞 and T𝑅 ∥ 𝑗 = NewBasisDel(A𝑅 ∥𝑖 ,R𝑅 ∥𝑖→𝑗 , T𝑅 ∥𝑖 , 𝛿 𝑗),
where A𝑅 ∥ 𝑗 = A𝑅 ∥𝑖 (R𝑅 ∥𝑖→𝑗)−1 = A𝑅 (R𝑅 ∥ 𝑗)−1 ∈ Z𝑛×𝑚𝑞 . Fi-

nally, it outputs the public/private key pair (pk𝑅,𝑗 := A𝑅 ∥ 𝑗 ,
sk𝑅,𝑗 := T𝑅 ∥ 𝑗) of the receiver for time period 𝑗 . Note that

the sender can use the same steps to generate his/her pub-

lic/private key pair (pk𝑆,𝑗 := A𝑆 ∥ 𝑗 , sk𝑆,𝑗 := T𝑆 ∥ 𝑗) for time

period 𝑗 .

• PEKS(pk𝑆,𝑗 , sk𝑆,𝑗 , pk𝑅,𝑗 , 𝑗, kw): Taking as input a pub-

lic/private key pair (pkS,j := A𝑆 ∥ 𝑗 , skS,j := T𝑆 ∥ 𝑗) of the
sender for time period 𝑗 , the public key pkR,j := A𝑅 ∥ 𝑗
of the receiver for time period 𝑗 , the current time period

𝑗 , and keyword kw ∈ {0, 1}ℓ1 , the sender first chooses a

random binary string 𝜸 𝑗 = (𝛾 𝑗1 , · · · , 𝛾 𝑗ℓ) ∈ {0, 1}ℓ , uni-
form matrix B𝑗 ← Z𝑛×ℓ𝑞 , noise e𝑗 = (𝑒 𝑗1 , · · · , 𝑒 𝑗ℓ), and
noise V𝑗 = (v𝑗1 , · · · , v𝑗ℓ), where 𝑒 𝑗1 , · · · , 𝑒 𝑗ℓ ← Z𝑞 and

v𝑗1 , · · · , v𝑗ℓ ← Z𝑚𝑞 . Then, it computes 𝜷 𝑗 = 𝐻2 (kw∥ 𝑗), c𝑗1 =

𝝁⊤B𝑗 + 𝑒 𝑗 + (𝛾 𝑗1 , · · · , 𝛾 𝑗ℓ) ⌊𝑞/2⌋, c𝑗2 = (A𝑅 ∥ 𝑗𝜷−1

𝑗
)B𝑗 +V𝑗 ; In

addition, it computes h𝑗 = 𝐻3 (c𝑗2 ∥𝜸 𝑗) ∈ Z𝑛𝑞 , and generates

𝜻 𝑗 ← SamplePre(A𝑆 ∥ 𝑗 ,T𝑆 ∥ 𝑗 , h𝑗 , 𝜎 𝑗); Finally, it outputs a
searchable ciphertext ct𝑗 := (c𝑗1 , c𝑗2 , 𝜻 𝑗).
• Trapdoor(pk𝑅,𝑗 , sk𝑅,𝑗 , 𝑗, kw): Taking as input a pub-

lic/private key pair (pk𝑅,𝑗 := A𝑅 ∥ 𝑗 , sk𝑅,𝑗 := T𝑅 ∥ 𝑗) of
the receiver for time period 𝑗 , current time period 𝑗

and keyword kw ∈ {0, 1}ℓ1 , the receiver computes 𝜷 𝑗 =

𝐻2 (kw∥ 𝑗),Tkw ∥ 𝑗 ← NewBasisDel(A𝑅 ∥ 𝑗 , 𝜷 𝑗 ,T𝑅 ∥ 𝑗 , 𝛿 𝑗) ∈
Z𝑚×𝑚𝑞 , tkw ∥ 𝑗 ← SamplePre(A𝑅 ∥ 𝑗𝜷−1

𝑗
,T𝑤 ∥ 𝑗 , 𝝁, 𝜎 𝑗) ∈ Z𝑚𝑞 .

Finally, it outputs a trapdoor td𝑗 := tkw ∥ 𝑗 .
• Test(ct𝑗 , td𝑗): Taking as input a ciphertext ct𝑗 :=

(c𝑗1 , c𝑗2 , 𝜻 𝑗) for time period 𝑗 and trapdoor td𝑗 := tkw ∥ 𝑗
for time period 𝑗 , the cloud server computes 𝜸 𝑗 =

(𝛾 𝑗1 , · · · , 𝛾 𝑗ℓ) ← c𝑗1 − t⊤
𝑤 ∥ 𝑗 c𝑗2 . For 𝑘 = 1, · · · , ℓ , if |𝛾 𝑗𝑘 −

⌊𝑞/2⌋ | < ⌊𝑞/4⌋, it sets 𝛾 𝑗𝑘 = 1; otherwise, it sets 𝛾 𝑗𝑘 = 0.

Then, it updates 𝜸 𝑗 ; It also computes h𝑗 = 𝐻3 (c𝑗2 ∥𝜸 𝑗) ∈ Z𝑛𝑞 .
If A𝑆 ∥ 𝑗𝜻 𝑗 = h𝑗 and 𝜻 𝑗 is distributed in D

Λ
h𝑗
𝑞 (A𝑆 ∥ 𝑗),𝜎 𝑗

, it

outputs 1; otherwise, it outputs 0.

A.2 Proxy-oriented Identity-based PEKS
In this subsection, we review Zhang et al.’s proxy-oriented identity-
based PEKS scheme [62], which consists of six algorithms.

• Setup(1𝜆): Taking as input a security parameter 𝜆,

the key generator center first generates (A,TA) ←
TrapGen(1𝑛, 1𝑚, 𝑞). Then, it selects a uniform random vec-

tor v ← Z𝑛𝑞 and five secure cryptographic hash functions:

𝐻1 : {0, 1}ℓ1 → Z𝑚×𝑚𝑞 , 𝐻2 : {0, 1}ℓ1 × {0, 1}ℓ1 × {0, 1}ℓ2 ×
Z𝑛𝑞 → Z𝑛𝑞 , 𝐻3 : {0, 1}ℓ1 × {0, 1}ℓ1 × {0, 1}ℓ2 × Z𝑚𝑞 →
Z𝑚×𝑚𝑞 , 𝐻4 : {0, 1}ℓ1 × {0, 1}ℓ1 × {0, 1}ℓ3 → Z𝑚×𝑚𝑞 , and

𝐻5 : {0, 1}ℓ × Z𝑚×ℓ𝑞 → Z𝑛𝑞 . Finally, it outputs the public

parameters pp := (A, v, 𝐻1, 𝐻2, 𝐻3, 𝐻4, 𝐻5) and master pri-

vate key msk := TA.
• KeyExtract(msk, id): For an input the master secret key

msk := TA and an identity id ∈ {0, 1}ℓ1 , it computes

Rid = 𝐻1 (id) and Aid = A(Rid)−1 ∈ Z𝑛×𝑚𝑞 . Then, it gen-

erates Tid ← NewBasisDel(A,Rid ,TA, 𝜎) and outputs the

secret key skid := Tid for identity id.
• Proxy-oriented key generation: This interactive PPT

algorithm between a data owner id𝑂 and a proxy id𝑃 .
id𝑂 first generates a warrant w ∈ {0, 1}ℓ according to

its requirements and then selects a uniform random

vector r ← Z𝑛𝑞 , and computes 𝝁 = 𝐻2 (id𝑂 ∥id𝑃 ∥w∥r). id𝑂
also runs 𝜷w ← SamplePre(Aid𝑂 ,Tid𝑂 , 𝝁, 𝛿) ∈ Z𝑚𝑞 .

Finally, id𝑂 sends (w, r, 𝜷w) directly to id𝑃 . Now,

id𝑃 computes Rw = 𝐻3 (id𝑂 ∥id𝑃 ∥w∥𝜷w) and

Tpro ← NewBasisDel(Aid𝑃 ,Rw,Tid𝑃 , 𝜎), and sets

(pkpro := Apro, skpro := T𝑝𝑟𝑜) as the proxy-oriented

public/private key pair, where Apro = Aid𝑃 (Rw)−1 ∈ Z𝑛×𝑚𝑞 .

• IBEKS(pkpro, skpro, kw, id𝑅): Taking as input the pub-

lic/private key pair (pkpro := A𝑝𝑟𝑜 , skpro := T𝑝𝑟𝑜) of the
proxy-oriented a keyword kw ∈ {0, 1}ℓ3 , and receiver’s iden-

tity id𝑅 , the proxy id𝑃 first randomly chooses F ∈ Z𝑛×ℓ𝑞 and a

binary string𝝉 = (𝜏1, 𝜏2, · · · , 𝜏ℓ) ∈ {0, 1}ℓ . In addition, it sam-

ples a noise vector 𝜼 = (𝜂1, 𝜂2, · · · , 𝜂ℓ) ← 𝜒 and a noise ma-

trix S = (s1, · · · , sℓ) ∈ Z𝑚×ℓ𝑞 , where 𝜒 is a Gaussian distribu-

tion. It computes 𝜸 = 𝐻4 (id𝑃 ∥id𝑅 ∥kw), 𝝃 = (Aid𝑅𝜸
−1)⊤F +

S, 𝜻 = v⊤F + 𝜼 + (𝜏1, 𝜏2, · · · , 𝜏ℓ) ⌊𝑞/2⌋. Then, it computes

h = 𝐻5 (𝝉 ∥𝝃) and 𝜽 ← SamplePre(Apro,Tpro, h, 𝛿) ∈ Z𝑚𝑞 .
Finally, it outputs a searchable ciphertext ct := (𝝃 , 𝜻 , 𝜽).
• Trapdoor(skid𝑅 , kw): Taking as input the private key

skid𝑅 := T𝑖𝑑𝑅 of the receiver id𝑅 and a keyword kw ∈
{0, 1}ℓ3 , id𝑅 first computes 𝜸 = 𝐻4 (id𝑃 ∥id𝑅 ∥kw) and
Dkw ← NewBasisDel(Aid𝑅 ,𝜸 ,Tid𝑅 , 𝜎) ∈ Z𝑚×𝑚𝑞 . Then, it

generates dkw ← SamplePre(Aid𝑅𝜸
−1,Dkw, v, 𝛿) ∈ Z𝑚𝑞 ,

where Aid𝑅𝜸
−1dkw = v is satisfied. Finally, it outputs a trap-

door td := dkw .
• Test(pkpro, ct, td): Taking as input the proxy-oriented public
key pkpro := Apro, a searchable ciphertext ct := (𝝃 , 𝜻 , 𝜽),
and a trapdoor td := dkw , the cloud server computes 𝝉 =

(𝜏1, 𝜏2, · · · , 𝜏ℓ) ← 𝜻 − d⊤kw𝝃 ∈ Z
ℓ
𝑞 . For 𝑗 = 1, · · · , ℓ , if |𝜏 𝑗 −

⌊𝑞/2⌋ | < ⌊𝑞/4⌋, it sets 𝜏 𝑗 = 1; otherwise, it sets 𝜏 𝑗 = 0. It

updates 𝝉 and further computes h = 𝐻5 (𝝉 ∥𝝃) and checks

whether the equation Apro𝜽
?

= h holds. If the equation holds,

the cloud server outputs 1; otherwise, it returns 0.
13

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Our Contribution

	2 Preliminaries
	2.1 Background of Lattices
	2.2 Public-key Encryption with Keyword Search
	2.3 Labelled Public-key Encryption Scheme
	2.4 Smooth Projective Hash Functions

	3 Definition and Security Models of PAEKS
	3.1 Definition of PAEKS
	3.2 Security Requirements of PAEKS

	4 Cryptanalysis of Previous Trapdoor Privacy Schemes
	5 Proposed Generic PAEKS Construction
	6 Lattice-based Instantiation
	7 Comparison
	8 Conclusion
	Acknowledgments
	References
	A Zhang et al.'s PEKS Schemes
	A.1 Forward-secure PEKS
	A.2 Proxy-oriented Identity-based PEKS

