
Circuit friendly, post-quantum dynamic

accumulators from RingSIS with logarithmic

prover time

Endre Abraham
Wigner research centre for Physics

July 29, 2021

Abstract

Mainstream hash functions such as SHA or BLAKE while generally
efficient in their implementations, are not suitable for zero-knowledge
boolean or arithmetic circuits due to their reliance on CPU designs. As
a candidate hash function that uses only on trivial arithmetics which can
be generalized to zeroknowledge circuits, the Ajtai lattice SIS-hasher has
been proposed. In this paper we review Micciancio’s R-SIS generaliza-
tion and argue about it’s circuit complexity, then we show how this R-SIS
hasher can be used as a universal dynamic hash accumulator that has
constant-time update and revocation complexity, and can be run on 16-
bit hardware as well as smart contracts.

1 Introduction

Cryptographic accumulators are not a new gadget in literature but after a short
uptake from the blockchain and zeroknowledge community recently, they lack
intense research. Their most intuitive usecase is as a constant-size and private
alternative to Merkle trees where one does not need to leak logn elements of the
tree to prove membership of a particular element.

Recent focus by the cryptocurrency community on accumulators highlight
privacy concerns around UTXO sets and their membership proofs. Recursive
Zk-Snarks which show a promising scaling feature are hard to implement on
top of Merkle trees, especially with hash functions designed for performance on
consumer electronics and no abstract algebraic circuit friendlyness in mind.

The nominal work of Ajtai[1] which is considered as the start of lattice based
cryptography research shows a toy hasher which is later generalized by Miccian-
cio and Regev[2]. This ”SIS-hasher” achieves collision resistance, and quantum
safety using only modular addition and multiplication. Later Elaine Shi et al.[3]
constructed a two-input version and an authenticated data structure using it’s

1

accumulation properties. This research focuses on such properties while also
making the initial construction more efficient, memory friendly and we select
ideal parameters for hardware verification and smart-contract implementations.
First we review the starting SIS-problem and the induced collision-resistant
hash, make a two-input instance that reduces to the original problem[3], then
we generalize this version into a Ring-SIS instance and argue about its security
and efficiency. Later we show how this more practical version is suitable for
quantum-safe membership and non-membership proofs.

1.1 Hash accumulators

Benaloh and de Mare defined hash accumulators as such:
Let h(x) be a length-regular one-way hash function that accepts two inputs,
and quasi-commutative. Formally:

1. h : Xn × Yn → Zn

2. h(xn, yn) ∈ O(poly(n))

3. Pr[h(x, y) = h(x′, y′) < ε] for any y′ ∈ Y and a negligibly small ε

4. ∀x ∈ X, y1, y2 ∈ Y : h(h(x, y1), y2) = h(h(x, y2), y1)

The accumulator value for a set y1, . . . , ym is thus h(h(h(. . . h(x, y1), y2) . . . ym)
and a corresponding witness for the inclusion of yi is w = h(h(h(. . . h(x, y1), yi−1), yi+1) . . . ym)
(the accumulator value of all elements except the subject). Then the verification
for the inclusion of yi is simply h(w, yi) ⊕ x where ⊕ is the binary-xor opera-
tion. We see that hash accumulators are constant size and anonymous in the
meaning that a prover does not have to provide any elements of the original set
to produce a valid membership proof.

We call a hash accumulator dynamic if the addition/removal into/from the
original set happens in constant time. Also, we call a hash accumulator univer-
sal if it can also produce a succint non-membership proof in addition. Benaloh
and de Mare showed in their work how modular exponentiation h(x, y) = xn

(mod ()n) satisfies the one-way and quasi-commutativity properties and later
RSA-accumulators have been proposed. However RSA accumulators have an
impractical limitation that they can only accumulate prime numbers (other-
wise it’s possible to forge membership proofs) which requires a hash-to-prime
solution. RSA accumulators belong to the class of ”Unknown order group” ac-
cumulators. Other constructions use Bilinear maps or Merkle trees which we
don’t address in this work.

1.2 Lattices and discrete gaussians

A lattice is the set of all possible linear combinations of a finite real basis with
integer coefficients:

2

c ∈ Zn,B = {b1,b2, . . . ,bn} ⊂ Rm,Λ = {Bc =
∑
i∈[n] cibi}

The dimension of a lattice is m and its rank is n. In case n = m we call the
lattice full-rank. For cryptographic applications we mostly use full-rank lat-
tices. The dual of a lattice is {x ∈ Rn : ∀v ∈ Λ, 〈x, v〉 ∈ Z} and the bidual
is itself. The shortest nonzero vector in the lattice is called the minimum dis-
tance: λ1(Λ) = min06=x∈Λ||x||. A measurable set R(Λ) ⊂ Rm satisfying that
∪λ∈ΛR(Λ) + λ = Rm is called a fundamental region. The fundamental paral-
lelepiped is a fundamental region, namely the generating set G ∈ Rm where∑
i∈[n] giai ∈ Z. All fundamental region’s volume is equal to det(B) (on full-

rank lattices). We use the notation B for the closed Euclidean ball of radius 1
around the origin: B = {w ∈ Rn : ||w|| ≤ 1}. Besides being (so far) resistant to
quantum attacks (not restricting to Shor’s and Grover’s algorithm) their signif-
icance in cryptography is stronger, as they offer better asymptotic complexity
(most lattice algorithms only involve linear operations on 16bit integers), and
it’s the ideal platform group for today’s most exotic cryptosystems like FHE,
IO or (H)IBE.
The connection between gaussian distributions and maps to the lattice’s funda-
mental parallelepiped allows us to prove security easier than by trying to use
uniform distribution (for e.g. key-generation) directly. We recall the properties
of discrete gaussian sampling over lattices and other related definitions based
on the works of Regev and Micciancio[2]:
For all c,x, s > 0, let:

ρs,c(x) = e−π||(x−c)/s||2

be the Gaussian function with center c and scale s. Then the continuous gaus-

sian distribution is:
ρs,c(x)
sn . This distributi on is generalized for lattices as:

ρs,c(x)
ρs,c(Λ) . As the scale parameter gets larger, the statistical distance between the

continuous and discrete variants of the gaussian narrows and the threshold for

s where the distance from c is (almost)
s2n
2π is called the smoothing parameter:

ε > 0 ∈ R, ηε(Λ) = ρ1/s(Λ
∗ \ {0}) ≤ ε

where Λ∗ is the lattice’s dual. This smoothing parameter was key to the re-
sults of Micciancio and Regev[2] as it proved that by using discrete Gaussian
distributions beyond this parameter, reducing the results into the fundamental
parallelepiped resulted in a statistically close to uniform distribution over Znq .
From Peikert’s lemma[4] we know a lower bound on η:

ηε(Λ) ≤

√
log(2n/(1+ 1

ε))/π

λ∞1 (λ∗)

3

where λ∞1 (λ∗) is the minimum distance of the lattice’s dual using the infinity
norm.
We recap some problems on full-rank and regular lattices which are assumed
no to be in BQP as no quantum algorithm currently exists that can solve an
instance in polynomial time.

1. Shortest Vector Problem: With a lattice basis B and l ∈ R, determine
whether λ1(B) ≤ l

2. Closest Vector Problem: With basis B, t ∈ Rn, d ∈ R, and security
parameter k (polinomial in n) determine whether dist(t,Λ(B)) > kd

3. Covering Radius Problem: With d ∈ Rn determine whether
maxx∈Rn{dist(x,Λ(B)} ≤ d

4. Shortest Indepentend Vectors Problem: Search for vectors S ⊂ B for basis
B that satisfies ||S|| < k ·min{r : dim(span(Λ ∩ rB)) ≥ n}

5. Shortest Integer Solution: This is a worst-case generalization of (approx-
imate) SVP. For m = poly(n), q ≥ β

√
nω(
√
logn) find x ∈ Zm such that

Az = 0 ∧ ||x|| < β

6. (Average-case) RingSIS: For a ringR, q ≥ 2, l ≥ 1 and a public a1, a2, . . . , al ∈
Rq, find a nontrivial vector e1, e2, . . . , el ∈ R{−1,0,1} such that a1e1 +
a2e2, . . . , alel = 0 ∈ Rq

7. Learning with errors[5]: For an arbitrary s ∈ Znq , the decisional LWE asks
to differentiate a ”sample” (a, as+ e mod q) from a completely uniform

random sample where a
$←− Znq and e

Dσ←−− Zq. LWE is proven to be as hard
as SIVP when q ≥ 2

√
n/σ and an instance of LWE(n,m, q) has equivalent

security of an instance of SIS(m,m− n, q)[6]

8. Ring-Learning with errors: Let Φ(x) be a cyclotomic polynomial and G =

Zq[x]/Φ(x) be a quotient polynomial ring. For an arbitrary s(x) ∈ G, a(x)
$←−

G, e(x)
Dσ←−− G, differentiate the sample (a(x), a(x) · s(x) + e(x) mod q)

from a uniformly selected one.

1.3 Note on Zero-knowledge circuits

Zero-knowledge protocols allow a verifier to ascertain the satisfiability of a com-
putation, without the prover giving out any information about the statement
besides the single bit of satisfiability. Arithmetic circuits are an algebraic model
of computation necessary for such zero-knowledge protocols, which are usually
organized into a Directed Acyclic Graph (DAG) over Zq, where the vertices
serve (usually) as addition or multiplication gates, and 0-degree vertices serving
as inputs or constants. Zero-Knowledge protocols prove, or argue about the
satisfiability of such algebraic (or in some cases Boolean) circuit in a crypto-
graphically binding (to the NP language) and hiding way (which implies they
often use commitment schemes).

4

2 R-SIS hasher with small parameters

We review the construction of Micciancio[7] for a a collision-resistant RingSIS
hasher on top of irreducible polynomial rings, and show ideal parameter selec-
tions for efficient accumulation usecases.

The idea pivots around the idea of Cyclic Lattices, which generates the
lattice basis matrix from the cyclic rotation of a uniform random column vector
a = (a1, a2, . . . , an)T ∈ Znq :

B =

a1 an · · · a3 a2

a2 a1 · · · a4 a3

a3 a2 · · · a5 a4

...
...

. . .
...

...
an−2 an−3 · · · an an−1

an−1 an−2 · · · a1 an
an an−1 · · · a2 a1

(1)

It is easy to see that such structure for the lattice basis is convenient for
storing the lattice, but the main takeaway in terms of RingSIS is that the set of
all such integer matrices form a commutative ring isomorphic to Zq[x]/xn−1[7].

While the above hasher is already one-way, it’s not collision-resistant, due
to the trivial reducibility of the quotient polynomial. Thankfully, if we change
the quotient to be the irreducible (and easy to store) xn + 1, the only change
needed for the generation of the lattice basis is to replace the ”cyclic shift
matrix” (shifting the columns of the identity matrix) into the negacyclic form:

B =

a1 −an · · · −a3 −a2

a2 a1 · · · −a4 −a3

a3 a2 · · · −a5 −a4

...
...

. . .
...

...
an−2 an−3 · · · −an −an−1

an−1 an−2 · · · −a1 −an
an an−1 · · · a2 a1

(2)

With this negacyclic form, we can efficiently sample an instance of RingSIS
as having only a single column vector a:
For input e ∈ R{0,1}, hashringsis = a1e1 + a2a2, . . . , anen (mod q)

To understand why a single polynomial multiplication (which you can fasten
up using the Number-Theoretic-Transform) implies a RingSIS instance, check
that rot(a) · rot(e) = rot(rot(a · e)) where rot(x) means the multiplication of
x ∈ Rnq with the n-th power of the negacyclic matrix as seen above.

2.1 Accumulation with R-SIS

The trivial (and naive) method for accumulation of values using ringsis uses it’s
highly linear structure:

5

Let the verifier state be y =
∑n
i=0 hashringsis(xi). The proof π for an element

with index k is then:

π =

n∑
i=0,i6=k

hashringsis(xi) (3)

While this naive construction suffices for some usecases where there is an exter-
nal form of authentication (not everyone can accumulate values), the lack of a
trapdoor results in no cryptographic soundness as anyone can create a proof for
arbitrary values. Existing hash accumulators that do involve a trapdoor how-
ever, has a prover time linear in the number of elements. To mitigate this, we
use the generalized hash tree technique by Shi et. al[3] which we describe below.
This way we obtain a sound dynamic accumulator that has O(1) complexity on
the verifier state, even for revocation, and proofs can be constructed in O(logn).

To organize our hasher into a generalized hash tree, we first modify it into
a two-input version that involves two cyclic generators l and r:

hashringsis(xl,xr) = rot(l) · rot(xl) + rot(r) · rot(xr) (4)

Unfortunately, the domain and the range of hashringsis differ, so in this form
it’s not enough for accumulating subsequent invocations. To address this dis-
crepancy, we use a projection function f [n]m → Rnq which simply re-embeds the
input vector into Rq by it’s binary representation. Let x ∈ [n]m, b = dlogqe,m =
bk. Then to y = f(x) is computed as such:

yi =

b−1∑
j=0

xib +j 2j (mod q) (5)

We see that f is linear: f(a + b) = f(a) + f(b) With this knowledge, the
function we define for labeling our hash tree:[3]

Let TC be a full balanced binary tree. For a node w it’s label is computed
as

L(w) =
∑

v∈range(w)

cv · gv−w(1) (6)

, where g0(1) = f(rot(l ·1)) and g1(1) = f(rot(r ·1) (we invoke the left or right
negacyclic generator based on the encountered bit of the radix-2 representation
of the label index). For example, to compute the label of leaf 2 (010) and 3
(011) in a full tree of 8 leaves:

λ(2) = f(rot(l) · f(rot(r) · f(rot(l · 1)))

λ(3) = f(rot(l) · f(rot(r) · f(rot(r · 1)))
(7)

For the prover’s witness, with the linear nature of our original hashringsis
and f , it’s trivial that their composition is also linear. This means that the
occurence of a set of elements can be expressed as a linear combination of their

6

labels λ(x) and updating the tree can happen by adding 1 to the coefficient of
the particular label in the linear combination, and collapse the generalized hash
tree. The complexity of this operation is O(logDlog2n) where D is the depth
of our full binary tree.

As for the verifier state, we can follow the naive method presented in the
beginning of this section. To produce the accumulator value we set acc =∑k
i L(xi). To add or revoke an element xl we simply do acc = acc + L(xl) or

use −L(xi) to revoke the same element.
As our hash function is purely algebraic (even linear), we see that it is

significantly more compatible in circuit complexity to express as an algebraic
circuit for Zero-knowledge proofs than keccak or SHA2 for which the algebraic
representation results in an unpractically deep circuit depth because of ARX
operations and round constants.

3 Implementation

We implemented our construction in C[8] and benchmarked it on an i7-1165G7
CPU with 16Gb ram, using an x64 linux machine. Trapdoor generation used
the getrandom call for random numbers. We compared our benchmarks to an
SHA512 Merkle tree implementation using identical input data. We used the
following parameters for our implementation: n = 1024, q = 59393

Tree generation Witness generation Verification Revocation

SHA512 Merkle 2.9084s 0.000003s 0.000007s 2.89611865s
Our work 1.4045s 0.000001s 0.000001s 0.00000192s
Advantage 107% 200% 600% 150839413%

4 Discussions

We presented a RingSIS instantiation of the original Generalized Hash Tree
concept of Shi et. al[3] and implementation benchmarks for standard (member-
ship proof) usage. Our circuit complexity with relation to ZkStarks, expressed
as an AIR[9] is 3971 (1024 constants, 1024 multiplication and 1023 addition)
for a single R-SIS hash and logDlog2n times this value to construct a mem-
bership tree from scratch, which is extremely efficient for an AIR compared to
RSA and Merkle-based accumulators. Further directions of this research would
be to construct partial trapdoor informations for different leaves, resulting in
a scoped authenticated accumulation instead of a global one. There is also a
limitation in our construction such that it only handles fixed size-input which
could be mitigated by using small, chained RSIS instances and breaking linear-
ity in-between similar to SWIFFTX[10]. Special thanks to Alex Vlasov for the
initial implementation of a previous version of this work and Zoltan Lovas for
the Merkle tree benchmarking code.

7

References

[1] M. Ajtai, “Generating hard instances of the short basis problem,” in Au-
tomata, Languages and Programming (J. Wiedermann, P. van Emde Boas,
and M. Nielsen, eds.), (Berlin, Heidelberg), pp. 1–9, Springer Berlin Hei-
delberg, 1999.

[2] D. Micciancio and O. Regev, “Worst-case to average-case reductions based
on gaussian measures,” vol. 37, pp. 372– 381, 11 2004.

[3] C. Papamanthou, E. Shi, R. Tamassia, and K. Yi, “Streaming authenti-
cated data structures,” in Advances in Cryptology – EUROCRYPT 2013
(T. Johansson and P. Q. Nguyen, eds.), (Berlin, Heidelberg), pp. 353–370,
Springer Berlin Heidelberg, 2013.

[4] C. Peikert, “Limits on the hardness of lattice problems in lp norms,” Com-
putational Complexity, vol. 17, pp. 300–351, 05 2008.

[5] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” J. ACM, vol. 56, 01 2009.

[6] D. Micciancio and C. Peikert, “Hardness of sis and lwe with small pa-
rameters.” Cryptology ePrint Archive, Report 2013/069, 2013. https:

//eprint.iacr.org/2013/069.

[7] D. Micciancio, “Generalized compact knapsacks, cyclic lattices, and ef-
ficient one-way functions,” Comput. Complex., vol. 16, p. 365–411, Dec.
2007.

[8] “https://github.com/silur/raha.”

[9] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable, transpar-
ent, and post-quantum secure computational integrity.” Cryptology ePrint
Archive, Report 2018/046, 2018. https://eprint.iacr.org/2018/046.

[10] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen, “Swifftx : A
proposal for the sha-3 standard,” 2008.

8

https://eprint.iacr.org/2013/069
https://eprint.iacr.org/2013/069
https://eprint.iacr.org/2018/046

	Introduction
	Hash accumulators
	Lattices and discrete gaussians
	Note on Zero-knowledge circuits

	R-SIS hasher with small parameters
	Accumulation with R-SIS

	Implementation
	Discussions

