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Abstract—Payment is an essential part of e-commerce. Mer-
chants usually rely on third-parties, so-called payment processors,
who take care of transferring the payment from the customer
to the merchant. How a payment processor interacts with the
customer and the merchant varies a lot. Each payment processor
typically invents its own protocol that has to be integrated into
the merchant’s application and provides the user with a new,
potentially unknown and confusing user experience.

Pushed by major companies, including Apple, Google, Master-
card, and Visa, the W3C is currently developing a new set of
standards to unify the online checkout process and “streamline
the user’s payment experience”. The main idea is to integrate
payment as a native functionality into web browsers, referred to
as the Web Payment APIs. While this new checkout process will
indeed be simple and convenient from an end-user perspective,
the technical realization requires rather significant changes to
browsers.

Many major browsers, such as Chrome, Firefox, Edge, Safari,
and Opera, already implement these new standards, and many
payment processors, such as Google Pay, Apple Pay, or Stripe,
support the use of Web Payment APIs for payments. The
ecosystem is constantly growing, meaning that the Web Payment
APIs will likely be used by millions of people worldwide.

So far, there has been no in-depth security analysis of these
new standards. In this paper, we present the first such analysis
of the Web Payment APIs standards, a rigorous formal analysis.
It is based on the Web Infrastructure Model (WIM), the most com-
prehensive model of the web infrastructure to date, which, among
others, we extend to integrate the new payment functionality into
the generic browser model.

Our analysis reveals two new critical vulnerabilities that allow
a malicious merchant to over-charge an unsuspecting customer.
We have verified our attacks using the Chrome implementation
and reported these problems to the W3C as well as the Chrome
developers, who have acknowledged these problems. Moreover,
we propose fixes to the standard, which by now have been adopted
by the W3C and Chrome, and prove that the fixed Web Payment
APIs indeed satisfy strong security properties.

I. INTRODUCTION

Today, it is impossible to imagine everyday life without e-
commerce. Consumers order goods or other services online
and make the necessary payments directly online as well. Many
different variants have emerged on the web to carry out an
order and the associated payment. Basically, every merchant
or store application performs this process slightly differently.
Merchants, instead of processing a payment by themselves
(e.g., by collecting credit card information and charging the
cardholder), often outsource the actual payment process to a
third party, a payment processor, such as Stripe, Google Pay,
or PayPal.

In such a heterogeneous environment every participant is
at risk of making mistakes: The information flow between
merchant and payment processor could be manipulated by a

Figure 1 Web Payment User Interface in Google Chrome

malicious customer [57], payment processor schemes could be
flawed [61], or users could be confused by the many different
user interfaces and be more susceptible to phishing attacks [18],
just to name a few. Also, customers are likely to abort a
checkout process when facing a bad user experience [27].

Pushed by a long list of major companies in the technol-
ogy and banking sector (e.g., Amazon, American Express,
Apple, Barclays Bank, Facebook, Google, Huawei, Klarna,
Mastercard, Netflix, Samsung, Stripe, and Visa), the W3C
is currently developing the Web Payment APIs (WPA) [50],
an approach to simplify and standardize payment and the
checkout process in the browser. To this end, the W3C extends
browsers with a new, native functionality that provides a way
to negotiate all necessary checkout information among the
customer, the merchant’s website, and an (external) payment
processor (including the selection of the payment processor).
The main idea is that the merchant, instead of providing
web pages or JavaScript by itself for checkout, hands-off this
process to the WPA in the user’s web browser. The browser
then presents the user with the new payment user interface
(see Figure 1) that is outside of the web context. In this user
interface, the user can review the order, select a (previously
stored) shipping address, a payment method, and a payment
processor (e.g., pay by credit card using Stripe). As this dialog
is always the same, regardless of what merchant or payment
processor is involved, the user experience will also be always
the same. As a result, the checkout process is unified, fast, and
more convenient.

The feature set introduced by the WPA forms a quite com-
plex protocol and requires several modifications to browsers.
For example, payment processors install a so-called payment
handler in the user’s browser that is based on the recently
introduced service worker infrastructure [47]. Also, several
new means for intra-browser communication are introduced
to facilitate the exchange of user and payment information
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across the entities involved in the checkout process. The WPA
define several interfaces, each of which is crafted for the
communication with one of the entities involved in the process.

Major browsers already support the current state of the
specifications and well-known payment providers like Google
Pay [29], Apple Pay [2], and Stripe [49] are also already
supporting the standard. Hence, it is likely to see widespread
adoption by merchants in the near future, and hence, it is
important to perform rigorous analysis now before problems
are harder to fix. As the WPA are used to handle sensitive
personal and payment data and even to initiate payments, users,
merchants and payment providers have to rely on their security.
At the same time, the handling of personal and payment data
makes the protocols and APIs a lucrative attack target, making
the WPA an interesting subject for rigorous security analysis.

In this paper, we present the first in-depth formal security
analysis of the WPA. We base our analysis on the most
comprehensive formal model of the web infrastructure to date,
the Web Infrastructure Model (WIM) [21]. The WPA inherently
uses many features of the web, including scripts, the notion of
origins (and hence, the notion of schemes and domains), the
window and document structure of browsers, cross-document
messages, HTTPS, and XMLHttpRequests. Therefore, basing
the analysis of the WPA on a model that supports these features
is crucial in order to be able to model the WPA in a natural,
detailed, and faithful way.

As the WPA extend web browsers significantly, we have to
extend the WIM itself to be able to formally analyze the WPA.
These extensions make the WIM more expressive and add a
new attack surface, which can be relevant for future analyses of
web applications and standards even those unrelated to payment
as attackers can make use of the new APIs in unexpected ways,
making this extension of independent interest.

Our formal analysis of the WPA based on the extended WIM
reveals two new critical vulnerabilities which allow malicious
merchants to over-charge unsuspecting customers. We verified
these security problems with the Google Chrome browser and
reported them to the Chrome developers as well as the W3C,
who both acknowledged the flaws. We also propose fixes,
which by now have been incorporated in the standard as well
as the Chrome implementation. The Chrome developers even
released a hot-fix for their current stable version.

To show that the fixes we propose are indeed sufficient, we
use our formal model of the WPA to prove that the standard
indeed satisfies strong security properties with our fixes in
place. We note that in order for this analysis to be meaningful
it is important that this analysis is based on a detailed model
of the web infrastructure, as provided in this work with the
extended WIM: first, as mentioned, to obtain a faithful model
of the WPA in the first place, and second, to cover a large
attack surface.

Related Work. As mentioned above, the WPA are the first
proposal to standardize web payment [46]. Until now, there has
been no in-depth security analysis of the WPA, and to the best
of our knowledge, there has been no in-depth formal analysis
of any web payment protocol, the main reason probably being
the previous lack of a standard for web payment.

Besides formal treatment of crypto currencies and the
underlying blockchain protocols (see, e.g., [4, 28, 43]) or e-
cash (see, e.g., [19, 38]) there is surprisingly little literature
on formal analyses of real-world payment systems in general,
although security is paramount for such systems. Recently,
Basin et al. have formally analyzed the EMV standard (the
protocol used by bank cards to perform in-person payment
at point-of-sale terminals) using Tamarin [6]. Although the
EMV protocol had already been extensively studied before (see,
e.g., [10, 41, 44, 45]), Basin et al. discovered two new severe
attacks. Using formal methods, they also formally proved that
the protocol is secure in certain configurations. This example
also illustrates the benefit of applying formal methods.

Formal methods are also applied for analyzing APIs outside
of the context of payments, e.g., for analyzing the security of an
API for social networks [3], the API defined in PKCS#11 [17],
the W3C Web Authentication API [31], and the W3C Web
Cryptography API [58]. However, none of these analyses were
conducted within a model of the web infrastructure or using a
detailed browser model, and thus, do not account for attacks
that arise from the web infrastructure.

As mentioned above, we base our formal analysis on the
WIM. The WIM has successfully been used to analyze web
standards, so far standards for authorization and authentica-
tion, such as OAuth 2.0 [24], OpenID Connect 1.0 [25],
Mozilla’s BrowserID [21, 22], and the OpenID Financial-
Grade API1 [20]. These analyses all uncovered several severe,
previously unknown attacks and illustrate the power of the
WIM. The WIM has not been used to analyze or even specify
security properties of payment systems yet. Also, in contrast
to previous analyses, in this paper we focus our analysis on a
native web feature itself rather than protocols that run on top
of the web infrastructure.

The WIM is in fact, by far, the most comprehensive model
of the web infrastructure to date. Other models of the web
infrastructure, such as work by Pai et al. [42], by Kumar [35,
36], or Bansal et al. [5] are far more abstract and limited by
the tools upon which they are based. Other approaches, such
as [9] and [11], model only single components of the web and
do not take the overall infrastructure into account.

Contributions. In summary, our main contributions presented
in this paper are as follows:
• We conduct the first in-depth security analysis of the WPA,

and in particular, the first formal analysis. As mentioned,
the WPA is likely to be used for payments on the web by
millions of people.

• We significantly extend the WIM to support the native
web features of the WPA. This extension also includes
DOM event handling and even a framework for so-called
service workers [47], a standard independent of WPA.
These extensions are useful also beyond the analysis of
the WPA as they constitute an immanent extension of the
web attack surface.

1A standard which extends OAuth 2.0 and is targeted at authorization
of access to protected resources in high-risk environments, but not directly
towards payment.
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• During our analysis, we uncovered two previously un-
known critical flaws which would allow a malicious
merchant to over-charge unsuspecting customers.

• We construct practical attacks from these findings and
verify them using the Google Chrome implementation. We
notified the respective working group at the W3C as well
as the Google Chrome developers, who acknowledged the
problems.

• We propose fixes that close the discovered vulnerabilities.
The fixes have been incorporated into the WPA standard
as well as Google Chrome.

• Using the developed extended WIM and the detailed formal
model of the WPA based on the extended WIM, we
formally prove that our fixes are indeed sufficient and that
the fixed WPA standard satisfies strong security properties.

Structure of This Paper. In Section II, we present the
WPA. Section III describes the vulnerabilities discovered in our
formal security analysis, the fixes we propose, and the reactions
to our findings from the W3C Web Payments Working Group
and the Google Chrome team. In Section IV, we briefly recall
the WIM, with our extensions as well as the model of WPA
presented in Section V. We formulate the security of the WPA
standard in Section V, with a proof sketch given in Section VII.
We conclude in Section VIII. The full detailed model and
proofs are given in the appendix.

II. THE W3C WEB PAYMENT APIS

In the following section, we give an overview of the WPA,
describe the different entities that are involved in the checkout
process, followed by an overview of the specifications of the
WPA. We then explain a typical checkout flow and some
additional sub-flows in detail.

A. Overview of the WPA

The WPA are a set of standards [12, 13, 14, 32, 37] published
by W3C’s Web Payments Working Group. The standards define
different parts of the checkout process, centered around the
browser. On a high level, the checkout process is as follows:
The customer (which is also referred to as payer) decides to
pay, e.g., by clicking on a “checkout” button. The merchant
(payee) website then creates what is called a Payment Request,
a JavaScript object containing checkout data like a list of
items, accepted Payment Methods – e.g., credit card – and
a total amount. The Payment Request is then handed to the
Payment Request API [14], implemented by the browser. The
payment request triggers the browser to show a special user
interface, called the payment UI (which is provided by the
browser itself, not the website, see Figure 1). This payment
UI allows the user to select one of the shipping and payment
data sets stored in the browser, e.g., credit card information,
or enter new data sets. After selecting or entering the required
data sets, the user confirms the checkout in the payment UI.
Depending on the selected payment method, the browser might
ask the customer to perform additional steps to authorize
the payment before executing it, e.g., log in to the payment
provider. Payment providers (which the specifications call
Payment Method Providers) take care of the actual financial

transaction. The interaction between customer, merchant, and
payment provider is orchestrated from within the browser by
a payment handler (see Section II-B).

Compared to common practice where each merchant
presents the user a web form, which might be different at each
merchant, this approach has a number of benefits as pointed out
by, e.g., Mozilla, Microsoft, Google, and several blog posts on
the topic [30, 33, 34, 39, 40, 55]: 1) The user can easily update
her payment and shipping information for all websites as it is
stored in one central place in the browser and the data there can
be “re-used” over several websites. 2) There is no need to store
any payment or even shipping data at the merchant anymore,
lowering the impact and attackers’ incentive for data breaches
at the merchant’s end (e.g., [26, 48, 56, 59, 60] to name a
few). Note that this does not necessarily make the browser
more interesting to attack: all this data is entered through the
browser anyway and modern browsers’ autofill features for
web forms already require them to store address and payment
data. 3) As the payment UI is a part of the browser, the user
experience and checkout flow are always the same, avoiding
confusion and errors. 4) Adopting this new, easier, and faster
checkout procedure is also expected to increase conversion
rates for the merchants, especially with mobile users.

B. Components of the WPA

As mentioned, the WPA consist of a set of specifications, dif-
ferent W3C standards, which we sketch here before describing
the protocol flows defined by them.

Payment Request API [14]. The Payment Request API can
be used by the merchant to interact with the customer and the
payment method provider through the customer’s browser. It
is implemented by the browser and handles communication
between the merchant and the WPA in the browser.

Payment Handler API [32]. The W3C WPA use so-called
web service workers [47], another W3C standard which exists
independently of the WPA. In a nutshell, web service workers
are event-driven JavaScript programs that can be installed
in a browser by some website. These workers are running
outside the context of a specific window or tab, but still at
the origin that installed them. They are intended to extend
web applications with some offline functionality, but in the
WPA this is not the main intent: the Payment Handler API
specification defines how special web service workers called
payment handlers can interact with the browser to handle
payments on behalf of a customer. Similarly to the Payment
Request API, the Payment Handler API is also implemented
by the customer’s browser.

Payment Method Identifiers [12]. In general, a payment
method is identified by either a standardized string, like
basic-card (see below), or a URL (pointing to a payment
method manifest, see below). This document specifies details
of these identifiers, e.g., that a URL’s scheme must be https
to be a valid payment method identifier.

Payment Method Basic Card [13]. This specification
defines the basic-card payment method, a mechanism to
provide payment card details, such as a credit card number,
directly to the merchant. The merchant would then process
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this information by itself without using any other features of
the WPA, such as payment handlers.

Payment Method Manifest [37]. This specification de-
scribes how a payment method provider, like Google Pay, can
specify a default payment handler and a set of permissible
payment handler origins for “its” payment method in a
machine-readable format. This manifest has to be accessible
under the URL identifying the payment method, so browsers
can retrieve the manifest.

C. Protocol Flow

In the following, we illustrate the core workings of the
WPA by describing the steps of a simple, successful protocol
execution, shown in Figure 2.2 Note that the specifications
define additional (sub-)flows, some of which we discuss in
the following subsection. Our formal model captures these
additional flows as well as several ways to abort a flow.

We assume that there is at least one payment handler already
installed in the customer’s browser – typically by visiting
some payment method provider’s website and agreeing to the
installation of that provider’s payment handler.

The flow starts with the creation of a payment request by
the merchant in Step 1 , typically after the customer expressed
the wish to checkout, e.g., by clicking a “Checkout” button
(the payment request is created via JavaScript code contained
in the merchant’s website). This payment request contains the
following fields:
• id: A unique identifier for the payment (chosen by the

merchant). If omitted by the merchant, the browser gener-
ates the payment id. This id is included in all messages and
events to uniquely identify this specific payment process.

• methodData: A list of payment methods accepted by the
merchant, denoted by their payment method identifiers (see
Section II-B). Each element can also have an associated
payment method data set with additional information for
the respective payment method (more on that later).

• details: Total cost, and optional details, e.g., a list of
items with their respective costs, and shipping options.

• options: Settings indicating which data the customer
has to provide. For example, whether an email address,
shipping address or phone number are required.

After creating the payment request, the merchant’s website
hands this data to the browser by means of the Payment
Request API 2 . Upon receiving a payment request PR, the
browser compares the list of payment methods mentioned in
PR.methodData (i.e., those supported by the merchant) with
its list of registered payment handlers and selects all payment
handlers registered for at least one of the payment methods
from PR.methodData 3 .3 After this initial selection, the
browser triggers each of the selected payment handlers with a
CanMakePaymentEvent 4 . This event contains some basic
information about the requested payment: The origin of the

2All flow figures in this paper are generated with Annex: https://github.com/
danielfett/annexlang

3If no matching payment handler is installed in the browser, the checkout
is aborted. In particular, the browser does not try to install missing payment
handlers at this stage.

Browser, e.g., ¹, º, ¸, Î, »

2 PRPR

4 Can make payment?Can make payment?

7 Payment detailsPayment details

9 Handler responseHandler response

11 Payment responsePayment response

12 Retry (with reasons)Retry (with reasons)

15 Payment detailsPayment details

17 Handler responseHandler response

19 Payment responsePayment response

20 Checkout completedCheckout completed

Merchant (Website) Web Payment APIs Payment HandlersPayment HandlersPayment Handlers

1 Create PaymentCreate Payment
Request PRRequest PR

3 Select all payment handlers registered forSelect all payment handlers registered for
payment methods supported by PRpayment methods supported by PR

Payment HandlersPayment HandlersPayment Handlers

Selected Payment
Handler

5 Present payment UIPresent payment UI

6 Customer enters data,Customer enters data,
selects payment handler,selects payment handler,
and submitsand submits

8 Perform paymentPerform payment

10 Add customer information (shippingAdd customer information (shipping
address, email, ...) from 6 to responseaddress, email, ...) from 6 to response

13 Display retry reasons in UIDisplay retry reasons in UI

14 Customer changes data and submitsCustomer changes data and submits

16 Update paymentUpdate payment
(if needed)(if needed)

18 Add customer information to responseAdd customer information to response

21 Close UIClose UI

Merchant (Website) Web Payment APIs Selected Payment
Handler

Optional: Retry

Figure 2 General flow of a payment with the WPA. Note that
payment handlers are not part of the WPA implemented by the
browser. They are web service workers – typically provided by the
payment provider – which use the WPA to engage in the payment
process. They may also send requests, e.g., to the payment provider
and – with some restrictions – open windows.

merchant’s top level page, the origin at which the payment
request was initiated and the applicable payment method data
sets (from PR.methodData).

Upon receiving a CanMakePaymentEvent, the payment
handler determines if it can process the payment request.
This decision process is specific to the payment method and
may depend, for example, on legal requirements. The inner
workings of this decision are outside of the scope of the
WPA. Note that a payment handler may communicate with
the payment provider to make this decision.

After receiving responses from all triggered payment han-
dlers, the browser shows a special dialog (that is not part of
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a website, but of the browser itself) called the payment UI 5

(see also Figure 1). The payment UI allows the customer to
enter (or select stored) requested information like shipping
address, email address, and of course the payment details 6 .
The latter includes the selection of one of the available
payment handlers and methods.4 If the customer enters (or
selects a stored or changes) the shipping address, an additional
step is required: As this might change the shipping costs,
the merchant website is informed and receives a partially
anonymized address to recalculate shipping costs. The details
of this procedure are omitted from Figure 2 for brevity of
presentation (see Section II-D for details).

Once the customer submits her choices, the browser
assembles a PaymentRequestEvent and hands it to
the payment handler selected by the customer 7 . This
PaymentRequestEvent contains the same data as the
CanMakePaymentEvent (see above) plus the payment data
entered by the user, e.g., a credit card number, expiration date
and verification number.

When receiving the PaymentRequestEvent, the pay-
ment handler takes the necessary steps to perform or at least
facilitate a payment 8 . This can be as simple as returning some
information from the PaymentRequestEvent (e.g., credit
card data) in the handler response, but it can also be a complex
process including communication with the payment provider
or opening new windows (e.g., opening a Google Pay window
in which the customer authenticates herself and authorizes the
payment). The exact process is specific to the payment method
and thus not within the scope of the WPA specifications.

After performing these steps, the payment handler finishes
its work by creating a PaymentHandlerResponse 9 . This
response contains (once again) the payment method identifier
and a details field, whose exact contents depend on the
payment method. The contents of details can, for example,
be some signed payment confirmation by the payment provider
or be as simple as just “reflecting” credit card data.

Upon receiving the handler response, the browser creates a
payment response 10 . This response consists of the details
from the handler response, the selected payment method, and
additional data requested by the merchant in PR.options,
like a shipping address. The payment response is then handed
back to the merchant’s website 11 .

The merchant can now inspect the response (e.g., verify the
validity of the credit card data) and either finish the flow by
indicating completion of the checkout process 20 (in this case,
the browser closes the payment UI 21 ) or by indicating that
there is a problem 12 . In the latter case, the merchant can
provide a list of reasons for the error. These reasons are freely
chosen by the merchant and can be given as a mix of general
errors and problems tied to specific parts of the customer data,
e.g., the shipping address.

In the error case, the browser prompts the user to retry.
To this end, the browser displays the reasons given by the

4A payment handler might support multiple payment methods. The sup-
ported payment methods of a payment handler are the so-called instruments
of that handler; the payment UI shows a list of available instruments.

merchant 13 and allows the user to revise the entered data 14 .5

Once the customer has done so and submits again, the
browser triggers another PaymentRequestEvent to the
then selected payment handler with the same payment id, but
possibly different payment details (e.g., a different payment
method selected by the user). The payment handler then
processes and possibly updates the payment (if necessary)
and once again answers with a handler response, triggering
the browser to create a payment response and hand it to the
merchant. At this point, the merchant can again either accept
the payment response or initiate another retry.

D. Extended Flows

As already mentioned, the general flow presented above
does not include all possible error modes and optional flows.
For example, either party can abort the flow at any point, the
browser can restrict payment handler execution time, and there
are several sub-flows that are or can be initiated during certain
steps of the general flow. The most important of these sub-
flows are described in the following. Note that our formal
model subsumes these flows as well.

1) Update Payment Details: As briefly mentioned in Sec-
tion II-C, an additional communication step may occur while
the customer enters her data into the payment UI: When
a shipping address is selected or updated, the merchant is
given the opportunity to update certain details of the payment,
e.g., the shipping costs. Analogous sub-flows are defined
for when the customer selects or changes her selection of:
shipping option, payment method, and payer details, i.e., name,
email address and phone number. All of these sub-flows are
very similar, the only difference is what data the merchant
receives. For example, when the customer selects or changes
the shipping option, the merchant only gets the ID of the new
shipping option, but not the name or phone number.

Due to these similarities, we describe only the sub-flow for
a changed shipping option which is depicted in Figure 3.

Obviously, this sub-flow can only be initiated once the
customer interacts with the payment UI (cf. Steps 6 and 14

of Figure 2). When the customer selects a shipping option 2 ,
the browser locks the payment UI 3 to prevent the customer
from submitting during the update process. In the next step, the
browser triggers an event containing a reference to the original
payment request and the new shipping option selection 4 . If
the merchant has registered an event listener for these events,
she can now reply with a new set of payment details, e.g.,
change the shipping costs (otherwise, the browser will just
assume an empty update). The browser will then update the
payment request and payment UI accordingly and unlock the
payment UI again.

In our formal model (see Section V), we subsume all update
flows by allowing the merchant to send updated payment
details at any time, but, according to the specifications, the
browser accepts updates only until the customer submits. This

5Not limited to the parts rejected by the merchant, e.g., the customer is also
allowed to change the payment handler. This was also modeled in our original
formal analysis of the WPA, which led to one of the attacks presented later.
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Browser, e.g., ¹, º, ¸, Î, »

Payment UI is active,Payment UI is active,
customer is interactingcustomer is interacting

4 Payment request updatePayment request update
event with new shipping optionevent with new shipping option

5 (Updated) payment details(Updated) payment details

Merchant (Website) Web Payment APIs

1 Create PaymentCreate Payment
Request PRRequest PR

...

...
...
...

2 Customer selects or changesCustomer selects or changes
shipping optionshipping option

3 Lock payment UILock payment UI

6 Update PR and payment UIUpdate PR and payment UI
with new payment detailswith new payment details

7 Unlock payment UIUnlock payment UI

Merchant (Website) Web Payment APIs

Figure 3 Sub-flow to update payment details after customer data
changes (by example of a changed shipping option).

is a safe over-approximation of the merchant’s capabilities that
only strengthens our security properties.

2) Customer Authentication and Authorization of Payments:
When a payment handler handles a payment, it only receives
a subset of the payment details from the WPA, e.g., the total
amount. These details however do not include information
on the customer’s identity, i.e., neither the address nor payer
details, like name or phone number. This of course raises the
question how the payment handler or at least the payment
provider gets to know the customer’s identity, i.e., how to
authenticate the customer. In some jurisdictions, it is also
necessary for certain payment providers to collect explicit
consent for each transaction.

To meet these requirements, the Payment Handler API
specification [32] defines a way for payment handlers to
open a window. Such a window could for example contain
a login form or ask for additional information like an account
number or a one-time authentication code. Following what the
specification suggests, browsers usually embed such a window
into the existing payment UI. To prevent phishing and similar
attacks, a payment handler can only open a window with the
same origin that installed the payment handler. In most cases,
this window will be a website of the payment provider.

The mechanism to open a window is explicitly modeled
in our browser and used by our generic payment handler to
authenticate the customer (see Section V-B).

III. ATTACKS AND VULNERABILITIES

During our formal analysis of the WPA (see the following
sections for details), we found two critical vulnerabilities which
we describe in the following, along with suggestions on how to
fix them. We also describe our disclosure process and discuss
the responses by the W3C Web Payments Working Group and

Browser, e.g., ¹, º, ¸, Î, »

Start with the same steps as in Figure 2Start with the same steps as in Figure 2

7 Payment detailsPayment details

9 Handler responseHandler response

11 Payment responsePayment response

13 Retry with (bogus)Retry with (bogus)
message “pleasemessage “please

change payment handler”change payment handler”

16 Payment detailsPayment details

18 Handler responseHandler response

Complete flow as in Figure 2Complete flow as in Figure 2

Merchant (Website) w Web Payment APIs

...

...
...
...

Payment Handler A
6 Customer enters data,Customer enters data,

selects payment han-selects payment han-
dler A, and submitsdler A, and submits

8 Perform paymentPerform payment

10 Add customer information to responseAdd customer information to response

Payment Handler A

12 Everything OK, replyEverything OK, reply
with error anywaywith error anyway

Payment Handler B

14 Display retry reason in UI: InstructDisplay retry reason in UI: Instruct
customer to change payment handlercustomer to change payment handler

15 Customer selects paymentCustomer selects payment
handler B and submits againhandler B and submits again

17 Perform paymentPerform payment

...

...
...
... Payment Handler B

Merchant (Website) w Web Payment APIs

Figure 4 Protocol flow of a retry-based double charging attack: The
merchant receives two payments while the customer thinks she only
sent a single payment (because the first one allegedly failed).

the Google Chrome developers. Besides being relevant on their
own, the attacks we found during our formal analysis are also
a good indication of the faithfulness and usefulness of the
(extended) WIM.

A. Double Charging with Retry

In Section II-C, we described the retry mechanism built into
the WPA. This mechanism is intended to enable merchants to
reject a payment response, but allow the customer to change
something in order to make the payment response acceptable
for the merchant. Also, recall that a payment id is used to
identify a payment request throughout the different protocol
steps. This payment id can be used by payment handlers (and/or
payment method providers) to detect duplicates, e.g., when
executing a retry. Strictly speaking, the exact workings of such
a duplicate detection are outside the scope of the specifications,
but it has to rely on the payment id as everything else might
change during a retry (including the total costs, e.g., due to a
shipping address change).
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For our attack, we assume that an honest customer wants to
check out at a malicious merchant; the attack flow is depicted
in Figure 4: After the customer has initiated the checkout, the
merchant creates a (regular) payment request and hands it to
the browser, which guides the customer through steps 6 to 11

as described in Section II-C.
Upon receiving the payment response, however, the mer-

chant triggers a retry 12 . In this retry request, the merchant
includes an error message which instructs the customer to
switch to a different payment handler and provider, because
the first one allegedly did not work 13 . The browser informs
the customer by displaying the error message in its payment
UI 14 . From the customer’s perspective, this looks like some
legitimate problem with the first payment handler/provider, so
she selects a different one and submits again 15 . The browser
subsequently triggers the (new) payment handler 16 , which in
turn performs the (second) payment 17 . Note that this attack
originates from the behavior of the browser and not from
the implementation of the payment handlers, as the second
payment handler has no way of detecting that it is called in a
retry context: the second handler has not seen the payment id
of the overall transaction before. Afterward, the flow finishes
as usual (though we note that the merchant could of course
repeat this attack again).

The result is that the customer paid twice without any
indication that she did so. Furthermore, none of the involved
payment handlers and payment providers could prevent this,
as their views of the attack flow are indistinguishable from
a legitimate flow. In particular, the first payment handler and
provider are not informed that “their” response was rejected
and the second payment handler and provider have no way of
knowing that “their” transaction belongs to a retry flow.

Implementation and Verification of the Attack. To test
our attack, we implemented a dummy payment handler and
merchant. At the time when we did the analysis and implemen-
tation, Google Chrome was the only browser available to us
that already had full support for the WPA, thus we tested our
attack against the Chrome implementation, which turned out
to be vulnerable to our attack. Now that the specifications have
adopted our fix, the wide range of browsers implementing the
WPA specifications today are secured against this attack.

Uncovering the Attack. We discovered the above attack
when trying to formally prove the main security theorem (see
Section VI). In particular, to prove this theorem, we have to
show that a payment transaction is never performed twice.6

While it is easy to prove this property if the payment is handled
by a single payment provider multiple times (who can easily
detect and reject duplicated instructions), it is impossible to
prove this property if the same transaction can be carried out
by two different payment providers (who do not know which
payments have been processed by the respective other provider).
We therefore have to prove that the same payment request is
never sent to two different payment providers. The (unfixed)
WPA standard, however, does not restrict that browsers (during

6We capture this property for the fixed model in Lemma 18 of Appendix E.

a retry) hand the same payment request to different payment
handlers (and hence, possibly to multiple payment providers).
Thus, the proof fails at this point.7

Fix. There are several ways to address this vulnerability, e.g.,
one could inform a payment handler when “its” transaction is
repeated with a different handler, so it can revoke a payment
and wait for successful revocation before triggering the second
payment handler. Or the payment handler could include a status
in its response, indicating whether a payment has already been
made and prevent changing the payment handler if so. During
our discussion with the W3C Web Payments Working Group,
they opted for a very simple fix by disallowing a change
of payment handler altogether, even though this might force
the customer to abort the whole flow if the payment handler
selected in the first place is actually not working.

As this is what the specifications adopted in the end, we
updated our formal model to reflect this change, with our
analysis results with this fix presented in Sections V to VII.

B. Ambiguous Payment Method Data

As mentioned in Section II-C, each payment request (PR)
contains a field called methodData, which holds a list of
accepted payment methods, along with some additional data for
each of these payment methods. This additional data is intended
for payment method specific details like a destination account
number (to send money to), but can also specify additional
fees, e.g., “if you pay with a card belonging to network X, it
incurs a US$3.00 processing fee”.

Now, for our second attack we again assume that the
merchant is malicious, while everybody else is honest. Figure 5
depicts the course of the attack: The merchant creates a
payment request PR where the list in methodData contains
(exactly) two entries for method data, both for the same pay-
ment method, i.e., with identical payment method identifiers;
this is perfectly valid according to the W3C specifications.
One might not contain fees, the other might contain very high
fees. The merchant then hands PR to the WPA (as usual).
This triggers the browser to search its list of installed payment
handlers for matches with the payment method identifiers given
in PR and query the matching handlers 4 . Afterward, the
browser shows the payment UI.

We assume that our user will always select the first
entry, which in this case contains no additional fees; she
enters the required data and submits 6 . Her browser now
assembles a PaymentRequestEvent with payment de-
tails, including the full list of methodData, i.e., both en-
tries, and hands it to the selected payment handler 7 . The
PaymentRequestEvent, however, does not include any
information on which exact entry the user has selected from
methodData. This handler now has to decide which payment
method data entry to use. As the specifications do not contain
guidance on that either, we assume that the handler always
selects the last method data entry (which in our attack incurs
a huge additional fee) and performs the payment 8 . The

7For the fixed WPA model (reflecting the fix in Line 152 of Algorithm 21),
we show that a browser never hands the same payment request to two different
payment handlers, see Lemma 15 of Appendix E .
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ment method identifiers)ment method identifiers)
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...

Merchant (Website) w Web Payment APIs

Figure 5 Attack with ambiguous payment method data: The customer
sees a payment method data set without additional fees ( 5 ) while the
payment handler “sees” one with a huge additional fee ( 8 ). In the
end, the customer is charged a processing fee she never agreed to.

remaining steps are as usual. The result is that the customer is
charged with a fee she never agreed to, without any indication.
Note that this attack does not at all rely on how exactly the
browser and payment handler break ties in case of multiple
applicable method data entries, as long as there is a possibility
that they choose different entries.

Implementation and Verification of the Attack. Using a
similar setup as for the first attack, we verified that Google
Chrome passes ambiguous method data to payment handlers.
Hence, it is up to the payment handler to guess which entry
the user selected leading to the problem as sketched above.

Uncovering the Attack. Similar to the previous attack, we
found this attack while trying to prove the main security
theorem (see Section VI) of the WPA. In particular, we have
to show that if a payment provider performs a transaction,
then there previously was a payment request event created by
the respective browser with the corresponding values, i.e., the
method data selected by the user.8 As the browser does not tell
the payment handler which method data entry the user selected,
the payment handler has to infer this information based on the

8For the fixed model (Lines 94 to 97 of Algorithm 1), we capture this
property in Lemma 10 of Appendix E.

payment method identifier and the list of method data. As this
list stems from an untrusted source (a potentially malicious
merchant), there could be multiple entries for the same payment
method identifier, making this information ambiguous. Hence,
a payment handler can infer different data than the user selected
and thus, the security theorem cannot hold true.

Fix. There are two ways to mitigate this attack: the browser
could either reject ambiguous entries or propagate the user’s
choice to the payment handler. We recommended the first
option to keep the API interface stable. This fix was adopted by
the W3C Web Payments Working Group and we incorporated
it into our model.

Together with the fix from Section III-A, we were able to
prove the WPA secure in our model (see Sections V to VII).

C. Responsible Disclosure

We first notified the W3C Web Payments Working Group
of the first attack on Nov. 2nd, 2019 [51] and (after checking
their implementation) the Chrome developers on Nov. 25th,
2019 [15]. While the W3C Working Group at first did not
acknowledge the problem, the Chrome developers fixed this
problem on Jan. 25th, 2020 (and even released a hot-fix for
their current stable version).

When we presented our full results to the W3C Working
Group on Apr. 1st, 2020 [52, 53, 54], the W3C Working Group
acknowledged all of our findings and updated their specifica-
tion on May 11th and May 25th, 2020. The Chrome developers
disallowed ambiguous method data in their implementation
following the updated specification on May 27th, 2020 [16].

IV. THE WEB INFRASTRUCTURE MODEL

Our formal security analysis of the WPA is based on the
WIM, a generic Dolev-Yao style web model proposed by Fett
et al. in [21]. Here, we only briefly recall this model following
the description in [24] (see also [20, 21, 22, 23] for comparison
with other models and discussion of its scope). Our extension
of this model required for the analysis of the WPA, including
aspects of the service worker standard [47], is presented in
Section V-A.

The WIM is designed independently of a specific web
application and closely mimics published (de-facto) standards
and specifications for the web, for example, the HTTP/1.1 and
HTML5 standards and associated (proposed) standards. The
WIM defines a general communication model, and, based on
it, web systems consisting of web browsers, DNS servers, and
web servers as well as web and network attackers.

Communication Model. The main entities in the model
are (atomic) processes, which are used to model browsers,
servers, and attackers. Each process listens to one or more (IP)
addresses. Processes communicate via events, which consist of
a message as well as a receiver and a sender address. In every
step of a run of a system (see below), one event is chosen
non-deterministically from a “pool” of waiting events and is
delivered to one of the processes that listen to the event’s
receiver address. The process can then handle the event and
output new events, which are added to the pool of events.
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As usual in Dolev-Yao models (see, e.g., [1]), messages are
expressed as formal terms over a signature Σ. The signature
contains constants (for (IP) addresses, strings, nonces) as well
as sequence, projection, and function symbols (e.g., for encryp-
tion/decryption and signatures). For example, in the web model,
an HTTP request is represented as a term r containing a nonce,
an HTTP method, a domain name, a path, URI parameters,
request headers, and a message body. For instance, an HTTP
request for the URI http://ex.com/show?p=1 is represented as
r := 〈HTTPReq, n1, GET, ex.com, /show, 〈〈p, 1〉〉, 〈〉, 〈〉〉 where
the body and the list of request headers is empty. An HTTPS
request for r is of the form enca(〈r, k′〉, pub(kex.com)), where
k′ is a fresh symmetric key (a nonce) generated by the sender
of the request (typically a browser); the responder is supposed
to use this key to encrypt the response.

The equational theory associated with Σ is defined as
usual in Dolev-Yao models. The theory induces a congru-
ence relation ≡ on terms, capturing the meaning of the
function symbols in Σ. For instance, the equation in the
equational theory which captures asymmetric decryption is
deca(enca(x, pub(y)), y) = x. With this, we have that, for
example, deca(enca(〈r, k′〉, pub(kex.com)), kex.com) ≡ 〈r, k′〉 ,
i.e., these two terms are equivalent w.r.t. the equational theory.

A Dolev-Yao process (DY process, in short) consists of a
set of addresses the process listens to, a set of states (terms),
an initial state, and a relation that takes an event and a state
as input and (non-deterministically) returns a new state and a
sequence of events. The relation models a computation step
of the process. It is required that the output can be computed
(formally, derived in the usual Dolev-Yao style) from the input
event and the state.

The so-called attacker process is a DY process which records
all messages it receives and outputs all events it can possibly
derive from its recorded messages. Hence, an attacker process
carries out all attacks any DY process could possibly perform.
Attackers can corrupt other parties.

A script models JavaScript running in a browser. Scripts
are defined similarly to DY processes, i.e., a script is a
relation, typically specified as a non-deterministic algorithm.
When triggered by a browser, a script is provided with state
information. The script then outputs a term representing a new
internal state and a command to be interpreted by the browser
(see also the specification of browsers below). Similarly to
an attacker process, the so-called attacker script outputs
everything that is derivable from the input.

A system is a set of processes. A configuration of this system
consists of the states of all processes in the system, the pool
of waiting events, and a sequence of unused nonces. Systems
induce runs, i.e., sequences of configurations, where each con-
figuration is obtained by delivering one of the waiting events of
the preceding configuration to a process, which then performs
a computation step. The transition from one configuration to
the next configuration in a run is called a processing step. We
write, for example, Q = (S,E,N) −→ (S′,E′,N′) to denote the
transition from the configuration (S, E, N) to the configuration
(S′,E′,N′), where S and S′ are the states of the processes in
the system, E and E′ are pools of waiting events, and N and

N′ are sequences of unused nonces.
A web system formalizes the web infrastructure and web

applications, and is defined as a tuple (W,S, script, E0). W
denotes a set of DY processes and is partitioned into the sets
Hon, Net, and Web. Hon is a set of honest processes, e.g.,
web browsers, web servers, or DNS servers (they might be
corrupted by an attacker during the run of a system, though).
Web and Net are the sets of web attackers (who can listen
to and send messages from their own addresses only) and
network attackers (who may listen to and spoof all addresses
and therefore are the most powerful attackers). A web system
further contains a set of scripts S (comprising honest scripts
and the attacker script), and a mapping script from scripts
to their string representation. E0 is defined as an (infinite)
sequence of events, containing an infinite number of events
of the form 〈a, a, TRIGGER〉 for every a ∈ ∪p∈WIp, where Ip

denotes the set of addresses of the process p.

Web Browsers. An honest browser formally is modeled as a
DY process and thought to be used by one honest user, who is
modeled as part of the browser. User actions, such as following
a link, are modeled as non-deterministic actions of the web
browser. User credentials are stored in the initial state of the
browser and are given to selected web pages when needed.
Besides user credentials, the state of a web browser contains
(among others) a tree of windows and documents, cookies, and
web storage data (localStorage and sessionStorage).

A window inside a browser contains a set of documents (one
being active at any time), modeling the history of documents
presented in this window. Each represents one loaded web page
and contains (among others) a script and a list of subwindows
(modeling iframes). As sketched above, when triggered by the
browser, a script is provided with all data it has access to,
such as a (limited) view on other documents and windows,
certain cookies, and web storage data. Scripts then output a
command and a new state. This way, scripts can navigate or
create windows, send XMLHttpRequests and postMessages,
submit forms, set/change cookies and web storage data, and
create iframes. Note that scripts—besides modeling JavaScript
behavior—also model some aspects of user behavior. For
example, if a web page provides some link on which in reality
the user can click on, the script may non-deterministically
instruct the browser to navigate the window to the URL of
the link. Navigation and security rules ensure that scripts
can manipulate only specific aspects of the browser’s state,
according to the relevant web standards.

A browser interacts with the network using messages of
different types: The browser sends DNS and HTTP(S) requests
(including XMLHttpRequests), and it processes the responses.
The model includes handling of relevant HTTP(S) headers, in-
cluding, for example, cookie, location, strict transport security
(STS), and origin headers. A browser, at any time, can also
receive a so-called trigger message. This kind of message is
used to invoke actions that model browser-related user behavior
(e.g., navigate a window or entering some URL) as well as
running a script (which includes some aspects of user behavior
as well, see above). When receiving such a trigger message, the
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browser non-deterministically chooses which action it takes.
For instance, if the browser decides to trigger a script, the script
is run and outputs a command as described above, which is then
further processed by the browser. Browsers can also become
corrupted, i.e., be taken over by web and network attackers.
Once corrupted, a browser behaves like an attacker process.

V. FORMAL MODEL OF THE WEB PAYMENT APIS

We formalize the WPA based on the WIM as a web
system that contains one network attacker (which is powerful
enough to subsume an arbitrary number of web attackers
and other network attackers), a finite but arbitrary number
of browsers, as well as of merchants and payment providers.
While the definition of attackers and browsers (outlined above
and extended in Section V-A below) are part of the (generic)
WIM, merchants and payment providers (modeled as web
servers) as well as scripts that exercise the feature set of the
WPA are defined specifically for the analysis of the WPA.

We highlight that, in order to create a detailed model of
the WPA, a detailed model of the web infrastructure such as
the WIM is needed. Otherwise, it is not straightforward to
even describe the WPA, as the WPA define an extension to
web browsers and a protocol that involves browsers and web
servers. So to model the WPA faithfully, many web features are
needed that, as mentioned before, the WIM already contains,
including scripts, the notion of origins (and hence, the notion
of schemes and domains), the window and document structure
of the browser, post messages, HTTPS, and XMLHttpRequests.
Besides these standard web features, the WPA require even
more web features, namely DOM events, service workers and
service workers registry, and an extension to the script API.

With the WIM extended with these features, the WPA can
be modeled in a natural and direct way, which also helps to
avoid modeling errors since one does not have to translate the
WPA into some other (more artificial) modeling context.

In addition, in order for the security proof of the fixed
WPA to be meaningful, the underlying model of the web
infrastructure and the model of WPA itself should be as detailed
as possible, because by this, we provably exclude large classes
of attacks (see also the last paragraph in Section VI-C.)

In the following, we present these generic extensions of the
WIM (see Section V-A). On top of this extended WIM, we
then model payment handlers, payment method providers, and
merchant web servers (see Section V-B).

A. Generic Extensions of the WIM

As sketched in the previous section, the WIM already
has a very detailed model of browser behavior. This has
paved the way for detailed analyses of several web-based
authentication and authorization protocols [20, 21, 22, 23, 24,
25] which make heavy use of different HTTP/HTML features
and JavaScript APIs, all of which are explicitly modeled in
the WIM. Following this approach of explicitly modeling the
relevant browser behavior—instead of using a very abstract,
and hence, less meaningful, model—we significantly extended
the WIM’s browser model to incorporate the WPA. More
specifically, our core extensions to the browser model are:

We add an extensible mechanism to trigger and process DOM
events, introduce service workers and their execution, and add
the WPA and extend script execution to incorporate these APIs.
Note that the first two extensions are largely independent of the
WPA: They model separate standards of independent interest
and are used by, but not limited to the WPA.

Extensible DOM Event Processing. The WPA make heavy
use of DOM events,9 e.g., to trigger payment handlers. Such
DOM events allow for signaling that something has occurred
to registered event listeners.

We extended the WIM’s browser with a set of pending
events and an extensible function to process such events. This
function models the registered event listeners. Whenever the
modeled browser is triggered to process a DOM event, one of
the pending events is chosen non-deterministically, removed
from the set of pending events and handed to the processing
function. We do not restrict the format of DOM events in any
way except for the first member, which must state the type of
the event. This information is used to dispatch events to the
respective event listeners and resembles the type member of
events in the DOM standard. We provide the model of DOM
event processing in Appendix D.

Service Workers. Service workers are event-driven JavaScript
programs that run inside a browser in the background and can,
for example, be used to provide some offline functionality for
web applications. In the context of the WPA, payment handlers
are instances of service workers. Hence, we extended the
WIM’s browser with a set of registered service workers. Similar
to the event processing, a service worker can be chosen non-
deterministically whenever a browser is triggered. That service
worker is then executed similarly to a script. As a service
worker has a slightly different view on the browser’s state (e.g.,
it cannot access the window structure) and slightly different
capabilities than a script, we reflect these differences in the
input of the service worker and the possible commands it can
output to the browser. The possible commands which a service
worker can output include triggering certain events, sending
XMLHttpRequests and postMessages as well as opening new
browser windows. In addition to these general commands, we
also model the (de)registration of payment instruments, i.e.,
supported payment methods, by payment handlers.

Script API Extensions. The WPA themselves are a notable
extension to the WIM’s browser model. As mentioned, all
major browsers have implemented the WPA. As a consequence,
web applications and scripts, honest and dishonest, might (on
purpose or accidentally) interfere with one of the various parts
of the WPA, changing the properties of such applications and
scripts in a real-world execution context, thereby widening the
attack surface.

In our WIM extension, the actual API functions defined
by the WPA specifications are modeled as script commands,
i.e., a script can output a command instructing the browser to
call one of the API functions with a given list of arguments.
For example, a script on some merchant’s website can call

9See https://dom.spec.whatwg.org/#event for more details on DOM events.
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an API function to indicate completion of a payment. The
formal definitions of these functions closely follow the WPA
standards, which we described informally in Section II. In
the following, we describe the main parts of the script API
extension of the WIM, which is shown in Algorithm 1. The
complete browser model, including the full script API with all
extensions is provided in Appendix D.

Algorithm 1 specifies the function RUNSCRIPT which is
part of the browser definition and is responsible for executing
a script. Roughly speaking, in the WIM, a browser can run
any script of any (active) document at any time. To this end,
the browser (from its state s) non-deterministically selects a
document (identified by a pointer d ) that is the active document
of some window (identified by a pointer w ) and executes
the function RUNSCRIPT with this data. This function then
assembles all (state) information that a script is allowed to
access, runs that script, and finally processes the output of the
script (a command and new state information).

The first part of RUNSCRIPT (Lines 2–7) assembles the
information passed to the script depending on the position of
the script’s document in the window tree and the origin of that
document. This data includes a limited view on the window
tree (produced by the function Clean), cookies accessible to
the script, web storage (local and session storage), as well as
secrets that a user would potentially enter into that document
(recall that user behavior is modeled as part of the browser).

Next, the script is executed (Lines 8–10). Formally, the
function treats a script as a relation (identified by a string)
and non-deterministically selects one possible outcome of that
script (see Line 10, where TN (V ) denotes the set of all terms
with nonces in N and variables in V ). The function then
updates the browser’s state accordingly taking care of freshly
chosen nonces,10 cookies, and web storage.

Finally, RUNSCRIPT processes the so-called command
emitted by the script. The command models an API call
and can, for example, instruct the browser to open, close, or
navigate a window, start an XHR, or send a postMessage
(defined in Lines 16-91, not shown here). To model the
respective functionalities introduced by the WPA, we extend
RUNSCRIPT by adding cases for all API functions exposed to
a script (Lines 91ff.), where here we only show an excerpt of
these functions (leaving out Lines 126ff.). We emphasize that
our analysis, of course, covers the full definition of browsers,
which is contained in Appendix D.

If the command created by the script is a PR_CREATE com-
mand (Lines 91ff.) with the arguments methodData , details ,
and options , the browser creates a payment request with these
values (see Steps 1 – 2 in Section II-C and Section 3.1 of [14]).
In this case, the browser verifies if methodData is well-formed
(see Definition 55 in Appendix C) and not ambiguous (our fix
for the second attack, see Section III-B).

The browser then assembles a term paymentReq that is (1)
used to internally track this payment request in the browser’s
state (Line 100) and (2) used as a return value for the script

10Nonces chosen by the script are denoted by the placeholders λi and then
mapped to fresh nonces chosen by the browser relation, which are denoted
by νj (see Line 10).

Algorithm 1 Web Browser Model: Execute a script.
1: function RUNSCRIPT(w , d , s′)
2: let tree := Clean(s′, s′.d)
3: let cookies := 〈{〈c.name, c.content.value〉|

↪→ c ∈〈〉 s′.cookies
[
s′.d .origin.host

]
∧

↪→ c.content.httpOnly = ⊥ ∧
↪→

(
c.content.secure =⇒

↪→ (s′.d .origin.protocol ≡ S)
)
}〉

4: let tlw ← s′.windows such that
↪→ tlw is the top-level window containing d

5: let sessionStorage :=
↪→ s′.sessionStorage

[
〈s′.d .origin, tlw .nonce〉

]
6: let localStorage := s′.localStorage

[
s′.d .origin

]
7: let secrets := s′.secrets

[
s′.d .origin

]
8: let R ← script−1(s′.d .script)
9: let in := 〈tree , s′.d .nonce, s′.d .scriptstate,

↪→ s′.d .scriptinputs, cookies,
↪→ localStorage , sessionStorage , s′.ids, secrets〉

10: let state ′ ← TN (V ),
↪→ cookies ′ ← Cookiesν , localStorage ′ ← TN (V ),
↪→ sessionStorage ′ ← TN (V ), command ← TN (V ),
↪→ out := 〈state ′, cookies ′, localStorage ′,
↪→ sessionStorage ′, command〉

↪→ such that out = outλ[ν10/λ1, ν11/λ2, . . . ]
↪→ with (in, outλ) ∈ R

11: let s′.cookies
[
s′.d .origin.host

]
:=

↪→ CookieMerge(s′.cookies
[
s′.d .origin.host

]
,

↪→ cookies ′)
12: let s′.localStorage

[
s′.d .origin

]
:= localStorage ′

13: let s′.sessionStorage
[
〈s′.d .origin, tlw .nonce〉

]
:=

↪→ sessionStorage ′

14: let s′.d .scriptstate := state′

15: switch command do
→ In this excerpt, we focus on the extension for the WPA and

refer to Appendix D for the full model. We use the same line
numbers as in Appendix D.

Extension with Payment APIs
91: case 〈PR_CREATE,methodData, details, options〉
92: if ¬(methodData ∈ MethodDatas) then stop 〈〉, s′

93: if methodData = 〈〉 then stop 〈〉, s′

94: let seenPMIs := 〈〉
95: for each 〈pmi , recv , paymentId〉 ∈ methodData do
96: if pmi ∈ seenPMIs then stop 〈〉, s′

→ Fix for second attack (ambiguous method data)
97: let seenPMIs := seenPMIs +〈〉 pmi

98: let paymentReq := 〈PAYMENTREQUEST, ν14, s′.d .nonce,
↪→ methodData, details, options, 〈〉, CR,⊥, 〈〉〉

99: let transactionId := ν18
100: let s′.paymentStorage[ν14] :=

↪→ 〈paymentReq , 〈〉, 〈〉, transactionId〉
101: let s′.d .scriptinputs

↪→ := s′.d .scriptinputs +〈〉 paymentRequest
102: stop 〈〉, s′

103: case 〈PR_SHOW,PRN , detailsUpdate〉
104: let paymentReq :=

↪→ s′.paymentStorage[PRN ].paymentReq
105: if paymentReq .state 6= CR then stop 〈〉, s′

106: if s′.w .paymentRequestShowing = > then
107: let s′.paymentStorage[PRN ].paymentReq

↪→ .state := CL
108: stop 〈〉, s′

109: let s′.paymentStorage[PRN ].paymentReq
↪→ .state := IN
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110: let s′.w .paymentRequestShowing := >
111: let handlers := 〈〉
112: for each mds := 〈pmi , receiver , paymentIdentifier〉 ∈

↪→ paymentReq .methodData do
113: let ph := GET_PAYMENT_HANDLERS(pmi, s′)
114: let handlers := handlers+〈〉 ph
115: for each handler ∈ ph do
116: let s′.events := s′.events+〈〉

↪→ 〈CANMAKEPAYMENT, handler .nonce,
↪→ tlw .origin, s′.d .origin,mds〉

117: let handler ← handlers
118: let s′.paymentStorage[PRN ].handlerNonce :=

↪→ handler .nonce
119: if detailsUpdate 6= 〈〉 then
120: let s′.paymentStorage[PRN ].paymentReq

↪→ .updating := >
121: let s′.events := s′.events+〈〉

↪→ 〈PR_UPDATE_DETAILS,PRN , detailsUpdate〉
122: let s′.events := s′.events+〈〉

↪→ 〈SUBMITPAYMENT,PRN , handler .nonce〉
123: stop 〈〉, s′

· · ·

that issued this command (Line 101). This term contains a
fresh nonce ν14 as the payment request nonce (used as a
unique identifier of a payment request within the browser),
the browser’s internal identifier for the document in which
the script was executed (s′.d .nonce), the arguments of the
command, as well as other state information of the payment
request (see below and also Definition 61 in Appendix C). The
browser further chooses what we call the transaction identifier
(a fresh nonce ν18) that we use in our model to identify the
corresponding monetary transaction. We note that our model
at no place uses this value for any kind of decision and only
passes this value along with the data specified by the WPA.

If the command created by the script is a PR_SHOW com-
mand (Lines 103ff.) with a payment request nonce PRN
and a detailsUpdate entry, the browser starts the payment
process (subsumed in Step 2 in Section II-C and described in
Section 3.3 of [14]).

First, the browser looks up the information about the pay-
ment request in its state (using the payment request nonce) and
checks whether the payment request has not been processed
yet (indicated with the string CR for created). If the payment
request has already been processed or if the browser window
is currently processing another payment request, the browser
aborts and, in the latter case, changes the state of the payment
request to CL for closed (see Lines 105–108).

Next, the browser stores that it is now processing this pay-
ment request by setting the paymentRequestShowing flag of
the current window to true and setting the state of the payment
request to IN for interactive. Then, the browser determines
a payment handler for this payment (Lines 111–117). To this
end, the browser selects the payment handlers that support the
payment method identifiers given in the payment request using
the GET_PAYMENT_HANDLERS function (see Algorithm 25
for the definition of this function). For each of the selected
handlers, the browser creates a CanMakePaymentEvent
event (see also Section II-C). Instead of waiting for the

responses of the payment handlers, the browser immediately
non-deterministically chooses one of the previously selected
payment handlers (Line 117); a safe over-approximation for a
user choosing a payment handler that is willing to process the
payment.

Further, the merchant script can provide updates to the
payment request using the argument detailsUpdate.

Finally, the browser creates a SubmitPaymentEvent in
Line 122, indicating (within the model) that it accepts the
payment. This event will be processed in a future processing
step of the browser.

B. Instantiating Relevant Service Workers and Servers

Based on the extended WIM, we can now specify generic
payment providers and merchants as servers, and payment
handlers as service workers. We note that the exact behavior
of these parties is out of the scope of the specifications, so we
modeled them with minimal assumptions.

Payment Provider. We modeled the payment provider as an
HTTPS server with three endpoints that reflect typical inter-
actions with a payment provider: /index, /authenticate,
and /pay. When receiving a request to the /index endpoint,
the payment provider returns a script that, when executed in
the browser, sends a request with the customer’s credentials
to the /authenticate endpoint, modeling the user entering
her password in order to authenticate.

Upon receiving a request at the /authenticate endpoint,
the payment provider checks whether the request contains an
identity (i.e., user name) and a secret (i.e., password) and
compares those with known login credentials. If this check
succeeds, the payment provider creates a fresh nonce, called
token, and stores this token in its state, associated with the
identity of the authenticated user. Afterward, the payment
provider responds with a message containing the token. This
message is eventually delivered to the aforementioned script
that sent the authentication request. Once that script receives
the token message, it forwards it to the browsing context that
originally opened the /index page via postMessage – this will
usually be a payment handler.

At the /pay endpoint, the payment provider expects one of
the tokens it has issued via the /authenticate endpoint, and
information about the transaction that it should perform. In
particular, the receiver and total amount of the payment—the
sender is determined by looking up the identity associated
with the received token. In our model, the transaction is
performed by storing the payment information, i.e., sender,
receiver, amount, and the payment id assigned to the original
payment request, in the transactions map of the payment
provider’s state.

Note that during a retry, the payment provider will receive
a second request to the /pay endpoint with updated payment
information. In that case, the request’s payment identifier will
be the same as in the original /pay request and the payment
provider updates the corresponding entry in its transactions
map. This models a payment provider canceling the original
transaction and replacing it with a new one.
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Payment Handler. As described in Section II, payment
handlers are service workers and we model them as such. We
implement a generic payment handler in our model. In order
to also model a simple (and probably typical) payment method
manifest (see Section II-B), we require that a payment handler
is installed under the respective payment provider’s origin. This
models a payment method manifest that only allows payment
handlers to be installed by the payment provider itself. Note
that this restriction does not limit the number of payment
methods provided by a payment handler: one payment provider
can offer multiple payment methods.

When our generic payment handler receives payment details
to initiate a payment on behalf of the customer (see 7 in
Figure 2), it opens a window with the /index page at its own,
i.e., the payment provider’s, origin.

As explained before, our generic payment provider responds
with a script that acquires a token from the payment provider
for the customer’s identity – modeling a login page at which
the customer authenticates herself – which is then forwarded
to the payment handler.

After receiving such a token, the payment handler sends
a request to the /pay endpoint of the payment provider
containing the token and the relevant payment information,
i.e., the receiver and total amount (the sender is determined
by examining the token). Finally, the payment handler creates
a payment handler response and hands it back to the WPA in
the browser (see 9 in Figure 2).

We note that our model of payment handlers does not send
responses to CanMakePaymentEvents. This is a safe over-
approximation as discussed in Section V.

Merchant. We model a generic merchant as a HTTPS server
that, upon receiving a request at its /index endpoint, serves
a script script_merchant to the browser which uses the WPA
as sketched in Section II-C.

C. The WPA Web System

In the following, we model the WPA protocol in the extended
WIM as a class WPAPI of web systems (see Section IV
for the definition of web systems). In the following sections,
we show that all web systems in that class satisfy certain
desired security properties, which implies that they hold true
for arbitrary numbers of browsers, payment providers, etc.,
running concurrently. We refer to WPAPI also as our WPA
model.
Definition 1. A web system (W,S, script, E0) belongs to

WPAPI iff the following conditions are satisfied:
• W is partitioned into the sets Hon and Net. Net includes

a network attacker process and Hon consists of a finite
set of web browsers B, a finite set of web servers for the
merchants C and a finite set of payment provider servers
PP with Hon := B ∪ C ∪ PP .
The browsers are those introduced in Section V-A. We high-
light that each browser of a WPAPI web system can have
an arbitrary number of payment handlers. Honest payment
provider servers, merchant servers, and payment handlers
behave as sketched in Section V-B, with formal definitions
given in Appendix D. DNS servers are subsumed by the

adversary, i.e., they are all dishonest, but we assume a PKI.
Initially, all participants (except the network attacker) are
honest, but can be dynamically corrupted by the network
attacker during the run of a web system.

• S = {script_merchant, script_payment_provider_index,
script_default_payment_handler} contains the scripts of
the model as sketched in Section V-B and formally defined
in Appendix D.

• script is a mapping from scripts to their string representa-
tion, where
– script(script_merchant) = script_merchant
– script(script_payment_provider_index) =
script_payment_provider_index

– script(script_default_payment_handler) =
script_default_payment_handler.

We call a web system in WPAPI a WPA system.

VI. SECURITY PROPERTIES

In the following, we describe the security properties that the
WPA should fulfill. These properties reflect natural integrity
properties that one would expect from every payment system.
In a nutshell, these properties state the following: (1) Whenever
some (honest) payment provider performs a financial transac-
tion on behalf of a customer, the customer has expressed the
wish to do so. This property is called Intended Payment and
described in Section VI-A. (2) Each payment that the customer
authorizes is performed at most once, and if it is performed,
the relevant aspects of the transaction are exactly what the
customer authorized. This property is called Uniqueness of
Payments and described in Section VI-B.

In the formalization of these properties, we make use of
two important data structures, which record the user’s intent
to pay and transactions performed by the payment provider:
A browser stores (in its state) all payments for which the
browser’s user expressed intent (i.e., she selected a payment
handler and submitted the payment in the payment UI) in a
dictionary called paymentIntents . Each payment provider in
turn stores (in its state) all performed transactions in a map
called transactions . In order to be able to relate transaction
intents in a browser to transactions in a payment provider’s
state, we identify each transaction by a transactionId chosen
uniquely by the browser.

We note that there clearly cannot be a one-to-one mapping
between the payment intents stored in the browser and the
transactions stored by the payment provider as for some intents
there may not be a corresponding transaction: a network
attacker can hold back requests indefinitely.

Also, since the WPA do not specify how a merchant can
check that a financial transaction was successfully initiated
by the payment provider, we do not consider properties that
would give the merchant such guarantees.

In the following, we give formal definitions for the afore-
mentioned properties. We highlight that both properties do
not require the involved merchant to be honest, thus, hold
true even if a customer interacts with a malicious merchant.
However, the payment provider and handler involved in the
corresponding transaction need to be honest; all other parties
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not directly involved in the transaction, such as other browsers,
handlers, and payment providers, may have been corrupted by
the adversary at any point in time.

A. Intended Payments

From the customer’s viewpoint, it is important that a
payment performed by the payment provider in their name
corresponds to a payment the customer authorized. In particu-
lar, this means that the sender, receiver, and total amount of
the transaction coincide with what the customer confirmed in
the payment UI of her browser. This implies that no malicious
party can initiate a payment on behalf of an (honest) customer.

For the formal definition of this Intended Payments property
we define a helper function that maps a transaction identifier
txId to the corresponding payment intent in a browser state
(stored under that transaction identifier). Note that there might
be multiple payment intents in the case of retries.
Definition 2 (Intents of a browser given a transaction identifier).

For a configuration (S, E, N) of a run ρ of a WPA
system in WPAPI , a browser b in B, and a nonce txId ,
we define intents(·, ·, ·) as follows: intents(S, b, txId) :=
S(b).paymentIntents[txId ]

We can now formalize the Intended Payments property (with
the explanation following the definition); π denotes projections
on list entries.
Definition 3 (Intended Payments). A WPA system in WPAPI

fulfills Intended Payments iff for every run ρ of this
system, every configuration (S, E, N) in ρ, every pay-
ment provider server pp ∈ PP honest in S, and every
t ∈ S(pp).transactions it holds true that:
If b := ownerOfID(t.sender) ∈ B is a browser
honest in S, then ∃i ∈ N such that t.total =
πi(intents(S, b, t.txId)).details.total ∧ t.receiver =
π1(πi(intents(S, b, t.txId)).methodData).receiver.

The Intended Payments property ensures that for each trans-
action stored at an honest payment provider for some honest
sender’s account, the sender’s browser holds a corresponding
intent (identified by the transaction identifier) with the same
receiver and total. As already mentioned, the behavior of the
customer is subsumed by the browser, with the mapping from
customer to browser defined by the mapping ownerOfID.

We require that both the involved browser of the customer
as well as the payment method provider are honest—otherwise,
all is lost anyway w.r.t. Intended Payments. However, as already
mentioned above, we do not require that merchants are honest,
i.e., this property holds true even for malicious merchants
involved in the payment process.

B. Uniqueness of Payments

As mentioned, intuitively, Uniqueness of Payments ensures
that for each payment that the customer authorizes, there is at
most one transaction executed by any honest payment provider,
and that this transaction has the correct values.
Definition 4 (Uniqueness of Payments). A WPA system

in WPAPI fulfills Uniqueness of Payments iff for ev-
ery run ρ of this system, every configuration (S, E,
N) in ρ, every browser b ∈ B honest in S, every

(txId , intents) ∈ S(b).paymentIntents, and with PPh =
{pp ∈ PP : S(pp).isCorrupted = ⊥} being the set of
payment providers that are honest in S, then | ∪pp∈PPh
{t ∈ S(pp).transactions | txId = t.txId ∧ b =
ownerOfID(t.sender)}| ≤ 1. If such a t exists, there exists
a pi ∈ intents such that t.total = pi.details.total and
t.receiver = π1(pi.methodData).receiver.

This property requires that for every payment intent stored
in an honest browser (identified by txId ), there is at most
one corresponding transaction with that browser’s user as the
sender (payer) in the combined state of all honest payment
providers. If such a transaction exists, then we require that the
receiver and total of the transaction correspond to the values
of one of the intents stored by the browser for txId .

C. Security Theorem

The following theorem states that the WPA protocol is
secure, i.e., fulfills both the Intended Payments property and the
Uniqueness of Payments property. We refer to Appendix E-D
for the full proof of this theorem; we provide a proof sketch
in Section VII.
Theorem 1. All web systems in WPAPI fulfill the Intended

Payments and the Uniqueness of Payments properties.

We emphasize that our modeling and analysis takes into
account a powerful attacker with capabilities way beyond the
usual network attacker used in protocol analyses as the WIM
and its extension presented here is a detailed model of the
web infrastructure, in fact the most comprehensive one to
date: Our attacker not only completely controls the network
but, as mentioned, also the whole DNS system. He can also
make use of the various headers supported by the model.
Furthermore, an honest browser may visit malicious websites
with malicious scripts which run in the browser—in parallel to
(possibly multiple) WPA sessions. This, of course, also allows
the attacker to use the whole set of supported web features
in the browser, including sending postMessages to honest
browsing contexts, making requests to (honest) servers from
an honest browser (cross site request forgery attacks), trigger
arbitrary events, access data stored in the browser (complying
with access restrictions defined in the various web standards,
e.g., related to the same-origin policy), etc. This detailed view
makes it possible to exclude subtle attacks emerging from
delicate details in how different web technologies inter-operate.

We note that our analysis does not cover privacy properties,
as privacy is not a central concern of the WPA. In particular,
the WPA intentionally “leaks” privacy-related information.
For example, the user’s address is (partially) provided to the
merchant even before the user approves the final payment
(see also Section II-C). Also, payment details may be released
to the merchant, e.g., credit card details when using the
basic-card payment method (see Section II-B). Moreover,
the protocol does not intend to hide the identity of the merchant
or the kind of goods paid for from the payment provider.

VII. PROOF SKETCH

The proof of Theorem 1 is split into 14 lemmas. To
give an impression of the proof, we show the proof of the
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Intended Payments property (see Lemma 2 below), which in
turn is proven using two key lemmas (with one based on
further lemmas). We here give the proof of one of these key
lemmas (Lemma 1) and state (and prove) the second lemma
(Lemma 10) in Appendix E. To give an impression of the
proof of Uniqueness of Payments, we provide a high-level
proof sketch in Appendix A-B. Full proofs of all lemmas are
provided in Appendix E.

A. Relation between Payment Request Events and Payment
Intents

The following lemma relates payment request events of a
browser to the payment intents it stores. As introduced in
Section VI, the user’s intent to submit a payment is modeled
by adding the corresponding payment request event to the
paymentIntents entry of the browser state. Additionally, the
browser model has a state entry events, where it stores events
that it may process at any time.

More precisely, Lemma 1 states that for every payment
request event stored in the events entry of the browser state
of an honest browser, there is a payment intent stored by the
browser with the same total and the same receiver (in the first
element of the methodData entry). Furthermore, the payment
intent is stored using the transaction identifier of the payment
request event as a key.
Lemma 1 (Payment Request Event Implies Payment Intent).

For every WPA system in WPAPI , for every run ρ of this
system, every configuration (S, E, N) in ρ, every browser
b ∈ B that is honest in S, every payment request event (as
defined in Definition 64) preqEvent ∈〈〉 S(b).events, it
holds true that ∃pi .

pi ∈〈〉 S(b).paymentIntents[preqEvent .txId] ∧
pi .details.total = preqEvent .total ∧
π1(pi .methodData).receiver =
π1(preqEvent .methodData).receiver.

Proof: Let preqEvent be a payment request event such that
preqEvent ∈〈〉 S(b).events, and b a browser honest in S.
Initially, the events state entry of the browser is empty
(per Definition 69 of Appendix D). An honest browser adds
payment requests events to its events state entry only in
Line 22 of Algorithm 22. After this line is executed, the
browser will execute Line 25 of the same algorithm (as there
is no stop between these lines), in which the browser stores
a payment intent pi . The dictionary key used for storing the
intent is the transaction identifier stored in preqEvent , i.e.,
preqEvent .txId (see Line 20 and Line 25 of Algorithm 22).

Moreover, there exists a payment request paymentReq
such that pi .details.total = paymentReq .details.total
(Line 23 of Algorithm 22). The value of the total of
preqEvent is set to the value stored in paymentReq , i.e.,
preqEvent .total = paymentReq .details.total (Line 10
and Line 20 of Algorithm 22). Therefore, we conclude that
pi .details.total = preqEvent .total.

The methodData entry stored in the payment intent
pi in Line 24 is the same that is stored in the pay-
ment request event preqEvent in Line 20 of Algo-

rithm 22, i.e., π1(preqEvent .methodData).receiver =
π1(pi .methodData).receiver.

B. Proof of Intended Payments

The proof of the Intended Payments property uses
Lemma 10, which we give in Appendix E. Informally,
Lemma 10 relates transactions stored in the state of a payment
provider server to payment request events stored at a browser.
More precisely, each transaction contains a sender, and the
lemma states that the browser that manages the identity of this
sender stores a corresponding payment request event, i.e., with
the same total and the first methodData entry of the event
having the same receiver as in the transaction.
Lemma 2 (Intended Payments). Every WPA system in WPAPI

fulfills Intended Payments (see Definition 3).

Proof: Let t be a transaction stored in the state of an honest
payment provider pp, i.e., t ∈ S(pp).transactions .

We apply Lemma 10 and conclude that, if b :=
ownerOfID(t.sender) ∈ B is a browser honest in S, then
∃ preqEvent ∈〈〉 S(b).events such that

π1(preqEvent) = PAYMENTREQUESTEVENT∧ t.txId =
preqEvent .txId ∧ t.total = preqEvent .total ∧
π1(preqEvent .methodData).receiver = t.receiver.

Next, we apply Lemma 1 and conclude that there is a payment
intent pi such that

pi ∈〈〉 S(b).paymentIntents[preqEvent .txId] ∧
pi .details.total = preqEvent .total ∧
π1(pi .methodData).receiver =
π1(preqEvent .methodData).receiver,

and, in particular,
pi ∈〈〉 S(b).paymentIntents[t.txId] ∧
pi .details.total = t.total ∧
π1(pi .methodData).receiver = t.receiver.

VIII. CONCLUSION

In this paper, we performed the first in-depth and formal
analysis of the W3C WPA. To the best of our knowledge, our
analysis is the first such analysis of any web payment system,
certainly the first in a detailed web infrastructure model.

Our analysis is based on the most comprehensive model
of the web infrastructure to date, the WIM. To enable the
analysis, we significantly extended the WIM, a contribution
of independent interest. In addition to extending the browser
model with the WPA, we added a framework for service work-
ers and an extensible mechanism to trigger and process DOM
events in the browser. Based on this model, we formulated
precise security properties that reflect the integrity of payments
performed using WPA: Intended Payments and Uniqueness of
Payments.

While trying to prove these properties, we found two critical
vulnerabilities that enable a malicious merchant to over-charge
an unsuspecting customer. We proposed fixes that prevent these
attacks and formally verified the security of the WPA with our
fixes in place. This is of direct practical relevance as the WPA
enjoy wide industry support and are expected to be adopted
by many merchants and payment providers in the near future.

15



We also verified these attacks in Google Chrome, at the
time of analysis one of the first browsers that implemented
the WPA. We reported our findings to the responsible working
group at the W3C as well as the Google Chrome developers,
who both acknowledged the issues. The working group adapted
the specification of the WPA according to our proposals and the
Chrome developers implemented the fixes and even released
a hotfix for the current Chrome version.

We are currently working on a mechanized model for the
WIM based on a recent verification framework called DY? [8],
a new approach for the modular symbolic security analysis of
protocol code written in the F? programming language. It is
interesting future work to carry out analyses as performed here
with such a tool.
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APPENDIX A
HIGH-LEVEL PROOF SKETCHES

In the following, we provide high-level proof sketches for both security properties. We refer to
Appendix E for the formal proofs.

A. Intended Payments

The Intended Payments property, as defined in Section VI-A, states the following: If an honest payment
provider stores a transaction, and if the sender of the transaction is an identity managed by an honest
browser, then the browser stores a payment intent (for the transaction) with the same total and receiver.

In our formal model, a transaction is linked to the payment intents of the browser via the transaction
identifier transactionId . In the full proof of the Intended Payments property, we first show that the
transaction identifier stored in a transaction is indeed used by the browser for referencing a list of payment
intents. Then, we show that in this list, there is one payment intent having the same total and receiver as
the transaction. We now give more details on the proof.

Let t be a transaction stored in the state of an honest payment provider pp (see Definition 68 for details
on the structure of a transaction). In the following, we trace back to identify the origin of the transaction
identifier t.transactionId. An honest payment provider adds a transaction to the transactions entry
of its state only after receiving an HTTPS (POST) request to its /pay endpoint. This request contains a
token which determines the sender of the transaction. More precisely, the payment provider associated
the token (when issuing the token) to an identity id which is used as the sender of the transaction, i.e.,
t.sender = id .

Let b = ownerOfID(t.sender) be the (honest) browser that manages the identity of the sender of the
transaction.

The payment provider only issues a token after successful authentication of an identity. As b and pp
are honest, we can apply Lemma 7, and can conclude that a token associated with id does not leak to
the attacker, and is only derivable by b and pp.

As an honest payment provider never sends HTTP requests, we can conclude that the token was sent
by the browser b. The transaction identifier t.transactionId is taken from the same HTTPS request that
contained the token, thus, we conclude that the transaction identifier was sent by the browser b.

In the full proof, we show that the browser b sends a request to the /pay endpoint of pp only due to
an honest payment handler (that has the same origin as the payment provider, see also Section V-B).

By tracing back the origins of the transaction identifier, total, and receiver values used by the
payment handler, we show that these values are provided to the payment handler by the browser via
a PaymentRequestEvent. The browser passes a PaymentRequestEvent to the payment handler only
by calling the DELIVER_TO_DOC helper function in Line 28 of Algorithm 22. The only place where the
browser creates such an event and adds it to the pool of events S(b).events is in Line 22 of Algorithm 22.
As this line is executed by b, it will also execute Line 25 of the same algorithm, and by this, add a payment
intent to its state using the transaction identifier as a key, i.e., to S(b).paymentIntents[t.transactionId].

The values for the total and receiver of the transaction, i.e., of t.total and t.receiver that are used
for creating the aforementioned PaymentRequestEvent (i.e., when executing Line 20 of Algorithm 22)
are contained in the same payment intent that is added to S(b).paymentIntents[t.transactionId].

This is the only place where the browser model modifies S(b).paymentIntents[t.transactionId],
therefore, we can conclude that there is a payment intent with the same total and receiver as the transaction
t, by which we show the Intended Payments property.

B. Uniqueness of Payments

For the Uniqueness of Payments property, we need to prove that: (1) there is at most one transaction
stored in the state of all honest payment providers of which the transaction identifier is the same with the
transaction identifier of the payment intent sequence, and the account of the sender is managed by the
browser; and (2) if such a transaction exists, then there is one payment intent in the sequence with such
transaction identifier having the same total value and the same receiver with the values in that transaction.

Statement (2) is a trivial corollary of the Intended Payments property. We will now give a proof sketch
for (1).

We prove (1) by contradiction: Let b be an honest browser and txId a transaction identifier stored in
the state of b. Assume that there exist two different transactions t, t′ stored in the state of two honest
payment providers pp, pp′ (or in one payment provider, i.e., pp = pp′) so that both transactions have the
same transaction identifier txId and have a sender managed by the same browser b. Similar to the proof in
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Section A-A, we show that the transaction identifier of t and t′ was sent from the browser b by executing
a payment handler with a PaymentRequestEvent with the transaction identifier is txId . Therefore, there
must be two PaymentRequestEvent events with the same transaction identifier provided to the payment
handler in b.

Similar to the proof presented in Section A-A, we show that the browser must have accepted two
payments. The browser accepts a payment by creating a special kind of event, called SubmitPayment

event, after the merchant starts the payment flow or initiates a retry. In the proof, by tracing back the
origins of the transaction identifier in the PaymentRequestEvent event and the payment request nonce
in the SubmitPayment event, we show that both SubmitPayment events must have the same payment
request nonce.

The SubmitPayment event can only be generated within the browser by processing one of two script
commands, either PR_SHOW (Line 103 of Algorithm 1) or PRESS_RETRY (Line 148 Algorithm 21). In the
proof, we show that the second SubmitPayment event must be created by a retry, i.e., by processing
PRESS_RETRY. As both SubmitPayment events have the same payment request nonce, and the second
SubmitPayment is a retry, we can conclude that both resulting PaymentRequestEvents will be processed
by the same payment handler. We highlight that this conclusion is only possible with the fix we proposed
in Section III-A.

Having the same payment handler also implies that the requests that will create the transactions at some
payment providers are sent to the same payment provider, i.e., pp ≡ pp′. Hence, t and t′ are stored in
one payment provider’s state.

As mentioned above, two PaymentRequestEvents in b must have the same transaction identifier. From
Lemma 17, we conclude that they also have the same payment identifier. The payment handler puts the
payment identifier of the PaymentRequestEvent in the body of the request sent to the payment provider.
Later on, this value is used as the key indexing the corresponding transaction stored in the payment
provider’s state. Thus, we have that t and t′, both stored in the state of pp, are indexed by the same
payment identifier. This implies that t and t′ are the same transaction, which contradicts the assumption that
t and t′ are different. Therefore, (1) is proven, completing the proof sketch for Uniqueness of Payments.
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deca(enca(x, pub(y)), y) = x (1)
decs(encs(x, y), y) = x (2)

checksig(sig(x, y), pub(y)) = > (3)
extractmsg(sig(x, y)) = x (4)

πi(〈x1, . . . , xn〉) = xi if 1 ≤ i ≤ n (5)
πj(〈x1, . . . , xn〉) = ♦ if j 6∈ {1, . . . , n} (6)

Figure 6 Equational theory for Σ.

APPENDIX B
THE WEB INFRASTRUCTURE MODEL (WIM)

Here, we provide technical definitions that complete our description of the WIM in Section IV. As
mentioned in this section, we follow the descriptions in [20, 21, 22, 23, 24, 25].

A. Terms and Notations

Definition 5 (Nonces and Terms). By X = {x0, x1, . . . } we denote a set of variables and by N we denote
an infinite set of constants (nonces) such that Σ, X , and N are pairwise disjoint. For N ⊆ N , we
define the set TN (X) of terms over Σ ∪ N ∪ X inductively as usual: (1) If t ∈ N ∪ X , then t is a
term. (2) If f ∈ Σ is an n-ary function symbol in Σ for some n ≥ 0 and t1, . . . , tn are terms, then
f(t1, . . . , tn) is a term.
By ≡ we denote the congruence relation on TN (X) induced by the theory associated with Σ (see

Figure 6). For example, we have that π1(deca(enca(〈a, b〉, pub(k)), k)) ≡ a.
Definition 6 (Ground Terms, Messages, Placeholders, Protomessages). By TN = TN (∅), we denote the

set of all terms over Σ ∪N without variables, called ground terms. The set M of messages (over N )
is defined to be the set of ground terms TN .
We define the set Vprocess = {ν1, ν2, . . . } of variables (called placeholders). The set M ν := TN (Vprocess)
is called the set of protomessages, i.e., messages that can contain placeholders.

Example 1. For example, k ∈ N and pub(k) are messages, where k typically models a private key
and pub(k) the corresponding public key. For constants a, b, c and the nonce k ∈ N , the message
enca(〈a, b, c〉, pub(k)) is interpreted to be the message 〈a, b, c〉 (the sequence of constants a, b, c)
encrypted by the public key pub(k).

Definition 7 (Events and Protoevents). An event (over IPs and M ) is a term of the form 〈a, f,m〉, for
a, f ∈ IPs and m ∈ M , where a is interpreted to be the receiver address and f is the sender address.
We denote by E the set of all events. Events over IPs and M ν are called protoevents and are denoted
Eν . By 2E〈〉 (or 2Eν〈〉, respectively) we denote the set of all sequences of (proto)events, including the
empty sequence (e.g., 〈〉, 〈〈a, f,m〉, 〈a′, f ′,m′〉, . . . 〉, etc.).

Definition 8 (Normal Form). Let t be a term. The normal form of t is acquired by reducing the function
symbols from left to right as far as possible using the equational theory shown in Figure 6. For a term
t, we denote its normal form as t↓.

Definition 9 (Pattern Matching). Let pattern ∈ TN ({∗}) be a term containing the wildcard (variable ∗).
We say that a term t matches pattern iff t can be acquired from pattern by replacing each occurrence
of the wildcard with an arbitrary term (which may be different for each instance of the wildcard). We
write t ∼ pattern . For a sequence of patterns patterns we write t∼̇patterns to denote that t matches
at least one pattern in patterns .
For a term t′ we write t′| pattern to denote the term that is acquired from t′ by removing all immediate
subterms of t′ that do not match pattern .

Example 2. For example, for a pattern p = 〈>, ∗〉 we have that 〈>, 42〉 ∼ p, 〈⊥, 42〉 6∼ p, and

〈〈⊥,>〉, 〈>, 23〉, 〈a, b〉, 〈>,⊥〉〉| p = 〈〈>, 23〉, 〈>,⊥〉〉 .

Definition 10 (Variable Replacement). Let N ⊆ N , τ ∈ TN ({x1, . . . , xn}), and t1, . . . , tn ∈ TN .
By τ [t1/x1, . . . , tn/xn] we denote the (ground) term obtained from τ by replacing all occurrences of xi
in τ by ti, for all i ∈ {1, . . . , n}.
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Definition 11 (Sequence Notations). For a sequence t = 〈t1, . . . , tn〉 and a set s we use t ⊂〈〉 s to say
that t1, . . . , tn ∈ s. We define x ∈〈〉 t ⇐⇒ ∃i : ti = x . For a term y we write t +〈〉 y to denote
the sequence 〈t1, . . . , tn, y〉. For a sequence r = 〈r1, . . . , rm〉 we write t ∪ r to denote the sequence
〈t1, . . . , tn, r1, . . . , rm〉. For a finite set M with M = {m1, . . . ,mn} we use 〈M〉 to denote the term
of the form 〈m1, . . . ,mn〉. (The order of the elements does not matter; one is chosen arbitrarily.)

Definition 12. A dictionary over X and Y is a term of the form

〈〈k1, v1〉, . . . , 〈kn, vn〉〉
where k1, . . . , kn ∈ X , v1, . . . , vn ∈ Y . We call every term 〈ki, vi〉, i ∈ {1, . . . , n}, an element of
the dictionary with key ki and value vi. We often write [k1 : v1, . . . , ki : vi, . . . , kn : vn] instead of
〈〈k1, v1〉, . . . , 〈kn, vn〉〉. We denote the set of all dictionaries over X and Y by [X × Y ].

We note that the empty dictionary is equivalent to the empty sequence, i.e., [] = 〈〉. Figure 7 shows
the short notation for dictionary operations. For a dictionary z = [k1 : v1, k2 : v2, . . . , kn : vn] we write
k ∈ z to say that there exists i such that k = ki. We write z[kj ] to refer to the value vj . (Note that if
a dictionary contains two elements 〈k, v〉 and 〈k, v′〉, then the notations and operations for dictionaries
apply non-deterministically to one of both elements.) If k 6∈ z, we set z[k] := 〈〉.

[k1 : v1, . . . , ki : vi, . . . , kn : vn] [ki] = vi (7)
[k1 : v1, . . . , ki−1 : vi−1, ki : vi, ki+1 : vi+1 . . . , kn : vn]− ki =

[k1 : v1, . . . , ki−1 : vi−1, ki+1 : vi+1 . . . , kn : vn] (8)

Figure 7 Dictionary operators with 1 ≤ i ≤ n.

Given a term t = 〈t1, . . . , tn〉, we can refer to any subterm using a sequence of integers. The subterm
is determined by repeated application of the projection πi for the integers i in the sequence. We call such
a sequence a pointer:
Definition 13. A pointer is a sequence of non-negative integers. We write τ.p for the application of the

pointer p to the term τ . This operator is applied from left to right. For pointers consisting of a single
integer, we may omit the sequence braces for brevity.

Example 3. For the term τ = 〈a, b, 〈c, d, 〈e, f〉〉〉 and the pointer p = 〈3, 1〉, the subterm of τ at the
position p is c = π1(π3(τ)). Also, τ.3.〈3, 1〉 = τ.3.p = τ.3.3.1 = e.
To improve readability, we try to avoid writing, e.g., o.2 or π2(o) in this document. Instead, we will

use the names of the components of a sequence that is of a defined form as pointers that point to the
corresponding subterms. E.g., if an Origin term is defined as 〈host , protocol〉 and o is an Origin term,
then we can write o.protocol instead of π2(o) or o.2. See also Example 4.
Definition 14 (Concatenation of terms and sequences). For a term a = 〈a1, . . . , ai〉 and a sequence
b = (b1, b2, . . . ), we define the concatenation as a · b := (a1, . . . , ai, b1, b2, . . . ).

Definition 15 (Subtracting from Sequences). For a sequence X and a set or sequence Y we define X \ Y
to be the sequence X where for each element in Y , a non-deterministically chosen occurence of that
element in X is removed.

B. Message and Data Formats
We now provide some more details about data and message formats that are needed for the formal

treatment of the web model and the analysis presented in the following.
1) URLs:

Definition 16. A URL is a term of the form

〈URL, protocol , host , path, parameters, fragment〉
with protocol ∈ {P, S} (for plain (HTTP) and secure (HTTPS)), a domain host ∈ Doms, path ∈ S,
parameters ∈

[
S× TN

]
, and fragment ∈ TN . The set of all valid URLs is URLs.

The fragment part of a URL can be omitted when writing the URL. Its value is then defined to be ⊥.
We sometimes also write URLhost

path to denote the URL 〈URL, S, host , path, 〈〉,⊥〉.
As mentioned above, for specific terms, such as URLs, we typically use the names of its components

as pointers (see Definition 13):
Example 4. For the URL u = 〈URL, a, b, c, d〉, u.protocol = a. If, in the algorithm described later, we

say u.path := e then u = 〈URL, a, b, c, e〉 afterwards.
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2) Origins:
Definition 17. An origin is a term of the form 〈host , protocol〉 with host ∈ Doms and protocol ∈ {P, S}.

We write Origins for the set of all origins.

Example 5. For example, 〈FOO, S〉 is the HTTPS origin for the domain FOO, while 〈BAR, P〉 is the HTTP
origin for the domain BAR.

3) Cookies:
Definition 18. A cookie is a term of the form 〈name, content〉 where name ∈ TN , and content is a term of

the form 〈value, secure, session, httpOnly〉 where value ∈ TN , secure, session , httpOnly ∈ {>,⊥}.
We write Cookies for the set of all cookies and Cookiesν for the set of all cookies where names and
values are defined over TN (V ).

If the secure attribute of a cookie is set, the browser will not transfer this cookie over unencrypted
HTTP connections. If the session flag is set, this cookie will be deleted as soon as the browser is closed.
The httpOnly attribute controls whether JavaScript has access to this cookie.

Note that cookies of the form described here are only contained in HTTP(S) requests. In HTTP(S)
responses, only the components name and value are transferred as a pairing of the form 〈name, value〉.

4) HTTP Messages:
Definition 19. An HTTP request is a term of the form shown in (9). An HTTP response is a term of the

form shown in (10).

〈HTTPReq,nonce,method , host , path, parameters, headers, body〉 (9)
〈HTTPResp,nonce, status, headers, body〉 (10)

The components are defined as follows:
• nonce ∈ N serves to map each response to the corresponding request
• method ∈ Methods is one of the HTTP methods.
• host ∈ Doms is the host name in the HOST header of HTTP/1.1.
• path ∈ S is a string indicating the requested resource at the server side
• status ∈ S is the HTTP status code (i.e., a number between 100 and 505, as defined by the HTTP

standard)
• parameters ∈

[
S× TN

]
contains URL parameters

• headers ∈
[
S× TN

]
, containing request/response headers. The dictionary elements are terms of one

of the following forms:
– 〈Origin, o〉 where o is an origin,
– 〈Set-Cookie, c〉 where c is a sequence of cookies,
– 〈Cookie, c〉 where c ∈

[
S× TN

]
(note that in this header, only names and values of cookies are

transferred),
– 〈Location, l〉 where l ∈ URLs,
– 〈Referer, r〉 where r ∈ URLs,
– 〈Strict-Transport-Security,>〉,
– 〈Authorization, 〈username, password〉〉 where username , password ∈ S,
– 〈ReferrerPolicy, p〉 where p ∈ {noreferrer, origin}.

• body ∈ TN in requests and responses.
We write HTTPRequests/HTTPResponses for the set of all HTTP requests or responses, respectively.

Example 6 (HTTP Request and Response).

r :=〈HTTPReq, n1, POST, example.com, /show, 〈〈index, 1〉〉,
[Origin : 〈example.com, S〉], 〈foo, bar〉〉 (11)

s :=〈HTTPResp, n1, 200, 〈〈Set-Cookie, 〈〈SID, 〈n2,⊥,⊥,>〉〉〉〉〉, 〈somescript, x〉〉 (12)

An HTTP POST request for the URL http://example.com/show?index=1 is shown in (11), with an Origin
header and a body that contains 〈foo, bar〉. A possible response is shown in (12), which contains an
httpOnly cookie with name SID and value n2 as well as the string representation somescript of the
script script−1(somescript) (which should be an element of S ) and its initial state x.
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a) Encrypted HTTP Messages: For HTTPS, requests are encrypted using the public key of the server.
Such a request contains an (ephemeral) symmetric key chosen by the client that issued the request. The
server is supported to encrypt the response using the symmetric key.
Definition 20. An encrypted HTTP request is of the form enca(〈m, k′〉, k), where k ∈ terms, k′ ∈

N , and m ∈ HTTPRequests. The corresponding encrypted HTTP response would be of the form
encs(m

′, k′), where m′ ∈ HTTPResponses. We call the sets of all encrypted HTTP requests and
responses HTTPSRequests or HTTPSResponses, respectively.
We say that an HTTP(S) response matches or corresponds to an HTTP(S) request if both terms contain

the same nonce.
Example 7.

enca(〈r, k′〉, pub(kexample.com)) (13)
encs(s, k

′) (14)

The term (13) shows an encrypted request (with r as in (11)). It is encrypted using the public key
pub(kexample.com). The term (14) is a response (with s as in (12)). It is encrypted symmetrically using
the (symmetric) key k′ that was sent in the request (13).
5) DNS Messages:

Definition 21. A DNS request is a term of the form 〈DNSResolve, domain,nonce〉 where domain ∈ Doms,
nonce ∈ N . We call the set of all DNS requests DNSRequests.

Definition 22. A DNS response is a term of the form 〈DNSResolved, domain, result ,nonce〉 with domain
∈ Doms, result ∈ IPs, nonce ∈ N . We call the set of all DNS responses DNSResponses.
DNS servers are supposed to include the nonce they received in a DNS request in the DNS response

that they send back so that the party which issued the request can match it with the request.

C. Atomic Processes, Systems and Runs

Entities that take part in a network are modeled as atomic processes. An atomic process takes a term
that describes its current state and an event as input, and then (non-deterministically) outputs a new state
and a set of events.
Definition 23 (Generic Atomic Processes and Systems). A (generic) atomic process is a tuple

p = (Ip, Zp, Rp, sp0)

where Ip ⊆ IPs, Zp ⊆ TN is a set of states, Rp ⊆ (E × Zp)× (2Eν〈〉 × TN (Vprocess)) (input event and
old state map to sequence of output events and new state), and sp0 ∈ Zp is the initial state of p. For
any new state s and any sequence of nonces (η1, η2, . . . ) we demand that s[η1/ν1, η2/ν2, . . . ] ∈ Zp. A
system P is a (possibly infinite) set of atomic processes.

Definition 24 (Configurations). A configuration of a system P is a tuple (S,E,N) where the state of the
system S maps every atomic process p ∈ P to its current state S(p) ∈ Zp, the sequence of waiting
events E is an infinite sequence11 (e1, e2, . . . ) of events waiting to be delivered, and N is an infinite
sequence of nonces (n1, n2, . . . ).

Definition 25 (Processing Steps). A processing step of the system P is of the form

(S,E,N)
ein→p−−−−→
p→Eout

(S′, E′, N ′)

where
1) (S,E,N) and (S′, E′, N ′) are configurations of P ,
2) ein = 〈a, f,m〉 ∈ E is an event,
3) p ∈ P is a process,
4) Eout is a sequence (term) of events

such that there exists
1) a sequence (term) Eνout ⊆ 2Eν〈〉 of protoevents,
2) a term sν ∈ TN (Vprocess),
3) a sequence (v1, v2, . . . , vi) of all placeholders appearing in Eνout (ordered lexicographically),
4) a sequence Nν = (η1, η2, . . . , ηi) of the first i elements in N

with

11Here: Not in the sense of terms as defined earlier.
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1) ((ein, S(p)), (Eνout, s
ν)) ∈ Rp and a ∈ Ip,

2) Eout = Eνout[m1/v1, . . . ,mi/vi]
3) S′(p) = sν [m1/v1, . . . ,mi/vi] and S′(p′) = S(p′) for all p′ 6= p
4) E′ = Eout · (E \ {ein})
5) N ′ = N \Nν

We may omit the superscript and/or subscript of the arrow.

Intuitively, for a processing step, we select one of the processes in P , and call it with one of the events
in the list of waiting events E. In its output (new state and output events), we replace any occurences of
placeholders νx by “fresh” nonces from N (which we then remove from N ). The output events are then
prepended to the list of waiting events, and the state of the process is reflected in the new configuration.
Definition 26 (Runs). Let P be a system, E0 be sequence of events, and N0 be a sequence of nonces. A run
ρ of a system P initiated by E0 with nonces N0 is a finite sequence of configurations ((S0, E0, N0), . . . ,
(Sn, En, Nn)) or an infinite sequence of configurations ((S0, E0, N0), . . . ) such that S0(p) = sp0 for
all p ∈ P and (Si, Ei, N i) −→ (Si+1, Ei+1, N i+1) for all 0 ≤ i < n (finite run) or for all i ≥ 0 (infinite
run).
We denote the state Sn(p) of a process p at the end of a run ρ by ρ(p).

Usually, we will initiate runs with a set E0 containing infinite trigger events of the form 〈a, a, TRIGGER〉
for each a ∈ IPs, interleaved by address.

D. Atomic Dolev-Yao Processes

We next define atomic Dolev-Yao processes, for which we require that the messages and states that
they output can be computed (more formally, derived) from the current input event and state. For this
purpose, we first define what it means to derive a message from given messages.
Definition 27 (Deriving Terms). Let M be a set of ground terms. We say that a term m can be derived

from M with placeholders V if there exist n ≥ 0, m1, . . . ,mn ∈ M , and τ ∈ T∅({x1, . . . , xn} ∪ V )
such that m ≡ τ [m1/x1, . . . ,mn/xn]. We denote by dV (M) the set of all messages that can be derived
from M with variables V .

For example, the term a can be derived from the set of terms {enca(〈a, b, c〉, pub(k)), k}, i.e., a ∈
d{}({enca(〈a, b, c〉, pub(k)), k}).

A (Dolev-Yao) process consists of a set of addresses the process listens to, a set of states (terms), an
initial state, and a relation that takes an event and a state as input and (non-deterministically) returns a
new state and a sequence of events. The relation models a computation step of the process. It is required
that the output can be computed (formally, derived in the usual Dolev-Yao style) from the input event and
the state.
Definition 28 (Atomic Dolev-Yao Process). An atomic Dolev-Yao process (or simply, a DY process) is a

tuple p = (Ip, Zp, Rp, sp0) such that (Ip, Zp, Rp, sp0) is an atomic process and for all events e ∈ E ,
sequences of protoevents E, s ∈ TN , s′ ∈ TN (Vprocess), with ((e, s), (E, s′)) ∈ Rp it holds true that E,
s′ ∈ dVprocess({e, s}).

E. Attackers

The so-called attacker process is a Dolev-Yao process which records all messages it receives and outputs
all events it can possibly derive from its recorded messages. Hence, an attacker process carries out all
attacks any Dolev-Yao process could possibly perform. Attackers can corrupt other parties (using corrupt
messages).
Definition 29 (Atomic Attacker Process). An (atomic) attacker process for a set of sender addresses
A ⊆ IPs is an atomic DY process p = (I, Z,R, s0) such that for all events e, and s ∈ TN we have
that ((e, s), (E, s′)) ∈ R iff s′ = 〈e, E, s〉 and E = 〈〈a1, f1,m1〉, . . . , 〈an, fn,mn〉〉 with n ∈ N,
a1, . . . , an ∈ IPs, f0, . . . , fn ∈ A, m1, . . . ,mn ∈ dVprocess({e, s}).

Note that in a web system, we distinguish between two kinds of attacker processes: web attackers and
network attackers. Both kinds match the definition above, but differ in the set of assigned addresses in
the context of a web system. While for web attackers, the set of addresses Ip is disjoint from other web
attackers and honest processes, i.e., web attackers participate in the network as any other party, the set
of addresses Ip of a network attacker is not restricted. Hence, a network attacker can intercept events
addressed to any party as well as spoof all addresses. Note that one network attacker subsumes any number
of web attackers as well as any number of network attackers.
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F. Browsers

Following the informal description of the browser model in Section IV, we now present the formal
model of browsers.

1) Scripts: Recall that a script models JavaScript running in a browser. Scripts are defined similarly to
Dolev-Yao processes. When triggered by a browser, a script is provided with state information. The script
then outputs a term representing a new internal state and a command to be interpreted by the browser
(see also the specification of browsers below).
Definition 30 (Placeholders for Scripts). By Vscript = {λ1, . . . } we denote an infinite set of variables used

in scripts.
Definition 31 (Scripts). A script is a relation R ⊆ TN ×TN (Vscript) such that for all s ∈ TN , s′ ∈ TN (Vscript)

with (s, s′) ∈ R it follows that s′ ∈ dVscript(s).
A script is called by the browser which provides it with state information (such as the script’s last

scriptstate and limited information about the browser’s state) s. The script then outputs a term s′, which
represents the new scriptstate and some command which is interpreted by the browser. The term s′ may
contain variables λ1, . . . which the browser will replace by (otherwise unused) placeholders ν1, . . . which
will be replaced by nonces once the browser DY process finishes (effectively providing the script with a
way to get “fresh” nonces).

Similarly to an attacker process, the so-called attacker script outputs everything that is derivable from
the input.

attacker script Ratt:
Definition 32 (Attacker Script). The attacker script Ratt outputs everything that is derivable from the input,

i.e., Ratt = {(s, s′) | s ∈ TN , s
′ ∈ dVscript(s)}.

2) Web Browser State: Before we can define the state of a web browser, we first have to define windows
and documents.
Definition 33. A window is a term of the form w = 〈nonce, documents, opener〉 with nonce ∈ N ,

documents ⊂〈〉 Documents (defined below), opener ∈ N ∪ {⊥} where d.active = > for exactly
one d ∈〈〉 documents if documents is not empty (we then call d the active document of w). We write
Windows for the set of all windows. We write w.activedocument to denote the active document inside
window w if it exists and 〈〉 else.

We will refer to the window nonce as (window) reference.
The documents contained in a window term to the left of the active document are the previously viewed

documents (available to the user via the “back” button) and the documents in the window term to the
right of the currently active document are documents available via the “forward” button.

A window a may have opened a top-level window b (i.e., a window term which is not a subterm of a
document term). In this case, the opener part of the term b is the nonce of a, i.e., b.opener = a.nonce.
Definition 34. A document d is a term of the form

〈nonce, location, headers, referrer , script , scriptstate, scriptinputs, subwindows, active〉

where nonce ∈ N , location ∈ URLs, headers ∈
[
S× TN

]
, referrer ∈ URLs ∪ {⊥}, script ∈ TN ,

scriptstate ∈ TN , scriptinputs ∈ TN , subwindows ⊂〈〉 Windows, active ∈ {>,⊥}. A limited
document is a term of the form 〈nonce, subwindows〉 with nonce, subwindows as above. A window
w ∈〈〉 subwindows is called a subwindow (of d). We write Documents for the set of all documents.
For a document term d we write d.origin to denote the origin of the document, i.e., the term
〈d.location.host, d.location.protocol〉 ∈ Origins.

We will refer to the document nonce as (document) reference.
Definition 35. For two window terms w and w′ we write

w
childof−−−→ w′

if w ∈〈〉 w′.activedocument.subwindows. We write childof+−−−−→ for the transitive closure and we write
childof∗−−−−→ for the reflexive transitive closure.

In the web browser state, HTTP(S) messages are tracked using references. These are defined as a pairing
of a an identifier for the type of the request (XHR for XMLHTTPRequests, or REQ for normal HTTP(S)
requests) and a nonce (which never leaves the browser unless the browser becomes corrupted).

We can now define the set of states of web browsers. Note that we use the dictionary notation that we
introduced in Definition 12.
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Definition 36. The set of states Zwebbrowser of a web browser atomic Dolev-Yao process consists of the
terms of the form

〈windows, ids, secrets, cookies, localStorage, sessionStorage, keyMapping ,

sts,DNSaddress, pendingDNS , pendingRequests, isCorrupted〉

with the subterms as follows:
• windows ⊂〈〉 Windows contains a list of window terms (modeling top-level windows, or browser tabs)

which contain documents, which in turn can contain further window terms (iframes).
• ids ⊂〈〉 TN is a list of identities that are owned by this browser (i.e., belong to the user of the browser).
• secrets ∈

[
Origins× TN

]
contains a list of secrets that are associated with certain origins (i.e.,

passwords of the user of the browser at certain websites). Note that this structure allows to have a
single secret under an origin or a list of secrets under an origin.

• cookies is a dictionary over Doms and sequences of Cookies modeling cookies that are stored for
specific domains.

• localStorage ∈
[
Origins× TN

]
stores the data saved by scripts using the localStorage API (separated

by origins).
• sessionStorage ∈

[
OR × TN

]
for OR := {〈o, r〉| o ∈ Origins, r ∈ N } similar to localStorage, but

the data in sessionStorage is additionally separated by top-level windows.
• keyMapping ∈

[
Doms× TN

]
maps domains to TLS encryption keys.

• sts ⊂〈〉 Doms stores the list of domains that the browser only accesses via TLS (strict transport
security).

• DNSaddress ∈ IPs defines the IP address of the DNS server.
• pendingDNS ∈

[
N × TN

]
contains one pairing per unanswered DNS query of the form

〈reference, request , url〉. In these pairings, reference is an HTTP(S) request reference (as above),
request contains the HTTP(S) message that awaits DNS resolution, and url contains the URL of said
HTTP request. The pairings in pendingDNS are indexed by the DNS request/response nonce.

• pendingRequests ∈ TN contains pairings of the form 〈reference, request , url , key , f〉 with reference ,
request , and url as in pendingDNS , key is the symmetric encryption key if HTTPS is used or ⊥
otherwise, and f is the IP address of the server to which the request was sent.

• isCorrupted ∈ {⊥, FULLCORRUPT, CLOSECORRUPT} specifies the corruption level of the browser.
In corrupted browsers, certain subterms are used in different ways (e.g., pendingRequests is used to store

all observed messages).

3) Web Browser Relation: We will now define the relation Rwebbrowser of a standard HTTP browser. We
first introduce some notations and then describe the functions that are used for defining the browser main
algorithm. We then define the browser relation.

a) Helper Functions: In the following description of the web browser relation Rwebbrowser we use the
helper functions Subwindows, Docs, Clean, CookieMerge and AddCookie.

Subwindows. Given a browser state s, Subwindows(s) denotes the set of all pointers12 to windows in
the window list s.windows, their active documents, and (recursively) the subwindows of these documents.
We exclude subwindows of inactive documents and their subwindows. With Docs(s) we denote the set of
pointers to all active documents in the set of windows referenced by Subwindows(s).
Definition 37. For a browser state s we denote by Subwindows(s) the minimal set of pointers that satisfies

the following conditions: (1) For all windows w ∈〈〉 s.windows there is a p ∈ Subwindows(s) such
that s.p = w. (2) For all p ∈ Subwindows(s), the active document d of the window s.p and every
subwindow w of d there is a pointer p′ ∈ Subwindows(s) such that s.p′ = w.
Given a browser state s, the set Docs(s) of pointers to active documents is the minimal set such that
for every p ∈ Subwindows(s), there exists a pointer p′ ∈ Docs(s) with s.p′ = s.p.activedocument.

By Subwindows+(s) and Docs+(s) we denote the respective sets that also include the inactive documents
and their subwindows.

Clean. The function Clean will be used to determine which information about windows and documents
the script running in the document d has access to.
Definition 38. Let s be a browser state and d a document. By Clean(s, d) we denote the term that equals
s.windows but with (1) all inactive documents removed (including their subwindows etc.), (2) all
subterms that represent non-same-origin documents w.r.t. d replaced by a limited document d′ with the

12Recall the definition of a pointer in Definition 13.
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same nonce and the same subwindow list, and (3) the values of the subterms headers for all documents
set to 〈〉. (Note that non-same-origin documents on all levels are replaced by their corresponding limited
document.)

CookieMerge. The function CookieMerge merges two sequences of cookies together: When used in the
browser, oldcookies is the sequence of existing cookies for some origin, newcookies is a sequence of
new cookies that was output by some script. The sequences are merged into a set of cookies using an
algorithm that is based on the Storage Mechanism algorithm described in RFC6265.
Definition 39. For a sequence of cookies (with pairwise different names) oldcookies and a sequence

of cookies newcookies , the set CookieMerge(oldcookies,newcookies) is defined by the following
algorithm: From newcookies remove all cookies c that have c.content.httpOnly ≡ >. For any
c, c′ ∈〈〉 newcookies , c.name ≡ c′.name, remove the cookie that appears left of the other in newcookies .
Let m be the set of cookies that have a name that either appears in oldcookies or in newcookies ,
but not in both. For all pairs of cookies (cold, cnew) with cold ∈〈〉 oldcookies , cnew ∈〈〉 newcookies ,
cold.name ≡ cnew.name, add cnew to m if cold.content.httpOnly ≡ ⊥ and add cold to m otherwise. The
result of CookieMerge(oldcookies,newcookies) is m.

AddCookie. The function AddCookie adds a cookie c received in an HTTP response to the sequence of
cookies contained in the sequence oldcookies . It is again based on the algorithm described in RFC6265
but simplified for the use in the browser model.
Definition 40. For a sequence of cookies (with pairwise different names) oldcookies and a cookie c,

the sequence AddCookie(oldcookies, c) is defined by the following algorithm: Let m := oldcookies .
Remove any c′ from m that has c.name ≡ c′.name. Append c to m and return m.

NavigableWindows. The function NavigableWindows returns a set of windows that a document is
allowed to navigate. We closely follow [7], Section 5.1.4 for this definition.
Definition 41. The set NavigableWindows(w , s′) is the set W ⊆ Subwindows(s′) of pointers to windows

that the active document in w is allowed to navigate. The set W is defined to be the minimal set such
that for every w ′ ∈ Subwindows(s′) the following is true:
• If s′.w ′.activedocument.origin ≡ s′.w .activedocument.origin (i.e., the active documents in w

and w ′ are same-origin), then w ′ ∈W , and
• If s′.w childof∗−−−−→ s′.w ′ ∧ @w ′′ ∈ Subwindows(s′) with s′.w ′ childof∗−−−−→ s′.w ′′ (w ′ is a top-level window

and w is an ancestor window of w ′), then w ′ ∈W , and
• If ∃ p ∈ Subwindows(s′) such that s′.w ′ childof+−−−−→ s′.p
∧ s′.p.activedocument.origin = s′.w .activedocument.origin (w ′ is not a top-level window but
there is an ancestor window p of w ′ with an active document that has the same origin as the active
document in w ), then w ′ ∈W , and

• If ∃ p ∈ Subwindows(s′) such that s′.w ′.opener = s′.p.nonce ∧ p ∈W (w ′ is a top-level window—it
has an opener—and w is allowed to navigate the opener window of w ′, p), then w ′ ∈W .

b) Notations for Functions and Algorithms: We use the following notations to describe the browser
algorithms:

Non-deterministic chosing and iteration. The notation let n← N is used to describe that n is chosen
non-deterministically from the set N . We write for each s ∈M do to denote that the following commands
(until end for) are repeated for every element in M , where the variable s is the current element. The
order in which the elements are processed is chosen non-deterministically. We write, for example,

let x, y such that 〈Constant, x, y〉 ≡ t if possible; otherwise doSomethingElse

for some variables x, y, a string Constant, and some term t to express that x := π2(t), and y := π3(t)
if Constant ≡ π1(t) and if |〈Constant, x, y〉| = |t|, and that otherwise x and y are not set and
doSomethingElse is executed.

Stop without output. We write stop (without further parameters) to denote that there is no output and
no change in the state.

Placeholders. In several places throughout the algorithms presented next we use placeholders to generate
“fresh” nonces as described in our communication model (see Definition 5). Table I shows a list of all
placeholders used.

c) Functions: In the description of the following functions, we use a, f , m, and s as read-only
global input variables. All other variables are local variables or arguments.
• The function GETNAVIGABLEWINDOW (Algorithm 2) is called by the browser to determine the

window that is actually navigated when a script in the window s′.w provides a window reference
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Algorithm 2 Web Browser Model: Determine window for navigation.
1: function GETNAVIGABLEWINDOW(w , window , noreferrer , s′)
2: if window ≡ _BLANK then → Open a new window when _BLANK is used
3: if noreferrer ≡ > then
4: let w′ := 〈ν9, 〈〉,⊥〉
5: else
6: let w′ := 〈ν9, 〈〉, s′.w .nonce〉
7: let s′.windows := s′.windows +〈〉 w′

↪→ and let w ′ be a pointer to this new element in s′

8: return w ′

9: let w ′ ← NavigableWindows(w , s′) such that s′.w ′.nonce ≡ window
↪→ if possible; otherwise return w

10: return w ′

Algorithm 3 Web Browser Model: Determine same-origin window.
1: function GETWINDOW(w , window , s′)
2: let w ′ ← Subwindows(s′) such that s′.w ′.nonce ≡ window

↪→ if possible; otherwise return w
3: if s′.w ′.activedocument.origin ≡ s′.w .activedocument.origin then
4: return w ′

5: return w

Algorithm 4 Web Browser Model: Cancel pending requests for given window.
1: function CANCELNAV(reference , s′)
2: remove all 〈reference, req , key , f 〉 from s′.pendingRequests for any req , key , f
3: remove all 〈x, 〈reference,message, url〉〉 from s′.pendingDNS

↪→ for any x , message , url
4: return s′

Algorithm 5 Web Browser Model: Prepare headers, do DNS resolution, save message.
1: function HTTP_SEND(reference , message , url , origin , referrer , referrerPolicy , s′)
2: if message.host ∈〈〉 s′.sts then
3: let url .protocol := S

4: let cookies := 〈{〈c.name, c.content.value〉|c ∈〈〉 s′.cookies [message.host]
↪→ ∧ (c.content.secure =⇒ (url .protocol = S))}〉

5: let message.headers[Cookie] := cookies
6: if origin 6≡ ⊥ then
7: let message.headers[Origin] := origin

8: if referrerPolicy ≡ no-referrer then
9: let referrer := ⊥

10: if referrer 6≡ ⊥ then
11: if referrerPolicy ≡ origin then
12: let referrer := 〈URL, referrer .protocol, referrer .host, /, 〈〉,⊥〉

→ Referrer stripped down to origin.
13: let referrer .fragment := ⊥

→ Browsers do not send fragment identifiers in the Referer header.
14: let message.headers[Referer] := referrer

15: let s′.pendingDNS[ν8] := 〈reference,message, url〉
16: stop 〈〈s′.DNSaddress, a, 〈DNSResolve,message.host, ν8〉〉〉, s′

Algorithm 6 Web Browser Model: Navigate a window backward.
1: function NAVBACK(w ′, s′)
2: if ∃ j ∈ N, j > 1 such that s′.w ′.documents.j .active ≡ > then
3: let s′.w ′.documents.j .active := ⊥
4: let s′.w ′.documents.(j − 1).active := >
5: let s′ := CANCELNAV(s′.w ′.nonce, s′)
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Algorithm 7 Web Browser Model: Navigate a window forward.
1: function NAVFORWARD(w ′, s′)
2: if ∃ j ∈ N such that s′.w ′.documents.j .active ≡ >

↪→ ∧ s′.w ′.documents.(j + 1) ∈ Documents then
3: let s′.w ′.documents.j .active := ⊥
4: let s′.w ′.documents.(j + 1).active := >
5: let s′ := CANCELNAV(s′.w ′.nonce, s′)

Algorithm 8 Web Browser Model: Execute a script.
1: function RUNSCRIPT(w , d , s′)
2: let tree := Clean(s′, s′.d)
3: let cookies := 〈{〈c.name, c.content.value〉|c ∈〈〉 s′.cookies

[
s′.d .origin.host

]
↪→ ∧ c.content.httpOnly = ⊥
↪→ ∧

(
c.content.secure =⇒

(
s′.d .origin.protocol ≡ S

))
}〉

4: let tlw ← s′.windows such that tlw is the top-level window containing d
5: let sessionStorage := s′.sessionStorage

[
〈s′.d .origin, tlw .nonce〉

]
6: let localStorage := s′.localStorage

[
s′.d .origin

]
7: let secrets := s′.secrets

[
s′.d .origin

]
8: let R ← script−1(s′.d .script)
9: let in := 〈tree , s′.d .nonce, s′.d .scriptstate, s′.d .scriptinputs, cookies,

↪→ localStorage , sessionStorage , s′.ids, secrets〉
10: let state ′ ← TN (V ), cookies ′ ← Cookiesν , localStorage ′ ← TN (V ), sessionStorage ′ ← TN (V ),

↪→ command ← TN (V ), out := 〈state ′, cookies ′, localStorage ′, sessionStorage ′, command〉
↪→ such that out := outλ[ν10/λ1, ν11/λ2, . . . ] with (in, outλ) ∈ R

11: let s′.cookies
[
s′.d .origin.host

]
:=

↪→ 〈CookieMerge(s′.cookies
[
s′.d .origin.host

]
, cookies ′)〉

12: let s′.localStorage
[
s′.d .origin

]
:= localStorage ′

13: let s′.sessionStorage
[
〈s′.d .origin, tlw .nonce〉

]
:= sessionStorage ′

14: let s′.d .scriptstate := state′

15: let referrer := s′.d .location
16: let referrerPolicy := s′.d .headers[ReferrerPolicy]
17: let reference := 〈REQ, s′.w ′.nonce〉
18: let docorigin := s′.d .origin
19: switch command do
20: case 〈HREF, url , hrefwindow ,noreferrer〉
21: let w ′ := GETNAVIGABLEWINDOW(w , hrefwindow , noreferrer , s′)
22: let req := 〈HTTPReq, ν4, GET, url .host, url .path, url .parameters, 〈〉, 〈〉〉
23: if noreferrer ≡ > then
24: let referrerPolicy := noreferrer

25: let s′ := CANCELNAV(reference, s′)
26: call HTTP_SEND(reference , req , url , ⊥, referrer , referrerPolicy , s′)
27: case 〈IFRAME, url ,window〉
28: if window ≡ _SELF then
29: let w ′ := w
30: else
31: let w ′ := GETWINDOW(w ,window , s′)

32: let req := 〈HTTPReq, ν4, GET, url .host, url .path, url .parameters, 〈〉, 〈〉〉
33: let w′ := 〈ν5, 〈〉,⊥〉
34: let s′.w ′.activedocument.subwindows := s′.w ′.activedocument.subwindows +〈〉 w′

35: call HTTP_SEND(ν5, req , url , ⊥, referrer , referrerPolicy , s′)
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36: case 〈FORM, url ,method , data, hrefwindow〉
37: if method 6∈ {GET, POST} then 13

38: stop
39: let w ′ := GETNAVIGABLEWINDOW(w , hrefwindow , ⊥, s′)
40: if method = GET then
41: let body := 〈〉
42: let parameters := data
43: let origin := ⊥
44: else
45: let body := data
46: let parameters := url .parameters
47: let origin := docorigin

48: let req := 〈HTTPReq, ν4,method , url .host, url .path, parameters, 〈〉, body〉
49: let s′ := CANCELNAV(reference, s′)
50: call HTTP_SEND(reference , req , url , origin , referrer , referrerPolicy , s′)
51: case 〈SETSCRIPT,window , script〉
52: let w ′ := GETWINDOW(w ,window , s′)
53: let s′.w ′.activedocument.script := script
54: stop 〈〉, s′

55: case 〈SETSCRIPTSTATE,window , scriptstate〉
56: let w ′ := GETWINDOW(w ,window , s′)
57: let s′.w ′.activedocument.scriptstate := scriptstate
58: stop 〈〉, s′

59: case 〈XMLHTTPREQUEST, url ,method , data, xhrreference〉
60: if method ∈ {CONNECT, TRACE, TRACK} ∧ xhrreference 6∈ {N ,⊥} then
61: stop
62: if url .host 6≡ docorigin.host ∨ url 6≡ docorigin.protocol then
63: stop
64: if method ∈ {GET, HEAD} then
65: let data := 〈〉
66: let origin := ⊥
67: else
68: let origin := docorigin

69: let req := 〈HTTPReq, ν4,method , url .host, url .path, url .parameters, 〈〉, data〉
70: let reference := 〈XHR, s′.d .nonce, xhrreference〉
71: call HTTP_SEND(reference , req , url , origin , referrer , referrerPolicy , s′)
72: case 〈BACK,window〉
73: let w ′ := GETNAVIGABLEWINDOW(w , window , ⊥, s′)
74: NAVBACK(w ′, s′)
75: stop 〈〉, s′

76: case 〈FORWARD,window〉
77: let w ′ := GETNAVIGABLEWINDOW(w , window , ⊥, s′)
78: NAVFORWARD(w ′, s′)
79: stop 〈〉, s′

80: case 〈CLOSE,window〉
81: let w ′ := GETNAVIGABLEWINDOW(w , window , ⊥, s′)
82: remove s′.w ′ from the sequence containing it
83: stop 〈〉, s′

84: case 〈POSTMESSAGE,window ,message, origin〉
85: let w ′ ← Subwindows(s′) such that s′.w ′.nonce ≡ window
86: if ∃j ∈ N such that s′.w ′.documents.j .active ≡ >

↪→ ∧(origin 6≡ ⊥ =⇒ s′.w ′.documents.j .origin ≡ origin) then
87: let s′.w ′.documents.j .scriptinputs := s′.w ′.documents.j .scriptinputs

↪→ +〈〉 〈POSTMESSAGE, s′.w .nonce, docorigin,message〉
88: stop 〈〉, s′

89: case else
90: stop
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Algorithm 9 Web Browser Model: Process an HTTP response.
1: function PROCESSRESPONSE(response , reference , request , requestUrl , key , f , s′)
2: if Set-Cookie ∈ response.headers then
3: for each c ∈〈〉 response.headers [Set-Cookie], c ∈ Cookies do
4: let s′.cookies [request .host]

↪→ := AddCookie(s′.cookies [request .host] , c)

5: if Strict-Transport-Security ∈ response.headers ∧ requestUrl .protocol ≡ S then
6: let s′.sts := s′.sts +〈〉 request .host

7: if Referer ∈ request.headers then
8: let referrer := request.headers[Referer]
9: else

10: let referrer := ⊥
11: if Location ∈ response.headers ∧ response.status ∈ {303, 307} then
12: let url := response.headers [Location]
13: if url .fragment ≡ ⊥ then
14: let url .fragment := requestUrl .fragment

15: let method ′ := request .method
16: let body ′ := request .body
17: if Origin ∈ request.headers then
18: let origin := 〈request.headers[Origin], 〈request.host, url .protocol〉〉
19: else
20: let origin := ⊥
21: if response.status ≡ 303 ∧ request .method 6∈ {GET, HEAD} then
22: let method ′ := GET
23: let body ′ := 〈〉
24: if ∃w ∈ Subwindows(s′) such that s′.w .nonce ≡ reference then → Do not redirect XHRs.
25: let req := 〈HTTPReq, ν6,method ′, url .host, url .path, url .parameters, 〈〉, body ′〉
26: let referrerPolicy := response.headers[ReferrerPolicy]
27: call HTTP_SEND(reference , req , url , origin , referrer , referrerPolicy , s′)
28: switch π1(reference) do
29: case REQ
30: let w ← Subwindows(s′) such that s′.w .nonce ≡ π2(reference) if possible;

↪→ otherwise stop → normal response
31: if response.body 6∼ 〈∗, ∗〉 then
32: stop {}, s′

33: let script := π1(response.body)
34: let scriptstate := π2(response.body)
35: let d := 〈ν7, requestUrl , response.headers, referrer , script , scriptstate, 〈〉, 〈〉,>〉
36: if s′.w .documents ≡ 〈〉 then
37: let s′.w .documents := 〈d〉
38: else
39: let i ← N such that s′.w .documents.i .active ≡ >
40: let s′.w .documents.i .active := ⊥
41: remove s′.w .documents.(i + 1) and all following documents

↪→ from s′.w .documents
42: let s′.w .documents := s′.w .documents +〈〉 d
43: stop {}, s′

44: case XHR
45: let w ← Subwindows(s′), d such that s′.d .nonce ≡ π2(reference)

↪→ ∧ s′.d = s′.w .activedocument if possible; otherwise stop
→ process XHR response

46: let headers := response.headers− Set-Cookie
47: let s′.d .scriptinputs := s′.d .scriptinputs +〈〉

〈XMLHTTPREQUEST, headers, response.body, π3(reference)〉
48: stop {}, s′
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Placeholder Usage
ν1 Algorithm 10, new window nonces
ν2 Algorithm 10, new HTTP request nonce
ν3 Algorithm 10, lookup key for pending HTTP requests entry
ν4 Algorithm 8, new HTTP request nonce (multiple lines)
ν5 Algorithm 8, new subwindow nonce
ν6 Algorithm 9, new HTTP request nonce
ν7 Algorithm 9, new document nonce
ν8 Algorithm 5, lookup key for pending DNS entry
ν9 Algorithm 2, new window nonce
ν10, . . . Algorithm 8, replacement for placeholders in script output

Table I List of placeholders used in browser algorithms.

for navigation (e.g., for opening a link). When it is given a window reference (nonce) window , this
function returns a pointer to a selected window term in s′:

– If window is the string _BLANK, a new window is created and a pointer to that window is returned.
– If window is a nonce (reference) and there is a window term with a reference of that value in the

windows in s′, a pointer w ′ to that window term is returned, as long as the window is navigable
by the current window’s document (as defined by NavigableWindows above).

In all other cases, w is returned instead (the script navigates its own window).
• The function GETWINDOW (Algorithm 3) takes a window reference as input and returns a pointer

to a window as above, but it checks only that the active documents in both windows are same-origin.
It creates no new windows.

• The function CANCELNAV (Algorithm 4) is used to stop any pending requests for a specific window.
From the pending requests and pending DNS requests it removes any requests with the given window
reference n.

• The function HTTP_SEND (Algorithm 5) takes an HTTP request message as input, adds cookie
and origin headers to the message, creates a DNS request for the hostname given in the request and
stores the request in s′.pendingDNS until the DNS resolution finishes. For normal HTTP requests,
reference is a window reference. For XHRs, reference is a value of the form 〈document ,nonce〉
where document is a document reference and nonce is some nonce that was chosen by the script
that initiated the request. url contains the full URL of the request (this is mainly used to retrieve the
protocol that should be used for this message, and to store the fragment identifier for use after the
document was loaded). origin is the origin header value that is to be added to the HTTP request.

• The functions NAVBACK (Algorithm 6) and NAVFORWARD (Algorithm 7), navigate a window
forward or backward. More precisely, they deactivate one document and activate that document’s
succeeding document or preceding document, respectively. If no such successor/predecessor exists, the
functions do not change the state.

• The function RUNSCRIPT (Algorithm 8) performs a script execution step of the script in the document
s′.d (which is part of the window s′.w ). A new script and document state is chosen according to
the relation defined by the script and the new script and document state is saved. Afterwards, the
command that the script issued is interpreted.

• The function PROCESSRESPONSE (Algorithm 9) is responsible for processing an HTTP response
(response) that was received as the response to a request (request) that was sent earlier. In reference ,
either a window or a document reference is given (see explanation for Algorithm 5 above). requestUrl
contains the URL used when retrieving the document.
The function first saves any cookies that were contained in the response to the browser state, then
checks whether a redirection is requested (Location header). If that is not the case, the function creates
a new document (for normal requests) or delivers the contents of the response to the respective receiver
(for XHR responses).

d) Browser Relation: We can now define the relation Rwebbrowser of a web browser atomic process
as follows:
Definition 42. The pair ((〈〈a, f,m〉〉, s) , (M, s′)) belongs to Rwebbrowser iff the non-deterministic Algo-

rithm 10 (or any of the functions called therein), when given (〈a, f,m〉, s) as input, terminates with
stop M , s′, i.e., with output M and s′.

Recall that 〈a, f,m〉 is an (input) event and s is a (browser) state, M is a sequence of (output) protoevents,
and s′ is a new (browser) state (potentially with placeholders for nonces).
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Algorithm 10 Web Browser Model: Main Algorithm.
Input: 〈a, f,m〉, s
1: let s′ := s
2: if s.isCorrupted 6≡ ⊥ then
3: let s′.pendingRequests := 〈m, s.pendingRequests〉 → Collect incoming messages
4: let m′ ← dV (s′)
5: let a′ ← IPs
6: stop 〈〈a′, a,m′〉〉, s′

7: if m ≡ TRIGGER then → A special trigger message.
8: let switch ← {script, urlbar, reload, forward, back}
9: let w ← Subwindows(s′) such that s′.w .documents 6= 〈〉

↪→ if possible; otherwise stop → Pointer to some window.
10: let tlw ← N such that s′.tlw .documents 6= 〈〉

↪→ if possible; otherwise stop → Pointer to some top-level window.
11: if switch ≡ script then → Run some script.
12: let d := w +〈〉 activedocument
13: call RUNSCRIPT(w , d , s′)
14: else if switch ≡ urlbar then → Create some new request.
15: let newwindow ← {>,⊥}
16: if newwindow ≡ > then → Create a new window.
17: let windownonce := ν1
18: let w′ := 〈windownonce, 〈〉,⊥〉
19: let s′.windows := s′.windows +〈〉 w′

20: else → Use existing top-level window.
21: let windownonce := s′.tlw .nonce
22: let protocol ← {P, S}
23: let host ← Doms
24: let path ← S
25: let fragment ← S
26: let parameters ← [S× S]
27: let url := 〈URL, protocol , host , path, parameters, fragment〉
28: let req := 〈HTTPReq, ν2, GET, host , path, parameters, 〈〉, 〈〉〉
29: call HTTP_SEND(windownonce , req , url , ⊥, ⊥, ⊥, s′)
30: else if switch ≡ reload then → Reload some document.
31: let url := s′.w .activedocument.location
32: let req := 〈HTTPReq, ν2, GET, url .host, url .path, url .parameters, 〈〉, 〈〉〉
33: let referrer := s′.w .activedocument.referrer
34: let s′ := CANCELNAV(s′.w .nonce, s′)
35: call HTTP_SEND(s′.w .nonce, req , url , ⊥, referrer , ⊥, s′)
36: else if switch ≡ forward then
37: NAVFORWARD(w , s′)
38: else if switch ≡ back then
39: NAVBACK(w , s′)

G. Definition of Web Browsers

Finally, we define web browser atomic Dolev-Yao processes as follows:
Definition 43 (Web Browser atomic Dolev-Yao Process). A web browser atomic Dolev-Yao process is an

atomic Dolev-Yao process of the form p = (Ip, Zwebbrowser, Rwebbrowser, so
p) for a set Ip of addresses,

Zwebbrowser and Rwebbrowser as defined above, and an initial state s0p ∈ Zwebbrowser.

H. Script Notations and Helper Functions

In order to simplify the description of scripts, we use several notations and helper functions. In the
formal description of the scripts we use an abbreviation for URLs. We write URLdpath to describe the
following URL term: 〈URL, S, d, path, 〈〉〉. If the domain d belongs to some distinguished process P and
it is the only domain associated to this process, we may also write URLPpath . For a (secure) origin 〈d, S〉
of some domain d, we also write origind. Again, if the domain d belongs to some distinguished process
P and d is the only domain associated to this process, we may write originP.

a) CHOOSEINPUT (Algorithm 11): The state of a document contains a term, say scriptinputs ,
which records the input this document has obtained so far (via XHRs and postMessages). If the script of
the document is activated, it will typically need to pick one input message from scriptinputs and record
which input it has already processed. For this purpose, the function CHOOSEINPUT(s′, scriptinputs) is
used, where s′ denotes the scripts current state. It saves the indexes of already handled messages in the
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40: else if m ≡ FULLCORRUPT then → Request to corrupt browser
41: let s′.isCorrupted := FULLCORRUPT
42: stop 〈〉, s′
43: else if m ≡ CLOSECORRUPT then → Close the browser
44: let s′.secrets := 〈〉
45: let s′.windows := 〈〉
46: let s′.pendingDNS := 〈〉
47: let s′.pendingRequests := 〈〉
48: let s′.sessionStorage := 〈〉
49: let s′.cookies ⊂〈〉 Cookies such that

↪→ (c ∈〈〉 s′.cookies)⇐⇒ (c ∈〈〉 s.cookies ∧ c.content.session ≡ ⊥)
50: let s′.isCorrupted := CLOSECORRUPT
51: stop 〈〉, s′
52: else if ∃ 〈reference, request , url , key , f〉 ∈〈〉 s′.pendingRequests such that

↪→ π1(decs(m, key)) ≡ HTTPResp then → Encrypted HTTP response
53: let m′ := decs(m, key)
54: if m′.nonce 6≡ request .nonce then
55: stop
56: remove 〈reference, request , url , key , f〉 from s′.pendingRequests
57: call PROCESSRESPONSE(m′, reference , request , url , key , f , s′)
58: else if π1(m) ≡ HTTPResp ∧ ∃ 〈reference, request , url ,⊥, f〉 ∈〈〉 s′.pendingRequests such that

↪→ m.nonce ≡ request .nonce then → Plain HTTP Response
59: remove 〈reference, request , url ,⊥, f〉 from s′.pendingRequests
60: call PROCESSRESPONSE(m, reference , request , url , key , f , s′)
61: else if m ∈ DNSResponses then → Successful DNS response
62: if m.nonce 6∈ s.pendingDNS ∨m.result 6∈ IPs ∨m.domain 6≡ π2(s.pendingDNS).host then
63: stop
64: let 〈reference,message, url〉 := s.pendingDNS[m.nonce]
65: if url .protocol ≡ S then
66: let s′.pendingRequests := s′.pendingRequests

↪→ +〈〉 〈reference , message , url , ν3, m.result〉
67: let message := enca(〈message, ν3〉, s′.keyMapping [message.host])
68: else
69: let s′.pendingRequests := s′.pendingRequests

↪→ +〈〉 〈reference , message , url , ⊥, m.result〉
70: let s′.pendingDNS := s′.pendingDNS−m.nonce
71: stop 〈〈m.result, a,message〉〉, s′

72: stop

Algorithm 11 Function to retrieve an unhandled input message for a script.
1: function CHOOSEINPUT(s′, scriptinputs)
2: let iid such that iid ∈ {1, · · · , |scriptinputs|} ∧ iid 6∈〈〉 s′.handledInputs if possible;

↪→ otherwise return (⊥, s′)
3: let input := πiid(scriptinputs)
4: let s′.handledInputs := s′.handledInputs +〈〉 iid
5: return (input , s′)

scriptstate s′ and chooses a yet unhandled input message from scriptinputs . The index of this message
is then saved in the scriptstate (which is returned to the script).

b) CHOOSEFIRSTINPUTPAT (Algorithm 12): Similar to the function CHOOSEINPUT above, we
define the function CHOOSEFIRSTINPUTPAT. This function takes the term scriptinputs , which as above
records the input this document has obtained so far (via XHRs and postMessages, append-only), and a
pattern. If called, this function chooses the first message in scriptinputs that matches pattern and returns
it. This function is typically used in places, where a script only processes the first message that matches
the pattern. Hence, we omit recording the usage of an input.

Algorithm 12 Function to extract the first script input message matching a specific pattern.
1: function CHOOSEFIRSTINPUTPAT(scriptinputs, pattern)
2: let i such that i = min{j : πj(scriptinputs) ∼ pattern} if possible; otherwise return ⊥
3: return πi(scriptinputs)
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c) PARENTWINDOW: To determine the nonce referencing the parent window in the browser, the
function PARENTWINDOW(tree, docnonce) is used. It takes the term tree , which is the (partly cleaned)
tree of browser windows the script is able to see and the document nonce docnonce , which is the nonce
referencing the current document the script is running in, as input. It outputs the nonce referencing the
window which directly contains in its subwindows the window of the document referenced by docnonce .
If there is no such window (which is the case if the script runs in a document of a top-level window),
PARENTWINDOW returns ⊥.

d) PARENTDOCNONCE: The function PARENTDOCNONCE(tree, docnonce) determines (similar
to PARENTWINDOW above) the nonce referencing the active document in the parent window in the
browser . It takes the term tree, which is the (partly cleaned) tree of browser windows the script is able
to see and the document nonce docnonce , which is the nonce referencing the current document the script
is running in, as input. It outputs the nonce referencing the active document in the window which directly
contains in its subwindows the window of the document referenced by docnonce. If there is no such
window (which is the case if the script runs in a document of a top-level window) or no active document,
PARENTDOCNONCE returns docnonce.

e) SUBWINDOWS: This function takes a term tree and a document nonce docnonce as input
just as the function above. If docnonce is not a reference to a document contained in tree, then
SUBWINDOWS(tree, docnonce) returns 〈〉. Otherwise, let 〈docnonce, origin , script , scriptstate,
scriptinputs , subwindows , active〉 denote the subterm of tree corresponding to the document referred to
by docnonce. Then, SUBWINDOWS(tree, docnonce) returns subwindows .

f) AUXWINDOW: This function takes a term tree and a document nonce docnonce as input as above.
From all window terms in tree that have the window containing the document identified by docnonce
as their opener, it selects one non-deterministically and returns its nonce. If there is no such window, it
returns the nonce of the window containing docnonce.

g) AUXDOCNONCE: Similar to AUXWINDOW above, the function AUXDOCNONCE takes a term
tree and a document nonce docnonce as input. From all window terms in tree that have the window
containing the document identified by docnonce as their opener, it selects one non-deterministically and
returns its active document’s nonce. If there is no such window or no active document, it returns docnonce .

h) OPENERWINDOW: This function takes a term tree and a document nonce docnonce as input
as above. It returns the window nonce of the opener window of the window that contains the document
identified by docnonce. Recall that the nonce identifying the opener of each window is stored inside
the window term. If no document with nonce docnonce is found in the tree tree or docnonce is not a
top-level window, ♦ is returned.

i) GETWINDOW: This function takes a term tree and a document nonce docnonce as input as above.
It returns the nonce of the window containing docnonce.

j) GETORIGIN: To extract the origin of a document, the function GETORIGIN(tree, docnonce) is
used. This function searches for the document with the identifier docnonce in the (cleaned) tree tree of
the browser’s windows and documents. It returns the origin o of the document. If no document with nonce
docnonce is found in the tree tree, ♦ is returned.

k) GETPARAMETERS: Works exactly as GETORIGIN, but returns the document’s parameters instead.

I. DNS Servers

Definition 44. A DNS server d (in a flat DNS model) is modeled in a straightforward way as an atomic DY
process (Id, {sd0}, Rd, sd0). It has a finite set of addresses Id and its initial (and only) state sd0 encodes
a mapping from domain names to addresses of the form

sd0 = 〈〈domain1, a1〉, 〈domain2, a2〉, . . .〉 .

DNS queries are answered according to this table (if the requested DNS name cannot be found in the
table, the request is ignored).

The relation Rd ⊆ (E × {sd0})× (2E × {sd0}) of d above is defined by Algorithm 13.

J. Web Systems

The web infrastructure and web applications are formalized by what is called a web system. A web
system contains, among others, a (possibly infinite) set of DY processes, modeling web browsers, web
servers, DNS servers, and attackers (which may corrupt other entities, such as browsers).
Definition 45. A web system WS = (W, S , script, E0) is a tuple with its components defined as follows:
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Algorithm 13 Relation of a DNS server Rd.
Input: 〈a, f,m〉, s
1: let domain, n such that 〈DNSResolve, domain, n〉 ≡ m if possible; otherwise stop {}, s
2: if domain ∈ s then
3: let addr := s[domain]
4: let m′ := 〈DNSResolved, addr , n〉
5: stop {〈f, a,m′〉}, s
6: stop {}, s

The first component, W, denotes a system (a set of DY processes) and is partitioned into the sets Hon,
Web, and Net of honest, web attacker, and network attacker processes, respectively.
Every p ∈ Web ∪ Net is an attacker process for some set of sender addresses A ⊆ IPs. For a web
attacker p ∈Web, we require its set of addresses Ip to be disjoint from the set of addresses of all other
web attackers and honest processes, i.e., Ip ∩ Ip′ = ∅ for all p′ ∈ Hon ∪Web. Hence, a web attacker
cannot listen to traffic intended for other processes. Also, we require that A = Ip, i.e., a web attacker
can only use sender addresses it owns. Conversely, a network attacker may listen to all addresses (i.e.,
no restrictions on Ip) and may spoof all addresses (i.e., the set A may be IPs).
Every p ∈ Hon is a DY process which models either a web server, a web browser, or a DNS server.
Just as for web attackers, we require that p does not spoof sender addresses and that its set of addresses
Ip is disjoint from those of other honest processes and the web attackers.
The second component, S , is a finite set of scripts such that Ratt ∈ S . The third component, script, is an
injective mapping from S to S, i.e., by script every s ∈ S is assigned its string representation script(s).
Finally, E0 is an (infinite) sequence of events, containing an infinite number of events of the form
〈a, a, TRIGGER〉 for every a ∈

⋃
p∈W Ip.

A run of WS is a run of W initiated by E0.

K. Generic HTTPS Server Model

This model will be used as the base for all servers in the following. It makes use of placeholder
algorithms that are later superseded by more detailed algorithms to describe a concrete relation for an
HTTPS server.
Definition 46 (Base state for an HTTPS server.). The state of each HTTPS server that is an instan-

tiation of this relation must contain at least the following subterms: pendingDNS ∈
[
N × TN

]
,

pendingRequests ∈ TN (both containing arbitrary terms), DNSaddress ∈ IPs (containing the IP address
of a DNS server), keyMapping ∈

[
Doms× TN

]
(containing a mapping from domains to public keys),

tlskeys ∈ [Doms×N ] (containing a mapping from domains to private keys), and corrupt ∈ TN (either
⊥ if the server is not corrupted, or an arbitrary term otherwise).

We note that in concrete instantiations of the generic HTTPS server model, there is no need to extract
information from these subterms or alter these subterms.

Let νn0 and νn1 denote placeholders for nonces that are not used in the concrete instantiation of the
server. We now define the default functions of the generic web server in Algorithms 14–18, and the main
relation in Algorithm 19.

Algorithm 14 Generic HTTPS Server Model: Sending a DNS message (in preparation for sending an
HTTPS message).

1: function HTTPS_SIMPLE_SEND(reference , message , s′, a)
2: let s′.pendingDNS[νn0] := 〈reference,message〉
3: stop 〈〈s′.DNSaddress, a, 〈DNSResolve,message.host, νn0〉〉〉, s′

Algorithm 15 Generic HTTPS Server Model: Default HTTPS response handler.
1: function PROCESS_HTTPS_RESPONSE(m, reference , request , key , a, f , s′)
2: stop
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Algorithm 16 Generic HTTPS Server Model: Default trigger event handler.
1: function TRIGGER(s′)
2: stop

Algorithm 17 Generic HTTPS Server Model: Default HTTPS request handler.
1: function PROCESS_HTTPS_REQUEST(m, k, a, f , s′)
2: stop

Algorithm 18 Generic HTTPS Server Model: Default handler for other messages.
1: function PROCESS_OTHER(m, a, f , s′)
2: stop

Algorithm 19 Generic HTTPS Server Model: Main relation of a generic HTTPS server
Input: 〈a, f,m〉, s
1: let s′ := s
2: if s′.corrupt 6≡ ⊥ ∨m ≡ CORRUPT then
3: let s′.corrupt := 〈〈a, f,m〉, s′.corrupt〉
4: let m′ ← dV (s′)
5: let a′ ← IPs
6: stop 〈〈a′, a,m′〉〉, s′

7: if ∃mdec, k, k′, inDomain such that 〈mdec, k〉 ≡ deca(m, k
′) ∧ 〈inDomain, k′〉 ∈ s.tlskeys then

8: let n, method , path , parameters , headers , body such that
↪→ 〈HTTPReq, n,method , inDomain, path, parameters, headers, body〉 ≡ mdec
↪→ if possible; otherwise stop

9: call PROCESS_HTTPS_REQUEST(mdec, k, a, f , s′)
10: else if m ∈ DNSResponses then → Successful DNS response
11: if m.nonce 6∈ s.pendingDNS ∨m.result 6∈ IPs ∨m.domain 6≡ s.pendingDNS[m.nonce].2.domain then
12: stop
13: let 〈reference, request〉 := s.pendingDNS[m.nonce]
14: let s′.pendingRequests := s′.pendingRequests

↪→ +〈〉 〈reference , request , νn1, m.result〉
15: let message := enca(〈request , νn1〉, s′.keyMapping [request .host])
16: let s′.pendingDNS := s′.pendingDNS−m.nonce
17: stop 〈〈m.result, a,message〉〉, s′
18: else if ∃ 〈reference, request , key , f〉 ∈〈〉 s′.pendingRequests

↪→ such that π1(decs(m, key)) ≡ HTTPResp then → Encrypted HTTP response
19: let m′ := decs(m, key)
20: if m′.nonce 6≡ request .nonce then
21: stop
22: remove 〈reference, request , key , f〉 from s′.pendingRequests
23: call PROCESS_HTTPS_RESPONSE(m′, reference , request , key , a, f , s′)
24: stop
25: else if m ≡ TRIGGER then → Process was triggered
26: call PROCESS_TRIGGER(s′)

27: stop

L. General Security Properties of the WIM

We now repeat general application independent security properties of the WIM [22].
Let Web = (W, S , script, E0) be a web system. In the following, we write sx = (Sx, Ex) for the states

of a web system.
Definition 47 (Emitting Events). Given an atomic process p, an event e, and a finite run ρ =

((S0, E0, N0), . . . , (Sn, En, Nn)) or an infinite run ρ = ((S0, E0, N0), . . . ) we say that p emits
e iff there is a processing step in ρ of the form

(Si, Ei, N i) −−−→
p→E

(Si+1, Ei+1, N i+1)

for some i ≥ 0 and a set of events E with e ∈ E. We also say that p emits m iff e = 〈x, y,m〉 for
some addresses x, y.

Definition 48. We say that a term t is derivably contained in (a term) t′ for (a set of DY processes) P
(in a processing step si → si+1 of a run ρ = (s0, s1, . . .)) if t is derivable from t′ with the knowledge
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available to P , i.e.,

t ∈ d∅({t′} ∪
⋃
p∈P

Si+1(p))

Definition 49. We say that a set of processes P leaks a term t (in a processing step si → si+1) to a set
of processes P ′ if there exists a message m that is emitted (in si → si+1) by some p ∈ P and t is
derivably contained in m for P ′ in the processing step si → si+1. If we omit P ′, we define P ′ := W\P .
If P is a set with a single element, we omit the set notation.

Definition 50. We say that an DY process p created a message m (at some point) in a run if m is derivably
contained in a message emitted by p in some processing step and if there is no earlier processing step
where m is derivably contained in a message emitted by some DY process p′.

Definition 51. We say that a browser b accepted a message (as a response to some request) if the browser
decrypted the message (if it was an HTTPS message) and called the function PROCESSRESPONSE,
passing the message and the request (see Algorithm 9).

Definition 52. We say that an atomic DY process p knows a term t in some state s = (S,E,N) of a run
if it can derive the term from its knowledge, i.e., t ∈ d∅(S(p)).

Definition 53. We say that a script initiated a request r if a browser triggered the script (in Line 10 of
Algorithm 8) and the first component of the command output of the script relation is either HREF,
IFRAME, FORM, or XMLHTTPREQUEST such that the browser issues the request r in the same step as a
result.

For a run ρ = s0, s1, . . . of any Web , we state the following lemmas:
Lemma 3. If in the processing step si → si+1 of a run ρ of Web an honest browser b (I) emits an HTTPS

request of the form

m = enca(〈req , k〉, pub(k′))

(where req is an HTTP request, k is a nonce (symmetric key), and k′ is the private key of some other
DY process u), and (II) in the initial state s0 the private key k′ is only known to u, and (III) u never
leaks k′, then all of the following statements are true:

(1) There is no state of Web where any party except for u knows k′, thus no one except for u can
decrypt req .

(2) If there is a processing step sj → sj+1 where the browser b leaks k to W\{u, b} there is a processing
step sh → sh+1 with h < j where u leaks the symmetric key k to W \ {u, b} or the browser is fully
corrupted in sj .

(3) The value of the host header in req is the domain that is assigned the public key pub(k′) in the
browsers’ keymapping s0.keymapping (in its initial state).

(4) If b accepts a response (say, m′) to m in a processing step sj → sj+1 and b is honest in sj and
u did not leak the symmetric key k to W \ {u, b} prior to sj , then u created the HTTPS response
m′ to the HTTPS request m, i.e., the nonce of the HTTP request req is not known to any atomic
process p, except for the atomic process b and u.

Proof:
(1) follows immediately from the condition. If k′ is initially only known to u and u never leaks k′, i.e.,

even with the knowledge of all nonces (except for those of u), k′ can never be derived from any network
output of u, k′ cannot be known to any other party. Thus, nobody except for u can derive req from m.

(2) We assume that b leaks k to W \ {u, b} in the processing step sj → sj+1 without u prior leaking
the key k to anyone except for u and b and that the browser is not fully corrupted in sj , and lead this to
a contradiction.

The browser is honest in si. From the definition of the browser b, we see that the key k is always chosen
as a fresh nonce (placeholder ν3 in Lines 61ff. of Algorithm 10) that is not used anywhere else. Further,
the key is stored in the browser’s state in pendingRequests . The information from pendingRequests
is not extracted or used anywhere else (in particular it is not accessible by scripts). If the browser
becomes closecorrupted prior to sj (and after si), the key cannot be used anymore (compare Lines 43ff.
of Algorithm 10). Hence, b does not leak k to any other party in sj (except for u and b). This proves (2).

(3) Per the definition of browsers (Algorithm 10), a host header is always contained in HTTP requests
by browsers. From Line 67 of Algorithm 10 we can see that the encryption key for the request req was
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chosen using the host header of the message. It is chosen from the keymapping in the browser’s state,
which is never changed during ρ. This proves (3).

(4) An HTTPS response m′ that is accepted by b as a response to m has to be encrypted with k. The
nonce k is stored by the browser in the pendingRequests state information. The browser only stores
freshly chosen nonces there (i.e., the nonces are not used twice, or for other purposes than sending one
specific request). The information cannot be altered afterwards (only deleted) and cannot be read except
when the browser checks incoming messages. The nonce k is only known to u (which did not leak it to
any other party prior to sj) and b (which did not leak it either, as u did not leak it and b is honest, see
(2)). The browser b cannot send responses. This proves (4).

Corollary 1. In the situation of Lemma 3, as long as u does not leak the symmetric key k to W \ {u, b}
and the browser does not become fully corrupted, k is not known to any DY process p 6∈ {b, u} (i.e.,
@ s′ = (S′, E′) ∈ ρ: k ∈ dNp(S′(p))).

Lemma 4. If for some si ∈ ρ an honest browser b has a document d in its state Si(b).windows with the
origin 〈dom, S〉 where dom ∈ Domain, and Si(b).keyMapping[dom] ≡ pub(k) with k ∈ N being a
private key, and there is only one DY process p that knows the private key k in all sj , j ≤ i, then b
extracted (in Line 35 in Algorithm 9) the script in that document from an HTTPS response that was
created by p.

Proof: The origin of the document d is set only once: In Line 35 of Algorithm 9. The values (domain and
protocol) used there stem from the information about the request (say, req) that led to loading of d. These
values have been stored in pendingRequests between the request and the response actions. The contents
of pendingRequests are indexed by freshly chosen nonces and can never be altered or overwritten (only
deleted when the response to a request arrives). The information about the request req was added to
pendingRequests in Line 66 (or Line 69 which we can exclude as we will see later) of Algorithm 10.
In particular, the request was an HTTPS request iff a (symmetric) key was added to the information in
pendingRequests . When receiving the response to req , it is checked against that information and accepted
only if it is encrypted with the proper key and contains the same nonce as the request (say, n). Only then
the protocol part of the origin of the newly created document becomes S. The domain part of the origin
(in our case dom) is taken directly from the pendingRequests and is thus guaranteed to be unaltered.

From Line 67 of Algorithm 10 we can see that the encryption key for the request req was actually
chosen using the host header of the message which will finally be the value of the origin of the document
d. Since b therefore selects the public key Si(b).keyMapping[dom] = S0(b).keyMapping[dom] ≡ pub(k)
for p (the key mapping cannot be altered during a run), we can see that req was encrypted using a public
key that matches a private key which is only (if at all) known to p. With Lemma 3 we see that the
symmetric encryption key for the response, k, is only known to b and the respective web server. The same
holds for the nonce n that was chosen by the browser and included in the request. Thus, no other party
than p can encrypt a response that is accepted by the browser b and which finally defines the script of
the newly created document.

Lemma 5. If in a processing step si → si+1 of a run ρ of Web an honest browser b issues an HTTP(S)
request with the Origin header value 〈dom, S〉 where and Si(b).keyMapping[dom] ≡ pub(k) with
k ∈ N being a private key, and there is only one DY process p that knows the private key k in all sj ,
j ≤ i, then that request was initiated by a script that b extracted (in Line 35 in Algorithm 9) from an
HTTPS response that was created by p.

Proof: First, we can see that the request was initiated by a script: As it contains an origin header, it must
have been a POST request (see the browser definition in Appendix B-F). POST requests can only be
initiated in Lines 50, 71 of Algorithm 8 and Line 27 of Algorithm 9. In the latter instance (Location header
redirect), the request contains at least two different origins, therefore it is impossible to create a request
with exactly the origin 〈dom, S〉 using a redirect. In the other two cases (FORM and XMLHTTPRequest),
the request was initiated by a script.

The Origin header of the request is defined by the origin of the script’s document. With Lemma 4 we
see that the content of the document, in particular the script, was indeed provided by p.
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APPENDIX C
DATA STRUCTURES

The following definitions extend the set of data structures of the original WIM (see Appendix B) and
are used throughout the extended model and its analysis.

Method Data. First, we give the definitions for the identifier of a payment method, followed by the
definition of the method data object.
Definition 54 (Payment Method Identifier). A Payment Method Identifier is a (WIM) URL for which the

following holds true:
protocol = S

PaymentMethodIdentifiers is the set of all possible Payment Method Identifiers.

Definition 55 (Payment Method Data). A payment method data term is a term consisting of a
sequence of terms 〈x1 , x2 , . . . 〉, where each xi is a term 〈pmi , receiver , paymentIdentifier〉 with
pmi ∈ PaymentMethodIdentifiers, receiver ∈ TN , and paymentIdentifier ∈ S. Furthermore, we require
for all xi , xj in the sequence that xi .paymentIdentifier = xj .paymentIdentifier.
The set of all possible payment method data terms is denoted by MethodDatas.

Note that while the requirement for equal paymentIdentifiers restricts the set of allowed payment
method data terms, this definition does not weaken our properties: The Payment Request API specifica-
tion [14] defines the paymentIdentifier of a method data object as the paymentIdentifier contained
in the respective payment request (that also contained the method data objects in question). I.e., when
a script accesses the paymentIdentifier of a method data object, the browser does not “look” at the
method data object at all, but takes the value from the respective payment request. In our model, we chose
to include the paymentIdentifier in the method data terms, because that makes passing the relevant
data around easier.

Service Workers. In the following, we give the definition of a service worker registration and related
data structures.
Definition 56 (Payment Instrument). A Payment Instrument is a term

〈instrumentKey , enabledMethods〉

where instrumentKey ∈ S and enabledMethods ∈ PaymentMethodIdentifiers. Note that despite the
name, enabledMethods is only a single value. This name is taken from the WPA specifications where
the plural identifier is used for historical reasons.

Definition 57 (Payment Manager). A Payment Manager is a term consisting of a series of Payment
Instruments, i.e., 〈x1 , x2 , . . . 〉.
The set of all Payment Managers is denoted by PaymentManagers.

Definition 58 (Service Worker Registration). A Service Worker Registration is defined through a term:

〈nonce, scope, script , scriptinputs, scriptstate, paymentManager , trusted〉

where nonce ∈ N , scope ∈ URLs, script ∈ TN , scriptinputs ∈ TN , scriptstate ∈ TN ,
paymentManager ∈ PaymentManagers, and trusted ∈ {⊥,>}.
For a Service Worker Registration sw we write sw .origin to denote the origin of the service worker,
i.e., the term 〈sw .scope.host, sw .scope.protocol〉 ∈ Origins. We call the set of all Service Worker
Registrations ServiceWorkerRegistrations.

Substructures of Payment Objects. The messages and events exchanged between the WPA parties
contain some substructures which we define here.
Definition 59 (Payment Details). Payment details are terms with the following structure:

〈modifiers, total , shippingOptions〉

where modifiers ∈ TN , total ∈ TN , and shippingOptions ⊂〈〉 TN is a sequence of terms.
The set of all payment details is called PaymentDetails.
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Definition 60 (Payment Options). A payment options element is a term with the following structure:

〈requestBillingAddress, requestShipping , requestPayerInfo〉

where requestBillingAddress, requestShipping , requestPayerInfo ∈ {>,⊥}.
The set of all payment options is called PaymentOptions.

Messages and Events. Here, we define the messages and events used to exchange data between the
WPA parties.
Definition 61 (Payment Request). A Payment Request is a term:

〈PAYMENTREQUEST, paymentRequestNonce, documentnonce,methodData, details,

options, state, updating〉

where paymentRequestNonce ∈ N , documentnonce ∈ N , methodData ∈ TN , details ∈
PaymentDetails, options ∈ PaymentOptions, state ∈ {CR, IN,CL} (corresponding to the states:
Created, Interactive and Closed), and updating ∈ {>,⊥}.

Definition 62 (Can Make Payment Event). A Can Make Payment Event is a term:

〈CANMAKEPAYMENT, handlerNonce, topOrigin, paymentRequestOrigin,methodData〉

where handlerNonce ∈ N , topOrigin ∈ Origins, paymentRequestOrigin ∈ Origins, and
methodData ⊂〈〉 MethodDatas.

Definition 63 (Submit Payment Event). A Submit Payment Event is a term:

〈SUBMITPAYMENT, paymentRequestNonce, handlerNonce〉

where paymentRequestNonce ∈ N and handlerNonce ∈ N .

Definition 64 (Payment Request Event). A Payment Request Event is a term:

〈PAYMENTREQUESTEVENT, paymentRequestEventNonce, paymentRequestNonce, handlerNonce,

methodData, total ,modifiers, instrumentKey , requestBillingAddress, transactionId〉

where paymentRequestEventNonce ∈ N , paymentRequestNonce ∈ N , handlerNonce ∈ N ,
methodData ⊂〈〉 MethodDatas, total ∈ TN , modifiers ∈ TN , instrumentKey ∈ TN ,
requestBillingAddress ∈ {⊥,>}, and transactionId ∈ N .

Definition 65 (Payment Handler Response). A Payment Handler Response is a term:

〈PAYMENTHANDLERRESPONSE, paymentRequestNonce, handlerNonce,methodName, details〉

where paymentRequestNonce ∈ N , handlerNonce ∈ N , methodName ∈ TN , and details ∈ TN .

Definition 66 (Payment Response). A Payment Response is a term:

〈PAYMENTRESPONSE, paymentResponseNonce, paymentRequestNonce, handlerNonce,methodName,

details, shippingAddress, shippingOption, payerInfo, complete〉

where paymentResponseNonce ∈ N , paymentRequestNonce ∈ N , handlerNonce ∈ N ,
methodName ∈ TN , details ∈ TN , shippingAddress ∈ TN , shippingOption ∈ TN , payerInfo ∈ TN ,
and complete ∈ {⊥,>}.

Payment Storage. The payment storage entry of the browser state stores payment relevant objects that
may be accessed by scripts, service workers and the browser.
Definition 67 (Payment Storage). A paymentStorage ∈ [N × TN ] is a dictionary, where for a nonce

PRN ∈ N , the term paymentStorage[PRN ] has the following structure:

〈paymentRequest , paymentRequestEvents, paymentResponses, transactionId , handlerNonce〉
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where paymentRequest ∈ TN is a term as defined in Definition 61. paymentRequestEvents ∈ [N ×TN ]
is a dictionary from nonces to payment request events (see also Definition 64). paymentResponses ∈
[N ×TN ] is a dictionary from nonces to payment responses (see also Definition 66). transactionId ∈ N
and handlerNonce ∈ N are nonces.

Transactions. In our model, a payment provider server has a sequence of transactions in its state, storing
all transactions performed by this payment provider. In the following, we define the structure of this state
entry.
Definition 68 (Transaction). transactions ∈ [TN × TN ] is a dictionary, where for a term key ∈ TN

(typically a payment identifier), the transaction transactions[key ] has the following structure:

〈sender , receiver , total , transactionId〉

where sender , receiver , total ∈ TN , and transactionId ∈ N .
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APPENDIX D
THE EXTENDED WEB INFRASTUCTURE MODEL WITH WEB PAYMENT APIS

In the following, we introduce the extensions and adaptions applied to the WIM to model the WPA, as
well as our generic models of a merchant, payment handler, and payment provider used to exercise the
extended WIM.

On a high level, the extended WIM’s browser model consists of four main algorithms which we
adapted/created (plus lots of small helper functions): The first one is the actual browser process
(Algorithm 20), which processes events from the main event queue. It is responsible for dispatching
incoming events to the different helper functions. The second one is the algorithm modeling script
execution within the browser (Algorithm 21), including the merchant’s interaction with the WPA. The
third one of these “main” algorithms is introduced by us and processes DOM events within the browser
(Algorithm 22). The fourth one too is a result of our work and models the execution of a service worker
(Algorithm 23).

To allow for all possible execution orderings, the browser was also extended with a set of pending
DOM events, one of which is selected non-deterministically once the browser (also non-deterministically)
chooses to process a DOM event. By adding this functionality, one could say that the browser model itself
becomes a Dolev-Yao style model within the overall WIM.

Within the browser, different scripts, service workers and the browser itself have different states and
pending scriptinputs, from which they derive messages, DOM events and commands.

To make our contributions easier to spot, we marked all “old” code in the following algorithms in this
light gray, while new code is given in black.

A. General Remarks

The functions secretOfID(id) and ownerOfID(id) are defined analogously to [21]:
secretOfID(id) describes a bijective mapping ID→ Passwords where Passwords is the set of passwords

shared between browsers and payment providers. It can be used by a browser b to get the password of an
ID id owned by this browser, i.e., ownerOfID(id) = b.

B. Browser

Definition 69. The original definition of the set of states of a browser process ZWebbrowser is extended to
fit the needs of the WPA. We extend ZWebbrowser by the subterms serviceWorkers , paymentStorage,
events , usedEvents , and paymentIntents . A browser state is therefore defined through a term of the
form:

〈windows, ids, secrets, cookies, localStorage, sessionStorage, keyMapping , sts,DNSaddress,

pendingDNS , pendingRequests,wsConnections, rtcConnections, serviceWorkers,
paymentStorage, events,usedEvents,paymentIntents, isCorrupted〉

The subterms windows , ids , secrets , cookies , localStorage, sessionStorage, keyMapping , sts ,
DNSaddress , pendingDNS , pendingRequests , wsConnections , rtcConnections , and isCorrupted are
defined as in the original WIM (see Definition 36 in Appendix B-F2).

The remaining sub terms have the following form:
• serviceWorkers ⊂〈〉 ServiceWorkerRegistrations is a list of service worker registrations. This subterm

stores all information concerning service workers, such as their state, their scope and their inputs.
• paymentStorage ∈ [N × TN ] stores payment relevant objects that may be accessed later on

through scripts, service workers and the browser. More precisely, the nonces that are used as keys
are payment request nonces, which serve as a unique identifier of a payment request within the
browser. For a nonce PRN ∈ N , the term paymentStorage[PRN ] has the following structure:
〈paymentRequest , paymentRequestEvents, paymentResponses, transactionId , handlerNonce〉.
paymentRequest ∈ TN is a term as defined in Definition 61. paymentRequestEvents ∈ [N ×TN ] is a
dictionary from nonces to payment request events. Payment request events are defined in Definition 64.
paymentResponses ∈ [N ×TN ] is a dictionary from nonces to payment responses. Payment responses
are defined in Definition 66. transactionId ∈ N and handlerNonce ∈ N are nonces.

• events ⊂〈〉 TN stores a list of events that the browser may process at any time. This set of events is
used to allow for arbitrary orderings of asynchronous events.
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Placeholder Usage
ν14 Algorithm 21, lookup key for payment request
ν15 Algorithm 22, placeholder for sensitive payer information
ν16 Algorithm 21, lookup key for payment request events
ν17 Algorithm 22, placeholder for shipping information
ν18 Algorithm 21, placeholder for transaction identifier

Table II List of placeholders added for use in browser algorithms.

• usedEvents ⊂〈〉 N is a list of indices into the events list. These indices describe the already processed
events. Just marking events as processed instead of deleting them facilitates simpler statements of
certain properties which would otherwise need to talk about previous system states.

• paymentIntents ∈ [N × TN ] stores the transactions that were intended by the user. For a nonce
transactionId ∈ N , the term paymentIntents[transactionId ] is a sequence of payment requests (as
defined in Definition 61), where the methodData entries are a subset of the methodData entries of
the original payment request.
In particular, this means that paymentIntents[transactionId ] contains information about all intended
payments of each payment requests. This list of historical intents is necessary as an arbitrary amount
of intents can be expressed within one payment request due to the retry mechanism.

In an initial state sb0 of a browser we initialize the new subterms as follows:
• sb0.serviceWorkers is a non-deterministically sampled, finite set of service worker registrations. Note

that these service worker registrations can be partitioned into honest and malicious service workers
by use of their trusted flag. Furthermore, the trusted flag is constrained as follows: If there exists a
payment provider server that is honest and serves the scope of the serviceWorker, then the trusted flag
must be >. This constraint must be added to keep the configuration in accordance with the modeled
payment method manifest [37], i.e., honest payment providers only provide honest payment handlers
and don’t allow payment handlers from other origins for “their” payment method.
Furthermore, we require that for each service worker registration sw , the nonce sw .nonce is not used as
a nonce for identifying a window. More precisely, we require that ∀sw ∈〈〉 sb0.serviceWorkers ∀w ∈〈〉
sb0.windows : sw .nonce 6= w .nonce.

• sb0.paymentStorage ≡ 〈〉
• sb0.events ≡ 〈〉
• sb0.usedEvents ≡ 〈〉
• sb0.paymentIntents ≡ 〈〉

Table II shows the newly introduced placeholders in the browser model. It extends the placeholder table
of the browser as provided in [21]. The newly introduced placeholders either serve as placeholders for
lookup nonces or as placeholders for sensitive information that an attacker should not be able to obtain,
e.g., the shipping address.

Extension of Windows. The window term is extended with a boolean flag paymentRequestShowing . A
window therefore is a term of the form w = 〈nonce, documents, opener , paymentRequestShowing〉 with
nonce , documents and opener defined as in the original model and paymentRequestShowing ∈ {>,⊥}.
A window term is always initialized with w.paymentRequestShowing = ⊥.

C. Main Browser Algorithm

The main algorithm of the web browser (Algorithm 20) is only extended in a few places. Its main
additions are the support for running service workers and processing the internal browser events.
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Algorithm 20 Web Browser Model: Main Algorithm.
Input: 〈a, f,m〉, s
1: let s′ := s

Check if browser is corrupted
2: if s.isCorrupted 6≡ ⊥ then
3: let s′.pendingRequests := 〈m, s.pendingRequests〉 → Collect incoming messages
4: let n ← N
5: let m′1, . . . ,m′n ← dV (s′) → Create n new messages non-deterministically.
6: let a′1, . . . , a′n ← IPs
7: stop 〈〈a′1, a,m′1〉, . . . , 〈a′n, a,m′n〉〉, s′

Receive trigger message
8: if m ≡ TRIGGER then
9: let switch ← {script, worker, urlbar, reload, forward, back, event}

10: let w ← Subwindows(s′) such that s′.w .documents 6= 〈〉
↪→ if possible; otherwise stop → Pointer to some window.

11: let tlw ← N such that s′.tlw .documents 6= 〈〉
↪→ if possible; otherwise stop → Pointer to some top-level window.

12: if switch ≡ script then → Run some script.
13: let d := w .activedocument
14: call RUNSCRIPT(w , d , s′)
15: else if switch ≡ worker then → Run some service worker.
16: let sw ← s′.serviceWorkers
17: let sw ← N such that s′.serviceWorkers.sw .nonce = sw .nonce
18: call RUNWORKER(sw , s′)
19: else if switch ≡ urlbar then → Create some new request.
20: let newwindow ← {>,⊥}
21: if newwindow ≡ > then → Create a new window.
22: let windownonce := ν1
23: let w′ := 〈windownonce, 〈〉,⊥〉
24: let s′.windows := s′.windows +〈〉 w′

25: else → Use existing top-level window.
26: let windownonce := s′.tlw .nonce
27: let protocol ← {P, S}
28: let host ← Doms
29: let path ← S
30: let fragment ← S
31: let parameters ← [S× S]
32: let url := 〈URL, protocol , host , path, parameters, fragment〉
33: let req := 〈HTTPReq, ν2, GET, host , path, parameters, 〈〉, 〈〉〉
34: call HTTP_SEND(〈REQ,windownonce〉, req , url , ⊥, ⊥, ⊥, s′)
35: else if switch ≡ reload then → Reload some document.
36: let url := s′.w .activedocument.location
37: let req := 〈HTTPReq, ν2, GET, url .host, url .path, url .parameters, 〈〉, 〈〉〉
38: let referrer := s′.w .activedocument.referrer
39: let s′ := CANCELNAV(s′.w .nonce, s′)
40: call HTTP_SEND(〈REQ, s′.w .nonce〉, req , url , ⊥, referrer , ⊥, s′)
41: else if switch ≡ forward then
42: call NAVFORWARD(w , s′)
43: else if switch ≡ back then
44: call NAVBACK(w , s′)
45: else if switch ≡ event then
46: let eventIndex ← N such that s′.events.eventIndex 6= 〈〉 and eventIndex 6∈〈〉 s′.usedEvents

↪→ if possible; otherwise stop → Select an event that has not been processed yet
47: let e := s′.events.eventIndex
48: let s′.usedEvents := s′.usedEvents +〈〉 eventIndex
49: call PROCESSEVENT(e,w , s′)

Change corruption status
50: else if m ≡ FULLCORRUPT then → Request to corrupt browser
51: let s′.isCorrupted := FULLCORRUPT
52: stop 〈〉, s′
53: else if m ≡ CLOSECORRUPT then → Close the browser
54: let s′.secrets := 〈〉
55: let s′.windows := 〈〉
56: let s′.pendingDNS := 〈〉
57: let s′.pendingRequests := 〈〉
58: let s′.sessionStorage := 〈〉
59: let s′.cookies ⊂〈〉 Cookies such that

↪→ (c ∈〈〉 s′.cookies)⇐⇒ (c ∈〈〉 s.cookies ∧ c.content.session ≡ ⊥)
60: let s′.isCorrupted := CLOSECORRUPT
61: stop 〈〉, s′
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62: else if m ∈ DNSResponses then → DNS response
63: if m.nonce 6∈ s.pendingDNS ∨m.result 6∈ IPs

↪→ ∨ m.domain 6≡ π2(s.pendingDNS[m.nonce]).host then
64: stop
65: let 〈reference,message, url〉 := s.pendingDNS[m.nonce]
66: if url .protocol ≡ S then
67: let s′.pendingRequests := s′.pendingRequests +〈〉 〈reference , message , url , ν3, m.result〉
68: let message := enca(〈message, ν3〉, s′.keyMapping [message.host])
69: else
70: let s′.pendingRequests := s′.pendingRequests +〈〉 〈reference , message , url , ⊥, m.result〉
71: let s′.pendingDNS := s′.pendingDNS−m.nonce
72: stop 〈〈m.result, a,message〉〉, s′
73: else if π1(m) ≡ HTTPResp ∧ ∃ 〈reference, request , url ,⊥, f〉 ∈〈〉 s′.pendingRequests

↪→ such that m.nonce ≡ request .nonce then → Plain HTTP Response
74: remove 〈reference, request , url ,⊥, f〉 from s′.pendingRequests
75: call PROCESSRESPONSE(m, reference , request , url , key , f , s′)
76: else if m.1 ≡ WS_MSG ∧ ∃ 〈reference,nonce,⊥, f〉 ∈〈〉 s′.wsConnections

↪→ such that m.nonce ≡ nonce then → Plain Websocket Message
77: call DELIVER_TO_DOC(π2(reference), m, s′)

Encrypted messages
78: else if ∃ 〈reference, request , url , key , f〉 ∈〈〉 s′.pendingRequests

↪→ such that π1(decs(m, key)) ≡ HTTPResp then → Encrypted HTTP response
79: let m′ := decs(m, key)
80: if m′.nonce 6≡ request .nonce then
81: stop
82: remove 〈reference, request , url , key , f〉 from s′.pendingRequests
83: call PROCESSRESPONSE(m′, reference , request , url , key , f , s′)
84: else if ∃ 〈reference,nonce, key , f〉 ∈〈〉 s′.wsConnections

↪→ such that π1(decs(m, key)) ≡ WS_MSG then → Encrypted Websocket Message
85: let m′ := decs(m, key)
86: if m′.nonce 6≡ nonce then
87: stop
88: call DELIVER_TO_DOC(π2(reference), m′, s′)
89: else if ∃〈nonce, info〉 ∈〈〉 s′.rtcConnections

↪→ such that π1(deca(m, info.privkey)) ≡ RTC_MSG then → WebRTC message
90: let m′ := deca(m, info.privkey)
91: if m′.nonce 6≡ nonce then
92: stop
93: let docnonce := info.docnonce
94: call DELIVER_TO_DOC(docnonce , m′, s′)
95: stop

D. Running Scripts in the Browser

Algorithm 21 models the execution of a script with the function RUNSCRIPT. Since all earlier
functionalities and interfaces are still exposed to the scripts, a big part of the algorithm stays untouched.
The only old functionality that was adapted in the script is concerning the delivery of postMessages.
Service workers can receive postMessages in the new model as well. Therefore, if not given a window
nonce but a service worker nonce, the browser submits the message to the corresponding service worker.

The biggest additions to RUNSCRIPT are the extensions to the script APIs introduced by the WPA.
PR_CREATE, PR_SHOW, PR_CANMAKEPAYMENT, and PR_ABORT model the corresponding JavaScript functions
create(), show(), canMakePayment() and abort() of a PaymentRequest. PRES_COMPLETE, and PRES_RETRY
model the corresponding JavaScript functions complete() and retry() of the PaymentRequestResponse object.
PR_GET models later reading of fields of a payment request if changed. PR_UPDATE_DETAILS models
the updateWith() method of the PaymentRequestUpdateEvent. To keep the model simple, this method is
directly exposed to the PaymentRequest in this model, without the need for a PaymentRequestUpdateEvent.
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Algorithm 21 Web Browser Model: Execute a script.
1: function RUNSCRIPT(w , d , s′) → Pointers to window and active document within window plus browser state
2: let tree := Clean(s′, s′.d)
3: let cookies := 〈{〈c.name, c.content.value〉|c ∈〈〉 s′.cookies

[
s′.d .origin.host

]
↪→ ∧ c.content.httpOnly = ⊥
↪→ ∧

(
c.content.secure =⇒

(
s′.d .origin.protocol ≡ S

))
}〉

4: let tlw ← s′.windows such that tlw is the top-level window containing d
5: let sessionStorage := s′.sessionStorage

[
〈s′.d .origin, tlw .nonce〉

]
6: let localStorage := s′.localStorage

[
s′.d .origin

]
7: let secrets := s′.secrets

[
s′.d .origin

]
8: let R ← script−1(s′.d .script)
9: let in := 〈tree, s′.d .nonce, s′.d .scriptstate, s′.d .scriptinputs, cookies,

↪→ localStorage, sessionStorage, s′.ids, secrets〉
10: let state ′ ← TN (V ),

↪→ cookies ′ ← Cookiesν , localStorage ′ ← TN (V ),
↪→ sessionStorage ′ ← TN (V ), command ← TN (V ),
↪→ out := 〈state ′, cookies ′, localStorage ′,

↪→ sessionStorage ′, command〉
↪→ such that out = outλ[ν10/λ1, ν11/λ2, . . . ]
↪→ with (in, outλ) ∈ R

11: let s′.cookies
[
s′.d .origin.host

]
↪→ := CookieMerge(s′.cookies

[
s′.d .origin.host

]
, cookies ′)

12: let s′.localStorage
[
s′.d .origin

]
:= localStorage ′

13: let s′.sessionStorage
[
〈s′.d .origin, tlw .nonce〉

]
:= sessionStorage ′

14: let s′.d .scriptstate := state′

15: switch command do
16: case 〈HREF, url , hrefwindow ,noreferrer〉
17: let w ′ := GETNAVIGABLEWINDOW(w ,hrefwindow ,noreferrer , s′)
18: let req := 〈HTTPReq, ν4, GET, url .host, url .path, 〈〉, url .parameters, 〈〉〉
19: if noreferrer ≡ > then
20: let referrerPolicy := noreferrer
21: else
22: let referrerPolicy := s′.d .headers[ReferrerPolicy]

23: let s′ := CANCELNAV(s′.w ′.nonce, s′)
24: call HTTP_SEND(〈REQ, s′.w ′.nonce〉, req , url ,⊥, referrer , referrerPolicy , s′)

25: case 〈IFRAME, url ,window〉
26: let w ′ := GETWINDOW(w ,window , s′)
27: let req := 〈HTTPReq, ν4, GET, url .host, url .path, 〈〉, url .parameters, 〈〉〉
28: let referrer := s′.w ′.activedocument.location
29: let referrerPolicy := s′.d .headers[ReferrerPolicy]
30: let w′ := 〈ν5, 〈〉,⊥〉
31: let s′.w ′.activedocument.subwindows

↪→ := s′.w ′.activedocument.subwindows +〈〉 w′

32: call HTTP_SEND(〈REQ, ν5〉, req , url ,⊥, referrer , referrerPolicy , s′)

33: case 〈FORM, url ,method , data, hrefwindow〉
34: if method 6∈ {GET, POST} then
35: stop 〈〉, s′

36: let w ′ := GETNAVIGABLEWINDOW(w , hrefwindow ,⊥, s′)
37: if method = GET then
38: let body := 〈〉
39: let parameters := data
40: let origin := ⊥
41: else
42: let body := data
43: let parameters := url .parameters
44: let origin := s′.d .origin

45: let req := 〈HTTPReq, ν4,method , url .host, url .path, 〈〉, parameters, body〉
46: let referrer := s′.d .location
47: let referrerPolicy := s′.d .headers[ReferrerPolicy]
48: let s′ := CANCELNAV(s′.w ′.nonce, s′)
49: call HTTP_SEND(〈REQ, s′.w ′.nonce〉, req , url , origin, referrer , referrerPolicy , s′)

50: case 〈SETSCRIPT,window , script〉
51: let w ′ := GETWINDOW(w ,window , s′)
52: let s′.w ′.activedocument.script := script
53: stop 〈〉, s′
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54: case 〈SETSCRIPTSTATE,window , scriptstate〉
55: let w ′ := GETWINDOW(w ,window , s′)
56: let s′.w ′.activedocument.scriptstate := scriptstate
57: stop 〈〉, s′

58: case 〈XMLHTTPREQUEST, url ,method , data, xhrreference〉
59: if method ∈ {CONNECT, TRACE, TRACK} ∧ xhrreference 6∈ {N ,⊥} then
60: stop 〈〉, s′

61: if url .host 6≡ s′.d .origin.host
↪→ ∨ url 6≡ s′.d .origin.protocol then

62: stop 〈〉, s′

63: if method ∈ {GET, HEAD} then
64: let data := 〈〉
65: let origin := ⊥
66: else
67: let origin := s′.d .origin

68: let req := 〈HTTPReq, ν4,method , url .host, url .path, , url .parameters, data〉
69: let referrer := s′.d .location
70: let referrerPolicy := s′.d .headers[ReferrerPolicy]
71: call HTTP_SEND(〈XHR, s′.d .nonce, xhrreference〉, req , url , origin, referrer , referrerPolicy , s′)

72: case 〈BACK,window〉
73: let w ′ := GETNAVIGABLEWINDOW(w ,window ,⊥, s′)
74: call NAVBACK(w , s′)

75: case 〈FORWARD,window〉
76: let w ′ := GETNAVIGABLEWINDOW(w ,window ,⊥, s′)
77: call NAVFORWARD(w , s′)

78: case 〈CLOSE,window〉
79: let w ′ := GETNAVIGABLEWINDOW(w ,window ,⊥, s′)
80: remove s′.w ′ from the sequence containing it
81: stop 〈〉, s′

82: case 〈POSTMESSAGE,window ,message, origin〉
83: if ∃w ′ ∈ Subwindows(s′) such that s′.w ′.nonce ≡ window then
84: let w ′ ← Subwindows(s′) such that s′.w ′.nonce ≡ window
85: if ∃j ∈ N such that s′.w ′.documents.j .active ≡ >

↪→ ∧ (origin 6≡ ⊥ =⇒ s′.w ′.documents.j .origin ≡ origin) then
86: let s′.w ′.documents.j .scriptinputs

↪→ := s′.w ′.documents.j .scriptinputs
↪→ +〈〉 〈POSTMESSAGE, s′.w .nonce,message, s′.d .origin〉

87: else
88: if ∃j ∈ N such that s′.serviceWorkers.j .nonce ≡ window

↪→ ∧ (origin 6≡ ⊥ =⇒ s′.serviceWorkers.j .origin ≡ origin) then
89: let s′.serviceWorkers.j .scriptinputs := s′.serviceWorkers.j .scriptinputs

↪→ +〈〉 〈POSTMESSAGE, s′.w .nonce,message, s′.d .origin〉
90: stop 〈〉, s′

Extension with Payment APIs
91: case 〈PR_CREATE,methodData, details, options〉
92: if ¬(methodData ∈ MethodDatas) then stop 〈〉, s′ → All PMIs in methodData must be equal

(Def. 55)
93: if methodData = 〈〉 then stop 〈〉, s′ → methodData should not be empty (see Section 3.1 of [14])
94: let seenPMIs := 〈〉
95: for each 〈pmi , receiver , paymentIdentifier〉 ∈ methodData do
96: if pmi ∈ seenPMIs then stop 〈〉, s′ → Ambiguous method data: Forbidden after spec fix
97: let seenPMIs := seenPMIs +〈〉 pmi

98: let paymentRequest := 〈PAYMENTREQUEST, ν14, s′.d .nonce,methodData, details, options,
↪→ 〈〉, CR,⊥, 〈〉〉

99: let transactionId := ν18 → Create identifier for transaction (this is a modeling artifact)
100: let s′.paymentStorage[ν14] := 〈paymentRequest , 〈〉, 〈〉, transactionId〉

↪→ → Empty sequences for paymentRequestEvents and paymentResponses
101: let s′.d .scriptinputs := s′.d .scriptinputs +〈〉 paymentRequest
102: stop 〈〉, s′

103: case 〈PR_SHOW, paymentRequestNonce, detailsUpdate〉
104: let paymentRequest := s′.paymentStorage[paymentRequestNonce].paymentRequest
105: if paymentRequest .state 6= CR then stop 〈〉, s′

106: if s′.w .paymentRequestShowing = > then → Can’t show two payment requests at once
107: let s′.paymentStorage[paymentRequestNonce].paymentRequest.state := CL
108: stop 〈〉, s′

case continued on the next page
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109: let s′.paymentStorage[paymentRequestNonce].paymentRequest.state := IN
110: let s′.w .paymentRequestShowing := >
111: let handlers := 〈〉
112: for each mds := 〈pmi , receiver , paymentIdentifier〉 ∈ paymentRequest .methodData do
113: let handlersForPmi := GET_PAYMENT_HANDLERS(pmi, s′)
114: let handlers := handlers +〈〉 handlersForPmi
115: for each handler ∈ handlersForPmi do
116: let s′.events := s′.events +〈〉 〈CANMAKEPAYMENT, handler .nonce,

↪→ tlw .origin, s′.d .origin,mds〉
117: let handler ← handlers → Customer selects a payment handler
118: let s′.paymentStorage[paymentRequestNonce].handlerNonce := handler .nonce
119: if detailsUpdate 6= 〈〉 then
120: let s′.paymentStorage[paymentRequestNonce].paymentRequest.updating := >
121: let s′.events := s′.events +〈〉 〈PR_UPDATE_DETAILS, paymentRequestNonce, detailsUpdate〉
122: let s′.events := s′.events +〈〉 〈SUBMITPAYMENT, paymentRequestNonce, handler .nonce〉
123: stop 〈〉, s′

124: case 〈PR_CANMAKEPAYMENT, paymentRequestNonce〉
125: let paymentRequest := s′.paymentStorage[paymentRequestNonce].paymentRequest
126: if paymentRequest .state 6= CR then stop 〈〉, s′

127: let handlers := 〈〉
128: for each 〈pmi , receiver , paymentIdentifier〉 ∈ paymentRequest .methodData do
129: let handlers := handlers +〈〉 GET_PAYMENT_HANDLERS(pmi, s′)
130: if handlers 6= 〈〉 then
131: let s′.d .scriptinputs := s′.d .scriptinputs

↪→ +〈〉 〈CANMAKEPAYMENTRESPONSE, paymentRequestNonce,>〉
→ Let merchant script know that payment can be made

132: else
133: let s′.d .scriptinputs := s′.d .scriptinputs

↪→ +〈〉 〈CANMAKEPAYMENTRESPONSE, paymentRequestNonce,⊥〉
→ Let merchant script know that payment cannot be made

134: stop 〈〉, s′

135: case 〈PR_ABORT, paymentRequestNonce〉
136: let paymentRequest := s′.paymentStorage[paymentRequestNonce].paymentRequest
137: if paymentRequest .state 6= IN then stop 〈〉, s′

138: if s′.paymentStorage[paymentRequestNonce].paymentResponses 6= 〈〉 then stop 〈〉, s′

139: let s′.paymentStorage[paymentRequestNonce].paymentRequest.state := CL
140: let s′.w .paymentRequestShowing := ⊥
141: stop 〈〉, s′

142: case 〈PRES_COMPLETE, paymentRequestNonce, paymentResponseNonce〉
143: let paymentResponse := (s′.paymentStorage[paymentRequestNonce]

↪→ .paymentResponses)[paymentResponseNonce] → Retrieve payment response
144: if paymentResponse.complete ≡ > then stop 〈〉, s′

145: let (s′.paymentStorage[paymentRequestNonce].paymentResponses)[paymentResponseNonce]
↪→ .complete := >

146: let s′.w .paymentRequestShowing := ⊥
147: stop 〈〉, s′

148: case 〈PRES_RETRY, paymentRequestNonce, paymentResponseNonce, errorFields〉
149: let paymentResponse := (s′.paymentStorage[paymentRequestNonce]

↪→ .paymentResponses)[paymentResponseNonce] → Retrieve payment response
150: if paymentResponse.complete ≡ > then stop 〈〉, s′

151: let s′.paymentStorage[paymentRequestNonce].paymentRequest.state := IN
152: let handlerNonce := s′.paymentStorage[paymentRequestNonce].handlerNonce

→ Fix: No change of payment handler during retry
153: let s′.events := s′.events +〈〉 〈SUBMITPAYMENT, paymentRequestNonce, handlerNonce〉
154: stop 〈〉, s′

155: case 〈PR_GET_PREQ, paymentRequestNonce〉 → (Merchant) script can retrieve payment request object
156: let paymentRequest := s′.paymentStorage[paymentRequestNonce].paymentRequest
157: let s′.d .scriptinputs := s′.d .scriptinputs +〈〉 paymentRequest
158: stop 〈〉, s′
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159: case 〈PR_GET_PRESP, paymentRequestNonce, paymentResponseNonce〉 → Analogous for responses
160: let responses := s′.paymentStorage[paymentRequestNonce].paymentResponses
161: let paymentResponse := responses[paymentResponseNonce]
162: let s′.d .scriptinputs := s′.d .scriptinputs +〈〉 paymentResponse
163: stop 〈〉, s′

164: case 〈PR_UPDATE_DETAILS, paymentRequestNonce, details〉 → According to spec, updateDetails can
only occur as a reaction to a PaymentRequestUpdateEvent. This is simplified in the model.

165: let paymentRequest := s′.paymentStorage[paymentRequestNonce].paymentRequest
166: if paymentRequest .state 6= IN then stop 〈〉, s′

167: let s′.paymentStorage[paymentRequestNonce].paymentRequest.updating := >
168: let s′.events := s′.events +〈〉 〈PR_UPDATE_DETAILS, paymentRequestNonce, details〉
169: stop 〈〉, s′

170: case else stop 〈〉, s′

E. Handle DOM Events

Algorithm 22 shows how the function PROCESSEVENT models the browser’s DOM event processing.
The events CANMAKEPAYMENT, PAYMENTREQUESTEVENT, and PAYMENTRESPONSE are simply processed by
transmitting the relevant event to the corresponding party.
PAYMENTHANDLERRESPONSE is more complex since it integrates the information provided by the payment

handler through the PaymentHandlerResponse into a PaymentResponse object and submits it to the event
set for further processing.

Algorithm 22 Web Browser Model: Process an event.
1: function PROCESSEVENT(e,w , s′)
2: switch e do

pre-flight request whether payment can be made
3: case 〈CANMAKEPAYMENT, handlerNonce, topOrigin, paymentRequestOrigin,methodData〉
4: call DELIVER_TO_DOC(handlerNonce, e, s′)

→ The browser non-deterministically chooses a payment handler (modeling the customer’s
selection), thus, we can safely over-approximate here and do not have to wait for the
reply to our CANMAKEPAYMENT (we over-approximate in that a payment handler can
reply “no” to CANMAKEPAYMENT and still get selected).

User accepts the payment request
5: case 〈SUBMITPAYMENT, paymentRequestNonce, handlerNonce〉
6: let paymentRequest := s.paymentStorage[paymentRequestNonce].paymentRequest
7: if paymentRequest .updating = > then stop 〈〉, s′

8: if paymentRequest .state 6= IN then stop 〈〉, s′

9: let handler ← s′.serviceWorkers such that handler .nonce ≡ handlerNonce
↪→ if possible; otherwise stop 〈〉, s′

10: let total := paymentRequest .details.total
11: let modifiers := paymentRequest .details.modifiers → Abstraction: pass all modifiers
12: let requestBillingAddress := paymentRequest .options.requestBillingAddress
13: let instrument ← handler .paymentManager such that ∃mds ∈〈〉 paymentRequest .methodData ∧

↪→ mds.pmi = instrument .enabledMethods if possible; otherwise stop 〈〉, s′ → Choose an
↪→ instrument that supports one of the payment methods.

14: let instrumentKey := instrument .instrumentKey
15: let methodData := 〈〉
16: for each mds := 〈pmi , receiver , paymentIdentifier〉 ∈ paymentRequest .methodData do
17: if pmi ≡ instrument .enabledMethods then → enabledMethods is a single value (cf. Def. 56)
18: let methodData := methodData +〈〉 mds
19: let transactionId := s′.paymentStorage[paymentRequestNonce].transactionId
20: let pre := 〈PAYMENTREQUESTEVENT, ν16, paymentRequestNonce, handler .nonce,methodData,

↪→ total ,modifiers, instrumentKey , requestBillingAddress, transactionId〉
21: let (s′.paymentStorage[paymentRequestNonce].paymentRequestEvents) [ν16] := pre
22: let s′.events := s′.events +〈〉 pre
23: let paymentIntent := paymentRequest
24: let paymentIntent .methodData := methodData
25: let s′.paymentIntents[transactionId ] := s′.paymentIntents[transactionId ] +〈〉 paymentIntent
26: stop 〈〉, s′
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PAYMENTREQUESTEVENT is given to payment handler to process it
27: case 〈PAYMENTREQUESTEVENT, paymentRequestEventNonce, paymentRequestNonce, handlerNonce,

↪→ methodData, total ,modifiers, instrumentKey , requestBillingAddress, transactionId〉
28: call DELIVER_TO_DOC(handlerNonce, e, s′)

Payment handler’s response is merged with relevant data from payment UI
29: case 〈PAYMENTHANDLERRESPONSE, paymentRequestEventNonce, paymentRequestNonce,

↪→ handlerNonce,methodName, details〉
30: let paymentRequest := s′.paymentStorage[paymentRequestNonce].paymentRequest
31: let paymentRequestEvent := s′.paymentStorage[paymentRequestNonce]

↪→ .paymentRequestEvents[paymentRequestEventNonce]
32: if paymentRequestEvent .methodData | 〈methodName, ∗, ∗〉 ≡ 〈〉 then
33: stop 〈〉, s′ → Selected method not accepted by merchant
34: if paymentRequest .updating ≡ > then stop 〈〉, s′

35: if paymentRequest .state 6≡ IN then stop 〈〉, s′

36: let shippingAddress := 〈〉
37: let shippingOption := 〈〉
38: if paymentRequest .options.requestShipping ≡ > then
39: let shippingAddress := ν17
40: let shippingOption ← paymentRequest .details.shippingOptions

41: let payerInfo := 〈〉
42: if paymentRequest .options.requestPayerInfo ≡ > then
43: let payerInfo := ν15 → payer info (phone, name, email)
44: let respNonce := ν16
45: let response := 〈PAYMENTRESPONSE, respNonce, paymentRequestNonce, handlerNonce,

↪→ methodName, details, shippingAddress, shippingOption, payerInfo,⊥〉
46: let (s′.paymentStorage[paymentRequestNonce].paymentResponses)[respNonce] := response
47: let s′.events := s′.events +〈〉 response → Create PAYMENTRESPONSE Event
48: stop 〈〉, s′

Payment Response is forwarded to script in user agent
49: case 〈PAYMENTRESPONSE, responseNonce, paymentRequestNonce, handlerNonce,methodName,

↪→ details, shippingAddress, shippingOption, payerInfo, complete〉
50: let requestingWindowNonce

↪→ := s′.paymentStorage.[paymentRequestNonce].paymentRequest.documentnonce
51: call DELIVER_TO_DOC(requestingWindowNonce, e, s′)

Update payment details
52: case 〈PR_UPDATE_DETAILS, paymentRequestNonce, details〉
53: let s′.paymentStorage[paymentRequestNonce].paymentRequest.details := details
54: let s′.paymentStorage[paymentRequestNonce].paymentRequest.updating := ⊥
55: stop 〈〉, s′

F. Service Workers

Algorithm 23 with its function RUNWORKER models how service workers are executed. The algorithm
is very similar to Algorithm 21 with its function RUNSCRIPT. The biggest difference lies within the
non-existence of a relevant document and the available command set.

The six commands that are available are PAYMENTHANDLERRESPONSE, SET_PAYMENTMANAGER,
GET_PAYMENTMANAGER, XMLHTTPREQUEST, POSTMESSAGE, and OPEN_WINDOW.

Their basic functionalities are the following:
PAYMENTHANDLERRESPONSE is called by a script to submit a PaymentHandlerResponse to the payment

issuer. By doing so, it signals the completion of its processing of the PaymentRequestEvent.
SET_PAYMENTMANAGER A service worker can define which payment instruments it supports. This command

is used to signal updates of this set to the browser.
GET_PAYMENTMANAGER A service worker can get a list of its supported payment instruments. This

command offers such functionality.
XMLHTTPREQUEST as in RUNSCRIPT.
POSTMESSAGE posts a message to a window or another service worker via postMessage.
OPEN_WINDOW allows a payment handler to open a window for further user interaction.
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Algorithm 23 Web Browser Model: Execute a Service Worker.
1: function RUNWORKER(sw , s′) → Pointer into browser’s list of service workers, and browser state
2: let sw := s′.serviceWorkers.sw
3: let swOrigin := 〈sw .scope.host, sw .scope.protocol〉
4: let cookies := 〈{〈c.name, c.content.value〉|c ∈〈〉 s′.cookies [sw .scope.host]

↪→ ∧ c.content.httpOnly = ⊥ ∧ (c.content.secure =⇒ (sw .scope.protocol ≡ S))}〉
5: let localStorage := s′.localStorage [swOrigin]
6: let secrets := s′.secrets [swOrigin]
7: let R ← script−1(sw .script)
8: let in := 〈sw .nonce, sw .scriptstate, sw .scriptinputs, cookies, localStorage, secrets, swOrigin〉
9: let state ′ ← TN (V ),

↪→ cookies ′ ← Cookiesν ,
↪→ localStorage ′ ← TN (V ),
↪→ command ← TN (V ),
↪→ outλ := 〈state ′, cookies ′, localStorage ′, command〉
↪→ such that (in, outλ) ∈ R

10: let s′.cookies [sw .scope.host] := CookieMerge(s′.cookies [sw .scope.host], cookies ′)
11: let s′.localStorage [swOrigin] := localStorage ′

12: let s′.serviceWorkers.sw .scriptstate := state′

13: switch command do
14: case 〈PAYMENTHANDLERRESPONSE, paymentRequestEventNonce,

↪→ paymentRequestNonce, handlerNonce,methodName, details〉
15: let pre ← N such that π1(sw .scriptinputs.pre) = PAYMENTREQUESTEVENT

↪→ ∧ sw .scriptinputs.pre.paymentRequestNonce ≡ paymentRequestNonce
↪→ if possible; otherwise stop 〈〉, s′

16: let s′.events := s′.events +〈〉 〈PAYMENTHANDLERRESPONSE, paymentRequestEventNonce,
↪→ paymentRequestNonce, handlerNonce,methodName, details〉

17: stop 〈〉, s′

18: case 〈SET_PAYMENTMANAGER,newValue〉
19: let s′.serviceWorkers.sw .paymentManager := newValue
20: stop 〈〉, s′

21: case 〈GET_PAYMENTMANAGER〉
22: let s′.serviceWorkers.sw .scriptinputs := s′.serviceWorkers.sw .paymentManager
23: stop 〈〉, s′

24: case 〈XMLHTTPREQUEST, url ,method , data, xhrreference〉
25: if method ∈ {CONNECT, TRACE, TRACK} ∧ xhrreference 6∈ {N ,⊥} then stop
26: if url .host 6≡ swOrigin.host ∨ url .protocol 6≡ swOrigin.protocol then stop
27: if method ∈ {GET, HEAD} then
28: let data := 〈〉
29: let origin := ⊥
30: else
31: let origin := swOrigin

32: let req := 〈HTTPReq, ν4,method , url .host, url .path, , url .parameters, data〉
33: let referrer := s′.serviceWorkers.sw .scope
34: let referrerPolicy := noreferer
35: call HTTP_SEND(〈XHR, sw .nonce, xhrreference〉, req , url , origin, referrer , referrerPolicy , s′)

36: case 〈POSTMESSAGE,window ,message, origin〉
37: if ∃w ∈ Subwindows(s′) such that s′.w .nonce ≡ window then
38: let w ← Subwindows(s′) such that s′.w .nonce ≡ window
39: if ∃j ∈ N such that s′.w .documents.j .active ≡ >

↪→ ∧ (origin 6≡ ⊥ =⇒ s′.w .documents.j .origin ≡ origin) then
40: let s′.w .documents.j .scriptinputs

↪→ := s′.w .documents.j .scriptinputs
↪→ +〈〉 〈POSTMESSAGE, s′.w .nonce,message, s′.d .origin〉

41: else
42: if ∃j ∈ N such that s′.serviceWorkers.j .nonce ≡ window then
43: let s′.serviceWorkers.j .scriptinputs := s′.serviceWorkers.j .scriptinputs

↪→ +〈〉 〈POSTMESSAGE,window , s′.w .nonce, 〈〉〉
44: stop 〈〉, s′

45: case 〈OPEN_WINDOW,windownonce, url〉 → Allow payment handler to open window
46: let w′ := 〈windownonce, 〈〉,⊥〉
47: let s′.windows := s′.windows +〈〉 w′

48: let req := 〈HTTPReq, ν2, GET, url .host, url .path, url .parameters, 〈〉, 〈〉〉
49: call HTTP_SEND(〈REQ,windownonce〉, req , url , ⊥, ⊥, ⊥, s′)
50: case else stop
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G. Payment Handlers
To model a payment handler, Algorithm 24 was designed. It models a payment handler that, upon

receiving a PaymentRequestEvent, opens a window through which it obtains an authentication token (i.e.,
the customer authenticates herself). With this token it can issue a payment and craft a payment handler
response afterwards.

Algorithm 24 Relation of script_default_payment_handler

Input: 〈handlerNonce, scriptstate, scriptinputs, cookies, localStorage, secrets, swOrigin〉 → Script that mod-
els the behavior of a payment handler. Reacts to payment request event and communicates to a given endpoint
of the payment service. Crafts a payment handler response.

1: let switch ← {request, pay, craft, xmlhttp, setmgr, getmgr}
2: if switch ≡ request then → Start to process payment request event (authN at payment provider)
3: let pre ′ ← N such that π1(scriptinputs.pre ′) = PAYMENTREQUESTEVENT

↪→ if possible; otherwise stop 〈scriptstate, cookies, localStorage, 〈〉〉
→ Choose a random payment request event to process

4: let url := 〈URL, S, swOrigin.host, /index, 〈〉, 〈〉〉
5: let command := 〈OPEN_WINDOW, ν18, url〉 → Open window for customer authentication
6: stop 〈scriptstate, cookies, localStorage, command〉
7: else if switch ≡ pay then → Send payment details to payment provider
8: let pre ′ ← N such that π1(scriptinputs.pre ′) = PAYMENTREQUESTEVENT

↪→ if possible; otherwise stop 〈scriptstate, cookies, localStorage, 〈〉〉
9: let url := 〈URL, S, swOrigin.host, /pay, 〈〉, 〈〉〉

10: let total := scriptinputs.pre ′.total
11: let tokenMessage such that π1(tokenMessage) = POSTMESSAGE ∧ tokenMessage ∈ scriptinputs

↪→ if possible; otherwise stop 〈scriptstate, cookies, localStorage, 〈〉〉
12: let token := π3(tokenMessage)
13: let methodData ← scriptinputs.pre ′.methodData → Choose a methodData entry.
14: let receiver := methodData.receiver
15: let paymentIdentifier := methodData.paymentIdentifier
16: let paymentRequestNonce := scriptinputs.pre ′.paymentRequestNonce
17: let transactionId := scriptinputs.pre ′.transactionId
18: let command := 〈XMLHTTPREQUEST, url , POST, 〈token, receiver , total , paymentIdentifier , transactionId〉,⊥〉
19: stop 〈scriptstate, cookies, localStorage, command〉
20: else if switch ≡ craft then → Craft payment handler response
21: let pre ′ ← N such that π1(scriptinputs.pre ′) = PAYMENTREQUESTEVENT

↪→ if possible; otherwise stop 〈scriptstate, cookies, localStorage, 〈〉〉
22: let methodName ← TN
23: let details ← TN
24: let command := 〈PAYMENTHANDLERRESPONSE, scriptinputs.pre ′.paymentRequestEventNonce,

↪→ scriptinputs.pre ′.paymentRequestNonce, handlerNonce,methodName, details〉
25: stop 〈scriptstate, cookies, localStorage, command〉
26: else if switch ≡ setmgr then → Set Payment Manager
27: let newValue ← TN
28: let command := 〈SET_PAYMENTMANAGER,newValue〉
29: stop 〈scriptstate, cookies, localStorage, command〉
30: else if switch ≡ getmgr then → Get Payment Manager
31: let command := 〈GET_PAYMENTMANAGER〉
32: stop 〈scriptstate, cookies, localStorage, command〉
33: else if switch ≡ xmlhttp then → Perform XMLHTTPRequest
34: let protocol ← {P, S}
35: let host ← Doms
36: let path ← S
37: let fragment ← S
38: let parameters ← [S× S]
39: let url := 〈URL, protocol , host , path, parameters, fragment〉
40: let command := 〈XMLHTTPREQUEST, url , GET, 〈〉,⊥〉
41: stop 〈scriptstate, cookies, localStorage, command〉

Helper Funtions. Algorithm 25 defines a helper function GET_PAYMENT_HANDLERS that returns all
relevant payment handlers for a given payment method identifier.

The function DELIVER_TO_DOC in Algorithm 26 is extended to be able to deliver messages as well to
service workers.

Documents of the same scope as to which a service worker is registered have a reference to these service
workers. This is provided through extending Algorithm 28 by a few lines and using the new Algorithm 27
with its function GET_SWS. It returns a set of relevant service workers for a given URL.
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Algorithm 25 Web Browser Model: Process script interaction with Payment APIs
1: function GET_PAYMENT_HANDLERS(pmi , s′)
2: let handlers := {}
3: for each handler ∈ s′.serviceWorkers do
4: for each instrument ∈ handler .paymentManager.instruments do
5: if instrument .method ≡ pmi then
6: let handlers := handlers ∪ {handler}

return handlers

Algorithm 26 Web Browser Model: Deliver a message to the script in a document or a service worker.
1: function DELIVER_TO_DOC(nonce, data, s′)
2: if ∃sw ∈ s′.serviceWorkers such that sw .nonce ≡ nonce then
3: let sw ← N such that s′.serviceWorkers.sw .nonce ≡ nonce
4: let s′.serviceWorkers.sw .scriptinputs := s′.serviceWorkers.sw .scriptinputs +〈〉 data
5: stop 〈〉, s′
6: else
7: let w ← Subwindows(s′), d such that s′.d .nonce ≡ nonce ∧ s′.d = s′.w .activedocument

↪→ if possible; otherwise stop 〈〉, s′
8: let s′.d .scriptinputs := s′.d .scriptinputs +〈〉 data
9: stop 〈〉, s′

Algorithm 27 Web Browser Model: Get relevant service workers for URL
1: function GET_SWS(url, s′)
2: let handlers := {}
3: for each handler ∈ s′.serviceWorkers do
4: if handler.scope.domain = url.domain ∧ handler.scope.protocol = url.protocol then
5: let handlers := handlers ∪ {handler}

return handlers

Algorithm 28 Web Browser Model: Process an HTTP response.
1: function PROCESSRESPONSE(response , reference , request , requestUrl , key , f , s′)

Process headers in response
2: if Set-Cookie ∈ response.headers then
3: for each c ∈〈〉 response.headers [Set-Cookie], c ∈ Cookies do
4: let s′.cookies [request .host] := AddCookie(s′.cookies [request .host] , c)

5: if Strict-Transport-Security ∈ response.headers ∧ requestUrl .protocol ≡ S then
6: let s′.sts := s′.sts +〈〉 request .host

7: if Referer ∈ request.headers then
8: let referrer := request.headers[Referer]
9: else

10: let referrer := ⊥
11: if Location ∈ response.headers ∧ response.status ∈ {303, 307} then
12: let url := response.headers [Location]
13: if url .fragment ≡ ⊥ then
14: let url .fragment := requestUrl .fragment

15: let method ′ := request .method
16: let body ′ := request .body
17: if response.status ≡ 303 ∧ request .method 6∈ {GET, HEAD} then
18: let method ′ := GET
19: let body ′ := 〈〉
20: if Origin ∈ request.headers ∧method ′ ≡ POST then
21: let origin := ♦
22: else
23: let origin := ⊥
24: if π1(reference) 6≡ XHR then → Do not redirect XHRs.
25: let req := 〈HTTPReq, ν6,method ′, url .host, url .path, url .parameters, 〈〉, body ′〉
26: let referrerPolicy := response.headers[ReferrerPolicy]
27: call HTTP_SEND(reference , req , url , origin , referrer , referrerPolicy , s′)
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Deliver/process data in response
28: switch π1(reference) do
29: case REQ → normal response
30: let w ← Subwindows(s′) such that s′.w .nonce ≡ π2(reference)

↪→ if possible; otherwise stop
31: if response.body 6∼ 〈∗, ∗〉 then
32: stop {}, s′

33: let script := π1(response.body)
34: let scriptinputs := π2(response.body) +〈〉 GET_SWS(requestUrl , s′) → Payment Handler Exten-

sion
35: let d := 〈ν7, requestUrl , response.headers, referrer , script , 〈〉, scriptinputs, 〈〉,>〉
36: if s′.w .documents ≡ 〈〉 then
37: let s′.w .documents := 〈d〉
38: else
39: let i ← N such that s′.w .documents.i .active ≡ >
40: let s′.w .documents.i .active := ⊥
41: remove s′.w .documents.(i + 1) and all following documents from s′.w .documents
42: let s′.w .documents := s′.w .documents +〈〉 d
43: stop {}, s′

44: case XHR → process XHR response
45: let headers := response.headers− Set-Cookie
46: let m := 〈XMLHTTPREQUEST, headers, response.body, π3reference〉
47: call DELIVER_TO_DOC(π2(reference), m, s′)
48: stop {}, s′

49: case WS → process WebSocket response
50: if response.status 6≡ 101 ∨ response.headers[Upgrade] 6≡ websocket then
51: stop
52: let wsconn := 〈reference, request .nonce, key , f〉
53: let s′.wsConnections := s′.wsConnections +〈〉 wsconn

H. Payment Provider Server

Our generic payment provider server is based on the template for HTTPS servers offered in the WIM [21].
Definition 70. The set of possible states Zpp of a payment provider server pp is the set of terms of the

form:

〈DNSaddress, pendingDNS , pendingRequests, corrupt ,

keyMapping , tlskeys, ids, transactions, tokens〉

Where DNSaddress, pendingDNS , pendingRequests, corrupt , keyMapping , tlskeys , and ids defined
as in the Web Infrastructure Model [21].
The remaining sub terms have the following form:
• transactions ∈ [TN × TN ] stores all transactions that have been submitted and accepted by the

payment provider server. More precisely, for a term key ∈ TN (typically a payment identifier), the
transaction transactions[key ] has the following structure: 〈sender , receiver , total , transactionId〉,
where sender , receiver , total ∈ TN , and transactionId ∈ N .

• tokens ∈ [TN ×N ] stores all tokens that have been authorized by the payment provider through basic
authorization.

An initial state spp0 of pp is a state of pp with spp0 .pendingDNS ≡ 〈〉, s
pp
0 .pendingRequests ≡ 〈〉,

spp0 .corrupt ≡ ⊥, spp0 .keyMapping being the same as the key mapping for browsers [20],
spp0 .tlskeys ≡ tlskeyspp, spp0 .transactions ≡ 〈〉, and spp0 .tokens ≡ 〈〉.

Placeholder Usage
ν1 Algorithm 29, placeholder for auth token used by service worker

Table III List of placeholders used in payment provider server algorithms.

Table III shows the placeholder that was added to the generic HTTPS model offered in [21]. It is used
to create authentication tokens with which a payment can be authenticated.

The template is modeled in Algorithm 29 with a basic interface offering the ability to process HTTPS
requests to three different endpoints:
/index serves an entry index page with the script_payment_provider_index script.
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/authenticate expects the customer’s credentials as input and responds with an authentication token
that can later be used to pay requests (if the credentials where correct).

/pay is used to process a transaction given a receiver, a total and an authentication token.

In the algorithm, transactions are stored within a dictionary. This allows for an easy implementation of
the retry mechanism, since earlier requests for the same request id are simply overwritten.

Algorithm 29 Relation of a payment provider server
1: function PROCESS_HTTPS_REQUEST(m, k, a, f, s′)
2: if m.path ≡ /index then
3: let headers := 〈〈ReferrerPolicy, origin〉〉
4: let m′ := encs(〈HTTPResp,m.nonce, 200, headers, 〈script_payment_provider_index, 〈〉〉〉, k)
5: else if m.path ≡ /authenticate then
6: let identity := m.body[id]
7: let password := m.body[secret]
8: if password 6= secretOfID(identity) then
9: stop 〈〉, s′

10: let token := ν1
11: let s′.tokens[identity ] := s′.tokens[identity ] +〈〉 token
12: let m′ := encs(〈HTTPResp,m.nonce, 200, 〈〉, 〈TOKEN, token〉〉, k)
13: stop 〈〈f, a,m′〉〉, s′
14: else if m.path ≡ /pay ∧m.method ≡ POST then
15: let token_seq := m.body[token] → 〈TOKEN, token〉
16: let token := π2(token_seq)
17: let sender ← s′.ids such that token ∈〈〉 s′.tokens[sender ]

↪→ if possible; otherwise stop 〈〉, s′
18: let receiver := m.body[receiver]
19: let total := m.body[total]
20: let paymentIdentifier := m.body[paymentIdentifier]
21: let transactionId := m.body[transactionId]
22: let s′.transactions[〈paymentIdentifier〉] := 〈sender , receiver , total , transactionId〉

→ Seamlessly integrate retry updates
23: let m′ := encs(〈HTTPResp,m.nonce, 200, 〈〉, 〈〉〉, k)
24: stop 〈〈f, a,m′〉〉, s′

The script_payment_provider_index script is defined in Algorithm 30. It can only do two different
things: First, it can obtain an authorization token by use of a XMLHTTPREQUEST. Second, it can submit
such a token with a post request to the service worker waiting for it.

Algorithm 30 Relation of script_payment_provider_index .
Input: 〈tree , docnonce , scriptstate , scriptinputs , cookies , localStorage , sessionStorage , ids , secrets〉
1: let switch ← {auth, postToken}
2: if switch ≡ auth then
3: let url := GETURL(tree, docnonce)
4: let id ← ids
5: let username := π1(id)
6: let domain := π2(id)
7: let interactive ← {⊥,>}
8: let url := 〈URL, S, url .host, /authenticate, 〈〉, 〈〉〉
9: let secret ← secrets such that secret = secretOfID(id) if possible; otherwise

↪→ stop 〈scriptstate, cookies, localStorage, sessionStorage, 〈〉〉
10: let command := 〈XMLHTTPREQUEST, url , POST, 〈id , secret〉,⊥〉
11: stop 〈scriptstate, cookies, localStorage, sessionStorage, command〉
12: else
13: let url := GETURL(tree, docnonce)
14: let origin := 〈url .host, S〉
15: let token such that π1(token) = TOKEN ∧ token ∈ scriptinputs if possible; otherwise

↪→ stop 〈s, cookies, localStorage, sessionStorage, 〈〉〉
16: let swNonce such that π1(swNonce) = SWNONCE ∧ swNonce ∈ scriptinputs if possible; otherwise

↪→ stop 〈s, cookies, localStorage, sessionStorage, 〈〉〉
17: let command := 〈POSTMESSAGE, swNonce, token, origin〉
18: stop 〈scriptstate, cookies, localStorage, sessionStorage, command〉
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I. Merchant Server

Our model of a generic merchant server is based on the template for HTTPS servers offered in the
WIM [21].
Definition 71. The set of possible states Zms of a merchant server ms is the set of terms of the form:

〈DNSaddress, pendingDNS , pendingRequests, tlskeys, keyMapping , corrupt〉

Where DNSaddress, pendingDNS , pendingRequests, tlskeys, keyMapping , and corrupt defined as in
the WIM [21].
The definition of the server state is therefore exactly the same as in the WIM.
An initial state sms0 of ms is a state of as with sms0 .pendingDNS ≡ 〈〉, sms0 .pendingRequests ≡
〈〉, sms0 .corrupt ≡ ⊥, sms0 .keyMapping being the same as the keymapping for browsers [20], and
sms0 .tlskeys ≡ tlskeysas.
The template is implemented in Algorithm 31 with a basic interface offering the ability to process

HTTPS requests of only a single kind:
/index serves an entry index page with the script_merchant script.

Algorithm 31 Relation of a merchant server Ri: Processing HTTPS Requests.
1: function PROCESS_HTTPS_REQUEST(m, k, a, f , s′)
2: if m.path ≡ /index then
3: let headers := 〈〈ReferrerPolicy, origin〉〉
4: let m′ := encs(〈HTTPResp,m.nonce, 200, headers, 〈script_merchant, 〈〉〉〉, k)
5: stop 〈〈f, a,m′〉〉, s′

6: stop 〈〉, s′

script_merchant is not defined through code but through the following textual definition.
script_merchant non-deterministically chooses a command to output for each iteration of the
RUNSCRIPT algorithm (Algorithm 21).

J. Web Payment APIs model with attackers

The formal model of the Web Payment APIs is based on the definition of a web system given in Definition
27 of the WIM [21].
Definition 72. A web system (W,S, script, E0) belongs to WPAPI iff the following conditions are

satisfied:
• W denotes a system described by a set of Dolev-Yao processes. It is partitioned into the sets Hon and
Net. Net includes a network attacker process. Hon consists out of a finite set of web browsers B, a
finite set of web servers for the merchants C and a finite set of payment provider servers PP with
Hon := B ∪ C ∪ PP .
As in [20], DNS servers are not modeled directly as they are subsumed by the network attacker.

• S contains the scripts of the model with a mapping to their string representation. They are shown in
table IV.

• E0 is defined as in the WIM[21] as an (infinite) sequence of events, containing an infinite number of
events of the form 〈a, a, TRIGGER〉 for every a ∈ ∪p∈WIp.

s ∈ S script(s)
script_payment_provider_index script_payment_provider_index
script_default_payment_handler script_default_payment_handler
script_merchant script_merchant

Table IV List of scripts with their mapping to a string representation

K. Mentionable simplifications and exclusions

In the model of the WPA presented here, some details differ from the exact specification. This section
is intended to give a short overview over the aspects that differ and the reasoning for why these aspects
were modeled differently.

During the processing of a payment request, there exists a set of situations in which a payment request
can be updated by the merchant after the browser notifies the merchant of certain changes (e.g., after
the customer entered a shipping address, so the merchant can update shipping costs if necessary). In our

57



model, a payment request can be updated independently of the existence of such a browser notification, i.e.,
we over-approximate what the merchant can do. This decision simplifies the resulting model significantly
while not weakening the resulting proof. Note that in addition, the browser (as specified and also in our
model) does not accept any updates once the customer submitted a payment.

The feature set of service workers that was modeled is not exhaustive. Features such as the installation
process and their functionality as network proxies are not captured yet. Offering an exhaustive model of
the service worker API would have gone beyond the scope of this work, but is planned for future work.
The installation process is complex and issues within it would not have been linked to the WPA, but to the
service worker API. Therefore, we assume that the service workers are already installed at the beginning
of a system run. Furthermore, only the necessary features of service workers that directly affect the WPA
are modeled.

In addition, we excluded the “merchant validation” sub-flow from our analysis, as it was considered a
very early draft when we started our work and has since been removed completely from the specifications.
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APPENDIX E
PROOFS

A. General Properties

Lemma 6 (Credentials do not leak).
For every WPA system in WPAPI , for every run ρ of this system, every configuration (S, E, N) in ρ,
for every browser b ∈ B honest in S, every id ∈ b.ids with pp = governor(id) and pp honest in S,
it holds true:

∀p ∈ W\{b, pp} : secretOfID(id) /∈ d∅(S(p))

Proof:
Let b be a browser honest in S, id ∈ b.ids, and pp = governor(id) a payment provider honest in S.

Let s := secretOfID(id) be the secret of the identity. We show that s can not be obtained by any other
party p ∈ W\{b, pp}.

In the initial state S0 of the run, only b and pp can derive s (see the definition of secretOfID in
Section D-A and Definition 69).

In the following, we show that this secret is only sent out by b to pp, and to no other process. In
particular, pp never sends out the secret.

We start by considering the browser b: By definition of the browser, only scripts and service workers
from the origin 〈id .domain, S〉 can obtain a secret of this origin (see Line 7 of Algorithm 21 and
Line 6 of Algorithm 23). The only scripts and service workers that have the same origin as pp are
script_payment_provider_index (Algorithm 30) and script_default_payment_handler (Algorithm 24).
Case 1: script_payment_provider_index : This script uses the credentials contained in the secrets entry

of its input only in Line 9 (Algorithm 30).
The secret is transmitted through an HTTPS connection to the host that served the script. Since
this script has the same origin as the secret, this can only be pp. pp already knows the secret
and does not leak them (as we will show below). More precisely, the script creates the command
〈XMLHTTPREQUEST, url , POST, 〈id , secret〉,⊥〉 (Line 10 of Algorithm 30), which the browser pro-
cesses in Line 58 to Line 71 of Algorithm 21. Here, the browser checks the origin contained in the
command, and only sends the request if the origin is equal to the origin of the script (Line 61 and
Line 71 of Algorithm 21).

Case 2: script_default_payment_handler : This service worker does not use the credentials contained
in the secrets entry of its input.

We note that the browser sends out the secret as part of an HTTPS message to pp. By applying Lemma 3,
we can conclude that only pp can decrypt this request, therefore, a network attacker cannot derive the
content of the request.

The payment provider pp only uses the credentials in Line 8 of Algorithm 29. In this line, the credentials
are only compared to the submitted credentials of the user. At all other paths, even if s is part of the
request, the payment provider will not send out the secret of an identity it governs.

Therefore, neither b nor pp do leak s to any other p, which proves the lemma.

Lemma 7 (Authorization tokens do not leak).
For every WPA system in WPAPI , for every run ρ of this system, every configuration (S, E, N) in ρ,
every payment provider server pp ∈ PP honest in S, every token ∈ S(pp).tokens with id such that
token ∈〈〉 S(pp).tokens[id] and b ∈ B such that b = ownerOfID(id) and b honest in S, it holds true
that

∀p ∈ W\{b, pp} : token /∈ d∅(S(p))

Proof:
Let token ∈ S(pp).tokens be a nonce with id such that token ∈〈〉 S(pp).tokens[id] and b ∈ B such

that b = ownerOfID(id) and b honest in S.
An honest payment provider modifies the tokens entry of its state only in Line 11 of Algorithm 29.

In this line, the payment provider adds a token. This token is a nonce that is freshly created in Line 10
of Algorithm 29. In the following, we show that the payment provider sends token within an HTTPS
response to b, and to no other process.

As the payment provider pp stores token in S(pp).tokens[id] (Line 11 of Algorithm 29), we conclude
that pp received an HTTP request to its /authenticate endpoint (Line 5 of Algorithm 29). Let reqauthn
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be this request. The key used for storing the token into tokens (i.e., the identity) is taken from the request
in Line 6 of Algorithm 29, i.e., reqauthn.body[id] = id. Furthermore, this request contains the secret of
id in reqauthn.body[secret] (see Lines 6 to 8 of Algorithm 29).

By applying Lemma 6, we conclude that ∀p ∈ W\{b, pp} : secretOfID(id) /∈ d∅(S(p)). In particular,
this means that either b or pp sent the request to the /authenticate endpoint of the payment provider.
As an honest payment provider never sends HTTP requests, we conclude that the HTTP request was
created and sent by the browser b.

The payment provider pp sends token via an HTTPS response to the HTTPS request reqauthn in Line 12
of Algorithm 29.

By applying Corollary 1, we conclude that the symmetric key k is only known to b and pp, i.e., no
other process can decrypt the response and obtain the token by decrypting the response (we note that an
honest payment provider never leaks its own private decryption key, and also does not leak symmetric
keys contained in HTTPS requests).

We highlight that the payment provider does not return a token (i.e., a nonce stored in the tokens

entry of its state) when processing requests that are received at the /index or /pay endpoints.
It is left to show that the browser b does not leak token to any other process.
The browser b only sends requests with credentials of an user to the /authenticate endpoint of pp after

receiving an XMLHTTPREQUEST command by script_payment_provider_index (Line 10 of Algorithm 30).
Furthermore, this is only possible if the script is running under an origin of pp, as only these scripts can
obtain a secret of this origin (see Line 7 of Algorithm 21).

After the script script_payment_provider_index receives the response to the XMLHTTPREQUEST, it will
(non-deterministically) either send another request to the /authenticate endpoint of pp (see Line 2 of
Algorithm 30), or send a postMessage containing the token (see Line 12 of Algorithm 30). In the first case
(request to the /authenticate endpoint) the script does not include values from its inputs scriptinputs
(which contains the token of the response) into the request. In the second case, the script takes the token from
the scriptinputs (Line 15 of Algorithm 30), and creates a command (Line 17 of Algorithm 30) that initiates
the browser to send the token via the postMessage mechanism: 〈POSTMESSAGE, swNonce, token, origin〉.
The last entry of this sequence is the origin of the script itself (see Line 13 and 14 of the same script),
i.e., the origin of pp.

The second entry of the command, i.e., swNonce , is taken from the scriptinputs. This service worker
nonce is added to the input scriptinputs in Line 34 of Algorithm 28 by GET_SWS (Algorithm 27).
GET_SWS only returns service workers that are of the same scope as the url of the corresponding HTTPS
request (see Line 34 of Algorithm 28), i.e., service workers of pp.

The browser processes this POSTMESSAGE command in Line 82 of Algorithm 21. As the definition of
the initial state of the browser does not allow a nonce to be used for both identifying a service worker and
a window at the same time (see Definition 69), we conclude that the condition in Line 83 of Algorithm 21
is not true. If the second check in Line 88 of the same algorithm succeeds, then the message (with the
token) is added to the inputs of a service worker with the same origin as the script, i.e., an origin of the
payment provider. (If the second check fails, the message will be dropped, and the token cannot leak).

This service worker, therefore, has to be script_default_payment_handler (Algorithm 24), since no
other payment handler is running under an origin of pp.

script_default_payment_handler (Algorithm 24) accesses its scriptinputs in several lines, but in all
of them the first field of the term is checked for the correct value. As for postMessages, the first entry is
the string POSTMESSAGE, only Line 11 of Algorithm 24 is relevant.

The resulting message that is initiated by an XMLHTTPREQUEST command in Line 18 of Algorithm 24
is sent via an HTTPS request to the host of the service worker, i.e., to pp. As shown above, the payment
provider pp does not leak any tokens contained in requests. Therefore, we conclude that token does not
leak to any other process.

Lemma 8 (No two payment storage entries have same transactionID). For every run ρ of a WPA
system in WPAPI , every configuration (S, E, N) in ρ, every honest b ∈ B, any transaction identifier
transaction_id ∈ N there exists at most one payment request nonce prn ∈ N such that:

(S(b).paymentStorage[prn]).transactionID = transaction_id

Proof:
Since b is honest by assumption, we only have to consider a non-corrupted behaving browser b. Note,

that the transactionID of a payment storage is never changed in the model after creation.
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Therefore, we only have to consider the creation of objects in the paymentStorage that have the required
first value of transactionID . Within the model, such a payment storage entry is only generated in Line
100 of Algorithm 21. Each created payment storage is initialized with a new and random transactionID
(Line 99 of Algorithm 21). Therefore, there can not be two payment storage entries sharing the same
transaction identifier.

Lemma 9 (methodData of payment request event contains one element). Given a WPA system in
WPAPI , for every run ρ of this system, every configuration (S, E, N) in ρ, every honest b ∈ B,
any payment request event (as defined in Definition 64) preqEvent ∈〈〉 S(b).events, it holds true that
preqEvent .methodData contains one entry.

Proof:
Let preqEvent be a payment request event s.t. preqEvent ∈〈〉 S(b).events.
The only place where an honest browser adds a payment request event to its events state entry is in

Line 22 of Algorithm 22. We note that the events entry is initially empty, per Definition 69, and that
the browser never modifies a payment request event stored in events.

Hence, the browser created preqEvent in Line 20 of Algorithm 22.
The methodData entry of preqEvent is created in Lines 15 to 18 of Algorithm 22, where it is initialized

to an empty list in Line 15.

Method data contains at most one element. We now assume that preqEvent .methodData contains at
least two entries, and show that this assumption leads to a contradiction.

As preqEvent .methodData contains two elements, we conclude that ∃ i1, j1 s.t. i1 6= j1 and

πi1(preqEvent .methodData).pmi = instrument .enabledMethods (15)
πj1(preqEvent .methodData).pmi = instrument .enabledMethods (16)

because a method data entry is only added to methodData if the payment method identifier is equal to the
enabledMethods of the instrument (Line 17 of Algorithm 22). Note that instrument .enabledMethods
is a single value, see Definition 56.

As these method data elements were added to the methodData list in Line 18, we conclude that they
were also contained in a payment request (as the values mds are taken from paymentRequest .methodData,
see Line 16).

Let preq be this payment request. We conclude that ∃ i2, j2 s.t. i2 6= j2 and

πi2(preq .methodData).pmi = instrument .enabledMethods (17)
πj2(preq .methodData).pmi = instrument .enabledMethods (18)

and in particular

πi2(preq .methodData).pmi = πj2(preq .methodData).pmi (19)

Next, we trace back the origin of preq . This payment request is taken from
S′.paymentStorage[prn].paymentRequest (see Line 6 of Algorithm 22), for some nonce prn ∈ N .
The paymentStorage entry is initially empty (see Definition 69), and new entries are added
only in Line 100 of Algorithm 21. While there are places where values of a payment request
stored in paymentStorage are modified, the browser algorithms never modify the value of
s.paymentStorage[prn2 ].paymentRequest.methodData, for a browser state s ∈ ZWebbrowser and
a nonce prn2 ∈ N .

In the processing step in which the browser created preq and added it to paymentStorage, the stop

in Line 96 of Algorithm 21 was not executed.
Let w.l.o.g. i2 < j2.
After πi2(preq .methodData) was processed by Lines 95 to 97 of Algorithm 21, seenPMIs contains

the value πi2(preq .methodData).pmi (as the stop of the for loop was not executed).
As πj2(preq .methodData) was also processed by the for loop without executing the stop, we conclude

that πi2(preq .methodData).pmi 6∈〈〉 seenPMIs , and in particular,

πi2(preq .methodData).pmi 6= πj2(preq .methodData).pmi

contradicting (19).
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Method data contains at least one element. We now assume that preqEvent .methodData contains no
entries, and show that this assumption leads to a contradiction. As shown above, there exists a payment
request preq from which the entries in preqEvent .methodData originate. We distinguish the following
cases:

Case 1: preq .methodData = 〈〉
As shown above, the payment request preq was created in Line 98 of Algorithm 21. However, the

check in Line 93 of Algorithm 21 ensures that the method data entry of the payment request is not empty,
i.e., preq .methodData 6= 〈〉.

Case 2: preq .methodData 6= 〈〉
As the methodData entry of the payment request event is empty, i.e., preqEvent .methodData = 〈〉,

it follows that ∀mds ∈〈〉 preq .methodData. mds.pmi 6= instrument .enabledMethods (see the loop in
Line 16 of Algorithm 22), where instrument is an instrument that supports one of the payment methods
of the payment request (see Line 13 of Algorithm 22). However, as the check in Line 13 succeeded, such
a list entry must exist, i.e., ∃mds ∈〈〉 preq .methodData. mds.pmi = instrument .enabledMethods.

Lemma 10 (Transaction in payment provider’s state implies PaymentRequestEvent in browser’s state).
Given a WPA system in WPAPI , for every run ρ of this system, every configuration (S, E, N) in ρ,
every payment provider server pp ∈ PP honest in S, and every t ∈ S(pp).transactions it holds true
that:
If b := ownerOfID(t.sender) ∈ B is a browser honest in S, then ∃ preqEvent ∈〈〉 S(b).events such
that:

π1(preqEvent) = PAYMENTREQUESTEVENT ∧
preqEvent .transactionId = t.transactionId ∧
preqEvent .total = t.total ∧
π1(preqEvent .methodData).receiver = t.receiver ∧
S(pp).transactions[〈π1(preqEvent .methodData).paymentIdentifier〉] = t

and such an event has been processed by a payment handler installed in b and provided by pp to send
an HTTPS request to pp to generate t.

Proof:

HTTP Request was created by b. We first show that the payment provider pp must have received an
HTTPS request, and that this HTTPS request was created by b.

Let t be a transaction stored in the state of a payment provider pp honest in S, with b :=
ownerOfID(t.sender) ∈ B being a browser honest in S.

Per Definition 70, the initial transactions state entry of the honest payment provider pp is empty,
i.e., spp0 .transactions ≡ 〈〉. Therefore, we conclude that the payment provider pp added t to its state
in a processing step.

Let tdictkey be a key under which t is stored in the transactions state entry (here, we do not assume
that there is exactly one such key). Let (S′, E′, N ′) → (S′′, E′′, N ′′) be the last processing step that
modifies the transactions[tdictkey] entry of pp prior to (S,E,N).

As pp is honest, it only modifies its transactions state entry in Line 22 of Algorithm 29, after
receiving an HTTP POST request to its /pay endpoint (Line 14 of Algorithm 29).

Let reqt be the corresponding request that was processed in the aforementioned processing step. This
request contains a token ttoken, a receiver, a total, and the key that pp uses for storing the transaction t in
its transactions state entry, i.e.,

t.transactionId = reqt.body[transactionId] (L. 21, Alg. 29) (20)
t.total = reqt.body[total] (L. 19, Alg. 29) (21)
t.receiver = reqt.body[receiver] (L. 18, Alg. 29) (22)
tdictkey = reqt.body[paymentIdentifier] (L. 20, Alg. 29) (23)

As the transaction entry of the state of pp is updated, we can conclude that the stop in Line 17
was not executed, and that ttoken = reqt.body[token] ∈ S′(pp).tokens[t.sender].

As pp and b = ownerOfID(t.sender) were honest in S’, we can apply Lemma 7, and we conclude
that
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∀p ∈ W\{b, pp} : ttoken /∈ d∅(S′(p))

Therefore, we conclude that either pp or b must have constructed the HTTP request reqt. As an honest
payment provider never sends HTTP requests (see also Algorithm 29), we can conclude that the HTTP
request reqt was created by the browser b.

We highlight that the transaction identifier t.transactionId, the total t.total, the receiver t.receiver,
and the payment identifier used as the dictionary key tdictkey that are taken from the same HTTPS request
that contained the token, i.e., in reqt, and therefore, were sent by the browser b.

Origin of reqt inside the browser b. Next, we show that the request was initiated by an payment handler
with the same origin as pp.

In general, a call to the /pay endpoint of the payment provider pp can have had several origins, such
as an URL navigation, a FORM command of a script, an IFRAME command of a script, a XMLHTTPREQUEST

command of a script or a service worker and so forth.
But since the call has to be authorized by a token token and has to be a POST call, only

script_default_payment_handler can be the source of the call.
script_payment_provider_index can not issue a POST call to /pay and only shares tokens with a

script_default_payment_handler served from the same domain as script_payment_provider_index . As
argued in Lemma 7, the token is only used in Line 11 of Algorithm 24. Which is followed by the relevant
XMLHTTPREQUEST command, that calls /pay.

Therefore, we conclude that in the processing step in which the browser b creates reqt, the browser
executed the default payment handler, and in particular, this payment handler has the same origin as the
payment provider pp.

Exists payment request event with same transaction id, receiver, total, and payment identifier used
for t.

Now, we track back where the values used by the payment handler for the XMLHTTPREQUEST originate
from.

An honest payment handler creates XMLHTTPREQUEST commands only in Line 18 and Line 40 of
Algorithm 24. As argued above, reqt is a POST request. Thus, we conclude that the honest payment
handler created the XMLHTTPREQUEST in Line 18 of Algorithm 24, as the honest payment handler does
not create a POST request in Line 40.

The browser, when executing such a command of a payment handler, does not alter the values inside the
request: An XMLHTTPREQUEST command triggers the browser b to send an HTTPS request, see Line 32
of Algorithm 23 (we note that the URL has the same origin as the payment handler, see also Line 26 of
Algorithm 23).

As this is a POST request, the body of the corresponding HTTP request is taken from the data field
of the input XMLHTTPREQUEST (Line 24 of Algorithm 23). Therefore, we have that

reqt.body = data (24)

The content of the data entry is specified by the payment handler in Line 18 of Algorithm 24.
We now show that values contained in the data entry of the XMLHTTPREQUEST are taken by the payment

handler from an PAYMENTREQUESTEVENT.
As Line 8 shows, an event term with its first field being PAYMENTREQUESTEVENT is needed in the script

inputs of the payment handler script for the payment handler to create the XMLHTTPREQUEST command.
Let preEvent denote this event.

In Line 13 of Algorithm 24, the payment handler selects one method data entry.
We now conclude the following:

π1(preqEvent) = PAYMENTREQUESTEVENT (L. 8, Alg. 24) (25)
∃i.πi(preqEvent .methodData).paymentIdentifier =

data.paymentIdentifier (L. 15, Alg. 24) (26)
∃i.πi(preqEvent .methodData).receiver = data.receiver (L. 14, Alg. 24) (27)
preqEvent .transactionId = data.transactionId (L. 17, Alg. 24) (28)
preqEvent .total = data.total (L. 10, Alg. 24) (29)
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Payment Request Event was in Pool of Events. The only place inside the browser b where such an
event is added to the inputs of a payment handler is in the DELIVER_TO_DOC helper function (Line 4
of Algorithm 26), when called in Line 28 of Algorithm 22. The event is passed to the service worker in
an unmodified manner.

This happens only if the function PROCESSEVENT (Algorithm 22) is called with an
PAYMENTREQUESTEVENT, i.e., PROCESSEVENT was called with the payment request event preEvent . The
function PROCESSEVENT (Algorithm 22) is called within the main function of the browser b (Line 49
of Algorithm 20).

The events passed to the function PROCESSEVENT are only taken from the pool of events store in the
browsers state (Line 47 of Algorithm 20). Therefore, preEvent must have been stored in S”’(b).events
for some state S”’ of a configuration prior to (S,E,N).

As an honest browser never removes events from its events sequence, we conclude that preEvent ∈〈〉
S(b).events.

Now, we apply Lemma 9, and conclude that preEvent .methodData contains exactly one element, i.e.,

π1(preqEvent .methodData).paymentIdentifier = tdictkey ∧
π1(preqEvent .methodData).receiver = t.receiver

Using 20-23, 24, and 25 - 29, it follows that

π1(preqEvent) = PAYMENTREQUESTEVENT ∧
π1(preqEvent .methodData).paymentIdentifier = tdictkey ∧
π1(preqEvent .methodData).receiver = t.receiver ∧
preqEvent .transactionId = t.transactionId ∧
preqEvent .total = t.total

As honest browser also enforces that a payment handler can only send requests to its origin (Line 26
of Algorithm 23), therefore the payment handler processing preqEvent must be provided by pp. Hence,
Lemma 10 is proven.

Lemma 11 (PaymentRequestEvent in browser’s state implies SubmitPayment in browser’s state). Given a
WPA system in WPAPI , for every run ρ of this system, every configuration (S, E, N) in ρ, every browser
b honest in S, every preqEvent ∈〈〉 S(b).events with π1(preqEvent) = PAYMENTREQUESTEVENT, it
holds true that:

∃ spEvent . spEvent ∈〈〉 S(b).events ∧
π1(spEvent) = SUBMITPAYMENT ∧
π2(spEvent) = preqEvent .paymentRequestNonce ∧
π3(spEvent) = preqEvent .handlerNonce

Proof:
Let preqEvent be an event such that preqEvent ∈〈〉 S(b).events with π1(preqEvent) =

PAYMENTREQUESTEVENT, for a browser b that is honest in S.
An honest browser b adds such an event only in Line 22 of Algorithm 22 to its events state entry.
This happens only if the function PROCESSEVENT (Algorithm 22) is called with an

SUBMITPAYMENT event (see Line 5 of Algorithm 22). Let spEvent be this event. The value of
preqEvent .paymentRequestNonce is taken directly from spEvent and is the second entry of spEvent ,
i.e., π2(spEvent) = preqEvent .paymentRequestNonce (see Line 20 of Algorithm 22). The value of
preqEvent .handlerNonce is the nonce of an handler. This nonce is chosen such that it is the same as
the handler nonce contained in the spEvent event (see Line 9 of Algorithm 22).

The function PROCESSEVENT (Algorithm 22) is called within the main function of the browser b
(Line 49 of Algorithm 20).

The events passed to the function PROCESSEVENT are only taken from the pool of events stored in
the browsers state (Line 47 of Algorithm 20). Therefore, spEvent must have been stored in S′(b).events
for some state S′ of a configuration prior to (S,E,N).

As an honest browser never removes events from its events state entry, we conclude that spEvent ∈〈〉
S(b).events.
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B. Intended Payments

Lemma 12 (Payment Request Event Implies Payment Intent).
For every WPA system in WPAPI , for every run ρ of this system, every configuration (S, E, N) in
ρ, every browser b ∈ B that is honest in S, every payment request event (as defined in Definition 64)
preqEvent ∈〈〉 S(b).events, it holds true that:

∃payment_intent .

payment_intent ∈〈〉 S(b).paymentIntents[preqEvent .transactionId] ∧
payment_intent .details.total = preqEvent .total ∧
π1(payment_intent .methodData).receiver = π1(preqEvent .methodData).receiver

Proof:
Let preqEvent be a payment request event such that preqEvent ∈〈〉 S(b).events, and b a browser

honest in S. Initially, the events state entry of the browser is empty (per Definition 69). An honest
browser adds payment requests events to its events state entry only in Line 22 of Algorithm 22. After
this line is executed, the browser will execute Line 25 of the same algorithm (as there is no stop between
these lines), in which the browser stores a payment intent pi . The dictionary key used for storing the
intent is the transaction identifier that is also stored in preqEvent i.e., preqEvent .transactionId (see
Line 20 and Line 25 of Algorithm 22).

Moreover, there exists a payment request paymentReq such that pi .details.total =
paymentReq .details.total (Line 23 of Algorithm 22). The value of the total of preqEvent is set
to the value stored in paymentReq , i.e., preqEvent .total = paymentReq .details.total (Line 10 and
Line 20 of Algorithm 22). Therefore, we conclude that pi .details.total = preqEvent .total.

The methodData entry stored in the payment intent pi in Line 24 is the same that is stored in the
payment request event preqEvent in Line 20 of Algorithm 22, i.e., π1(preqEvent .methodData).receiver
= π1(pi .methodData).receiver.

Lemma 13 (Intended Payments).
For every WPA system in WPAPI , for every run ρ of this system, every configuration (S, E, N) in ρ,
every payment provider server pp ∈ PP honest in S, and every t ∈ S(pp).transactions it holds true
that:
If b := ownerOfID(t.sender) ∈ B is a browser honest in S, then ∃i ∈ N such that:
• πi(S(b).paymentIntents[t.transactionId]).details.total = t.total
• π1(πi(S(b).paymentIntents[t.transactionId]).methodData).receiver = t.receiver

Proof:
Let t be a transaction stored in the state of an honest payment provider pp, i.e., t ∈ S(pp).transactions .

We apply Lemma 10 and conclude that, if b := ownerOfID(t.sender) ∈ B is a browser honest in S, then
∃ preqEvent ∈〈〉 S(b).events such that:

π1(preqEvent) = PAYMENTREQUESTEVENT ∧
preqEvent .transactionId = t.transactionId ∧
preqEvent .total = t.total ∧
π1(preqEvent .methodData).receiver = t.receiver.

Next, we apply Lemma 12, and conclude that there is a payment intent pi such that
pi ∈〈〉 S(b).paymentIntents[preqEvent .transactionId] ∧
pi .details.total = preqEvent .total ∧
π1(pi .methodData).receiver = π1(preqEvent .methodData).receiver,

and, in particular,
pi ∈〈〉 S(b).paymentIntents[t.transactionId] ∧
pi .details.total = t.total ∧
π1(pi .methodData).receiver = t.receiver.
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C. Uniqueness of Payments

Lemma 14 (Same payment request nonces if events have same transaction identifiers). Given a WPA system
in WPAPI , for every run ρ of this system, every configuration (S, E, N) in ρ, every browser b honest in
S, for all payment request events (as defined in Definition 64) preqEvent1 , preqEvent2 ∈〈〉 S(b).events
it holds true that:

preqEvent1 .transactionId = preqEvent2 .transactionId =⇒
preqEvent1 .paymentRequestNonce = preqEvent2 .paymentRequestNonce

Proof:
We prove Lemma 14 by contradiction. Assume that there exist payment request events (see

Definition 64) preqEvent1 , preqEvent2 ∈〈〉 S(b).events with preqEvent1 .transactionId =
preqEvent2 .transactionId and preqEvent1 .paymentRequestNonce 6=
preqEvent2 .paymentRequestNonce.

Because b is honest, all events have never been changed, replaced or removed after they were added
into in S(b).events. We trace back to the place where their transaction identifiers and payment request
nonces were generated.

We can see from the model that payment request events can only be added into S(b).events by
processing a SubmitPayment event (Line 20 of Algorithm 22). Its payment request nonce is the payment
request nonce of the corresponding SubmitPayment event and its transaction identifier is the transaction
identifier of the payment storage indexed by the payment request nonce (Line 19 of Algorithm 22).

Let spEvent1 and spEvent2 be two SubmitPayment events that were processed to generate preqEvent1
and preqEvent2 , respectively. Let (S1, E1, N1), (S2, E2, N2) ∈ ρ be the two output configurations of the
processing steps in which spEvent1 and spEvent2 were processed. Because preqEvent1 , preqEvent2 ∈〈〉
S(b).events, the two configurations must be previous configurations of (S, E, N) in ρ. As b is honest in
S, b was also honest in S1 and S2.

Let PRN1 = spEvent1.paymentRequestNonce and PRN2 = spEvent2.paymentRequestNonce. By
the assumption of the proof we have that

PRN1 6= PRN2 (30)

As reasoned above, we have that

preqEvent1 .transactionId = S1(b).paymentStorage[PRN1 ].transactionId

and
preqEvent2 .transactionId = S2(b).paymentStorage[PRN2 ].transactionId

Without loss of generality we assume that (S2, E2, N2) is the later configuration in ρ. Because an
entry of the payment storage in the state of an honest browser is never removed, and the transaction
identifier of the entry is never updated, we have that S2(b).paymentStorage[PRN1 ].transactionId =
S1(b).paymentStorage[PRN1 ].transactionId. By the assumption of the proof, we have that
preqEvent1 .transactionId = preqEvent2 .transactionId. Therefore, we have

S2(b).paymentStorage[PRN1 ].transactionId = S2(b).paymentStorage[PRN2 ].transactionId
(31)

Lemma 8 states that for every payment storage in the state of an honest browser, there does not exist
two different payment storage entries having the same transaction identifier value. From (31) we conclude
that PRN1 = PRN2 , which contradicts to (30). Hence, Lemma 14 is proven.

Lemma 15 (Same handler nonces if same payment request nonces). Given a WPA system in WPAPI ,
for every run ρ of this system, every configuration (S,E,N) in ρ, every browser b honest in S, for
all submit payment events (as defined in Definition 63) spEvent1 , spEvent2 ∈〈〉 S(b).events, it holds
true that:

spEvent1 .paymentRequestNonce = spEvent2 .paymentRequestNonce =⇒
spEvent1 .handlerNonce = spEvent2 .handlerNonce
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Proof:
We prove Lemma 15 by contradiction. Assume that there exist two submit payment events

spEvent1 , spEvent2 ∈〈〉 S(b).events (see Definition 63) with spEvent1 .paymentRequestNonce =
spEvent2 .paymentRequestNonce and spEvent1 .handlerNonce 6= spEvent2 .handlerNonce. Let
PRN := spEvent1 .paymentRequestNonce. Furthermore, let (S1, E1, N1), (S2, E2, N2) ∈ ρ be the two
input configurations of the processing steps in which spEvent1 and spEvent2 were added into b’s state.
Without loss of generality we assume that (S1, E1, N1) is a previous configuration of (S2, E2, N2) in ρ. It
is easy to see that both configurations are previous configurations of (S,E,N) in ρ. Because b is honest
in S, b was also honest in S1 and S2.

An event of which SUBMITPAYMENT is the first field is only added into the state of an honest browser in
the Algorithm 21, either by processing the command PR_SHOW (Line 122) or by processing the command
PRES_RETRY (Line 153). In both cases the paymentRequestNonce of the command is used to set for the
second field of the SubmitPayment event. We prove that spEvent2 can only be added into b’s state by
processing the command PRES_RETRY.

Assume that spEvent2 was added into b’s state by processing PR_SHOW. spEvent2 was added at Line 122
of Algorithm 21. That line can only be executed if the state of the payment request stored in the payment
storage indexed by PRN was CR (Line 105 of Algorithm 21), i.e., we have that

S2(b).paymentStorage[PRN ].paymentRequest.state = CR (32)

Let (S′1, E
′
1, N

′
1) be the right next configuration state of (S1, E1, N1). As (S1, E1, N1) is the previous

configuration of (S2, E2, N2), we have that (S′1, E
′
1, N

′
1) is either (S2, E2, N2) or a previous configuration

of (S2, E2, N2).
If (S′1, E

′
1, N

′
1) ≡ (S2, E2, N2), we have that S′1(b).paymentStorage[PRN ].paymentRequest.state =

CR. However, because spEvent2 had been added into b’s state, the state of corresponding
paymentRequest must be set to IN (Lines 109 and 151 of Algorithm 21). Therefore,
S′1(b).paymentStorage[PRN ].paymentRequest.state = IN (contraction). Thus, (S′1, E

′
1, N

′
1)

must be a previous configuration of (S2, E2, N2) in ρ. As reasoned above, we have that
S′1(b).paymentStorage[PRN ].paymentRequest.state = IN

The field paymentRequest.state of an entry in the payment storage stored in the state of an honest
browser can only be set to CR at Line 98 of Algorithm 21. This leads to the creation of a new payment
storage entry, where a fresh nonce is taken as the payment request nonce indexing such entry. If the fresh
nonce is PRN , the configuration on which paymentRequest.state is set to CR must be a previous
configuration of (S′1, E

′
1, N

′
1). It means that S2(b).paymentStorage[PRN ].paymentRequest.state =

IN , contradicting to (32). Therefore, spEvent2 can only be added into b’s state by processing the command
PRES_RETRY.

As spEvent2 was added into b’s state by processing the command PRES_RETRY, we have that
spEvent2 .handlerNonce = S2(b).paymentStorage[PRN ].handlerNonce (Line 152 of Algorithm 21).
We show that spEvent1 .handlerNonce = S′1(b).paymentStorage[PRN ].handlerNonce. This
is true because if spEvent1 was added into b’s state by processing a PRES_RETRY
command, then spEvent1 .handlerNonce = S1(b).paymentStorage[PRN ].handlerNonce =
S′1(b).paymentStorage[PRN ].handlerNonce. In case that spEvent1 was added into
b’s state by processing a PR_SHOW command, both spEvent1 .handlerNonce and
S′1(b).paymentStorage[PRN ].handlerNonce were set to the nonce of the chosen handler (Lines 118
and 122 of Algorithm 21).

Because handlerNonce in an entry of the payment storage in the state of an honest
browser never change, we have that S′1(b).paymentStorage[PRN ].handlerNonce =
S2(b).paymentStorage[PRN ].handlerNonce, implying that spEvent1 .handlerNonce =
spEvent2 .handlerNonce. This contradicts to the proof assumption and therefore, Lemma 15 is
proven.

Lemma 16 (All entries in method data of payment request have the same payment identifier). For every run
ρ of a system in WPAPI , every configurations (S1, E1, N1), (S2, E2, N2) in ρ, every browser b ∈ B
honest in S1 and S2, every nonce PRN ∈ N , it holds true that:

∀ xi ∈〈〉 S1(b).paymentStorage[PRN ].paymentRequest.methodData,

xj ∈〈〉 S2(b).paymentStorage[PRN ].paymentRequest.methodData :

xi.paymentIdentifier = xj .paymentIdentifier
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Proof:
Without loss of generality, we assume that (S1, E1, N1) is a previous configuration of (S2, E2, N2)

in ρ. Because b is honest in S2, b was honest in all previous global states. Therefore, the method data
of the payment request stored in a payment storage entry in b’s state never change. We consider the
place where paymentRequest.methodData is initialized. Line 98 of Algorithm 21 shows that the method
data of the payment request is taken from the input methodData in the PR_CREATE command. Line 92
checks whether the input methodData satisfies Definition 55, guaranteeing that all entries of the input
methodData have the same payment identifier. Thus, Lemma 16 is proven.

Lemma 17 (Same payment identifier if same transaction identifier). For every run ρ of a system in WPAPI ,
every configuration (S,E,N) in ρ, every browser b ∈ B honest in S, every payment request events (as
defined in Definition 64) pre1, pre2 ∈〈〉 S(b).events, it holds true that:

(pre1.transactionId = pre2.transactionId)⇒
(π1(pre1.methodData).paymentIdentifier = π1(pre2.methodData).paymentIdentifier)

Proof:
Consider two arbitrary payment request events (see Definition 64) pre1, pre2

∈〈〉 S(b).events with pre1.transactionId = pre2.transactionId. We will prove that
(π1(pre1.methodData).paymentIdentifier = π1(pre2.methodData).paymentIdentifier).

Similar to the proof for Lemma 14, there exist two SubmitPayment events spEvent1, spEvent2 ∈〈〉
S(b).events that were processed to generate pre1, pre2, respectively. We also have from the proof for
Lemma 14 that spEvent1.paymentRequestNonce = spEvent2.paymentRequestNonce. Let PRN :=
spEvent1.paymentRequestNonce.

Let (S1, E1, N1), (S2, E2, N2) ∈ ρ be the two output configurations of the processing steps in which
spEvent1 and spEvent2 were processed to generate pre1, pre2, respectively. We showed in the proof of
Lemma 14 that both (S1, E1, N1) (S2, E2, N2) are previous configuration of (S,E,N) in ρ, and that b
was honest in both S1 and S2.

pre1 and pre2 were created and added into events by executing the PROCESSEVENT function for the
case of SubmitPayment (Lines 20 and 22 of Algorithm 22). All entries of methodData of the created
PAYMENTREQUESTEVENT are taken from the methodData field of the corresponding payment request stored
in the payment storage (Lines 16 to 18 of Algorithm 22). Therefore, we have that

π1(pre1.methodData) ∈〈〉 S1(b).paymentStorage[PRN ].paymentRequest.methodData

and

π1(pre2.methodData) ∈〈〉 S2(b).paymentStorage[PRN ].paymentRequest.methodData

Applying Lemma 16, we can conclude that (π1(pre1.methodData).paymentIdentifier =
π1(pre2.methodData).paymentIdentifier). Lemma 17 is proven.

Lemma 18 (Uniqueness of Transaction). For every run ρ of a system in WPAPI , every configuration (S,
E, N) in ρ, every browser b ∈ B honest in S, every (txId , intents) ∈ S(b).paymentIntents, and with
PPh = {pp ∈ PP : S(pp).isCorrupted = ⊥} being the set of payment providers that are honest in
S, it holds true that∣∣∣ ⋃
pp∈PPh

{
t ∈ S(pp).transactions | txId = t.transactionId ∧ b = ownerOfID(t.sender)

}∣∣∣ ≤ 1

Proof:
We prove Lemma 18 by contradiction. Without loss of generality, let b be an honest browser in S and

(txId , intents) ∈ S(b).paymentIntents. We assume that there exist two different transactions t, t′ and
two honest payment providers pp, pp′ (pp and pp′ can be the same) so that

t ∈ S(pp).transactions ∧ txId = t.transactionId ∧ b = ownerOfID(t.sender) (33)

and

t′ ∈ S(pp′).transactions ∧ txId = t′.transactionId ∧ b = ownerOfID(t′.sender) (34)
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From (33) and Lemma 10, we have that: ∃ preqEvent ∈〈〉 S(b).events such that:

π1(preqEvent) = PAYMENTREQUESTEVENT ∧
preqEvent .transactionId = t.transactionId = txId ∧
S(pp).transactions[〈π1(preqEvent .methodData).paymentIdentifier〉] = t (35)

and preqEvent has been delivered to a payment handler provided by pp to send an HTTPS request to
pp generating t.

From (34) and Lemma 10, we have that ∃ preqEvent ′ ∈〈〉 S(b).events such that:

π1(preqEvent ′) = PAYMENTREQUESTEVENT ∧
preqEvent ′.transactionId = t′.transactionId = txId ∧
S(pp′).transactions[〈π1(preqEvent ′.methodData).paymentIdentifier〉] = t′ (36)

and preqEvent′ has been delivered to a payment handler provided by pp′ to send an HTTPS request to
pp′ generating t′.

As preqEvent .transactionId = preqEvent ′.transactionId = txId , from Lemma 14 we have that

preqEvent .paymentRequestNonce = preqEvent ′.paymentRequestNonce (37)

We have from (35) and Lemma 11 that there exists spEvent ∈〈〉 S(b).events such that

π1(spEvent) = SUBMITPAYMENT ∧ π2(spEvent) = preqEvent .paymentRequestNonce ∧
π3(spEvent) = preqEvent .handlerNonce (38)

Similarly, from (36) and Lemma 11 we have an event spEvent ′ ∈〈〉 S(b).events such that

π1(spEvent ′) = SUBMITPAYMENT ∧ π2(spEvent ′) = preqEvent ′.paymentRequestNonce ∧
π3(spEvent ′) = preqEvent ′.handlerNonce (39)

From (37), (38), and (39) we have:

π2(spEvent) = π2(spEvent ′) (40)

From (40), we apply Lemma 15 and conclude that

π3(spEvent) = π3(spEvent ′) (41)

From (38), (39), and (41) we have:

preqEvent .handlerNonce = preqEvent ′.handlerNonce

The browser chooses the payment handler to process a PaymentRequestEvent using the handler nonce
value of the event (Line 3 of Algorithm 26). Because the two PaymentRequestEvent events preqEvent
and preqEvent ′ have the same handler nonce, we conclude that they are processed by the same payment
handler. An honest browser also enforces that a payment handler can only send requests to its own origin
(Line 26 of Algorithm 23), therefore, the payment handler, after processing preqEvent and preqEvent ′,
can only send corresponding requests to the same /pay endpoint, implying that t and t′ are stored in the
same payment provider’s state, i.e., pp ≡ pp′.

We have proven above that preqEvent and preqEvent ′ have the same transaction identifier value, and
by applying Lemma 17, we conclude that

π1(preqEvent .methodData).paymentIdentifier =

π1(preqEvent ′.methodData).paymentIdentifier

thus, from (35) and (36) we can derive that t = t′. This contradicts the assumption that t and t′ are
different. Therefore, Lemma 18 holds.

Lemma 19 (Uniqueness of Payments). For every run ρ of a system in WPAPI , every configuration
(S,E,N) in ρ, every browser b ∈ B honest in S, every (txId , intents) ∈ S(b).paymentIntents, and
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with PPh = {pp ∈ PP : S(pp).isCorrupted = ⊥} being the set of payment providers that are honest
in S, it holds true that∣∣∣ ⋃
pp∈PPh

{
t ∈ S(pp).transactions | txId = t.transactionId ∧ b = ownerOfID(t.sender)

}∣∣∣ ≤ 1

If such a t exists, there exists a pi ∈ intents such that:
t.total = pi.details.total and t.receiver = π1(pi.methodData).receiver.

Proof:
Lemma 19 is proven by applying Lemma 18 and Lemma 13.

D. Proof of Theorem

Theorem 1 directly follows from Lemmas 13 and 19.

�
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