
SoC Security Properties and Rules
Nusrat Farzana, Farimah Farahmandi, and Mark Tehranipoor

Florida Institute for Cybersecurity (FICS) Research
Department of Electrical and Computer Engineering,

University of Florida, Gainesville, Florida
Email:{ndipu}@ufl.edu, {farimah, tehranipoor}@ece.ufl.edu

Abstract—A system-on-chip (SoC) security can be weak-
ened by exploiting the potential vulnerabilities of the
intellectual property (IP) cores used to implement the
design and interaction among the IPs. These vulnerabilities
not only increase the security verification effort but also
can increase design complexity and time-to-market. The
design and verification engineers should be knowledge-
able about potential vulnerabilities and threat models at
the early SoC design life cycle to protect their designs
from potential attacks. However, currently, there is no
publicly available repository that can be used as a base
to develop such knowledge in practice. In this paper, we
develop ‘SoC Security Property/Rule Database’ and make
it available publicly to all researchers to facilitate and
extend security verification effort to address this need. The
database gathers a comprehensive security vulnerability
and property list. It also provides all the corresponding
design behavior that should be held in the design to
ensure such vulnerabilities do not exist. The database
contains 67 different vulnerability scenarios for which 105
corresponding security properties have been developed till
now. This paper reviews the existing database and presents
the methodologies we used to gather vulnerabilities and
develop such comprehensive security properties. Addi-
tionally, this paper discusses the challenges for security
verification and the utilization of this database to overcome
the research challenges.

Index Terms—Vulnerabilities, Threat Models, Security
Properties, Verification, Property Package, Assertion.

I. INTRODUCTION

The evolution of modern computing systems largely
depends on the processing capability of System-on-
Chip (SoC). A SoC contains unique functional blocks,
known as intellectual property (IP) cores, from different
domains (digital, analog, memory, re-configurable fabric,
etc.). Moreover, the IP cores participate in complex op-
erations, communications, and co-ordinations with each
other to deliver the SoC’s expected functionality. These
IP cores may bring in unique security challenges due to
vulnerabilities associated with their characteristics and
interaction with each other when deployed under the

real world workload [1]. Therefore, the security of SoCs
must be verified at the design stage before fabrication
and deployment.

The introduction of security vulnerabilities at different
stages of the SoC design flow makes the designing of a
secure SoC more challenging. Some of these security
vulnerabilities can be introduced unintentionally by a
designer during the transformation of a design from
specification to implementation. In addition, computer-
aided design (CAD) tools can unintentionally introduce
additional vulnerabilities in SoCs [2]. Moreover, rogue
insiders in design houses can perform malicious design
modifications that create a backdoor to the design. An
attacker can utilize the backdoor to leak critical infor-
mation, alter functionalities, and control the system. In
general, design houses spend most of their design and
verification efforts to meet different criteria (e.g., the
correctness of functionality, the optimization of an area,
power, and performance, the various use cases, etc.)
[3]–[6]. However, they are seldom mindful of potential
security threats during design time.

SoC vulnerabilities can be divided into several classes
(e.g., information leakage, access control violation, side-
channel/covert channel leakage, presence of malicious
functions, exploitation of test and debug structure, and
fault-injection attacks) [2], [7]–[9]. As SoC complexity
continues to grow and time-to-market shrinks, verifica-
tion has become even more difficult to ensure that these
vulnerabilities do not exist in a design. However, a set
of well-defined security properties can help verification
engineers alleviate the problem.

In the context of security verification and valida-
tion, a security property is a statement that can check
assumptions, conditions, and expected behaviors of a
design [10]. The security property formally describes the
expected behaviors of the design for a specific security
vulnerability. The coverage of security properties can be
used as a metric for the security assessment of a SoC.

We propose a database of security properties to sup-

port the verification effort at the pre-silicon design
stages. The security properties in the Security Prop-
erty/Rule Database feature various IP modules that facil-
itate vulnerability detection in challenging scenarios. By
utilizing different open-source design implementations,
we check the developed security properties. The rest of
the paper is organized as follows: Section II reviews
the existing property-based verification and discusses
challenges. Section III describes the proposed database
in detail. Section IV introduces the experiment method-
ologies, and how the security properties will be utilized
are presented in Section V. Finally, the conclusion and
future work are summarized in Section VI.

II. BACKGROUND

A. SoC Security Verification using Property Checking

The verification engineers utilize a property-driven
verification approach for ensuring the correctness of a
design. The violation of a property implies that the
design should be fixed. As shown in Figure-1, a formal
design model is verified against a set of properties, rep-
resented as an assertion/cover statement using a model
checker tool. The model checker tool provides counter-
examples if the property is not held in the design and
helps a designer diagnose their design. These properties
are used to find the sources of functionality violation
in simulation-based verification [11]. Moreover, the syn-
thesizable properties are placed on silicon as a monitor
for specific events at the run-time or provide closures
for post-silicon validation [12]. However, such functional
properties are not sufficient to verify the security and
trustworthiness of a SoC. There are some fundamental
differences between the functional and security verifica-
tion approaches. Therefore, we need to develop security
properties for SoC security verification and validation,
which may or may not overlap with the functional
properties.

Today’s CAD tools are not well-equipped with the
understanding of the security vulnerabilities [13]. There-
fore, during logic synthesis, placement, clock-tree syn-
thesis, and routing, CAD tools perform design flattening
and multiple optimization processes. They could poten-
tially merge trusted blocks with the untrusted ones, as
shown in Figure 2. Though the merging of blocks is not
functionally incorrect, a potential information leakage
may happen between the blocks due to a structural
path between them. Hence property-driven functional
verification may not be able to identify such security
vulnerabilities.

Fig. 1: Property driven verification approach.

B. Existing Methods

Although property-driven security verification has be-
come a bare necessity, only a few works have proposed
security properties/policies for modern SoCs. Zhang et
al. [14] presented a methodology to infer security-critical
properties from known processor errata. However, man-
ufacturers only release errata documents enumerating
known bugs. Unknown security vulnerabilities can exist
in a SoC design that are not listed in available errata
documents. The authors in [15]–[19] utilize information
flow tracking (IFT) and statistical models to map hard-
ware security properties. Nevertheless, this technique
requires design instrumentation and tainting all the input
variables, which require more computational time and
memory resources. Hence, IFT and statistical modeling
become more complex with increasing design complex-
ity.

Nahiyan et al. [2], [13] proposed a technique to an-
alyze the vulnerabilities of FSM, called AVFSM. Apart
from the FSM, a SoC may contain other modules (ex-
ception handlers, test and debug infrastructures, random
number generators, etc.) which must be inspected during
security validation. Authors in [20] provided a method
to write the security-critical properties of the processor.
They found that the quality of security properties is
as good as the developer’s knowledge and experience.

Fig. 2: An example of a synthesis tool’s ’melting’ different IP cores
into one by circuit flattening.

ii

Moreover, there is a lack of threat model definition,
which must be considered while developing security
properties. There are some other approaches which have
developed security properties and metrics by considering
only a small subset of vulnerabilities (e.g., the vulner-
ability in hardware crypto-systems [21], side-channel
vulnerabilities [22], [23] and abstraction level limitations
like the behavioral model [24]).

In this context, we believe a more effective approach
would be to create a database of security properties
and map them into assertions to verify them using
appropriate tool sets [25]. While developing the database,
we have considered a broad spectrum of security vulner-
abilities for different entities and threat models.

C. SoC Security Challenges

A large number of hardware vulnerabilities and emerg-
ing attacks have been reported over the past decades [2],
[7], making the assumption of hardware being secure
and trustworthy no longer valid. Due to the semicon-
ductor design process and manufacturing globalization,
However, the impacts of hardware vulnerabilities are
much more profound than software vulnerabilities, as
opportunities for a quick response to hardware threats
are minimal. While hardware vulnerabilities are fewer
than software vulnerabilities, the detection, mitigation,
and responsive actions are far more challenging to put
in place for hardware vulnerabilities [26]. It is often
quite impossible to change or update a hardware design
after deployment into the field. Therefore, it is mandatory
to check if any security vulnerability exists in the pre-
silicon design stages. However, writing security proper-
ties for all possible attack scenarios needs comprehensive
knowledge and experience of the subject matter expert.

Figure-3 depicts the major factors that make security
assurance of a SoC more challenging. The design and
implementation of a SoC is not in-house anymore and
have spread around the globe. Different IPs are coming
from third-party IP vendors in soft, firm, and hard
IP forms. Providers do not ensure the security of the

Fig. 3: SoC security challenges.

custom/legacy IPs. Since SoCs can perform difficult op-
erations, IP cores come from different domains (analog,
digital, reconfigurable, fabric, etc.). Security verification
of each IP core, along with cross-domain checking, is
required for security assurance of SoCs. Moreover, as the
number of transistors increase, so does the complexity
of a SoC. Yet, the time-to-market of a SoC is shrink-
ing. Design houses spend optimal time testing a SoC,
however, security verification is not a significant concern
for most of them. Hence, in the competitive market of
a SoC, security is often neglected. Along with these
issues, most design engineers are not concerned about
the critical security assets in their design. Since assets
can be diverse and vulnerable to many attacks, a designer
must decide which type of assets need protection against
possible attacks. Choosing the wrong asset against an
unsuitable set of attacks can waste time and resources
while leaving the design susceptible [27].

III. DESCRIPTION OF DATABASE

The intention to develop the security property database
is to guide design and verification engineers to identify
vulnerabilities at the very beginning of the SoC design
cycle. The database is designed to perform formal ver-
ification of designs in RTL, Gate Level, and Physical
Layout Level. At first, the security-critical properties
were developed in natural language for different entities,
respective vulnerabilities, and threat models. Then the
security properties were formally represented to verify
different design implementations. All security properties
with detailed descriptions and demonstrations have been
wrapped into readily available packages for the users. We
have elaborately described the database in this section.

A. Identification of Security Properties

We have identified the security properties for SoCs by
following several steps as described in Algorithm 1. The
algorithm takes a design D as input and identifies a set of
security-critical properties P as output by going through
the following steps: 1) asset identification, 2) vulnera-
bility identification for identified assets and vulnerability
database creation, 3) threat model development, and 4)
property formulation as described in this section.

1) Step 1: Choice of Assets: To develop security
properties, one must first understand the underlying
assets and their corresponding security levels. The choice
and specification of an asset can be different from one
abstraction level to another, in addition to the varied
adversarial capabilities and intents.

iii

Algorithm 1: Algorithm for Security Critical
Property Identification

Input: Design of an SoC/ IP, D
Output: Set of security properties, P

1 /*Step1 : Identify Primary and Secondary
Assets*/

2 A = Identify Assets(D);
3 for Asset A ∈ A do
4 if A ∈ Primary Assets then
5 A = A ∪ Identify Secondary Assets(A);
6 end
7 end
8 P = {};
9 AL = Abstraction levels(D);

10 for Asset A ∈ A do
11 /*Step 2: Identify Possible Vulnerabilities and

Associated Abstraction Levels*/
12 for Various Abstraction levels AL ∈ AL do
13 VAL = Identify Vulnerabilities (D,AL,A)
14 for Vulnerability V ∈ VAL do
15 /*Step 3: Develop Threat Models*/
16 T = Identify Threat Model (A, V ,

AL);
17 /*Step 4: Property Formulation*/
18 P = P ∪

Formulate Property(D,A,AL, V, T);
19 end
20 end
21 end
22 return P

An asset can be defined as a resource with a security-
critical value that is worth protecting from the adver-
saries [28]. Assets in an SoC can be classified as: 1)
Primary Assets - those that are the ultimate target for
protection as deemed by the designer. For example,
primary assets include device keys and protected data
(e.g. a password), firmware, device configuration, com-
munication credentials, and entropy for a true random
number generator (TRNG), and physically unclonable
functions (PUFs). 2) Secondary Assets infrastructures
that require protection to ensure the security of the
primary assets during rest or transition. A shared bus
is an excellent example of a secondary asset as its
protection ensures the security of a key moving from
an on-chip ROM to an encryption engine within a SoC.
Moreover, the asset under consideration can be static or
dynamic, based on how it is generated and utilized. The
classification of assets are depicted in Figure 4

As shown in Algorithm 1 (lines 3-7), a set of assets

A will be available at the end of this step by analyzing
the design D. After choosing the assets, the designer
must analyze their propagation paths to find potential
vulnerabilities and weaknesses along with their access
points.

2) Step 2: Development of Vulnerability Database:
As discussed earlier, unintentional vulnerabilities can
arise at any design stage in addition to intentional
malicious modification and exploitation. Therefore, the
next step should be finding vulnerabilities to access the
assets to perform exploitation.

By surveying the available literature, open-source
vulnerability databases (e.g., Common Weakness Enu-
meration, Common Vulnerability Enumeration), design
specifications, common design mistakes, and studying
the implementation of the design in detail, an attacker’s
points of entry or potential vulnerabilities can be ad-
dressed. Eventually, a database of potential vulnerabili-
ties V can be established based on the design and the
identified assets (as shown in line 11 of Algorithm 1).
For example, it has been shown that the AES key can be
extracted using different attack strategies such as power
and timing side-channel attacks [29]–[32], trace buffer
and scan attacks [33], [34], Hardware Trojan insertion
[35], [36], physical attacks [37], and more that have been
developed over time. With existing attack information,
we can point out essential vulnerabilities of a weak
AES implementation [2], like an attacker’s access to
FSM’s protected state, or one’s ability to the key through
plain-text or control signals, etc. [38]. Identifying these
intentional and unintentional vulnerabilities of a design
is essential to define the threat models and develop the
corresponding security properties.

3) Step 3: Development of Threat Models: After steps
1 and 2, with the knowledge of design implementation,
assets to protect, and identified vulnerabilities, it is easier
to develop threat models T for each asset (as shown
in line 16 of Algorithm 1). Examples include deviation
from the expected functionality, illegal access path, and
corrupting the critical data and FSM states. For the
database, we have classified threat models into three

Fig. 4: Classification of security assets.

iv

categories:

• Confidentiality Violation: The unauthorized disclo-
sure of confidential/secret information [39], [40].
Examples of confidentiality violation include the
flow of assets to an untrusted IP or to observable
points, insertion of a Hardware Trojan [41], [42] to
the unspecified functionality of the design to cre-
ate information flow, any side-channel vulnerability
that provides information about the timing, power
consumption, or electromagnetic emanation of an
operation to the attacker - are examples of confiden-
tiality violations. An example of a security property
to check confidentiality violation is- “Design assets
should not be propagated to and leaked through any
observable point, such as primary outputs, DFT, or
DFD infrastructures.”

• Integrity Violation: An integrity violation means
that confidential data can be written or modified
by an entity who is not authorized to do so [40],
[43]. Unauthorized interaction between trusted and
untrusted IPs, illegal access to protected memory
addresses/ protected states of a controller module,
and an out-of-bound memory access fall under this
threat model. An example of a security property
to check integrity violation is- “A security-critical
entity should be isolated from entities/input ports
that are not authorized to control and/or modify it”

• Availability Violation: Disruption in the service or
connectivity of the modules within a SoC can
be categorized as an availability violation threat.
Numeric exceptions (e.g. divide by zero), the in-
troduction of a delay in a regular operation, and
deadlock creation to make a resource unavailable,
can be considered examples of service disruption.
Therefore, an adversary can utilize the extra time
or malfunction for leaking information or violating
access controls. A sample security-critical property
could be- “Security-critical entities should be iso-
lated from other entities, or memory access should
be restricted during unexpected delays. ”

A single vulnerability can fall under the umbrella of
multiple threat models T for a single asset A. For
example, adversarial access to the intermediate results
of encryption performed by an AES module through
debug port can be categorized as confidentiality and
integrity violation. Properties should be written to check
against all vulnerabilities and threats for each asset under
consideration.

4) Step 4: Identification of Properties: For a design
under consideration, the information about an asset,
corresponding vulnerabilities, and threat models assists
(as shown in line 18 of Algorithm 1) to formulate
security properties P. For a specific entity, a single
threat model/vulnerability can be mapped into multiple
properties or vice-versa. The security properties are
written so that they negate the vulnerability scenario. If
a design implementation holds the behavior described by
the security property, it is considered secured otherwise
insecure.

B. Categories of Security Properties

Since different vulnerability scenarios can get intro-
duced at different stages of a SoC’s life cycle, we need
to consider the time at which the property should be
verified. Some properties should be checked statically at
the design time. For example, the registers containing
the critical status of a CPU should be accessed only in
valid ways, as any undefined access to these registers
is considered a threat. On the other hand, during boot
time/reset time, intermediate buffers of the design may
be initialized to “don’t care” values. There should be
properties that ensure that those “don’t care” values in
boot time do not lead to vulnerabilities that provide at-
tackers the authority to start from a security-critical state
of the design and steal some critical information or cause
the denial of service. As some assets would be generated
at run-time, we require security-critical properties in the
form of sensors or monitors [44] that can operate in run-
time to prevent malicious functionality, denial of service,
etc.

Thus, the properties obtained from the framework can
be classified into 1) static/design-time, 2) boot-time, and
3) run-time. To check the static/boot-time properties,
design D can be translated into formal models [44], and
properties are mapped to LTL/CTL formulas [45]. Model
checker tools can be used to verify formal properties
at the design/boot time. However, to check run-time
properties, design D needs to be instrumented with IFT
capabilities. Simulation-based formal verification tools
can be used to verify the properties at run time.

C. Conversion of Security Properties to Assertions:

As the developed security properties are in natural lan-
guage, users need to convert them into assertions/cover
statements to make them readable for verification tools.
An assertion is a check embedded in a design or bound
to a design. A single bit associated with an assertion
can indicate the pass or fail status if the design does not

v

hold the property. On the other hand, a cover statement
can check if a specific scenario has ever occurred in the
design during the simulation. Therefore, cover statements
are mostly used as coverage information for design
validation. For example, suppose the assertion is not
covered during the run-time. In that case, an assertion
is triggered at the end of the execution of the cover
statement.

For a specific design example, a user must identify
appropriate signals and concatenate them using neces-
sary operators based on the associated security property.
Thus, the security property is converted into an asser-
tion/cover statement. Multiple assertion/cover statements
may need to be written for a single property. Moreover,
the same property can be converted into different asser-
tions for different design implementations and different
abstraction levels.

D. Organisation of Property Database

We create a database using the security properties
we have formulated following the method as described
in Section-III-A. A sample database has been depicted
in Table-II and Table-III. The database consists of the
following columns:

1) Abstraction Level: Each security property is asso-
ciated with one or more abstraction levels. Since a
new vulnerability can be introduced while translat-
ing a design from one abstraction level to another,
new security properties may also need to be devel-
oped. Therefore, this column provides the user of
the database the information about the associated
abstraction level.

2) Family of Entity: In this column, we have enlisted
some commonly used IP modules (e.g., debug and
HALT unit, AES module, trace buffers, exception
handler, TRNG, current program status register, bus
protocols, etc.) for which we developed security
properties by following the steps described previ-
ously.

3) Vulnerability Source: Before providing the de-
tailed description of the vulnerability under consid-
eration, we enlist the primary reason for which the
vulnerability may occur in this column.

4) Overlapping with CWE or not: Common Weak-
ness Enumeration (CWE) is a widely used database
where almost 100 hardware weaknesses are enlisted
[46]. Since weaknesses are errors that can lead
to vulnerabilities, the database can be used as a
resource to find different vulnerabilities. Apart from

the CWE database, we enumerated new vulnerabil-
ity scenarios. We use this column to keep track if
a vulnerability scenario is common with CWE or
not.

5) Vulnerability Description: In this column, we pro-
vide a detailed description of the vulnerability under
consideration (e.g., how a vulnerability source is
exploited to perform an attack).

6) Associated Assets: A single vulnerability can be
associated with multiple assets. Hence, security
properties should be developed for each of the
associated assets.

7) Threat Model: A single vulnerability can be as-
sociated with multiple threat models as described
in Section-III-A. For each threat model, security
properties should be identified.

8) Property: Identified security properties which
negate the corresponding vulnerability scenario are
enumerated in this column.

9) Time to Check: Based on the vulnerability, the
property may need to be checked in static time,
run-time, or boot-time. This information becomes
helpful while converting the properties into asser-
tions.

10) Design-agnostic or not: This column helps the user
to identify if a specific property is applicable for any
design implementation or if one should use it for an
architecture-specific design.

11) Benchmark: This column describes the design
example for which the corresponding property is
checked. Mostly, we used open-source design ex-
amples that are publicly available and widely used
for simplicity.

12) No. of Assertions: The properties are converted
into assertions for the benchmark in column 11.
A single property may need multiple assertions to
describe the intended design behavior.

13) Can be checked or not: In some cases, even though
we develop security properties, it becomes very
challenging to check the properties due to design
complexity, the user’s inability to find appropriate
design signals, and/or hardware-software interac-
tions, etc.

14) Tool Used for Checking: We enlist the industry
standard and publicly available verification tool that
we use to check a security property. The information
helps the user get an idea of how to translate the
properties into assertion using a different verifica-
tion tool.

15) Counter-example: If the assertions are violated,

vi

the verification tools provide violation traces. The
traces are useful for the designers to fix the incor-
rectness in the design.

16) Property name: We have named each of the
properties we have developed using the associated
abstraction level, entity name, and vulnerability. A
detailed description of the naming convention is
provided in Section-III-F. It will help the user to
identify a set of properties they want to look into.

E. Structure of Property Database

To make the security property database readily avail-
able to the user, we have converted each row of the
database into packages. The packages are designed to
perform formal verification of designs in RTL, Gate
level, and Physical layout level. As the properties are de-
rived from different vulnerability sources, each having its
specific format, we must create the database efficiently.
Each package contains design implementation source
code, corresponding properties written in the form of
assertions, a script to verify the assertions using formal
verification tools, and counterexamples (if provided by
the verification tool). If the associated abstraction level
is gate-level or physical layout level, then the package
contains a technology file as depicted in Figure-5.

Fig. 5: Structure of security property database.

F. Naming Convention of the Property Packages

We have developed packages of different entities
and corresponding vulnerabilities. Moreover, a property

package can be associated with a specific abstraction
level. Furthermore, it is possible that new security
vulnerabilities can come up, so the database must be
updated with new property packages over time. Based
on the above, we develop the convention as shown
in Figure-6 to assign a unique name to each property
package:

Fig. 6: Naming convention of property packages.

• Abstraction Level: The first letter of the abstrac-
tion level associated with the property. For example
RTL → R, Gate level → G, Physical Layout level
→ P.

• Entity Acronym: The initials of the family of entity
are used to fill the second field of the package name.
Examples are shown in Table-I.

• Vulnerability Source Index: Vulnerabilities have
been indexed with a two-digit number for each
family of entities at a specific abstraction level as
depicted in Table-I.

• Sequence Number of the Property: All the prop-
erties under the hood of the same vulnerability are
chronologically ordered with sequence numbers.

IV. EXPERIMENTAL RESULT

This section describes some sample security properties
that we have developed by surveying the literature, avail-
able open-source architectures, design implementations,
and different attack strategies. We also demonstrate how
we convert the security properties into packages for
suitable design examples.

Sample Security Properties: We have considered the
Test and Debug structures as an example. Features used
for test and debug units include reading and modifying
register values of processors and peripherals. Usually,
debugging involves halting the execution once a fail-
ure has been observed and collects state information
retrospectively to investigate the problem [47]. During
HALT operation, a processor stops executing according
to the instruction indicated by the program counter’s
(PC) value, and a debugger can examine and modify

vii

TABLE I: DETAILS OF NAMING CONVENTION OF PROPERTY PACKAGES
Family of
Entity

Entity
Acronym Abs. Level Vulnerability Source Vulnerability

Source index

Test & Debug Structure TD

Register Transfer
Level (R)/
Gate Level (G)

Halt Mode Debugging 01
Switching between Test mode
and Functional mode 02

Trace Buffer 03

Register Transfer
Level (R)

Inter-processor Debugging 04
Core-site External Debug Registers 05
Debug Interfaces 06
Debug registers (Breakpoint Exception
(BP)) and Debug Exception (DB) 07

Encryption Module EM

Register
Transfer
Level
(R)

Output ports of AES 01
Weakness in AES implementation 02
Output ports of RSA 03
Weakness in RSA implementation 04
Weakness in SHA implementation 05
Too small modulus of RSA encryption 06
Low public exponent of RSA encryption 07
Low private exponent of RSA encryption 08

Gate
Level (G)

Output ports of encryption module 01
Weakness in encryption algorithm
implementation 02

Accessibility of debug units to
intermediate registers 03

Timing information of computation 04
FSM State encoding 05
Intermediate states of encryption algorithm 06

True Random Number Generator
(TRNG) TG Register Transfer

Level (R)
Harvesting Mechanism of TRNG module 01
Biasness in TRNG module 02

Controller Design CD Register Transfer
Level (R)

Security critical FSM of controller circuit 01
Content of current program status
register (CPSR) 02

Exception Handler EH Register Transfer
Level (R)

Position of Exception vector table 01
Mode switching 02
Exception register value updating 03

Hardware IP Interconnect HI Register Transfer
Level(R)

Incorrect Synchronization between
master and slave IP modules 01

Locking Mechanism LI Register Transfer
Level (R)

Improper implementation of lock
protection to registers 01

Improper lock behavior after
power state transition 02

Debug mode 03

Core and Computation Issue CCI Register Transfer
Level (R)

CPU configuration to support
exclusivity of write and
execute operations

01

Instruction set architecture (ISA) 02

Memory and Storage Issues MSI Register Transfer
Level (R)

Improper write handling in limited
-write nonvolatile memory 01

Mirrored regions with different values 02
Improper access control applied to
mirrored or aliased memory regions 03

Miscellaneous MI Register Transfer
Level (R)

Incorrect signal connection 01
Reserve bits 02
Instantiation of register module 03
Write once register 04

the processor state via Debug Access Port (DAP). On
the other hand, Design for testing (DFT) adds features
to make it easier to develop and apply manufacturing
tests to the designed hardware, thus giving access to the
intermediate registers of the design.

As the user has read/write access to memory and CPU
registers in the debug mode, several threat models can be
developed [48]. As shown in Table II, (first four rows),
we identified assets of an SoC with debugging features
and their vulnerabilities first. Then we enlisted probable

threat models of the vulnerabilities. For example, when
we consider the PC’s value as an asset, we will need
to check whether it is accessible from the debug access
port or not. If so, an attacker can freeze the system and
modify the PC’s value so that the sequence of code
execution can get redirected after a HALT operation
is executed. Similarly, when the asset is in a partic-
ular memory address, writing to a protected memory
address from DAP can result in firmware modification
or malicious code injection threats. Moreover, when the

viii

TABLE II: SAMPLE SECURITY PROPERTY DATABASE

Abs. Level Family of
Entity Vul. Source

Does it
overlap
with
CWE?

Vulnerability
Description

Associated
Assets

Threat
Model Property

Time
-to-
check

Property
Name

Register
Transfer
Level
(R)

Test &
Debug
Structure
(TD)

Halt mode
debugging
(01)

No

Readability of/
writability to
sensitive information
through Debug
Access Port (DAP)
during HALT
operation

Program
counter’s
value

Integrity
violation

Program counter’s
value should not
be modified
during HALT
operation (1)

Static RTD011

Confidentiality
violation

Program Counter’s
value should not
be readable
through Debug
Access Port (DAP)
when a processor
is not in HALT
mode debugging (2)

Static RTD012

Privilege
Memory

Integrity
violation

Readability to
privileged memory
should be denied
in HALT operation
through DAP (3)

Static RTD013

Confidentiality
violation

Writability to
privileged memory
should be
denied in HALT
operation
trough DAP (4)

Static RTD014

Gate
Level
(G)

Test &
Debug
Structure
(TD)

Switching
between
Test mode and
Functional
mode (02)

No

By switching
the chip between
functional mode
and test mode,
secret information
can be scanned
out or calculated.
Hence, the design
can be prone to
scan-based attack.

Crypto key,
password,
user
information

Confidentiality
violation

A reset signal
should be
enabled for the
scan flip-flops
whenever
there is a switch
from the functional
mode
to the test mode
(2)

Static GTD022

Encryption
Module
(EM)

Accessibility of
debug units
to intermediate
registers (03)

No

Observability of
encryption key from
the test and debug
ports can help
attackers to leak
information
about the AES key

Crypto key Integrity
violation

Key registers
should not be
observable
from test and
debug ports. (1)

Static GEM031

Controllability
/observability
of the FSM state
flip flops from
test and debug ports
can allow an
attacker to bypass
intermediate rounds
of encryption.

Crypto key Confidentiality
violation

FSM State flip-flop
should not be
controllable and
observable from
the additional
test and
debug ports. (2)

Static GEM032

Intermediate
states of
encryption
algorithm (06)

No

Because of the
synthesis tool
optimization, the
protected state
can be accessed
from an
unauthorized state.
(e.g. don’t care
states)

Protected States
of FSM of
encryption
algorithm

Confidentiality
violation
Integrity
violation

FSM encoding of
encryption
algorithm should
be implemented
in such a way
that an FSM state
cannot be
accessed from
a don’t care state
to resist fault
injection
vulnerability. (1)

Static GEM061

ix

TABLE III: VERIFICATION RESULTS OBTAINED FROM ASSERTION CHECKING

Property
Name

Design
Agnostic?

Can be
checked
or not?

Benchmark Assertion Tool Used Status

RTD011 Yes Yes MSP430
micro-controller

check spv -create -from {dbg uart rxd} -from precond
{dbg 0.dbg en s==1’b1} -to {frontend 0.pc} -name “receiver to pc”

JasperGold
SPV Violated

RTD012 Yes Yes MSP430
micro-controller

check spv -create -from {frontend 0.pc} -from precond
{dbg 0.dbg en s==1’b0} -to {dbg uart txd} -name “pc to trans”

JasperGold
SPV Violated

RTD013 Yes Yes MSP430
micro-controller

check spv -create -from {mem backbone 0.dmem dout}
-from precond {dbg 0.dbg en s==1’b1} -to {dbg uart txd}
-name “memory to transmitter”

JasperGold
SPV Violated

RTD014 Yes Yes MSP430
micro-controller

check spv -create -from {dbg uart rxd} -from precond
{dbg 0.dbg en s==1’b1} -to {mem backbone 0.dmem din}
-name “receiver to memory”

JasperGold
SPV Violated

GTD022 Yes Yes RSA core

property testmode;
@(posedge clk) (RSA binary.test se==1)
##1 (RSA binary.test se==0) |->(RSA binary.RESET==1);
endproperty

JasperGold Violated

GEM031 Yes Yes An AES
implementation check spv -create -from {key} -to {test so} -name “observability of key” JasperGold

SPV Violated

GEM032 Yes Yes An AES
implementation

//controllability checking
check spv -create -from {test si} -to {next FSM} -name
“controllability of state flip flop”

//observability checking
check spv -create -from {next FSM} -to {test so} -name
“observability of state flip-flop”

JasperGold
SPV Violated

GEM061 Yes Yes An AES
implementation

property finalRoundAccessFromDontCare;
@(posedge clk) (aes binary.FSM==FINAL ROUND) |->
$past (aes binary.FSM==3’b111)
| $past (aes binary FSM==3’b001)
| $past(aes binary FSM==3’b101)
endproperty

JasperGold Violated

asset is in a particular memory address, reading from
that address during HALT operation may leak sensitive
information (e.g., password, key, etc.). Here, the first two
scenarios are integrity violations. In contrast, the last
two are examples of confidentiality violations resulting
from a single vulnerability source (HALT mode debug-
ging). We have derived the security properties RTD011,
RTD012, RTD013, RTD014 for the vulnerabilities men-
tioned above.

Moreover, when an RTL design of a SoC is synthe-
sized to gate-level with DFT insertion, all flip-flops in the
design are replaced with scan flip-flops (SFF). The scan
flip-flops are connected to one or more shift registers
in the test mode, making them controllable/observable
from primary input/output. Most state-of-the-art scan-
based attacks rely on the vulnerability of switching
from the functional mode to the test mode [49]. The
attackers assume that the data in the scan flip-flops
can be preserved during mode switching. Therefore, the
development of security property GTD022 implies that a
reset signal should be asserted while switching between
functional and test mode.

Another category of vulnerability is related to the
enhanced controllability/observability of a design due to
on-chip Design for Testing (DFT) instrumentation. The

selected signals to be controlled and observed by DFT
instrumentation are usually related to important system
states. Attackers can manipulate the control and data
flow (integrity violation) at their will to reach system
states that might leak confidential information. For ex-
ample, controllability/observability of Finite State Ma-
chine (FSM) through test and debug ports can allow an
attacker to perform a fault injection attack and bypass the
intermediate rounds of encryption [2], [50]. In addition,
observability of encryption key registers from the test
and debug ports can help attackers to leak information
about the key (confidentiality violation). Hence, security
properties GEM031 & GEM032 are evolved to make
sure that any flip-flops in the design are not a part of
a scan chain or controllable/observable from any test or
debug port.

As described earlier, synthesis tools do not deal with
security issues; instead, many security vulnerabilities
can be unintentionally introduced. To meet the cost
and performance constraints, synthesis tools perform
optimization during RTL to gate level synthesis. As
a result, don’t care states may get introduced to the
finite state machine (FSM) that attackers can utilize to
perform fault injection attacks. Attackers can enter into
a protected state from a don’t care state by bypassing

x

a security checking. Security property GEM061 implies
that any security-critical or protected state should not be
accessed from any don’t care state.

The scenarios imply that these vulnerabilities do not
exist in RTL; however, they can be newly introduced at
the gate level.

Sample Security Property Packages:
We mapped the first four properties in Table II

into assertions and checked them for the open-source
MSP430 micro-controller [47] with the debug unit. Since
the properties are developed to negate the debugger’s
readability/writability to the program counter register
and a certain memory region, we considered the receiver
and transmitter ports of the debug unit as attackers’
entry and exit points, respectively. Then, to check the
existence of any functional path between the attacker’s
entry/exit point to the security asset under consideration,
we utilized JasperGold SPV [51] tool. The verification
result (shown in Table III) indicates that the properties
are violated. Therefore, the underlying vulnerabilities
exist in the MSP430 micro-controller.

To check property GTD022, we synthesized an open-
source RSA design with DFT insertion. First, we devel-
oped an assertion to check if a reset signal is asserted
while switching between test and functional modes.
Then, we utilized the JasperGold tool to check the
assertion. The violation of the assertion implies that an
attacker can perform a scan-based attack for the design
example.

For checking properties GEM031 & GEM032, we uti-
lized an AES design from Trust-hub [52] and synthesized
it with DFT insertion. Then we used an assertion to
check if there is any functional path between the test
and debug ports to the FSM state register or the key
register. The verification result shows that the assertion
violates the AES design and that it is vulnerable.

Again, we have checked the security property
GEM061 for a synthesized DFT inserted netlist of
the AES benchmark. The design under consideration
has five FSM states, encoded as WAIT KEY =
3’b110, WAIT DATA= 3’b010, INITIAL ROUND=
3’b011, DO ROUND= 3’b100, FINAL ROUND=
3’b000; Therefore, the don’t care states are 3’b111,
3’b001, 3’b101. FINAL ROUND is the most
security-critical state where the encrypted message
is delivered. Moreover, it should only be accessed from
DO ROUND. The corresponding assertion checks if the
FINAL ROUND state can be accessed from any don’t
care states or not. The assertion violation shows that
there can be a scenario where the FINAL ROUND is

accessed from a don’t care state, which can be utilized
to perform a fault injection attack.

All information in each row in Table-III, are wrapped
in zip folders in the form of a property package. The
package name is the same as the corresponding property
name.

V. UTILIZATION OF PROPERTY DATABASE

A. Architecture-agnostic Security Properties

To reduce the effort of security validation in the SoC
design flow, security properties should be designed in
architecture-agnostic fashion. Architecture-agnostic se-
curity properties can be defined as a set of properties
which are universally applicable to a diverse set of
devices and implementations rather than being tied to a
specific one. Though all the security properties identified
for one target implementation cannot be mapped to
another, they can be used as a reference for generating
new properties that are more appropriate for the latter. If
a good percentage of security properties for a certain
entity in one implementation can be reusable for the
same or similar entity in a different implementation, the
effort for security validation will be reduced to a great
extent.

Let us consider the example shown in Figure 7(a),
where a particular IP has been utilized in Implemen-
tation1 & Implementation2. P1, P2, P3, P4 are the
identified security properties for the IP in Implemen-
tation1 based on the type of asset it is dealing with,
possible vulnerabilities, and threat models. Some of these
identified properties can be universal and applied for any
implementation of the IP. In the example, P1 & P2 are
the universal properties and remain same for IP′ in Im-
plementation2. However, P3 & P4 are the architecture-
specific security properties of Implementation1 and can
not be reused for Implementation2. Therefore, new se-
curity properties P ′3 & P ′4 will come into consideration
for IP′ in Implementation2. The properties which do not
match can be generated by tuning different parameters of
the implementations or by using the previously identified
properties as a reference to generate them automatically
to ensure security validation.

For example, the number of rounds can be different for
different AES implementations, and security properties
can be obtained by modifying the existing properties’
timing according to the implementations’ specifications.
FSM state transition vulnerability would be another good
example here. The definition of don’t care states are
different for different FSM implementations based on the
encoding scheme (e.g., gray, binary, one-hot encoding).

xi

Fig. 7: (a) Same IP in different implementations (b) Same implemen-
tation of an IP in different SoCs.

Security properties for a newer implementation can be
identified by changing the definition according to the
implementation under consideration. Note that for the
new features of the newer implementations of an IP, we
need to write a new set of properties to cover them and
update the security property database accordingly.

In the case of SoCs, a similar approach can be applied
to identify security properties. The analogy has been
illustrated in Figure 7(b). The same IP has been inte-
grated into two different SoCs. Since the implementation
remains the same for the IP, no new security properties
are required. Moreover, some IP interactions (IP → IP1),
as well as the corresponding security properties PP1 &
PP2 are indifferent in both SoCs. However, other IP in-
teraction has changed (from IP → IP2 to IP → IP′2) with
the new implementation of IP2 (IP′2) in SoC2 and new
security property (PP3 → PP ′3) needs to be mapped.
Moreover, in SoC2, a new IP module (IP3) is interacting
with the IP. Therefore, a new property PP4 is required
for completing the security property set for SoC2. The
new security property can be generated automatically
by using the previously identified properties of SoC1 as
templates.

B. Property Mapping at Different Abstraction Levels

Even for the same implementation, security properties
need to be mapped at different abstraction levels of the
SoC design life cycle (high-level specification → RTL →
Gate level → Layout) [53], [54]. The security properties
identified for high-level specifications can be necessary
but not sufficient for security validation in lower levels
of abstraction like RTL, gate level, or layout level. Vul-
nerability definition and asset generation are dynamic as
they are tied to different abstraction levels. As described
in the example in Section-IV, after insertion of DFT,
or trace buffers for testing and debugging purposes, a
new set of properties comes into play such as: Key
should NOT leak through the observable test points.
Moreover, RTL to gate-level transformation introduces
don’t-care states, which require new security properties.
As illustrated in Figure 8, we either map the security

Fig. 8: Security-critical property identification at different abstraction
levels.
properties from higher levels of abstractions or introduce
new properties to cover new vulnerabilities introduced
in lower levels. Thus, security properties will eventually
enrich the property database. The database should be
updated in the case of new attacks and vulnerabili-
ties. Furthermore, in zero-day attacks, the vulnerability
database will help in creating new security properties
to identify the underlying weaknesses that facilitate
new attacks. In short, the process of security property
identification will be a back-and-forth approach. Some
properties will be identified manually, while others will
be mapped from the previous implementation, and the
rest will be generated automatically (using the templates
generated from the database) to cover the broad set of
security vulnerabilities.

VI. CONCLUSION

In this paper, we suggested that security should be
considered from the very beginning of the SoC design
process. The ‘Security Property/Rule database’ we have
developed will help to reduce security validation efforts
to a great extent. Furthermore, our developed secu-
rity properties are flexible for different implementation
and resilient against different vulnerabilities. Therefore,
along with design specification, synthesis and functional
verification, security property identification and verifi-
cation should be established as another pillar of the
hardware design process.

REFERENCES

[1] M. Tehranipoor and C. Wang, Introduction to hardware security
and trust. Springer Science & Business Media, 2011.

[2] A. Nahiyan, K. Xiao, K. Yang, Y. Jin, D. Forte, and M. Tehra-
nipoor, “AVFSM: a framework for identifying and mitigating
vulnerabilities in FSMs,” in Proceedings of the 53rd Annual
Design Automation Conference, 2016, pp. 1–6.

[3] P. Mishra, S. Bhunia, and M. Tehranipoor, Hardware IP security
and trust. Springer, 2017.

[4] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehra-
nipoor, “Hardware trojans: Lessons learned after one decade
of research,” ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 22, no. 1, pp. 1–23, 2016.

[5] H. Salmani and M. M. Tehranipoor, “Vulnerability analysis of a
circuit layout to hardware trojan insertion,” IEEE Transactions
on Information Forensics and Security, vol. 11, no. 6, pp. 1214–
1225, 2016.

xii

[6] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor,
“Trustworthy hardware: Identifying and classifying hardware
trojans,” Computer, vol. 43, no. 10, pp. 39–46, 2010.

[7] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE design & test of computers,
vol. 27, no. 1, pp. 10–25, 2010.

[8] G. K. Contreras, A. Nahiyan, S. Bhunia, D. Forte, and
M. Tehranipoor, “Security vulnerability analysis of design-for-
test exploits for asset protection in SoCs,” in 2017 22nd Asia
and South Pacific Design Automation Conference (ASP-DAC).
IEEE, 2017, pp. 617–622.

[9] M. Tehranipoor, Emerging Topics in Hardware Security.
Springer Nature, 2021.

[10] P. Mishra, M. Tehranipoor, and S. Bhunia, “Security and trust
vulnerabilities in third-party ips,” in Hardware IP Security and
Trust. Springer, 2017, pp. 3–14.

[11] A. Ahmed, F. Farahmandi, Y. Iskander, and P. Mishra, “Scalable
hardware trojan activation by interleaving concrete simulation
and symbolic execution,” in 2018 IEEE International Test
Conference (ITC). IEEE, 2018, pp. 1–10.

[12] F. Farahmandi, R. Morad, A. Ziv, Z. Nevo, and P. Mishra, “Cost-
effective analysis of post-silicon functional coverage events,” in
Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017. IEEE, 2017, pp. 392–397.

[13] A. Nahiyan, F. Farahmandi, P. Mishra, D. Forte, and M. Tehra-
nipoor, “Security-aware FSM design flow for identifying and
mitigating vulnerabilities to fault attacks,” IEEE Transactions
on Computer-aided design of integrated circuits and systems,
vol. 38, no. 6, pp. 1003–1016, 2018.

[14] R. Zhang, N. Stanley, C. Griggs, A. Chi, and C. Sturton, “Iden-
tifying security critical properties for the dynamic verification
of a processor,” ACM SIGARCH Computer Architecture News,
vol. 45, no. 1, pp. 541–554, 2017.

[15] W. Hu, A. Althoff, A. Ardeshiricham, and R. Kastner, “Towards
property driven hardware security,” in 2016 17th International
Workshop on Microprocessor and SOC Test and Verification
(MTV). IEEE, 2016, pp. 51–56.

[16] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu,
and R. Kastner, “On the complexity of generating gate level
information flow tracking logic,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 7, no. 3, pp. 1067–1080,
2012.

[17] S. Bhunia and M. Tehranipoor, Hardware Security: A Hands-on
Learning Approach. Elsevier Science, 2018. [Online]. Avail-
able: https://books.google.com/books?id=wIp1DwAAQBAJ

[18] J. Oberg, S. Meiklejohn, T. Sherwood, and R. Kastner, “Lever-
aging gate-level properties to identify hardware timing chan-
nels,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 33, no. 9, pp. 1288–1301,
2014.

[19] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and
R. Kastner, “Information flow isolation in I2C and USB,” in
2011 48th ACM/EDAC/IEEE Design Automation Conference
(DAC). IEEE, 2011, pp. 254–259.

[20] “analyzing hardware security properties of processors through
model checking.”

[21] B. Yuce, N. F. Ghalaty, and P. Schaumont, “TVVF: Estimating
the vulnerability of hardware cryptosystems against timing
violation attacks,” in 2015 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST). IEEE, 2015,
pp. 72–77.

[22] “side-channel vulnerability factor: A metric for measuring in-
formation leakage.”

[23] A. Nahiyan, J. Park, M. He, Y. Iskander, F. Farahmandi,
D. Forte, and M. Tehranipoor, “SCRIPT: A CAD Framework
for Power Side-channel Vulnerability Assessment Using Infor-
mation Flow Tracking and Pattern Generation,” ACM Transac-
tions on Design Automation of Electronic Systems (TODAES),
vol. 25, no. 3, pp. 1–27.

[24] H. Salmani and M. Tehranipoor, “Analyzing circuit vulnerability
to hardware Trojan insertion at the behavioral level,” in 2013
IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFTS), pp. 190–195.

[25] S. Aftabjahani, R. Kastner, M. Tehranipoor, F. Farahmandi,
J. Oberg, A. Nordstrom, N. Fern, and A. Althoff, “Special
Session: CAD for Hardware Security-Automation is Key to
Adoption of Solutions,” in 2021 IEEE 39th VLSI Test Sym-
posium (VTS). IEEE, 2021, pp. 1–10.

[26] “Hardware vs. software vulnerabilities.” [Online].
Available: https://inside.battelle.org/blog-details/hardware-vs.-
software-vulnerabilities

[27] N. Farzana, A. Ayalasomayajula, F. Rahman, F. Farahmandi,
and M. Tehranipoor, “SAIF: Automated Asset Identification for
Security Verification at the Register Transfer Level,” in 2021
IEEE 39th VLSI Test Symposium (VTS). IEEE, 2021, pp. 1–7.

[28] A. ARM, “Security technology building a secure system using
trustzone technology (white paper),” ARM Limited, 2009.

[29] W. Diehl, “Attack on AES Implementation Exploiting Publicly-
visible Partial Result.” IACR Cryptology ePrint Archive, vol.
2017, p. 788, 2017.

[30] K. Schramm, G. Leander, P. Felke, and C. Paar, “A Collision-
Attack on AES: Combining Side Channel-and Differential-
Attack,” Joye and Quisquater [8], pp. 163–175.

[31] C. Ashokkumar, B. Roy, M. B. S. Venkatesh, and B. L.
Menezes, “” S-Box” Implementation of AES is NOT side-
channel resistant.” IACR Cryptology ePrint Archive, vol. 2018,
p. 1002, 2018.

[32] H. Gamaarachchi and H. Ganegoda, “Power Analysis Based
Side Channel Attack,” arXiv preprint arXiv:1801.00932, 2018.

[33] Y. Huang and P. Mishra, “Trace buffer attack on the AES
cipher,” Journal of Hardware and Systems Security, vol. 1,
no. 1, pp. 68–84, 2017.

[34] B. Ege, A. Das, S. Gosh, and I. Verbauwhede, “Differential
scan attack on AES with X-tolerant and X-masked test response
compactor,” in 2012 15th Euromicro Conference on Digital
System Design. IEEE, 2012, pp. 545–552.

[35] T. Reece and W. H. Robinson, “Analysis of data-leak hardware
Trojans in AES cryptographic circuits,” in 2013 IEEE Inter-
national Conference on Technologies for Homeland Security
(HST). IEEE, 2013, pp. 467–472.

[36] X. Zhang and M. Tehranipoor, “Case study: Detecting hardware
Trojans in third-party digital IP cores,” in 2011 IEEE Interna-
tional Symposium on Hardware-Oriented Security and Trust.
IEEE, 2011, pp. 67–70.

[37] A. A. Pammu, K.-S. Chong, W.-G. Ho, and B.-H. Gwee,
“Interceptive side channel attack on AES-128 wireless com-
munications for IoT applications,” in 2016 IEEE Asia Pacific
Conference on Circuits and Systems (APCCAS). IEEE, 2016,
pp. 650–653.

[38] W. Hu, A. Ardeshiricham, M. S. Gobulukoglu, X. Wang, and
R. Kastner, “Property specific information flow analysis for
hardware security verification,” in 2018 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD). IEEE,
2018, pp. 1–8.

[39] “What Constitutes a Breach of Confidentiality?” [On-

xiii

line]. Available: https://www.upcounsel.com/what-constitutes-
a-breach-of-confidentiality

[40] A. Nahiyan, M. Sadi, R. Vittal, G. Contreras, D. Forte, and
M. Tehranipoor, “Hardware trojan detection through informa-
tion flow security verification,” in 2017 IEEE International Test
Conference (ITC), pp. 1–10.

[41] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and
M. Tehranipoor, “Benchmarking of hardware trojans and ma-
liciously affected circuits,” Journal of Hardware and Systems
Security, vol. 1, no. 1, pp. 85–102, 2017.

[42] H. Salmani, M. Tehranipoor, and R. Karri, “On design vul-
nerability analysis and trust benchmarks development,” in 2013
IEEE 31st international conference on computer design (ICCD).
IEEE, 2013, pp. 471–474.

[43] “What makes hardware secure?” [Online]. Available:
https://www.techdesignforums.com/practice/technique/are-you-
formally-secure/

[44] H. D. Foster, A. C. Krolnik, and D. J. Lacey, Assertion-based
design. Springer Science & Business Media, 2004.

[45] M. Boulé and Z. Zilic, “Automata-based assertion-checker
synthesis of psl properties,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 13, no. 1,
p. 4, 2008.

[46] “Common Weakness Database for Hardware.” [Online].
Available: https://cwe.mitre.org/data/definitions/1194.html

[47] O. Girard, MSP430, 2009 (accessed 04 Aug 2009). [Online].
Available: https://github.com/olgirard/openmsp430

[48] Z. Ning and F. Zhang, “Understanding the security of ARM
debugging features,” in 2019 IEEE Symposium on Security and
Privacy (SP), pp. 602–619.

[49] W. Chen and J. Bhadra, “Striking a balance between SoC secu-
rity and debug requirements,” in 2016 29th IEEE International
System-on-Chip Conference (SOCC). IEEE, 2016, pp. 368–
373.

[50] H. Wang, H. Li, F. Rahman, M. M. Tehranipoor, and F. Farah-
mandi, “SoFI: Security Property-Driven Vulnerability Assess-
ments of ICs Against Fault-Injection Attacks,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, 2021.

[51] Cadence, JasperGold SPV. [Online]. Avail-
able: https://www.cadence.com/content/cadence-
www/globl/en US/home/tools/systemdesignand-
verification/formalandstaticverification/jaspergoldverification-
platform/securitypathverificationapp.html

[52] Trust Hub Benchmarks. [Online]. Available: https://trust-
hub.org/home

[53] A. Vafaei, A. Hooten, M. Tehranipoor, and F. Farahmandi,
“Symba: Symbolic Execution at C-level for Hardware Trojan
Detection,” International Test Conference (ITC), 2021.

[54] B. Ahmed, F. Rahman, M. Tehranipoor, and F. Farahmandi,
“AutoMap: Automated Mapping of Security Properties Between
Different Levels of Abstraction in Design Flow,” International
Test Conference (ITC), 2021.

xiv

