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Abstract—Secure communication is an important aspect Inter-
net of Things (IoT) applications in order to avoid cyber-security
attacks and privacy issue. One of the key security aspects is data
integrity, which can be protected by employing cryptographic
hash functions. Recently, US National Institute of Standards and
Technology (NIST) had initialized a competition to standardize
lightweight hash functions targeting constrained devices, which
can be used in IoT applications. The communication in IoT
involves various hardware platforms, from low-end microcon-
trollers to high-end cloud servers with accelerators like GPU. In
this paper, we show that with carefully crafted implementation
techniques, all the finalist hash function candidates in NIST
standardization can achieve high throughput on GPU. This
research output can be used in IoT gateway devices and cloud
servers to perform data integrity check in high speed. On top
of that, we also present the first implementation of these hash
functions on a quantum computer (IBM ProjectQ). The efficient
implementation of these hash functions on GPU and quantum
computer is useful in evaluating their strength against brute-force
attack, which is important to protect the secure communication
in IoT.

Index Terms—Lightweight Cryptography, Graphics Processing
Units (GPU), Hash Function, Quantum Computer.

I. INTRODUCTION

INTERNET of things (IoT) is an emerging technology
that inspired many innovative applications in recent years.

Together with other important technologies like artificial intel-
ligence (AI) and cloud computing, we can create various smart
applications that greatly enhance the quality of our life. For
instance, smart home [1], smart laboratory [2], and smart city
[3] become possible due to the advancement of IoT and other
relevant technologies. Since the IoT applications are associated
with many sensitive data, protecting the communication in IoT
is of utmost importance [4]. One of the important criteria of
secure IoT communication is the ability to check the integrity
of sensor data communicated. This can be achieved through
the use of cryptographic hash functions like SHA-2 and SHA-
3. In 2018, the National Institute of Standards and Technology
(NIST) of United States (US) had initiated a worldwide com-
petition [5] to standardize lightweight cryptography (LWC)
that targets applications in constrained system. The selection
criteria of LWC includes small memory requirement and
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fast computation, which is very useful for IoT applications.
This standardization is currently in final round [6], wherein
four hash functions and nine authenticated encryption with
associated data (AEAD) algorithms are being reviewed.

Communication within an IoT system is usually heavy due
to the large number of connected sensor nodes, and the com-
plex communication protocols between sensor nodes, gateway
devices and cloud server. Moreover, IoT communication in-
volves various platforms, including low-end microcontrollers,
mid-end gateway devices, and high-end cloud servers. In view
of that, the efficient implementation of hash functions on
various platforms is critical to provide integrity check without
severely affecting the system response time. Although LWC
can achieve good performance in constrained platforms [7],
its performance in mid-end gateway devices and high-end
cloud servers is unknown. In this paper, we show that with
carefully designed implementation techniques, all the NIST
finalist candidates (lightweight hash functions) can achieve
very high throughput.

Brute-force attack is a common way to evaluate the strength
of a hash function without exploiting the weakness in the
underlying algorithm. This process is important to understand
the security of the selected hash functions in order to protect
IoT system in future. To achieve this, we present the first
implementation of NIST finalist hash functions in quantum
computer, which is a contemporary computing system that
potentially faster than many existing computer systems. Note
that efficient implementation techniques presented in this paper
on both GPU and quantum computer, can be used to perform
brute-force attack.

The contributions of this paper are summarized below:
1) The first efficient implementation of PHOTON-Beetle,

ASCON, Xoodyak, and SPARKLE on GPU platforms is
presented in this paper. The proposed techniques include
table-based implementation with warp shuffle instruction
and various memory optimization techniques on GPU
platforms. The performance of these implementations is
evaluated on a high end GPU platform (RTX 3080). The
hash throughput of our implementation is up-to 1,000
Gbps, which is fast enough to handle the massive traffic
in IoT system.

2) The first implementation of PHOTON-Beetle, ASCON,
Xoodyak, and SPARKLE hash functions on quantum
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Fig. 1: A typical IoT communication architecture.

computers. Hash functions are optimized taking into
account the reversible computing environment in quantum
computers, which is different from classical computers.
The implementation was performed on ProjectQ, a quan-
tum programming tool provided by IBM [8].

3) To the purpose of reproduction, we shared the GPU
implementation codes to the public domain available at:
https://github.com/benlwk/lwcnist-finalists

II. BACKGROUND

This section describes how the cryptographic hash functions
are used to check data integrity in IoT communication. It
also provides overview of the selected hash functions and
implementation platforms.

A. Secure Communication in IoT Applications

Referring to Figure 1, IoT system usually consists of three
communicating parties: sensor nodes, gateway device and
cloud server. Sensor nodes are usually placed ubiquitously to
collect important sensor data. Due to this requirement, sensor
nodes are implemented with low power microcontrollers and
powered by battery. On the other hand, gateway devices are
placed at a strategic location to obtain the IoT data from sensor
nodes. These gateway devices need to handle connections from
a lot of sensor nodes, so they are usually implemented with
a more powerful processor and connected to a continuous
power source. The communication between gateway device
and sensor nodes utilized wireless technology like Bluetooth
Low Energy (BLE) or Zigbee. It is not directly connected to
the Internet. On the other hand, the cloud server communicates
with the gateway devices through Internet connection, which
is usually protected through TLS protocol.

Data integrity is an important security aspect as it ensures
that the collected sensor data is not modified maliciously
during the communication process from sensor nodes to the
cloud server. By employing cryptographic hash function, any
malicious modification on the communicated sensor data can

be easily detected. This allows us to verify the integrity
of the sensor data on the gateway or server side, which
greatly strengthen the security of IoT communication. On
top of that, the hash function was also used to construct
the mutual authentication protocol [9] or hash-based message
authentication code (HMAC) to achieve confidentiality and
authenticity. The role of hash-based signature in IoT systems
was also investigated in prior work [10].

Although hash functions are generally regarded as
lightweight, the efficient implementation is still important due
to the massive traffic in IoT communication. For instance, the
gateway device may need to perform data integrity check (i.e.,
recomputing the hash value) on every sensor data it received.
This may introduce a huge burden to the gateway device
and potentially degrade its response time, causing unwanted
communication delay. To mitigate this potential performance
bottleneck, we can offload the data integrity check to an
accelerator (e.g., GPU), following the strategy proposed by
Chang et al. [11]. Hence, the efficient implementation of hash
functions on GPU platforms is crucial in securing the future
IoT communication system, especially for the applications that
have a large number of sensor nodes.

B. Lightweight Hash Functions

TABLE I: Notations of logical operations.

Symbol Operation
⊕ Bitwise sum (XOR)
· Bitwise product (AND)
� Matrix multiplication
Ā Bitwise complement of A
≫ Right rotate
≪ Left rotate
� Right shift
� Left shift

In March 2021, NIST announced that four hash function
candidates (PHOTON-Beetle, Ascon, Xoodyak, and Sparkle)
had successfully advanced into the final round. Another five
AEAD candidates (Elephant, GIFT-COFB, Grain128-AEAD,
ISAP, Romulus, and TinyJambu) also advanced into the final
round. Note that PHOTON-Beetle, Ascon and Sparkle can
also be configured to operate as AEAD. This sub-section
provides an overview of the four finalist hash functions that
are selected in our implementation. More detailed descriptions
can be found in the respective specifications submitted to
NIST for standardization [12], [13], [14], [15]. Notations
used in describing operations in these four hash functions are
presented in Table I.

TABLE II: The PHOTON S-box.

x 0 1 2 3 4 5 6 7
S(x) c 5 6 b 9 0 a d
x 8 9 a b c d e f

S(x) 3 e f 8 4 7 1 2

PHOTON-Beetle [12] uses PHOTON permutation function
and sponge-based mode Beetle to construct the hash function.
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The main computation lies on the PHOTON permutation func-
tion, which is described in Algorithm 1. PHOTON permutation
make use of a 4-bit S-Box described in Table II.

Algorithm 1 PHOTON permutation function.

1: X[64] . 512-bit state represented in 8× 8 bytes
2: RC[12] ←{1,3,7,14,13,11,6,12,9,2,5,10}
3: IC[8] ←{0,1,3,7,15,14,12,8}
4: for i = 0 to 7 do . AddConstant
5: X[i,0] ← X[i,0] ⊕ RC[k] ⊕ IC[i];
6: end for
7: for i = 0 to 7, j = 0 to 7 do . SubCells
8: X[i,j] ← S(X[i,j]);
9: end for

10: for i = 0 to 7, j = 0 to 7 do . ShiftRows
11: X[i,j] ← X[i,(j+i)%8];
12: end for
13: for i = 0 to 7, j = 0 to 7 do . MixColumnSerial
14: M ← Serial [2,4,2,11,2,8,5,6]
15: X ← M8� X;
16: end for

Ascon [13] consists of the authenticated ciphers (Ascon-
128 and Ascon-128a), the hash function (Ascon-Hash, Ascon-
XOF), and a new variant Ascon-80pq with increased resistance
against quantum key-search [16]. Ascon is designed based on
substitution-permutation network (SPN) that make use of a 5-
bit S-Box described in Table III and a linear layer explained
in Equation (1):

x0 ←
∑

(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)

x1 ←
∑

(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)

x2 ←
∑

(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)

x3 ←
∑

(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)

x4 ←
∑

(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

(1)

TABLE III: The Ascon S-box.

x 0 1 2 3 4 5 6 7
S(x) 4 b 1f 14 1a 15 9 2
x 8 9 a b c d e f

S(x) 1b 5 8 12 1d 3 6 1c
x 10 11 12 13 14 15 16 17

S(x) 1e 13 7 e 0 d 11 18
x 18 19 1a 1b 1c 1d 1e 1f

S(x) 10 c 1 19 16 a f 17

Xoodyak [14] make use of the Xoodoo permutation, which
is inspired by the Keccak-p permutation function. The Xoodoo
permutation consists of five simple steps; it is illustrated in
Algorithm 2. Xoodyak can can be used as hash function or
extendable output function (XOF), but not as AEAD.

SPARKLE [15] is an SPN based cryptographic primitive
that can be used for authenticated encryption and hashing. The
Sparkle permutation function consists of an Alzette ARX-box
and a linear diffusion layer. The Alzette ARX-box, described

Algorithm 2 Xoodoo permutation function.

1: A[48] . 384-bit state represented in 48 bytes
2: Ci . Round constant at round i
//The sequence of steps is as follow:

3: θ :
4: P ← A0 +A1 +A2

5: E ← P ≪ (1, 5) + P ≪ (1, 14)
6: Ay ← Ay + E for y ∈ {0, 1, 2}
7: ρwest :
8: A1 ← A1 ≪ (1, 0)
9: P ← A2 ≪ (0, 11)

10: ι :
11: A0 ← A0 + Ci
12: χ :
13: B0 ← Ā1 ·A2

14: B1 ← Ā2 ·A0

15: B2 ← Ā0 ·A1

16: Ay ← Āy +Ay for y ∈ {0, 1, 2}
17: ρeast :
18: A1 ← A1 ≪ (0, 1)
19: A2 ← A2 ≪ (2, 8)

in Algorithm 4, is a Feistel-like 64-bit block cipher to provide
quick diffusion.

Algorithm 3 Alzette ARX-box in the Sparkle permutation
function.

1: x[8] . 256-bit state represented in eight 32-bit words
2: c . Round constant
3: x← x+ (y ≫ 31)
4: y ← y ⊕ (x≫ 24)
5: x← x⊕ c
6: x← x+ (y ≫ 17)
7: y ← y ⊕ (x≫ 17)
8: x← x⊕ c
9: x← x+ (y ≫ 0)

10: y ← y ⊕ (x≫ 31)
11: x← x⊕ c
12: x← x+ (y ≫ 24)
13: y ← y ⊕ (x≫ 16)
14: x← x⊕ c

Algorithm 4 Linear diffusion layer L6(x) in the Sparkle
permutation function.

1: t← y0 ⊕ y1 ⊕ y2
2: t← t⊕ (t≪ 16)) ≪ 16)
3: (x3, x4, x5)← (x3 ⊕ x0 ⊕ t, x4 ⊕ x1 ⊕ t, x5 ⊕ x2 ⊕ t)
4: (x0, x1, x2, x3, x4, x5)← (x4, x5, x3, x0, x1, x2)

C. Overview of GPU Architecture

GPU is a massively parallel architecture that consists of
hundreds to thousands of cores. To achieve high throughput
implementation, every core is assigned the same instruction,
but operates on a different piece of data. This is essentially
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a single instruction multiple data (SIMD) parallel computing
paradigm. GPU has a deep memory architecture that needs
to be carefully used in order to achieve high performance.
Global memory is the DRAM in GPU. It provides large in
size but very slow in access speed. Shared memory is a user-
managed cache that can be used to cache temporary data or
look-up table; it is faster than global memory but small in size
(e.g., 96KB). Registers is the fastest memory in GPU, but it
is limited to thread-level access and small in size (64K reg-
isters per streaming-multiprocessor). To exchange data across
different threads, we need to rely on shared memory or the
warp shuffle instructions. A more detail explanation on the
GPU architecture and its programming model can be found in
[17].

D. Quantum Computers for Brute-force Attack

A preimage attack on hash functions is to find a message
that outputs a specific hash value. The preimage resistance
means that it is difficult to find the preimage x for a given
y in the hash function h(x) = y. Grover search algorithm is
a quantum algorithm that is optimal for preimage attacks on
hash functions [18]. Compared to the preimage attack, which
requires 2n searches (worst case) on a classical computer,
Grover preimage attack finds the preimage with a high proba-
bility with only 2

n
2 searches. The steps for a Grover preimage

attack are as follows.

1) Preparing an n-qubit message in superposition state |ψ〉
using Hadamard gates. This ensures that all qubits have
the same amplitude.

|ψ〉 = H⊗n |0〉⊗n =
( |0〉+ |1〉√

2

)
=

1

2n/2

2n−1∑
x=0

|x〉 (2)

2) A hash function implemented as a quantum circuit is
located in oracle f(x) and is defined as follows. Oracle
operator Uf turns the solution (i.e. preimage) into a
negative sign. Since (−1)1 is −1, the sign becomes
negative only when f(x) = 1 and applies to all states.

f(x) =

{
1 if h(x) = y

0 if h(x) 6= y
(3)

Uf (|ψ〉 |−〉) =
1

2n/2

2n−1∑
x=0

(−1)f(x) |x〉 |−〉 (4)

3) Lastly, the probability increased by amplifying the ampli-
tude of the negative sign state in the diffusion operator.

Grover algorithm repeats steps 2 and 3 to increase the prob-
ability of measuring a solution. The optimal number of Grover
iterations is bπ4 2

n
2 c (about 2

n
2 ). That is, the classical preimage

attack that requires 2n searches is reduced to 2
n
2 searches by

using the Grover search algorithm. What is important in this
attack is to efficiently implement the hash function h(x) as
a quantum circuit. Since the diffusion operator has a typical
structure, there is no special technique to implement.

E. Quantum gates

Quantum computing is reversible for all changes except
measurement. Reversible means that the initial state must be
re-produced using only the output state. There are quantum
gates with reversible properties that can replace classical gates.
Figure 2 shows representative quantum gates used in quantum
computing.

x x

(a) NOT/X gate

x • x

y x⊕ y
(b) CNOT gate

x × y

y × x
(c) SWAP gate

x • x

y • y

z xy ⊕ z
(d) CCNOT/Toffoli gate

Fig. 2: Quantum gates.

1) NOT/X gate : NOT(x) = x, Inverting the input qubit.
2) CNOT gate : CNOT(x, y) = (x, x ⊕ y), One of the two

qubits acts as a control qubit. If the control qubit x is 1,
y is inverted.

3) SWAP gate : SWAP(x, y) = (y, x), Changing the state of
two qubits x, y.

4) CCNOT/Toffoli gate : Toffoli(x, y, z) = (x, y, x · y ⊕ z),
Using two control qubits. When both control qubits x and
y are 1, z is inverted.

III. DEVELOPMENT OF IMPLEMENTATION TECHNIQUES
ON GPU

This section describes the optimization techniques devel-
oped to implement selected hash functions in GPU. Note that
in order to achieve high throughput, we adopt a coarse grain
parallel method, wherein many parallel threads are initiated
and each thread computes one hash value independently.

A. PHOTON-Beetle

The PHOTON permutation function (Algorithm 1) operates
on a 256-bit state organized in an 8-bit array (X) with 8×8 di-
mension. The SubCells, ShiftRows and MixColumnSerial op-
erations can be combined and pre-computed in a table, which
greatly improves the implementation performance. Hence,
optimizing the access to this pre-computed table in PHOTON-
beetle is the key to achieve high throughput performance
in GPU. Algorithm 5 describes the PHOTON permutation
function implemented with pre-computed table.

The pre-computed table in PHOTON permutation function
only consumes 128 32-bit words, so it can be cached in
the shared memory for a faster access speed. A closer look
into Algorithm 5 reveals that the access pattern to Table is
influenced by the state in PHOTON (X, line 9). Since the
value in state X is random, the access to Table is also random.
If Table is stored in shared memory, the access pattern is very
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Algorithm 5 PHOTON permutation function with pre-
computed table.

1: X[64] . 256-bit state represented in 8× 8 bytes
2: RC[12] ←{1,3,7,14,13,11,6,12,9,2,5,10}
3: IC[8] ←{0,1,3,7,15,14,12,8}
4: for i = 0 to 7 do . AddConstant
5: X[i,0] ← X[i,0] ⊕ RC[k] ⊕ IC[i];
6: end for
7: for i = 0 to 7 do
8: v ← 0;
9: for j = 0 to 7 do . Use Pre-computed table

10: v ← v ⊕ Table[j*16 + X(j,(j+i)%8)]
11: end for
12: for j = 1 to 8 do
13: X(8 - j, i) ← v · (1 << 4)− 1
14: v ← v � 4;
15: end for
16: end for

lightly to experience bank conflict, which is not an optimal
solution.

Algorithm 6 Snippets of Table implementation (line 8 - 10 in
Algorithm 5 ) using warp shuffle.

/ / t i d i s t h e t h r e a d ID . Each t h r e a d
/ / s t o r e s f o u r v a l u e s from Tab le
t b 0 = Tab le [ t i d %32];
t b 1 = Tab le [ t i d %32 + 3 2 ] ;
t b 2 = Tab le [ t i d %32 + 6 4 ] ;
t b 3 = Tab le [ t i d %32 + 9 6 ] ;

/ / u n r o l l e d r
f o r ( c = 0 ; c < D; c ++){ / / f o r a l l c o l .

v = 0 ;
/ / R e t r i e v e t h e v a l u e s i n row− wise
v ˆ= s h f l ( tb0 , X[ 0 ] [ ( 0 + c)%D ] ) ;
v ˆ= s h f l ( tb0 , 16 + X[ 1 ] [ ( 1 + c)%D ] ) ;
v ˆ= s h f l ( tb1 , X[ 2 ] [ ( 2 + c)%D ] ) ;
v ˆ= s h f l ( tb1 , 16 + X[ 3 ] [ ( 3 + c)%D ] ) ;
v ˆ= s h f l ( tb2 , X[ 4 ] [ ( 4 + c)%D ] ) ;
v ˆ= s h f l ( tb2 , 16 + X[ 5 ] [ ( 5 + c)%D ] ) ;
v ˆ= s h f l ( tb3 , X[ 6 ] [ ( 6 + c)%D ] ) ;
v ˆ= s h f l ( tb3 , 16 + X[ 7 ] [ ( 7 + c)%D ] ) ;
. . .

}

}

To improve the performance, we proposed another technique
to store Table in registers and access it through warp shuffle
instruction, which is illustrated in Algorithm 6. Each thread
in a warp (32 threads) stores four values from Table into four
registers (tb0, tb1, tb2, and tb3), so that the 128 values from
Table are distributed into 32 threads equally. To access the
values from Table, we can read one of the registers (tb0, tb1,
tb2, or tb3), which is stored in one of the 32 threads. For

instance, shfl(tb0, X[0][(0 + c)%D]); allows us to access
tb0 stored in the thread indexed by X[0][(0 + c)%D]. The
proposed warp shuffle version can eliminate the adverse effect
of bank conflict and improves the throughput of PHOTON-
beetle hash function. We have implemented the reference
version, shared memory version, and the warp shuffle version
in this paper to compare their performance.

B. Ascon

Ascon permutation function operates on a 320-bit state,
represented in a 5×64-bit array. The S-box in Ascon can be
implemented in a bit-sliced manner, which is very efficient
in both high-end processors and constrained devices. Algo-
rithm 7 shows the our implementation of one round Ascon
permutation, which is repeated for 12 rounds. We follow the
bit-sliced approach in implementing the S-box (lines 8 - 12)
without using any shared memory like the case in PHOTON-
Beetle. The linear layer in Ascon permutation function can
also be implemented using simple logical and shift operations
(lines 17 - 21). Note that NVIDIA GPU does not come with
a native rotate instruction. Rotate operations are replaced with
two shifts and one XOR instruction.

Algorithm 7 Implementation of Ascon permutation function.

1: S[5] . 320-bit state represented in five 64-bit words
2: T[5] . 320-bit temporary state
3: C . Round constant
4: S[2] ← S[2] ⊕ C . Add round constant
5: S[0] ← S[0] ⊕ S[4]
6: S[4] ← S[4] ⊕ S[3]
7: S[2] ← S[2] ⊕ S[1]

// Ascon S-Box starts
8: T[0] ← S[0] ⊕ ¯S[1] · S[2]
9: T[1] ← S[1] ⊕ ¯S[2] · S[3]

10: T[2] ← S[2] ⊕ ¯S[3] · S[4]
11: T[3] ← S[3] ⊕ ¯S[4] · S[0]
12: T[4] ← S[4] ⊕ ¯S[0] · S[1]

// Ascon S-Box ends
13: T[1] ← T[1] ⊕ T[0]
14: T[0] ← T[0] ⊕ T[4]
15: T[3] ← T[3] ⊕ T[2]
16: T[2] ← T[2] ⊕ T[2]

// Linear diffusion layer starts
17: S[0] ← T[0] ⊕ (T[0]≫ 19)⊕ (T[0]≫ 28)
18: S[1] ← T[1] ⊕ (T[1]≫ 61)⊕ (T[1]≫ 39)
19: S[2] ← T[2] ⊕ (T[2]≫ 1)⊕ (T[2]≫ 6)
20: S[3] ← T[3] ⊕ (T[3]≫ 10)⊕ (T[3]≫ 17)
21: S[4] ← T[4] ⊕ (T[4]≫ 7)⊕ (T[4]≫ 41)
//Linear diffusion layer ends

C. Xoodyak

Xoodyak is using a permutation (Xoodoo) similar to Keccak
hash function. Unlike the other three selected hash functions,
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Xoodoo does not have any S-box or ARX-box layer. In our
GPU implementation, round constants are stored in constant
memory since it is accessible to all threads. Unlike the
pre-computed Table in PHOTO-Beetle, at each round these
Xoodoo round constants are only read once and consumed
by every thread, so it is highly possible to be cached at
the L1 cache. Hence, we do not store them into the shared
memory, as it is not going to provide any performance gain.
Our GPU implementation of Xoodoo permutation function
follow Algorithm 2 closely. We do not repeat it here.

D. SPARKLE

The SPARKLE permutation consists of an ARX-box layer
followed by a linear layer. The Alzette ARX-box in SPARKLE
can be executed efficiently using only logical operations (see
Algorithm 4. Similar to Xoodyak, the round constants are
stored in constant memory instead of shared memory. The
implementation of SPARKLE-256 permutation function is
illustrated in Algorithm 8.

IV. DEVELOPMENT OF IMPLEMENTATION TECHNIQUES ON
QUANTUM COMPUTER

A. PHOTON-Beetle

The PHOTON permutation function (Algorithm 1) operates
on a 256-qubit state organized in an 4-qubit array with 8×8 di-
mension. The PHOTON permutation function, which consists
of AddConstant, SubCells, ShiftRows, and MixColumnSerial,
is implemented as a quantum circuit as follows.

In AddConstant, predetermined constants RC and IC are
XORed with each other. In this case, it can be implemented
using only NOT gates, and the overlapping parts are omitted.
For example, when k = 1 and i = 1, in X[1, 0]⊕ RC[1] ⊕
IC[1] (i.e. X[1, 0] ⊕ 3 ⊕ 1), two NOT gates are performed on
the first qubit of X[1, 0], so it is omitted and the NOT gate is
performed only on the second qubit of X[1, 0]. Subcells apply
4-qubit S-box × 64 to 256-qubit state. When implementing
an S-box in classical computing, lookup table is a common
choice. However, in quantum computing, this approach is
quite inefficient. To solve this, we use the LIGHGTER-R tool
[19] to convert Table II into ANF (Algebraic Normal Form).
The LIGHTER-R can find reversible implementations of 4-bit
SBox. The implementation works in place, thus no additional
qubits are allocated. The PHOTON S-box quantum circuit of
ANF is shown in Figure 3. LIHGTER-R is described in detail
in [19].

x0 • • y1
x1 • • • • y2
x2 • • • • y0
x3 • • • y3

Fig. 3: Quantum circuit for PHOTON S-box.

In ShiftRow, the arrangement of qubits is changed, which
can be done only with Swap gates. We used Swap gates for
the convenience in the implementation, but we do not count

Algorithm 8 Implementation of SPARKLE-256 permutation
function.

1: S[5] . 256-bit state represented in five 64-bit words
2: rc, tx, ty, x0, y0 . Temporary variables
3: C . Round constant
4: S[1] ← S[1] ⊕ Ci%8 . Add round constant at i-th round
5: S[3] ← S[3] ⊕ i

// Ascon S-Box starts
6: for j = 0to11 do
7: rc ← C[j � 1]
8: S[j] ← S[j] + S[j+1]≫ 31
9: S[j+1] ← S[j] ⊕ S[j+1]≫ 24

10: S[j] ← S[j] ⊕ rc
11: S[j] ← S[j] + S[j+1]≫ 17
12: S[j+1] ← S[j] ⊕ S[j+1]≫ 17
13: S[j] ← S[j] ⊕ rc
14: S[j] ← S[j] + S[j+1]
15: S[j+1] ← S[j] ⊕ S[j+1]≫ 31
16: S[j] ← S[j] ⊕ rc
17: S[j] ← S[j] + S[j+1]≫ 24
18: S[j+1] ← S[j] ⊕ S[j+1]≫ 16
19: S[j] ← S[j] ⊕ rc
20: end for
// Ascon S-Box ends

// Linear layer starts
21: tx = x0 = S[0]
22: ty = y0 = S[1]
23: for j = 2 to 6 step 2 do
24: tx ← tx ⊕ S[j]
25: ty ← ty ⊕ S[j+1]
26: end for
27: tx ← (tx ≫ 16) ⊕ (tx · 0xFFFF)
28: ty ← (ty ≫ 16) ⊕ (ty · 0xFFFF)
29: for j = 2 to 6 step 2 do
30: S[j-2] = S[j+6]⊕ S[j]⊕ ty
31: S[j+6] = S[j]
32: S[j-1] = S[j+7] ⊕ S[j+1]⊕ tx
33: S[j+7] = S[j+1]
34: end for
35: S[4] = S[6] ⊕ x0 ⊕ ty
36: S[6] = x0
37: S[5] = S[7] ⊕ y0 ⊕ tx
38: S[7] = y0
//Linear layer ends
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them as quantum resources. This is because Swap gates can
be replaced by relabeling of qubits [20], [21], [22] (called
logical swap). Algorithm 9 describes Shiftrows implemented
as a quantum circuit. SWAP4 means a Swap operation in units
of 4 qubits.

Algorithm 9 Quantum circuit for ShiftRows.

1: for i = 1 to 7 do
2: for j = 0 to i− 1 do
3: for k = 0 to 7 do
4: SWAP4(X[i, k], X[i, k + 1])
5: end for
6: end for
7: end for

In MixColumnSerial, matrix multiplication in GF (24) is
used. For the general multiplication, Tofffoli gates replace
AND operations. Since constant multiplications are used in
this matrix multiplication, only CNOT gates are used, where
the gates have a lower cost than Tofffoli gates. We already
know the modulus x4 + x + 1, thus we can implement the
multiplication circuit for each constant using only CNOT gates
[23]. When the constant C = 2, C ·X mod x4+x+1 is shown
in Figure 4. Since X has to be used continuously, the product
is stored in the newly allocated qubits r0, r1, r2, r3. We prepare
modular multiplication quantum circuits for C(0 ∼ 15) and
use them according to the value of C in matrix multiplication
of MixColumnSerial.

x0 • x0
x1 • x1
x2 • x2
x3 • • x3
r0 r0
r1 r1
r2 r2
r3 r3

Fig. 4: C · X mod x4 + x+ 1 (C = 2).

B. Ascon

Ascon permutation function consists of AddConstant, Sub-
stitution layer (Table III), Linear diffusion layer (Equation
1). AddConstant adds a round constant to the state and is
implemented using only NOT gates as in PHOTON. For the
Substitution layer, it is inefficient to implement an S-box in
the form of Table III as a quantum circuit. In PHOTON, we
converted Table II to ANF using LIGHTER-R, but since Ascon
uses 5-bit S-box, LIGHTER-R (only for 4-bit S-box) cannot be
applied. Therefore, we implement the S-box of ANF (Figure
5) specified in the Ascon paper [13].

Substitution layer and Linear diffusion layer operate on a
320-qubit state, represented in a 5×64-qubit array xi(i=0,...,4).
When compute x0 in the S-box, we need the final x4 (yellow
highlight in Figure 5). It is efficient to compute in the order
x4, x0, x1, x2, x3 Generating the final x4, x0, x1 is not a
problem. However, in order to obtain x2 and x3, the values
of x4 and x0 before S-box are required (red highlight in

Fig. 5: Ascon S-box in ANF.

Figure 5). One way to solve this is to store the values (x4
and x0 before S-box) in temp qubits. However, we replace it
with additional qubits allocated from Linear diffusion layer. In
Linear diffusion layer, to compute x0, values of x0 ≫ 19 and
x0 ≫ 28 are needed, simultaneously. If the first qubit x0[0]
is updated to x0[0]⊕ x0[19]⊕ x0[28], the original x0[0] value
disappears. Since x0[45] and x0[36] cannot be computed, new
qubits are allocated to store the updated value.

To reduce the number of qubits, we present an S-box
quantum circuit using newly allocated qubits in Linear dif-
fusion layer. By utilizing the reverse operation and taking into
account the Linear diffusion layer (Equation 1), we design an
efficient S-box quantum circuit. Figure 6 shows the structure
of the proposed S-box quantum circuit. In this quantum circuit,
1-qubit of each register operates the S-box and transfers the
value to the temp qubit of Linear diffusion layer using CNOT
gates. Then, to compute x2, x3, reverse operation (except for
LD) is performed to obtain x4, x0 before S-box. Finally, we
compute x2 and x3 without temp qubits using x4 and x0 before
S-box.

C. Xoodyak

Xoodoo permutation function operates on a 384-qubit state,
represented in a 3×128-qubit array (A0, A1, A2), and each
128-qubit is arranged in a 4×32 array. Algorithm 10 describes
each step of the Xoodoo permutation implemented as a quan-
tum circuit.

For the mixing layer θ, we need to allocate a new 128-
qubit P for P = A0 +A1 +A2. Then XOR A0, A1, A2 to P
using 3×CNOT128. CNOT128 means CNOT gates operating
in units of 128 qubits. In ≪ (a, b) of θ, a means rotation
in 32-bit units in 128-bit state, and b means rotation in 1-
bit units in 32-bit state. We use RotateCNOT to XOR P to
A0, A1, A2 based on a logical swap for P , and RotateCNOT is
shown in Algorithm 11. In this way, the rotation operation can
be performed without using Swap gates. In ρwest and ρeast,
rotation operations can be replaced with the logical swap as in
RotateCNOT, but for the convenience of implementation, we
use Swap gates. ι, which adds constant Ci to A0, is performed
using only NOT gates in the same way as AddConstant of
PHOTON permutation function. The most quantum gates and
qubits are used for the non-linear layer χ. Toffoli gates (high
cost) are used to replace AND operations on A0, A1, A2 and
the results are stored in newly allocated B0, B1 and B2. We
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x4 • LD • • • x4

x0 • • LD • x0

x1 • • • LD x1

x2 • • • LD x2

x3 • • • LD x3

Reverse

Fig. 6: Ascon S-box quantum circuit (LD : performing Linear diffusion of Equation 1).

reduce the use of qubits by avoiding allocation for B2. After
computing B0 = Ā1 · A2, B1 = Ā2 · A0, reverse operations
return the values of A1 and A2. Then A2 = A2 + Ā0 ·A1 (i.e.
replace A2 = A2 +B2) avoids allocating qubits for B2. When
A2 is completed, B0 and B1 can be XORed to A0 and A1

with CNOT128. Lastly, ρeast is performed using Swap gates.

D. SPARKLE

This section describes only the Sparkle384 permutation
implementation technique. This technique works similarly on
Sparkle512. Sparkle permutations consist of an ARX-box layer
followed by a linear layer. For additions in ARX-box, a
quantum adder is required. For this, we use an improved the
quantum ripple-carry adder [24]. The ripple-carry adder stores
the result of the addition of A+B in B, keeps A as it is (i.e.
ADD(A,B) = (A,A + B). This adder uses the MAJ and
UMA modules shown in Figure 7 and uses additional qubits
r0 and r1 except for A and B as shown in Figure 8. Since
ARX-box uses modular addition ignoring the highest carry, we
allocate only a single qubit for r0. Since this r0 is initialized
to 0 after addition, it can be reused in subsequent additions.

ci • ci ⊕ ai • • ci

bi • bi ⊕ ai • si
ai • • ci + 1 • ai

Fig. 7: MAJ quantum circuit (left) and UMA circuit (right).

r0(0)

MAJ UMA

0

b0 s0
a0

MAJ UMA

a0

b1 s1
a1 • a1
r1 r1 ⊕ s2

Fig. 8: Improved ripple carry adder for i = 2.

Algorithm 12 describes an ARX-box implemented as a
quantum circuit. For additions and XORs using rotated input
(e.g. x + (y ≫ 31), y ⊕ (x ≫ 24)), resources for rotation
are not used by using RotateCNOT and RotateADD based
on logical swap. RotateCNOT32 and RotateADD32, which
are based on logical swaps and operate in 32-qubit units, are

similar to RotateCNOT in Xoodoo permutation, but this can be
implemented, simply. Algorithm 13 describes RotateCNOT32.
For RotateADD32, the structure in Figure 8 is redesigned
in 32-qubit units and ignores the r1 qubit line. Similar to
RotateXOR32, ais are relabeled according to the rotated result
(i.e. logical swaps).

In the linear layer L6(x), t for y0 ⊕ y1 ⊕ y2 is used. In the
classical computing, the use of such temp storage (t) is not
a problem. However, in the quantum computing, qubits for t
must be newly allocated, and since they cannot be recycled,
they must be allocated every L6(x), which is very inefficient.
We solve this by designing a quantum circuit for L6(x) as in
Algorithm 14. In Algorithm 14 computes y2 = y0 ⊕ y1 ⊕ y2
(value preparation), and XORs y2 to x3, x4 and x5 (lines
8∼19). CNOT16 and CNOT32 indicate CNOT operations in
units of 16 and 32 qubits. In the last step, value preparation
is reversed to return to the original y2. In linear diffusion
layer, L6(y) is also performed on y. Since L6(y) differs from
L6(x) only in operands and the implementation technique is
the same, the quantum circuit for L6(y) is omitted.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section presents the implementation of selected NIST
lightweight hash functions on two different platforms: GPU
and quantum computer. The GPU implementation was per-
formed on a workstation equipped with a Intel i9-10900K CPU
and an RTX 3080 GPU. The quantum computer implementa-
tion was performed on a MacBook Pro equipped with a Intel
i7 CPU.

A. Results of Implementation on GPU

For all hash function implementations on GPU, this paper
targets a high throughput implementation. To achieve this, all
subsequent experiments are conducted by launching P blocks
in parallel, each block consists of 512 threads. Within each
thread, we perform one hash operation with different length
(MLEN) that range from 64 bytes to 512 bytes. This represents
the common sizes of IoT sensor data typically found in sensor
nodes that are built on constrained devices with only a few
KB of RAM available. The throughput (Giga-bit per second
(Gbps)) is calculated with as follow:

Throughput =
8× P × 512×MLEN

Timeelapsed
(5)
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Algorithm 10 Quantum circuit for Ri in Xoodoo permutation.

1: θ :
2: P ← 128-qubit allocation
3: P ← CNOT128(A0, P )
4: P ← CNOT128(A1, P )
5: P ← CNOT128(A2, P )
6: A0 ← RotateCNOT(P,A0)
7: A1 ← RotateCNOT(P,A1)
8: A2 ← RotateCNOT(P,A2)
9: ρwest :

10: SWAP32(A1[64 : 96], A1[96 : 128])
11: SWAP32(A1[32 : 64], A1[64 : 96])
12: SWAP32(A1[0 : 32], A1[32 : 64])
13: for j = 0 to 10 do
14: for k = 0 to 30 do
15: SWAP(A2[31− k], A2[30− k])
16: SWAP(A2[63− k], A2[62− k])
17: SWAP(A2[95− k], A2[94− k])
18: SWAP(A2[127− k], A2[126− k])
19: end for
20: end for
21: ι :
22: RoundConstantXOR(A0, Ci)
23: χ :
24: B0 ← 128-qubit allocation
25: B1 ← 128-qubit allocation
26: A1 ← NOT128(A1)
27: B0 ← Toffoli128(A1, A2, B0)
28: A1 ← NOT128(A1) // reverse
29: A2 ← NOT128(A2)
30: B1 ← Toffoli128(A2, A0, B1)
31: A2 ← NOT128(A2) // reverse
32: A0 ← NOT128(A0)
33: A2 ← Toffoli128(A0, A1, A2)
34: A0 ← NOT128(A0) // reverse
35: A0 ← CNOT128(B0, A0)
36: A1 ← CNOT128(B1, A1)
37: ρeast :
38: for j = 0 to 30 do
39: SWAP(A1[31− j], A1[30− j])
40: SWAP(A1[63− j], A1[62− j])
41: SWAP(A1[95− j], A1[94− j])
42: SWAP(A1[127− j], A1[126− j])
43: end for
44: for j = 0 to 1 do
45: SWAP32(A2[64 : 96], A2[96 : 128])
46: SWAP32(A2[32 : 64], A2[64 : 96])
47: SWAP32(A2[0 : 32], A2[32 : 64])
48: end for
49: for j = 0 to 7 do
50: for k = 0 to 30 do
51: SWAP(A2[31− k], A2[30− k])
52: SWAP(A2[63− k], A2[62− k])
53: SWAP(A2[95− k], A2[94− k])
54: SWAP(A2[127− k], A2[126− k])
55: end for
56: end for

Algorithm 11 Quantum circuit for RotateCNOT.
1: for i = 0 to 31 do
2: //A = A+ (P ≪ (1, 5))
3: A[(5 + i)%32]← CNOT(P [96 + i], A[(5 + i)%32])
4: A[(32 + ((5 + i)%32)]← CNOT(P [i], A[32 + ((5 + i)%32)]
5: A[(64 + ((5 + i)%32)]← CNOT(P [32 + i], A[64 + ((5 + i)%32)]
6: A[(96 + ((5 + i)%32)]← CNOT(P [64 + i], A[96 + ((5 + i)%32)]
7: //A = A+ (P ≪ (1, 14))
8: A[(5 + i)%32]← CNOT(P [96 + i], A[(14 + i)%32])
9: A[(32 + ((14 + i)%32)]← CNOT(P [i], A[32 + ((14 + i)%32)]

10: A[(64 + ((14 + i)%32)]← CNOT(P [32 + i], A[64 + ((14 + i)%32)]
11: A[(96 + ((14 + i)%32)]← CNOT(P [64 + i], A[96 + ((14 + i)%32)]
12: end for

Algorithm 12 Quantum circuit for ARX-box in Sparkle
permutation.

1: x ← RotateADD32(y, x, r0, 31)
2: y ← RotateCNOT32(x, y, 24)
3: x ← RoundConstantXOR(x, c)
4: x ← RotateADD32(y, x, r0, 17)
5: y ← RotateCNOT32(x, y, 17)
6: x ← RoundConstantXOR(x, c)
7: x ← ADD32(y, x, r0)
8: y ← RotateCNOT32(x, y, 31)
9: x ← RoundConstantXOR(x, c)

10: x ← RotateADD32(y, x, r0, 24)
11: y ← RotateCNOT32(x, y, 16)
12: x ← RoundConstantXOR(x, c)

Algorithm 13 Quantum circuit for RotateCNOT32(a, b, n).

1: for i = 0 to 31 do
2: b[i]← CNOT(a[(n+ i)%32], b[i])
3: end for

Algorithm 14 Quantum circuit for L6(x).

1: Value preparation :
2: //y2 = y0 ⊕ y1 ⊕ y2
3: y2 ← CNOT32(y0, y2)
4: y2 ← CNOT32(y1, y2)
5: //y2 = y2 ⊕ (y2 ≪ 16)
6: y2 ← CNOT16(y2[0 : 16], y2[16 : 32])
7: end

8: //x3 = x3 ⊕ x0 ⊕ (y2 ≪ 16)
9: x3[0 : 16] ← CNOT16(y2[16 : 32], x3[0 : 16])

10: x3[16 : 32] ← CNOT16(y2[0 : 16], x3[16 : 32])
11: x3 ← CNOT32(x0, x3)

12: //x4 = x4 ⊕ x1 ⊕ (y2 ≪ 16)
13: x4[0 : 16] ← CNOT16(y2[16 : 32], x4[0 : 16])
14: x4[16 : 32] ← CNOT16(y2[0 : 16], x4[16 : 32])
15: x4 ← CNOT32(x1, x4)

16: //x5 = x5 ⊕ x2 ⊕ (y2 ≪ 16)
17: x5[0 : 16] ← CNOT16(y2[16 : 32], x5[0 : 16])
18: x5[16 : 32] ← CNOT16(y2[0 : 16], x5[16 : 32])
19: x5 ← CNOT32(x2, x5)

20: //Back from y0 ⊕ y1 ⊕ y2 to y2
21: Reverse(Value preparation)
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Fig. 9: Throughput of PHOTON-Beetle with various message
length.

Figure 9 shows the throughput achieved by PHOTON-
Beetle in our GPU implementation. The shared memory ver-
sion is always slower than the proposed warp shuffle version
by approximately 40%. This is because in the PHOTON round
function, shared memory used to store the pre-computed table
is accessed in a random manner, which may introduce a lot of
bank conflicts. On the contrary, the warp shuffle version stores
the pre-computed table into registers, which is not affected by
any random access pattern. Hence, the throughput of warp
shuffle version consistently outperformed the shared memory
version. The highest throughput achieved by PHOTON-Beetle
in our implementation range between 70 Gps to 63 Gbps for
different MLEN.

26 27 28 29
0

500

1,000

MLEN

G
bp

s

Ascon
Xoodyak
Sparkle

Fig. 10: Throughput of Ascon, Xoodyak, and Sparkle with
various message length.

Compared to PHOTON-Beetle, the other three candidates
can achieve a much higher throughput. Referring to Figure 10,
Sparkle is able to achieve very high throughput across different
MLEN, range between 850 Gbps to 1000 Gbps. Xoodyak
and Ascon performs at the similar level, achieving throughput
that range between 400 Gbps to 500 Gbps. The throughput
achieved by these three candidates are an order of magni-
tude higher than PHOTON-Beetle. The main reason is that
PHOTON-Beetle uses byte-wise operations, which is efficient

in constrained devices (e.g., 8-bit microcontroller), but not
efficient in GPU with 32-bit architecture. On the other hand,
Sparkle, Xoodyak and Ascon are designed based on word-
level operations (32-bit or 64-bit), which can be efficiently
implemented in GPU. Hence, the throughput achieved by these
three candidates are much higher compared to PHOTON-
Beetle.

B. Results of Implementation on Quantum Computer

All hash functions implemented in this paper are optimized
for qubits and quantum gates in the reversible computing
environment of quantum computers. Table IV shows the log-
ical resources for all hash functions implemented as quantum
circuits. We estimate the security strength of all hash functions
through the post-quantum security requirements presented by
NIST [25]. NIST presented the following requirements for the
security strength of post-quantum cryptosystems.
• Attacks that break the security strength of a 256-bit hash

function must require similar or more resources than
those required for an attack against a hash function (e.g.
SHA-256 or SHA3-256).

• Attacks that break the security strength of a block cipher
with a 128-bit key must require similar or more resources
than those required for an attack against a hash function
(e.g. AES-128).

The attack cost for block cipher is estimated as D (Total
gates × Depth) based on Grassl’s implementation of AES
quantum circuit [26]. For the case of AES-128, it is estimated
as 2170(D) quantum gates. For hash functions, there is no
attack cost estimated by quantum gates (only for classical
gates). As an alternative, we estimate the attack cost D for
hash functions by applying the estimation method in block
cipher [27], [28] to SHA-256 and SHA-3. Amy et al. [29]
presented techniques to estimate the cost of quantum preimage
attacks for SHA-256 and SHA3. We follow the method in [29]
by estimating the cost of attacks on the 256-bit input message
as well. Quantum resources for SHA-2 and SHA3 are shown
in Table V. In [29], resources are analyzed at T+Clifford level
by decomposing Toffoli gates. SHA3 is also analyzed as a
resource at the NCT (NOT, CNOT, and Toffoli) level, but
SHA-256 is not, so it was extrapolated based on the T+Clifford
level.

In oracle, the hash function is executed twice due to
(hashing + reverse). The resources of Table IV × 2 and
Table V × 2 are used except for qubits. Resources of using
a single multi-controlled NOT gate to compare the generated
hash value to a known hash value is omitted for simplicity.
The optimal number of Grover search iterations is bπ4 2

n
2 c.

For a 256-bit input message, oracle is repeated bπ4 2128c times.
Finally, resources for attack are estimated as Table IV, V
×2 × bπ4 2128c as shown in Table VI. Since total gates is the
sum of all gates at the T+Clifford level, Tables IV and V of
the NCT level are decomposed into the T+Clifford level and
estimated as shown in Table VI. We decompose the Tofffoli
gate into 7 T gates + 9 Clifford gates [30], as in [29].

It can be seen that attack costs for 256-bit hash functions
PHOTON-Beetle, Sparkle, Xoodyak, and Ascon (ESCH-256)
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are lower than those for SHA-256 and SHA3, which is the
security requirements of NIST. Note that the number of qubits
is not counted in D. This should be taken into account.
Increasing the number of rounds of permutation, which is the
most costly in hash functions, will be one of the ways to satisfy
the post-quantum security strength.

TABLE IV: Quantum resources required for Lightweight hash
functions.

Algorithm Qubits Toffoli gates CNOT gates X gates Depth

PHOTON 18,944 18,432 315,328 10,369 3,371

ASCON 35,136 55,296 159,232 97,346 2,487

Xoodyak 14,464 13,824 50,944 27,754 760

ESCH256 769 37,200 113,360 10,559 95,033

ESCH384 1,025 71,424 217,792 20,248 182,421

Input message length = 256 bits

TABLE V: Quantum resources required for SHA-256 and
SHA-3.

Algorithm Qubits Toffoli gates CNOT gates X gates Depth

SHA-256 [29]
(Extrapolation) 2,402 57,184 133,984 · 528,768

SHA-3 [29] 3,200 84,480 332,697,60 85 10,128

Input message length = 256 bits

TABLE VI: Comparison of performance.

Algorithm Total gates Depth D
Security

requirements

PHOTON 1.859 · 2147 1.292 · 2140 1.201 · 2288 1.244 · 2296
(SHA-256)

or
1.574 · 2295

(SHA3)

ASCON 1.71 · 2148 1.907 · 2139 1.63 · 2288

Xoodyak 1.797 · 2146 1.164 · 2138 1.046 · 2285

ESCH256 1.077 · 2148 1.139 · 2145 1.227 · 2293

Input message length = 256 bits, D = Total gates × Depth

VI. CONCLUSION

High throughput data integrity check is essential to protect
the communication in IoT systems. In this paper, we proposed
techniques to optimize the four lightweight hash functions
finalists in the NIST standardization (PHOTON-Beetle, Ascon,
Xoodyak and Sparkle). All four candidates can achieve high
hashing throughput (70 Gbps to 1000 Gbps) on a GPU
platform, which can be used to perform high performance data
integrity check in IoT systems. The implementation of these
four hash functions on quantum computer was analyzed using
IBM ProjectQ. Further, we estimated the cost of the Grover
preimage attack and compared it with NIST’s post-quantum
security requirements. Our work contributes to the analysis of
hash functions by a quantum computer. The output from this
article can be used to protect the IoT communication (high
throughput integrity check) as well as analyze the vulnerabil-
ities of these hash functions against brute-force attack [31].
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L. Perrin, A. Udovenko, V. Velichkov, Q. Wang,
A. Moradi, and A. R. Shahmirzadi. (2021) Schwaemm
and esch: Lightweight authenticated encryption and hashing
using the sparkle permutation family. [Online]. Available:
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/finalist-round/updated-spec-doc/sparkle-spec-final.pdf

[16] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, “Ascon v1.
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