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Abstract. ForkAE is a family of authenticated encryption (AE) schemes using a forkcipher as
a building block. ForkAE was published in Asiacrypt’19 and is a second round candidate in the
NIST lightweight cryptography process. ForkAE comes in several modes of operation: SAEF, PAEF,
and rPAEF. SAEF is optimized for authenticated encryption of short messages and processes the
message blocks in a sequential and online manner. SAEF requires a smaller internal state than its
parallel sibling PAEF and is better fitted for devices with smaller footprint. At SAC 2020 it was
shown that SAEF is also an online nonce misuse-resistant AE (OAE) and hence offers enhanced
security against adversaries that make blockwise adaptive encryption queries. It has remained an
open question if SAEF resists attacks against blockwise adaptive decryption adversaries, or more
generally when the decrypted plaintext is released before the verification (RUP).
RUP security is a particularly relevant security target for lightweight (LW) implementations of
AE schemes on memory-constrained devices or devices with stringent real-time requirements. Sur-
prisingly, very few NIST lightweight AEAD candidates come with any provable guarantees against
RUP.
In this work, we show that the SAEF mode of operation of the ForkAE family comes with integrity
guarantees in the RUP setting. The RUP integrity (INT-RUP) property was defined by Andreeva
et al. in Asiacrypt’14. Our INT-RUP proof is conducted using the coefficient H technique and it
shows that, without any modifications, SAEF is INT-RUP secure up to the birthday bound, i.e.,
up to 2n/2 processed data blocks, where n is the block size of the forkcipher. The implication of our
work is that SAEF is indeed RUP secure in the sense that the release of unverified plaintexts will
not impact its ciphertext integrity.

Keywords: Authenticated encryption, forkcipher, lightweight cryptography, short messages,
online, provable security, release of unverified plaintext, RUP.

1 Introduction

An authenticated encryption (AE) scheme provides message confidentiality and authenticity.
The majority of AE schemes nowadays process the plaintext data along with two additional
inputs: an associated data AD and a nonce N . The associated data is a piece of information,
such as a packet header, that is sent in the clear and requires authentication whereas the nonce
is a unique value that is used to offload the need for either maintaining a state or a random
value. The formalisation of nonce-based authenticated encryption was introduced in 2002 by
Rogaway [20].

The design and analysis of AE(AD) protocols have recently attracted a great deal of scientific
attention, mostly driven by the past CAESAR competition (2014–2018) [8] and the ongoing NIST
lightweight cryptography standardization process (2018–). The winners of CAESAR competition
are defined in three categories depending on their use cases: 1. Ascon [12] and ACORN [22] (for
resource constrained environments, lightweight); 2. AEGIS-128 [24] and OCB [17] (for high-
performance); 3. Deoxys II [16], COLM [1], and MORUS [23] (for stronger security guarantees,
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defense in depth). The CAESAR winners provide various advantages over the current standards
GCM (NIST SP 800-38D) and CCM (IEEE 802.11i, IPsec ESP and IKEv2) and serve as adoption
recommendations by the cryptographic community for new applications and standards.

One of target properties for the defense in depth CAESAR category was defined as (limited
damage under) integrity and confidentiality attacks in the release of unverified plaintext (RUP)
setting. More precisely, integrity preservation despite RUP was considered as critical for defense
in depth security whereas some limited RUP confidentiality damage was still permissible. The
AEAD syntax and formal RUP security definitions were introduced by Andreeva et al. [3] in
Asiacrypt 2014. First, they defined the security notion of plaintext awareness PA in two variants
PA1 and PA2, and then proposed to combine PA1 along with IND-CPA to achieve confidentiality
of an AE(AD) scheme. To achieve integrity of ciphertexts under RUP, they used INT-CTXT in
the RUP setting, also known as the INT-RUP notion.

Intuitively, the notion of INT-RUP says that an adversary shall not be able to produce a
valid forgery after consistent observations of decrypted chosen ciphertexts which have not passed
successful verification (else the forgery would have already succeeded). Note that compared to the
classical integrity notion where the decryption and verification combined oracle returns failure
every time, in the RUP integrity setting the adversary has access to a separate decryption
oracle which returns the decryptions of any chosen ciphertext and the verification oracle returns
failure unless the forgery succeeds. To accommodate the decryption functionality, one needss to
explicitly split the decryption and verification functionalities in the syntax of an AEAD. This
split is natural and can be applied to all existing AEAD schemes.

Release of unverified plaintext presents a significant threat for many practical applications
which allow for release unverified plaintext (RUP), that is the decrypted ciphertext is released
before the verification has been completed. For example, when AE scheme is implemented on
resource-constrained devices, like a smart card or RFID, it is almost impossible to store the
entire temporary plaintext due to the limited buffer of the device. Another reason could be
the real-time requirement for online applications which can not be satisfied if the decrypted
ciphertext can only be release after verification.

Our Contributions. The focus of our RUP-integrity security investigation is the SAEF mode
from the ForkAE [4] family. SAEF is a sequential and online nonce-based AEAD which is
optimized for the processing of short messages and therefore suitable for lightweight applications
where the predominant message size is just a few blocks. SAEF has been shown to achieve
confidentiality and authenticity up to the birthday bound in [5]. Moreover, recently in [2] SAEF
was proven to be secure when the nonces are repeated up to leakage of identical plaintext
prefixes under the notion of OAE [14]. A consequence of this result is that SAEF resist attacks
by blockwise adaptive adversaries and hence is suitable for lightweight applications with low
latency and/or low memory requirements.

The latter results stand to prove the defense in depth resilience of SAEF against both nonce
respecting and nonce repeating adversaries. In this work we further investigate the defense in
depth provable security guaranteed offered by the SAEF mode against an extra strong adversary
(compared to the classical nAE setting), namely one with access to a separate decryption oracle.
We prove that SAEF indeed provides integrity in the RUP setting or satisfies the INT-RUP
security notion.
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Our result shows that the SAEF mode is provably INT-RUP secure without the need of ap-
plying any design modifications i.e. the integrity of SAEF in the presence of a stronger adversary
decrypting unverified ciphertexts remains intact.

To complete our proof we use the coefficient H technique [18] as a main analysis tool. More
concretely we prove that SAEF is INT-RUP secure up to 2n/2 blocks of processed data in total,
where n is the block size of the underlying forkcipher. Our result further validates and enhances
the suitability of SAEF in ForkAE for the in depth security protection.

Defense in depth comparison of SAEF in ForkAE with other NIST LW 2nd Round
Candidates. Among the 32 candidates in the second round of the NIST lightweight competition
there are only 6 AE modes (including SAEF) that come with claims above the conventional nAE
security. We provide a comparison of these modes with respect to security properties beyond
nAE aka defense in depth and summarize them into the Table 1.

The first property is OAE [13] which ensures that the AE mode can be implemented in
an online manner with reasonable security guarantees i.e. the mode is secure against block-
wise (hence also nonce-misusing) adversaries. The second property is Nonce-Misuse resilience [6]
(NMR) which ensures that the mode provides reasonable security for a query even when the
nonce is repeated in “other” queries i.e. security against a specific set of nonce-misusing adver-
saries. The third property is MRAE [21] which is a stronger version of NMR. This property
ensures that the AE mode provides reasonable security guarantees against all types of nonce-
misusing adversaries.

Note that MRAE is a stronger security definition when compared with OAE (which is
stronger than NMR) but an MRAE-secure scheme can not be implemented securely in an online
fashion which makes OAE security the optimal choice in such applications with online require-
ments.

The fourth property is INT-RUP [3] which ensures that the AE mode is secure w.r.t. in-
tegrity even when the release of unverified plaintexts is allowed i.e. integrity against adversaries
decrypting unverified plaintexts. The fifth property is Plaintext-Awareness (PA) [3] which when
combined with IND-CPA ensures that the AE mode is secure w.r.t. confidentiality even when
the release of unverified plaintexts is allowed i.e. confidentiality against adversaries decrypting
unverified plaintexts. Note that PA is a very strong notion of security and that no OAE-secure
scheme can achieve it without weakening its existing definition.

The last remaining property from the table is single pass over data. This property ensures
that the mode only require one pass over the data throughout its execution. Again, note that
OAE implies single pass but the opposite implication is not always true.

Table 1: Comparison of SAEF with NIST LW submissions with beyond nAE security.
ESTATE [10] ROMULUS-M [15] Spook [7] Oribatida [9] LOCUS,LOTUS [11] SAEF [5]

OAE [13] 7 7 7 7 7 X
MRAE [21] X X 7 7 7 7

NMR [6] X X X 7 7 X
INT-RUP [3] X X 7 X X X

PA [3] X X 7 7 7 7

Single pass over data 7 7 X X X X

We further provide a comparison between SAEF and the five modes from NIST candidates
with INT-RUP security in Table 2 regarding some of their parametric choices and rate. Our
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comparison shows that SAEF comes with a comparable state and better rate of 1 as compared
to the rest of the illustrated candidates. Here rate means the number of message bits processed
per bit of the underlying primitive4 block. To exemplify, if the rate is 1/2 for a given mode Π
then it processes n/2 message bits per n-bit block of the underlying primitive.

Table 2: Comparison of SAEF with the other INT-RUP secure NIST LW submissions regarding
for their comparable instances. Each entry of this table except the Rate column is in bits. Here
n and t represent the block size and the tweak size of the corresponding underlying primitive,
respectively.

Parameter Nonce size Key size Tag size n t State Rate INT-RUP

ESTATE [10] 128 128 128 128 4 260 1/2 64

ROMULUS-M [15] 128 128 128 128 192 448 1/2 ≥ 64

Oribatida [9] 128 128 128 256 0 320 1/2 64

LOCUS [11] 128 128 64 64 4 324 1/2 64

LOTUS [11] 128 128 64 64 4 384 1/2 64

SAEF-128-192 [5] 60 128 128 128 64 448 1 64

SAEF-128-256 [5] 124 128 128 128 128 512 1 64

2 Preliminaries

Strings. All strings are considered as binary strings. The set of all strings of all possible lengths
is denoted by {0, 1}∗ and the set of all strings of length n (a positive integer) is denoted by
{0, 1}n. We let {0, 1}≤n =

⋃n
i=0{0, 1}n. We denote by Perm(n) the set of all permutations of

{0, 1}n and by Func(m,n) the set of all functions with domain {0, 1}m and range {0, 1}n.
For a string X of ` bits, we denote by X[i] the ith bit of X for i = 0, . . . , ` − 1 (counting

from left to right) and define X[i . . . j] = X[i]‖X[i + 1]‖ . . . ‖X[j] for 0 ≤ i < j < `. We let
left`(X) = X[0 . . . (`−1)] denote the ` leftmost bits of X and rightr(X) = X[(|X|−r) . . . (|X|−1)]
the r rightmost bits of X, such that X = leftχ(X)‖right|X|−χ(X) for all 0 ≤ χ ≤ |X|. Given an

integer (possibly implicit) n > 0 and an X ∈ {0, 1}∗, we use X‖10∗ to denote X‖10n−(|X| mod n)−1

for simplicity. Further, for the same integer n, we define pad10(X) = X‖10∗ that returns X if
|X| ≡ 0 (mod n) and X‖10∗ otherwise.

String partitioning. We fix an arbitrary integer n for this work and call it the block size. For
any string X, We let |X|n = d|X|/ne and use X1, . . . , Xx, X∗

n←− X to define the partitioning
of X into n-bit blocks, such that X = X1‖ . . . ‖Xx‖X∗ with |Xi| = n for i = 1, . . . , x and
0 < |X∗| ≤ n. Hence, x = |X|n − 1.

Blocks. We use Bn to denote the set of all n-bit strings (or blocks) i.e. {0, 1}n. We define
B∗n = {ε} ∪

⋃∞
i=1 B

i
n where ε denotes the empty string with length 0. We say a string X is

“n-aligned” iff X ∈ B∗n. We let Xi denote the ith n-bit block of an n-aligned string X. For
two distinct and n-aligned strings X,Y ∈ B∗n with |X|n ≤ |Y |n w.l.o.g, we let llcpn(X,Y ) =
max{1 ≤ i ≤ |X|n|Xj = Yj for 1 ≤ j ≤ i} denote the length of the longest common prefix (in
n-bit blocks) of X and Y .

Miscellaneous. We let X ←$ X denote the sampling of an element X from a finite set X under
the uniform distribution. We let (p)q denote the falling factorial p · (p−1) · (p−2) · . . . · (p−q+1)

4 We resort to indicating rate in terms of opaque primitive calls, as the primitives used to instantiate these
schemes in the LWC project do not allow for a meaningful, more fine-grained, yet simple comparison.
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where (p)0 = 1. We define a predicate P(x) as P(x) = 1 if it is true and P(x) = 0 if it is false. We
use lexicographic comparison for integer tuples (to exemplify, (i′, j′) < (i, j) iff i′ < i or i′ = i
and j′ < j). The symbol ⊥ denotes an undefined value or an error.

2.1 Syntax of AEAD under RUP setting

A nonce-based AEAD scheme under the RUP setting is a tuple Π = (K, E ,D,V). The key space
K is a finite set. The deterministic encryption algorithm E : K×N ×A×M→ C maps a secret
key K, a nonce N , an associated data A and a message M to a ciphertext C = E(K,N,A,M).
The nonce, AD and message domains are all subsets of {0, 1}∗. The deterministic decryption
algorithm D : K ×N ×A× C →M takes a tuple (K,N,A,C) and returns a message M ∈M.
The deterministic verification algorithm V : K×N ×A×C → {>,⊥} takes a tuple (K,N,A,C)
and either returns the distinguished symbol > to indicate a successful authentication or ⊥ to
indicate an authentication error.

We require that for every M ∈ M, we have {0, 1}|M | ⊆ M (i.e. for any integer m, either
all or no strings of length m belong to M) and that for all K,N,A,M ∈ K × N × A ×M
we have |E(K,N,A,M)| = |M | + θ for some non-negative integer θ called the stretch of
Π. For correctness of Π, we require that for all K,N,A,M ∈ K × N × A × M we have
M = D(K,N,A, E(K,N,A,M)) and > = V(K,N,A, E(K,N,A,M)). We let EK(N,A,M) =
E(K,N,A,M) ,DK(N,A,C) = D(K,N,A,C) and VK(N,A,C) = V(K,N,A,C).

2.2 Security definition under RUP setting

INT-RUP Authenticity. Traditional requirements for the integrity of an AE scheme can
be achieved by the INT-CTXT notion, where the adversary is allowed to make encryption and
decryption queries, but the decryption oracle always returns ⊥. However, under the RUP setting,
where the adversary is allowed to observe the unverified plaintext, the integrity requirements as
in INT-CTXT need to be modified. The following definition from the work of Andreeva et al. [3]
presents the targeted notion of integrity under the RUP setting.

Definition 1 (INT-RUP Advantage). Let A be a computationally bounded adversary with
access to an encryption, a decryption and a verification oracle namely E ,D, and V for Π then
the INT-RUP advantage of A against Π for some K ←$ K is defined as

AdvINT−RUP
Π (A) = Pr[AEK ,DK ,VK forges].

Here we say A forges if A comes up with a challenge ciphertext as the forgery which is not an
output from the queries of encryption oracle EK but when queried to verification oracle VK it
results into > i.e. the forgery is success.

2.3 Forkcipher

We follow the formalism of forkcipher provided by Andreeva et al. [19]. Informally, a forkcipher
F is a tweakable symmetric primitive which maps a secret key K, a tweak T and an n-bit input
block M to two n-bit ciphertext blocks C0 and C1, such that C0 and C1 are two independent
permutations of M .

5
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Syntax. A forkcipher is formally defined by a pair of deterministic algorithms; named the
encryption algorithm: F : {0, 1}k × T × {0, 1}n × {0, 1, b} → {0, 1}n ∪ {0, 1}n × {0, 1}n and the
inversion algorithm: F−1{0, 1}k × T × {0, 1}n × {0, 1} × {i, o, b} → {0, 1}n ∪ {0, 1}n × {0, 1}n.

The encryption algorithm takes a key K, a tweak T ∈ T , a plaintext block M and an output
selector s, and outputs the left n-bit ciphertext block C0 if s = 0, the right n-bit ciphertext
block C1 if s = 1, and both the blocks C0, C1 if s = b. We use F(K,T,M, s) = FK(T,M, s) =

FTK(M, s) = FT,sK (M) interchangeably.

Similarly, the inversion algorithm takes a key K, a tweak T, a ciphertext block C (either
left or right half of the output block), an indicator b to indicate whether the fed block should
be treated as the left or the right ciphertext block and an output selector s, and outputs the
plaintext block M if s = i, the other ciphertext block C ′ if s = o, and both blocks M,C ′ if s = b.

We use F−1(K,T,M, b, s) = F−1
K(T,M, b, s) = F−1T

K(M, b, s) = F−1T,b,s
K (M) interchangeably.

We say a tweakable forkcipher F is correct if for each pair of key and tweak, the forkcipher
applies two independent permutations on the input to produce the corresponding two output
blocks. Formally, for every tuple K,T,M, β with K ∈ {0, 1}k,T ∈ T ,M ∈ {0, 1}n and β ∈ {0, 1}
the forkcipher must satisfy the following conditions: (i) F−1(K,T,F(K,T,M, β), β, i) = M , and
(ii) F−1(K,T,F(K,T,M, β), β, o) = F(K,T,M, β⊕1), and (iii) (F(K,T,M, 0), F(K,T,M, 1)) =
F(K,T,M, b), and (iv)

(
F−1(K,T, C, β, i),F−1(K,T, C, β, o)

)
= F−1(K,T, C, β, b).

For the rest of the paper, we assume that T = {0, 1}t for some positive t. We call k, n and t
the keysize, blocksize and tweaksize of F, respectively.

Forkcipher Security. The security of a forkcipher F is defined as the indistinguishability be-
tween the real prtfp-realF and ideal prtfp-idealF worlds when adversary accesses either worlds
in a chosen ciphertext fashion. In the real world, the forkcipher oracle implements the true F
algorithm faithfully, whereas in the latter world, the oracle replaces F by two tweakable random
permutations πT,0, πT,1 ←$ Perm(n) for T ∈ T . We then define the advantage of A as:

Advprtfp
F (A) = Pr[Aprtfp-realF ⇒ 1]− Pr[Aprtfp-idealF ⇒ 1].

2.4 Coefficient H Technique

The coefficient H is a simple but powerful proof technique by Patarin [18]. It is often used to
prove indistinguishability of a provided construction from an idealized object for an information-
theoretic adversary. Coefficient-H based proofs use the concept of “transcripts”. A transcript
is defined as a complete record of the interaction of an adversary A with its oracles in the
indistinguishability experiment. For example, if (Mi, Ci) represents the input and output of
the i-th query of A to its oracle and the total number of queries made by A is q then the
corresponding transcript (denoted by τ) is defined as τ = 〈(M1, C1), . . . , (Mq, Cq)〉. The goal of
an adversary A is to distinguish interactions in the real world Oreal from the ones in ideal world
Oideal.

We denote the distribution of transcripts in the real and the ideal world by Θreal and Θideal,
respectively. We call a transcript τ attainable if the probability of achieving τ in the ideal world
is non-zero. Further, w.l.o.g. we also assume that A does not make any duplicate or prohibited
queries. We can now state the fundamental Lemma of coefficient H technique.

Lemma 1 (Fundamental Lemma of the coefficient H Technique [18]). Consider that
the set of attainable transcripts is partitioned into two disjoint sets Tgood and Tbad. Also, as-
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sume there exist ε1, ε2 ≥ 0 such that for any transcript τ ∈ Tgood, we have Pr[Θreal=τ ]
Pr[Θideal=τ ] ≥

1− ε1, and Pr[Θideal ∈ Tbad] ≤ ε2. Then, for all adversaries A, it holds that

|Pr[AOreal ]− Pr[AOideal ]| ≤ ε1 + ε2.

3 SAEF and its RUP Security

SAEF (short for Sequential AE from a Forkcipher) is a nonce-based AEAD scheme that uses a
tweakable forkcipher F (as defined in Section 2.3) as an underlying primitive with T = {0, 1}t for
a positive t ≤ n. SAEF[F] = (K, E ,D,V) has a key space K = {0, 1}k, nonce space N = {0, 1}t−4,
and the AD and message spaces are both {0, 1}∗. The ciphertext expansion of SAEF is n bits.
The encryption, decryption and verification algorithms are given in Figure 2 and the encryption
algorithm is illustrated in Figure 1. Note that the earlier SAEF representation [5] did not have an
explicit decryption and verification functionality separation. The present syntax splits explicitly
these functionalities and introduces no change to the actual input and output behavior of the
SAEF algorithm.

Fig. 1: The encryption algorithm of SAEF[F] mode. The bit noM = 1 iff |M | = 0. The picture illustrates the
processing of AD when length of AD is a multiple of n (top left) and when the length of AD is not a multiple of n
(top right), and the processing of the message when length of the message is a multiple of n (bottom left) and
when the length of message is not a multiple of n (bottom right). The white hatching denotes that an output
block is not computed.

SAEF processes an encryption query in blocks of n bits (in order), with first AD and then
the message. It uses single forkcipher call for each block. These forkcipher calls are tweaked by
composing: (1) either the nonce followed by a 1-bit (for the first F call of the query) or the string
0t−3, (2) three-bit flag f .

This flag f is used to ensure proper domain separation for various “types” of blocks in the
encryption algorithm. The values of f from the set {000, 010, 011, 110, 111, 001, 100, 101} are
respectively used, when processing non-final AD block, the last n-bit long AD block, the last
AD block of < n bits, the last AD block of n bits to produce tag, the last AD block of < n bits
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to produce tag, non-final message block, the last n-bit message block and the last message block
of < n bits.

The right output block of every F call is used as a chaining value to mask either the input
(in the case of AD processing) of the following F call or both the input and output (in the case
of message processing) of the following F call. The first F call of every query is not masked but
contains the nonce in the tweak. The tag for a query is defined as the (possibly truncated) last
“right” output block of F. In case of truncation, message padding is used for partial integrity
check of the ciphertext. For a decryption (respectively verification) query, the processing of input
blocks is similar to the encryption, but now with the chaining values in the message processing
part are computed with the “inverse” F algorithm. These chaining values are used (similar to
the encryption algorithm) to compute the corresponding plaintext blocks (respectively to verify
the final tag).

1: function E(K,N,A,M)

2: A1, . . . , Aa, A∗
n←− A

3: M1, . . . ,Mm,M∗
n←− M

4: noM← 0
5: if |M| = 0 then noM← 1

6: ∆← 0n; T← N‖0t−4‖1
7: for i← 1 to a do
8: T← T‖000
9: ∆← F

T,0
K

(Ai ⊕∆)

10: T← 0t−3

11: end for
12: if |A∗| = n then
13: T← T‖noM‖10
14: ∆← F

T,0
K

(A∗ ⊕∆)

15: T← 0t−3

16: else if |A∗| > 0 or |M| = 0 then
17: T← T‖noM‖11
18: ∆← F

T,0
K

((A∗‖10∗)⊕∆)

19: T← 0t−3

20: end if . Do nothing if
A = ε,M 6= ε

21: for i← 1 to m do
22: T← T‖001
23: Ci, ∆← F

T,b
K

(Mi⊕∆)⊕(∆, 0n)

24: T← 0t−3

25: end for
26: if |M∗| = n then
27: T← T‖100
28: else if |M∗| > 0 then
29: T← T‖101
30: else
31: return ∆
32: end if
33: C∗, T ← F

T,b
K

(pad10(M∗) ⊕ ∆) ⊕
(∆‖0n)

34: return
C1‖ . . . ‖Cm‖C∗‖left|M∗|(T )

35: end function

1: function D(K,N,A,C)

2: A1, . . . , Aa, A∗
n←− A

3: C1, . . . , Cm, C∗, T
n←− C

4: noM← 0
5: if |C| = n then noM← 1

6: ∆← 0n; T← N‖0t−4‖1
7: for i← 1 to a do
8: T← T‖000
9: ∆← F

T,0
K

(Ai ⊕∆)

10: T← 0t−3

11: end for
12: if |A∗| = n then
13: T← T‖noM‖10
14: ∆← F

T,0
K

(A∗ ⊕∆)

15: T← 0t−3

16: else if |A∗| > 0 or |T | = 0 then
17: T← T‖noM‖11
18: ∆← F

T,0
K

((A∗‖10∗)⊕∆)

19: T← 0t−3

20: end if . Do nothing if
A = ε,M 6= ε

21: for i← 1 to m do
22: T← T‖001
23: Mi, ∆ ← F−1T,0,b

K (Ci ⊕ ∆) ⊕
(∆, 0n)

24: T← 0t−3

25: end for
26: if |T | = n then
27: T← T‖100
28: else if |T | > 0 then
29: T← T‖101
30: else
31: return ε
32: end if
33: M∗, T

′ ← F−1T,0,b
K (C∗ ⊕ ∆) ⊕

(∆, 0n)
34: return M1‖ . . . ‖Mm‖M∗
35: end function

1: function V(K,N,A,C)

2: A1, . . . , Aa, A∗
n←− A

3: C1, . . . , Cm, C∗, T
n←− C

4: noM← 0
5: if |C| = n then noM← 1

6: ∆← 0n; T← N‖0t−4‖1
7: for i← 1 to a do
8: T← T‖000
9: ∆← F

T,0
K

(Ai ⊕∆)

10: T← 0t−3

11: end for
12: if |A∗| = n then
13: T← T‖noM‖10
14: ∆← F

T,0
K

(A∗ ⊕∆)

15: T← 0t−3

16: else if |A∗| > 0 or |T | = 0 then
17: T← T‖noM‖11
18: ∆← F

T,0
K

((A∗‖10∗)⊕∆)

19: T← 0t−3

20: end if . Do nothing if
A = ε,M 6= ε

21: for i← 1 to m do
22: T← T‖001
23: Mi, ∆ ← F−1T,0,b

K (Ci ⊕ ∆) ⊕
(∆, 0n)

24: T← 0t−3

25: end for
26: if |T | = n then
27: T← T‖100
28: else if |T | > 0 then
29: T← T‖101
30: else
31: if C∗ 6= ∆ then return ⊥
32: end if
33: M∗, T

′ ← F−1T,0,b
K (C∗ ⊕ ∆) ⊕

(∆, 0n)
34: T ′ ← left|T |(T

′); P ←
rightn−|T |(M∗)

35: if T ′ 6= T then
36: return ⊥
37: else if P 6= leftn−|T |(10

n−1) then

38: return ⊥
39: else
40: return >
41: end if
42: end function

Fig. 2: The SAEF[F] AEAD scheme.
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3.1 Security of SAEF

In the work [2], Andreeva et al. proved that SAEF achieves OAE confidentiality and integrity up
to the birthday bound under Nonce-Misuse. However, there have been no investigations into the
security of SAEF under release of unverified plaintext (i.e., if the decrypted plaintext is released
before the tag verification). We state the formal claim about the integrity of SAEF under RUP
in Theorem 1.

Theorem 1. Let F be a tweakable forkcipher with T = {0, 1}t. Then for any nonce-misuse
adversary A who makes at most qe encryption, at most qd decryption and at most qv verification
queries with qe + qd ≤ 2n−1 such that the total number of forkcipher calls induced by all the
queries is at most σ, we have

AdvINT−RUP
SAEF[F] (A) ≤Advprtfp

F (B) +
σ2 + 4 · qdqv

2n

for some adversary B, making at most 2σ queries, and running in time given by the running
time of A plus γ · σ for some “small” constant γ.

The proof of Theorem 1 follows in Section 3.2.
We use a similar proof approach and case analysis for SAEF RUP integrity as provided

by Andreeva et al. in [2] for SAEF integrity under Nonce-Misuse. Our proof and analysis
derives the claimed security bound by utilizing the key properties of SAEF that are results of
its sequential structure. One of such property is the preservation of common length prefix over
queries (encryption or decryption). This can better be understood by an example. Consider two
encryption queries (w.l.o.g.) with same nonce N , same associated data of two blocks A1‖A2 but
different messages (of two blocks) M1‖M2 and M0‖M2 where M1 6= M0. One can follow the
encryption algorithm (as shown in Figure 2) for these two queries and can notice that the values
of the F tweak strings and of ∆ masks used to process the input data upto block A2 are same
for both the queries. However, these equalities of tweak strings and the ∆ masks for A2 when
combined with the inequality M1 6= M0 imply that the next input blocks in these encryption
queries will necessarily differ i.e. ∆ + M1 6= ∆ + M0. This will randomize the ∆ masks that
are used to process the next input blocks. In short, the internal variables of SAEF’s encryption
algorithm preserve a common prefix length over queries and get randomized after that. We use
this property of SAEF to prove its RUP integrity.

3.2 Proof of Theorem 1

We switch to an alternative definition of RUP integrity through indistinguishability, which is
equivalent with the notion introduced in Section 3. We define two games, INT-RUP-realΠ and
INT-RUP-idealΠ . In both games A is given access to an encryption, a decryption and a verifica-
tion oracle. In the game INT-RUP-realΠ , all three oracles faithfully implement the corresponding
algorithms of SAEF using the same randomly sampled secret key, except that the verification
oracle returns > in case of a successful forgery, and ⊥ otherwise. In the game INT-RUP-idealΠ ,
the encryption and decryption oracles are same as in INT-RUP-realΠ but the verification oracle
always returns ⊥. We claim that AdvINT-RUP

Π (A) = Pr[AINT-RUP-realΠ ]− Pr[AINT-RUP-idealΠ ] .
One can easily prove the equality of these two definitions, by establishing inequalities in both

directions. An adversary A playing the game INT-RUPΠ can be used to derive a distinguishing
adversary B which forwards A’s queries and outputs 1 if A forges, achieving the same advantage
as A. For the other direction, we can derive an adversary A for game INT-RUPΠ from an

9
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indistinguishability adversary B, which forwards B’s queries and automatically wins if B produces
a valid forgery. Clearly, A achieves the same advantage as B because if no forgery occurs, the
game INT-RUP-realΠ is indistinguishable from INT-RUP-idealΠ .

Replacing F. We first replace F with a pair of independent random tweakable permutations π0 =
(πT,0 ←$ Perm(n))T∈{0,1}t and π1 = (πT,1 ←$ Perm(n))T∈{0,1}t and let SAEF[(π0, π1)] denote

the SAEF mode that uses π0, π1 instead of F, which yields AdvINT-RUP
SAEF[F] (A) ≤ Advprtfp

F (B) +

AdvINT-RUP
SAEF[(π0,π1)](A) .

Now, the adversary is left with the goal of distinguishing between the games
INT-RUP-realSAEF[(π0,π1)] and INT-RUP-idealSAEF[(π0,π1)]. For simplicity, we denote these
games by “real-int world” and “ideal-int world”, respectively. Hence, we want to bound
AdvINT-RUP

SAEF[(π0,π1)](A) = Pr[AINT-RUP-realSAEF[(π0,π1)] ]− Pr[AINT-RUP-idealSAEF[(π0,π1)] ] .

Transcripts. Following the coefficients H technique [18], we describe the interactions of A with
its oracles in a transcript :

τ = 〈(N i, Ai,M i, Ci)qei=1, (N̄
i, Āi, M̄ i, C̄i)

qd
i=1, (Ñ

i, Ãi, C̃i, bi)qvi=1〉

For the ith query to the encryption oracle with input (N i, Ai,M i) and output Ci, SAEF
internally processes Ai,M i and Ci in blocks Ai1, . . . , A

i
ai
, Ai∗, and M i

1, . . . ,M
i
mi
,M i
∗, and

Ci1, . . . , C
i
mi
, Ci∗, T

i, respectively (defined as per the encryption algorithm of SAEF, Figure 2).
Here ai and mi represent, the length of Ai and M i in n-bit, respectively. SAEF also processes
and uses the internal chaining values as the whitening masks for encryption which we denote
here by a sequence of ∆s. The whitening masks used to process Ai1, . . . , A

i
ai
, Ai∗ are denoted by

∆i
1, . . . ,∆

i
ai+1

, respectively, and the whitening masks used to process the blocksM i
1, . . . ,M

i
mi
,M i
∗

are denoted by ∆i
ai+2

, . . . ,∆i
ai+mi+2

, respectively.

Similarly, for the ith query to the decryption oracle with input (N̄ i, Āi, C̄i) and output M̄ i,
SAEF internally processes Āi, C̄i and M̄ i in blocks Āi1, . . . , Ā

i
āi
, Āi∗, and C̄i1, . . . , C̄

i
m̄i
, C̄i∗, T̄

i, and
M̄ i

1, . . . , M̄
i
m̄i
, M̄ i
∗, respectively (defined as per the decryption algorithm of SAEF, Figure 2).

Here āi and m̄i represent, the length of Āi and C̄i (excluding the tag from the count) in n-bit,
respectively. SAEF also processes and uses the internal chaining values as the whitening masks
for decryption which we denote here by a sequence of ∆̄s. The whitening masks used to process
Āi1, . . . , Ā

i
āi
, Āi∗ are denoted by ∆̄i

1, . . . , ∆̄
i
āi+1

, respectively, and the whitening masks used to

process the blocks C̄i1, . . . , C̄
i
m̄i
, C̄i∗ are denoted by ∆̄i

āi+2
, . . . , ∆̄i

āi+m̄i+2
, respectively.

Similarly, for the ith query to the verification oracle with input (Ñ i, Ãi, C̃i) and output
bi ∈ {>,⊥}, SAEF internally processes Ãi and C̃i in blocks, denoted as Ãi1, . . . , Ã

i
ãi
, Ãi∗ and

C̃i1, . . . , C̃
i
m̃i
, C̃i∗, T̃

i, where ãi and m̃i are respectively equal to the length of Ãi and the length

of C̃i in n-bit blocks (excluding the tag from the count). Additionally, SAEF internally com-
putes the plaintext blocks M̃ i

1, . . . , M̃
i
m̃i
, M̃ i
∗ as well as ∆̃i

1, . . . , ∆̃
i
ãi+1

, the whitening masks used

to process Ãi1, . . . , Ã
i
ãi
, Ãi∗ respectively, and ∆̃i

ãi+2
, . . . , ∆̃i

ãi+m̃i+2
,the whitening masks used to

process the blocks C̃i1, . . . , C̃
i
m̃i
, C̃i∗ respectively.

Additional information. To make the proof analysis simple, we additionally provide the adver-
sary with all the whitening masks (encryption masks ∆i

j , decryption masks ∆̄i
j and verification

masks ∆̃i
j), and internally computed plaintexts M̃ i

j when it has made all its queries and only
the final response is pending.

In the real-int world, all these variables are internally computed by oracles that faithfully
evaluate SAEF. In the ideal-int world also, the encryption and decryption oracles evaluate SAEF,
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hence the ∆i
j and ∆̄i

j masks are defined. However, the verification oracle of the ideal-int world

does not make any computations, and hence ∆̃i
j and M̃ i

j are not defined. We therefore have to
define the sampling of these variables which will be done at the end of the experiment (and thus
have no effect on the adversarial queries).

We fix ∆̃i
1 = 0n for 1 ≤ i ≤ qv and sample each of the remaining masks ∆̃i

j uniformly
and independently at random, except when such a mask is trivially defined due to a “common
prefix” (defined shortly) with a previous query (encryption, decryption or verification). Once
these masks are sampled, we use the SAEF decryption algorithm with π0 and these masks to
compute M̃ i

j . Clearly, this give away of additional information can only help the adversary by
increasing its advantage and hence can be considered here for upper bounding the targeted
(above mentioned) adversarial advantage.

Block-tuple representation. We switch to an equivalent representation (called block-tuple
representation) by defining the ith encryption query as (Tij , ∆

i
j , X

i
j , Y

i
j )`

i

j=1, T
i, such that `i =

ai +mi + 2. The jth quadruple (out of these `i) represents the processing done in jth forkcipher
call in the query, with the string Tij used as forkcipher tweak, the corresponding whitening mask
∆i
j , the (possibly padded) associated data/plaintext block Xi

j and the empty/ciphertex block

Y i
j . With formal details:

– For the very first block, we always have Ti1 = N‖1‖F for a flag F ∈ {0, 1}3 and ∆i
1 = 0n.

For blocks with j > 1 we have Tij = 0t−3‖F for an F ∈ {0, 1}3.
– If |A| > 0, for 1 ≤ j ≤ ai we have Xi

j = Aij , Y
i
j = ε and F = 000. For j = ai + 1 we have

Xi
j = pad10(Ai∗), Y

i
j = ε and F ∈ {0, 1}3 as defined in Figure 2.

– If |M | > 0, for ai + 2 ≤ j < `i we have Xi
j = M i

j , Y
i
j = Cij and F = 001. For j = `i we have

Xi
j = pad10(M i

∗), Y
i
j = Ci∗ and F ∈ {0, 1}3 as defined in Figure 2.

– If A = M = ε, we have j = `i = 1, Xi
j = pad10(ε), Y i

j = ε and F = 111.

With similar definition, we define the block-tuple representation for decryption queries
as (T̄

i
j , ∆̄

i
j , X̄

i
j , Ȳ

i
j )

¯̀i
j=1, T̄

i with ¯̀i = m̄i + āi + 2, and for verification queries as

(T̃
i
j , ∆̃

i
j , X̃

i
j , Ỹ

i
j )

˜̀i
j=1, T̃

i, bi with ˜̀i = m̃i + ãi + 2. We now simplify the notation by re-indexing
the decryption queries from qe + 1 to qe + qd and the verification queries from qe + qd + 1 to
qe + qd + qv. Further, with this new indexing, we drop the bars and tildes from the variables.
The decryption queries and verification queries are thus denoted as (Tij , ∆

i
j , X

i
j , Y

i
j )`

i

j=1, T
i for

qe + 1 ≤ i ≤ qe + qd and (Tij , ∆
i
j , X

i
j , Y

i
j )`

i

j=1, T
i, bi for qe + qd + 1 ≤ i ≤ qe + qd + qv, respectively.

Blockwise common prefix of queries The block-tuple notation allows us to define the fol-
lowing natural definition of longest common blockwise prefix between any two queries. We define

the longest common prefix between the ith and i′th query with `i ≤ `i′ w.l.o.g. as

llcpn(i, i′) = max{1 ≤ u ≤ `i|(Tij ,∆i
j , X

i
j , Y

i
j ) = (Ti

′
j ,∆

i′
j , X

i′
j , Y

i′
j ) for 1 ≤ j ≤ u}.

Note that this definition covers common blockwise prefix between all types of query pairs (for
example, between two encryption queries or between an encryption and a decryption query or
between a decryption and a verification query etc). Informally, llcpn(i, i′) represents the number
of internal chaining values ∆s that are trivially equal between the ith and i′th query. To exemplify,
if the nonces N i and N i′ are different then we have llcpn(i, i′) = 0. If we have two queries with
N i = N i′ but the i′th query has AD Ai

′
= Ai‖M i

1 i.e. equal to the AD of the ith query appended
with its first message block, we will still have llcpn(i, i′) = ai + 1, due to the inclusion of tweak
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strings in the block tuples. We now define the length of the longest common blockwise prefix of
a query with all previous queries as llcpn(i) = max1<i′<i llcpn(i, i′). One should note here that
for a verification query, all the encryption and decryption queries are always taken into account
(as per the convention of query indexing).

Sampling of ∆ masks. Since the block-tuple notation and common prefix are defined, we can
now use them to formally define the sampling of ∆i

j masks for the verification queries (i.e., for
qe + qd < i ≤ qe + qd + qv) of the ideal-int world.

For the ith verification query with 1 ≤ j ≤ llcpn(i)+1, we let ∆i
j = ∆i′

j for the smallest i′ < i

such that i′th query has llcpn(i) = llcpn(i, i′). For the remaining block-tuples with llcpn(i) + 1 <
j ≤ `i, ∆i

j is sampled uniformly at random.

Extended transcripts. Using the block-tuple notation, we can now re-define the extended
transcripts as

τ =

〈((
Tij ,∆

i
j , X

i
j , Y

i
j

)`i
j=1

, T i
)qe+qd
i=1

,

((
Tij ,∆

i
j , X

i
j , Y

i
j

)`i
j=1

, T i, bi
)qe+qd+qv
i=qe+qd+1

〉
.

Note that the terms qe, qd, qv, a and m here are themselves random variables and hence
can vary for different attainable transcripts. However, due to the assumption that the ad-
versary can only make at most σ many block queries, we always have

∑qe+qd+qv
i=1 (ai +

mi + 2) = σ. Also, note that it is impossible for two distinct transcripts τ =

〈(N i, Ai,M i, Ci)qei=1, (N̄
i, Āi, C̄i, M̄ i)qdi=1, (Ñ

i, Ãi, C̃i, bi)qvi=1〉 and τ ′ = 〈(N ′i, A′i,M ′i, C ′i)q
′
e
i=1,

(N̄ ′
i
, Ā′

i
, C̄ ′

i
, M̄ ′

i
)
q′d
i=1, (Ñ ′

i
, Ã′

i
, C̃ ′

i
, b′i)

q′v
i=1〉 to have the same block-tuple representation (for the

proof of this claim, we refer the reader to [2], Proposition 1).

Coefficient-H. Let us represent the distribution of the transcript in the real-int world and the
ideal-int world by Θrein and Θidin, respectively.

The proof relies on the fundamental lemma of the coefficient H technique as defined in Lemma
1 above. We say an attainable transcript τ is bad if one of the following conditions occurs:

BadT1 a.k.a. “Input Collision”: There exists (i′, j′) < (i, j) (the block indexed by (i′, j′) precedes
(i, j)) such that 1 ≤ i ≤ qe + qd + qv, llcpn(i) < j ≤ `i is not in the longest common prefix of
the ith query, , and the (i, j) block call has tweak-input collision with the (i′, j′) block call,
i.e., Tij = Ti

′
j′ and Xi

j ⊕∆i
j = Xi′

j′ ⊕∆i′
j′ .

BadT2 a.k.a. “Mask Collision”: There exists (i′, j′) < (i, j) such that 1 ≤ i ≤ qe + qd + qv,
llcpn(i) < j < `i (not lies in the longest common prefix), and both the block calls have the
same tweaks Tij = Ti

′
j′ and different inputs Xi

j ⊕ ∆i
j 6= Xi′

j′ ⊕ ∆i′
j′ but the following masks

∆i
j+1 = ∆i′

j′+1 collide. (although such a collision cannot occur in the real-int world where the
masks are generated using permutation, it can still occur in the ideal-int world).

BadT3 a.k.a. “Forgery”: There exists qe + qd + 1 ≤ i ≤ qe + qd + qv such that for j = `i we have
any of the following:
Case 1. The last bit of Tij is 0 and πTij ,1

(Xi
j ⊕∆i

j) = T i.

Case 2. The last bit of Tij is 1, rightn−|T i|(X
i
j) = 10n−|T

i|−1

and left|T i|(πTij ,1
(Xi

j ⊕∆i
j)) = T i .

Case 3. The last bit of Tij is 1, there exists qe+1 ≤ id ≤ qe+qd with Tid
`id

= 1 and |T i| = |T id |
such that rightn−|T id |(X

id
`id

) = 10n−|T
id |−1

12
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and left|T i|(πTij ,1
(Xi

j ⊕∆i
j)) = T i .

We denote by Tbad, the set of “bad” transcripts that is defined as the subset of attainable
transcripts for which the transcript predicate BadT(τ) = (BadT1(τ)∨BadT2(τ)∨BadT3(τ)) = 1.
We denote by Tgood, the set of attainable transcripts which are not in the set Tbad (and are
therefore called good transcripts).

Lemma 2. For Tbad above and qe + qd ≤ 2n−1, we have

Pr[Θidin ∈ Tbad] ≤ σ2

2n
+

4 · qdqv
2n

.

Proof. BadT1. For any transcript in Tbad with BadT1 set to 1, we know that there exists at least
one pair of block indices (i′, j′) < (i, j) such that llcpn(i) < j ≤ `i and ∆i

j ⊕∆i′
j′ = Xi

j ⊕Xi′
j′ .

Note that for all i′ < i and j = j′ = llcpn(i) + 1, we have ∆i
j = ∆i′

j′ but Xi
j 6= Xi′

j′ and thus
for all such cases the probability that the above equality occurs is 0. Contrastingly, for all i′ ≤ i
and j′ 6= j or j 6= llcpn(i) + 1, the two masks has marginal probability 1/2n of being same in
Θidin. Since there are total σ possible values of (i, j) in a transcript, each having no more than

σ possible values of (i′, j′), we get Pr[BadT1(Θidin) = 1] ≤ σ2

2 ·max
{

0, 1
2n

}
= σ2

2n+1 .

BadT2. Similarly, for any transcript in Tbad with BadT2 set to 1, we know that there exists at
least one pair (i′, j′) < (i, j) such that llcpn(i) < j < `i and ∆i

j+1 ⊕∆i′
j′+1 = 0 .

Note that from the definition of the predicate BadT2 we have j + 1 6= llcpn(i) + 1. This
means that the marginal probability of ∆i

j+1 being equal to ∆i′
j′+1 is 1/2n. Since there are total

σ possible values of (i, j) in a transcript, each with no more than σ possible values of (i′, j′), we

get Pr[BadT2(Θidin) = 1] ≤ σ2

2n+1 .

BadT3. Now, for any transcript in Tbad with BadT3 set to 1 and BadT1 set to 0, we know that
one of the following can happen for Θidin:

1. For some i′ ≤ qe, j = `i and j′ = `i
′
, we have j = j′ = llcpn(i). Clearly, in such a case

∆i
j = ∆i′

j′ , X
i
j = Xi′

j′ but T i 6= T i
′
. Since T i

′
is the correct tag for the given ciphertext,

T i 6= T i
′

cannot trigger BadT3, and yields 0 probability.

2. For some i′ ≤ qe + qd, j = `i and j′ = `i
′
, we have j = j′ = llcpn(i) + 1. We have ∆i

j = ∆i′
j′

but Xi
j 6= Xi′

j′ and thus the probability of any of the three conditions of BadT3 occurring

for a given query is at most 4qd/2
n assuming qe + qd ≤ 2n−1. For the first condition, this

holds as every tag there is produced with a tweak used at most once per encryption query,
corresponding to a probability 1/(2n − qe) ≤ 2/2n. For the second condition, we can upper
bound the product of the probabilities of having the correct padding in the block Xi

j (at most

2|T
i|/(2n − qe − qd)), and of having the correct truncated tag (at most 2n−|T

i|/(2n − qe)) by
4/2n. For the third condition, with any choice of qe + 1 ≤ id ≤ qe + qd such that |T i| = |T id |,
we can upper bound the product of the probabilities of having the correct padding in the
block Xid

`id
(at most 2|T

i|/(2n − qe − qd)), and of having the correct truncated tag for the

verification query (at most 2n−|T
i|/(2n − qe)) by 4/2n. Now, since there are total qd many

possible choices for id, the total probability of the third condition is upper bounded by
4qd/2

n.
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3. For all i′ ≤ qe + qd when we have j > llcpn(i, i′) + 1. We know that the ∆i
j is not inherited

from an encryption or decryption query and is therefore sampled uniformly in Θidin. The first
condition of BadT3 thus occurs with a probability 1/2n. For the second condition, the correct
padding is found with probability 1/2n−|T

i| (using the randomness of ∆i
j), and the correct

tag is found with probability at most 2n−|T
i|/(2n−qe), thanks to freshness of Xi

j⊕∆i
j , relying

on BadT1(Θidin) = 0 w.l.o.g., yielding a probability of at most 2/2n. For the third condition,
with similar reasoning the correct padding is found with probability qd/2

n−|T i| (using the
randomness of ∆i

j), and the correct tag is found with probability at most 2n−|T
i|/(2n − qe),

providing a probability of at most 2qd/2
n.

Since there are total qv possible verification queries, we get Pr[BadT3(Θidin) = 1|BadT1(Θidin) =

0] ≤ qv ·max
{

0, 4qd
2n ,

2qd
2n

}
= 4·qdqv

2n and we obtain by the union bound that Pr[Θidin ∈ Tbad] ≤
σ2

2n + 4·qdqv
2n .

Lemma 3. Let τ ∈ Tgood i.e. τ is a good transcript. Then Pr[Θrein=τ ]
Pr[Θidin=τ ] ≥ 1 .

Proof. Note that a good transcript has the following two properties 1. (i) For each (i′, j′) < (i, j)
if (i, j) is not in the longest common prefix of the two queries i.e. llcpn(i, i′) < j < `i and both
π0 calls have same tweaks (i.e. Tij = Ti

′
j′) then both calls will always have different inputs and

different outputs. 2. (ii) For each query to the verification oracle i.e. 1 ≤ i ≤ qv, the transcript
contains bi =⊥ in the verification result i.e. the conditions for a successful verification are not
met.

The probability to obtain a good transcript τ in the real-int and the ideal-int worlds can
now be computed. Let τed and τv denote the two parts of a transcript τ consisting respec-
tively encryption-decryption and verification queries, so that τ = 〈τed, τv〉. With a slight abuse
of notation, we have Pr[Θrein = τ ] = Pr[Θrein,e = τed] · Pr[Θrein,v = τv|Θrein,ed = τed] and
Pr[Θidin = τ ] = Pr[Θidin,ed = τed] · Pr[Θidin,v = τv|Θidin,ed = τed] and consequently

Pr[Θrein,ed = τed] · Pr[Θrein,v = τv|Θrein,ed = τed]

Pr[Θidin,ed = τed] · Pr[Θidin,v = τv|Θidin,ed = τed]
=

Pr[Θrein,v = τv|Θrein,ed = τed]

Pr[Θidin,v = τv|Θidin,ed = τed]
.

This is true because the encryption and decryption oracles in the real-int world and in the ideal-
int world are identical, and so Pr[Θrein,ed = τed] = Pr[Θidin,ed = τed]. Further abusing notation,
we let τv,∆ denote the marginal event of all ∆ masks in the verification queries (as variables)
being equal to the values in the transcript. We have Pr[Θrein,v = τv|Θrein,ed = τed, Θrein,v,∆ =
τv,∆] = Pr[Θidin,v = τv|Θidin,ed = τed, Θidin,v,∆ = τv,∆] because both sides of this equality
correspond to mappings defined with random permutations with the input-output pairs fixed
from the encryption-decryption parts in both worlds. Further, using this equality, we get

Pr[Θrein,v = τv|Θrein,ed = τed]

Pr[Θidin,v = τv|Θidin,ed = τed]
=

Pr[Θrein,v,∆ = τv,∆|Θrein,ed = τed]

Pr[Θidin,v,∆ = τv,∆|Θidin,ed = τed]
.

Let us now consider that there are δ many ∆s in τ that are fixed/predefined due to all internal

common prefixes. Clearly, one can write that δ =
∑qe+qd+qv

i=1 (llcpn(i) + 1) (the extra 1 represents
the ∆i

1 as it is always fixed to 0). In the ideal-int world, since the ∆s corresponding to the
remaining (σ−δ) unique block calls are sampled uniformly and independently and all verification
oracle results are ⊥, one has Pr[Θidin,v,∆ = τv,∆|Θidin,ed = τed] = 1

(2n)σ−δ
. In the real-int world,

these (σ − δ) ∆s are no longer uniformly distributed but are instead defined using the random

tweakable permutation (π0, π1) with at least g1 =
∑qe+qd+qv

i=1 (ai − 1) block calls with the tweak

0n and at least g2 =
∑qe+qd+qv

i=1 (mi − 1) block calls with the tweak 0n−1‖1. Thus, one has

14



E Andreeva, AS Bhati and D Vizár RUP Security of SAEF

Pr[Θrein,v,∆ = τv,∆|Θrein,ed = τed] ≥ 1
(2n)g1 (2n)g2 (2n)σ−δ−g1−g2

.

One should note here that the above expression is not an equality and only provides an upper
bound on the targeted probability because there exist more permutation calls that can have
tweak collisions (for example, the first block calls of any set of queries will have same tweaks if
they all have same nonce). Now, from the above expressions, we get

Pr[Θrein = τ ]

Pr[Θidin = τ ]
≥ (2n)σ−δ

(2n)g1(2n)g2(2n)σ−δ−g1−g2
=

(2n)g1(2n)g2

(2n)g1(2n)g2
≥ 1 .

Combining the results of Lemma 2 and 3 (taking ε1 = 0) into Lemma 1, we obtain the upper

bound AdvINT-RUP
SAEF[(π0,π1)](A) ≤ σ2

2n + 4·qdqv
2n and hence the result of the Theorem 1.

4 Conclusion

We prove that SAEF is RUP-secure w.r.t. integrity under the existing notion of INT-RUP as
long as the total amount of data processed with a single key is � 2n/2 blocks, with n being
the blocksize of the underling forkcipher. This concludes that SAEF continues to provide the
same integrity even when the unverified plaintext is released. Clearly, our newly proven security
property on the original SAEF construction is of high relevance to many resource-constrained
applications of lightweight cryptography where the constrained devices are forced or allow for
leaking portions of unverified plaintext in decryption.

5 Acknowledgments

This work was supported by CyberSecurity Research Flanders with reference number
VR20192203. This work was supported in part by the Research Council KU Leuven C1 on
Security and Privacy for Cyber-Physical Systems and the Internet of Things with contract num-
ber C16/15/058 and by the Flemish Government through FWO Project G.0835.16 A security
Architecture for IoT.

References

1. Andreeva, E., Bogdanov, A., Datta, N., Luykx, A., Mennink, B., Nandi, M., Tischhauser, E., Yasuda, K.:
COLM v1 (2014), "https://competitions.cr.yp.to/round3/colmv1.pdf"

2. Andreeva, E., Bhati, A.S., Vizár, D.: Nonce-Misuse Security of the SAEF Authenticated Encryption mode.
In: Selected Areas in Cryptography (2020)

3. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How to Securely Release
Unverified Plaintext in Authenticated Encryption. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS,
vol. 8873, pp. 105–125. Springer (2014)

4. Andreeva, E., Lallemand, V., Purnal, A., Reyhanitabar, R., Roy, A., Vizár, D.: ForkAE v.
5. Andreeva, E., Lallemand, V., Purnal, A., Reyhanitabar, R., Roy, A., Vizár, D.: Forkcipher: a New Primi-

tive for Authenticated Encryption of Very Short Messages. In: International Conference on the Theory and
Application of Cryptology and Information Security. pp. 153–182. Springer (2019)

6. Ashur, T., Dunkelman, O., Luykx, A.: Boosting authenticated encryption robustness with minimal modifica-
tions. In: Annual International Cryptology Conference. pp. 3–33. Springer (2017)

7. Bellizia, D., Berti, F., Bronchain, O., Cassiers, G., Duval, S., Guo, C., Leander, G., Leurent, G., Levi,
I., Momin, C., Pereira, O., Peters, T., Standaert, F.X., Udvarhelyi, B., Wiemer, F.: Spook: Sponge-Based
Leakage-Resistant Authenticated Encryption with a Masked Tweakable Block Cipher. IACR Transactions
on Symmetric Cryptology 2020(S1), 295–349 (Jun 2020). https://doi.org/10.13154/tosc.v2020.iS1.295-349,
https://tosc.iacr.org/index.php/ToSC/article/view/8623

8. Bernstein, D.J.: Cryptographic competitions: CAESAR. http://competitions.cr.yp.to

15

"https://competitions.cr.yp.to/round3/colmv1.pdf"
https://doi.org/10.13154/tosc.v2020.iS1.295-349
https://tosc.iacr.org/index.php/ToSC/article/view/8623
http://competitions.cr.yp.to


E Andreeva, AS Bhati and D Vizár RUP Security of SAEF
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