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Abstract. ChaCha is a high-throughput stream cipher designed with the aim of
ensuring high-security margins while achieving high performance on software platforms.
RISC-V, an emerging, free, and open Instruction Set Architecture (ISA) is being
developed with many instruction set extensions (ISE). ISEs are a native concept in
RISC-V to support a relatively small RISC-V ISA to suit different use-cases including
cryptographic acceleration via either standard or custom ISEs. This paper proposes a
lightweight ISE to support ChaCha on RISC-V architectures. This approach targets
embedded computing systems such as IoT edge devices that don’t support a vector
engine. The proposed ISE is designed to accelerate the computation of the ChaCha
block function and align with the RISC-V design principles. We show that our
proposed ISEs help to improve the efficiency of the ChaCha block function. The
ISE-assisted implementation of ChaCha encryption speeds up at least 5.4× and
3.4× compared to the OpenSSL baseline and ISA-based optimised implementation,
respectively. For encrypting short messages, the ISE-assisted implementation gains
a comparative performance compared to the implementations using very high area
overhead vector extensions.
Keywords: ChaCha Stream Cipher, Instruction Set Extension, RISC-V

1 Introduction
ChaCha for secure communication Secure communication on the internet typically re-
quires different cryptographic primitives and a common protocol applying these primitives
to provide a protected channel between endpoints. The Transport Layer Security (TLS)
specifies the leading and standard protocols for secure communication. The TLS protocol
defines public key algorithms for establishing symmetric session keys, and different symmet-
ric and MAC algorithms for the subsequent encrypted and authenticated communication.
The efficiency of these primitives is essential to achieve good performance for secure
communication. ChaCha is a high-throughput stream cipher which is a refinement of the
Salsa20 stream cipher. It targets software platforms to aim at improving its security bounds
without losing performance. ChaCha stream cipher and Poly1305 authenticator [LCM+16]
are specified as one of the cipher suites by the current TLS 1.3 [Res18, Section 9.1]. ChaCha
is officially supported by popular cryptographic/TLS projects like OpenSSL, OpenSSH,
and MbedTLS. Moreover, there are extensive efforts in the literature to optimise the perfor-
mance of ChaCha implementation on various platforms, namely optimised software (using
ARM Cortex ISA [DSS17] or RISC-V ISA [Sto19]), AVX vectorisation architecture [GG14],
and dedicated hardware accelerators [KLA+19, PRH+19].

RISC-V Instruction Set Architecture RISC-V is an open and free ISA with academic
origins [AP14] adopting strongly RISC-oriented design principles. The ISA can be im-
plemented, modified, or extended with neither licence nor royalty requirements. As a
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result of these features and the availability of supporting ecosystems (e.g., compilation
tool-chains) from surrounding communities, an increasing number of RISC-V implementa-
tions have been available. The RISC-V ISA is designed with 32 registers, denoted GPR[i]
for 0 ≤ i < 32: GPR[0] is fixed to 0, whereas GPR[1] to GPR[31] are general-purpose.
The width of each GPR[i], and hence the base ISA are defined by XLEN of which sup-
ported values can be 32, 64, 128 bits. RISC-V has an extremely simple ISA (about 50
general-purpose instructions) that has been designed to be extended. Thanks to the
simple base ISA, the implementation of a RISC-V processor even with 64-bit ISA can
achieve low area cost that is well suitable for resource-constrained devices. For example,
the S2 Series, developed by SiFive1, is a family of full-featured 64-bit RISC-V embedded
processors for area-constrained applications. The base ISA can be supplemented using sets
of standard or non-standard extensions to support additional special-purposes. Multiple
proposals for standard extensions particularly one of which is the cryptography extension2

are being developed. The current cryptography extension proposal consists of three main
components: Vector, Scalar, and Entropy Source instructions. The Scalar aiming at
resource-constrained devices defines a set of algorithm-specific, e.g., AES, SM4, SHA2,
instructions. However, ChaCha, a widely-used algorithm, is not explicitly supported by
the current proposal. In this context, the paper’s main contribution is to propose the first
design and implementation of dedicated ISEs to accelerate the ChaCha algorithm.

Accelerate cryptographic algorithms via an ISE approach To accelerate a given crypto-
graphic algorithm, techniques can be algorithm-agnostic or algorithm-specific, and based on
the use of hardware only, software only, or a hybrid approach. ISE [GB11, BGM09, RI16],
as a hybrid approach, has proved its effectiveness. An increasing number of studies recently
adopt ISEs for cryptographic application to improve efficiency [RCB+20, MNSW21] as
well as address security concerns [GMPP20]. For accelerating performance, the idea is
that a set of additional instructions can be, e.g., through benchmarking, identified to
leverage special-purpose functionality, vs. general-purpose functionality in the base ISA,
and thereby deliver improvement. ISEs are particularly effective for resource-constrained de-
vices because they afford a compromise improving footprint and latency vs. a software-only
option while also improving area overhead and flexibility vs. a hardware-only option.

Remit and organisation This paper investigates an ISE approach to support for ChaCha
software. We favour a lightweight method to accelerate ChaCha performance targeting
resource-constrained devices. The paper is organised as follows: Section 2 provides some
background and an abstract implementation of ChaCha. Section 3 proposes the design and
implementation of ISE variants for ChaCha. In Section 4, we first present the evaluation of
ISE variants on ChaCha block function, then realise a complete ISE-assisted ChaCha imple-
mentation which is evaluated in comparison to optimised implementations using the RISC-V
base ISA and vector extensions. Finally, Section 5 gives some conclusions. In addition, the
source code of the proposed ISE can be found at https://github.com/scarv/chacha-ise.

2 ChaCha20 stream cipher
The ChaCha cipher is a 256-bit stream cipher, designed by Bernstein in 2008 [Ber08].
ChaCha based on the Salsa stream cipher has naturally a high-throughput performance
on software platforms. Compared to Salsa, ChaCha has better diffusion per round and
conjecturally increasing resistance to cryptanalysis.

1https://www.sifive.com/cores/s21
2https://lists.riscv.org/g/tech-crypto-ext
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2.1 Encryption and Decryption
The ChaCha encryption and decryption can have the same process in which the input
data stream is encrypted or decrypted by chopping the input into 64-byte blocks and
Xor-ing them with the 64-byte output blocks of the ChaCha block function. The block
function processes on the ChaCha state matrix of 4× 4 word (32-bit) elements to generate
the 64-byte output block. The ChaCha state matrix is initiated by a 4-word constant,
an 8-word secret key, 4 words of counter/nonce. Note that the original ChaCha uses a
2-word nonce and a 2-word counter to allowing a practically unlimited amount of data
to be encrypted while the IETF variant [NL18] increases the nonce size to 3 words, but
reduces the counter size down to one word. That limits the amount of encrypted data
only up to 256 GB but helps the encryption more safely with a longer (key, nonce) pair.
This paper adopts the IETF variant of which the initial state matrix is shown in (1). The
ChaCha process for encryption and decryption can be described as in Algorithm 1.

S =


61707865 3320646E 79622D32 6B206574

key[0] key[1] key[2] key[3]
key[4] key[5] key[6] key[7]

counter nonce[0] nonce[1] nonce[2]

 (1)

2.2 Block function
ChaCha cipher family provides three variants which use different number of operations
performed on the state (i.e., 8, 12 or 20 rounds). A larger number of rounds increases
data diffusion and therefore more secure, but longer processing time. From now on, we
focus on the ChaCha20 variant that executes 20 rounds in a block function. The block
function processes a state matrix using odd rounds and even rounds alternately. Then,
the processed state matrix is added to the input state matrix to result in the output state
matrix. The operation of the block function is described in Algorithm 2.

Round function Both of the odd and even rounds have 4 quarter rounds. In the odd
(column) round, the quarter rounds operate on four elements of the state matrix’s columns,
while the quarter rounds of the even (diagonal) round operate on the diagonals of the state
matrix. For some implementations, one can view that a diagonal round can be equivalent
to a column round, and vice versa, if the state matrix is rearranged (rotating the matrix’s
columns 1, 2, and 3) before the rounds.

Quarter-Round function A quarter round updates four state words of the state matrix
as shown in Algorithm 3. The quarter round based on Add-Rotate-Xor (ARX) operations
requires four sets of 32-bit Additions, Xors and rotations operating on the state words.
Each word is updated twice and affected by all four input words.

3 Proposed ISEs for Chacha20
The ISE-assisted acceleration for the ChaCha block function is fairly challenging especially
for the scalar-register-based ISEs because a) The block function was designed to be very
efficient on software without dedicated hardware support. b) The function computes on
32-bit state elements and two consecutive operations involve at least 3 different state
elements. The latter poses difficulties for the acceleration using the scalar-register-based
ISEs on 32-bit RISC-V architecture without the capable of having more than 2 source
operands. Certainly, vector instructions are possible approaches. But in this paper, we
focused on the scalar-register-based ISE approaches on RISC-V architecture instead. This
provides a lower area overhead compared to vectorisation alternatives.
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Data: 256-bit Key, 96-bit Nonce, L-bit P
Result: L-bit C

function ChaChaProcess(Key, Nonce, P ) begin
/*Init state matrix*/
S[0]← 0x61707865, S[1]← 0x3320646e
S[2]← 0x79622d32, S[3]← 0x6b206574
S[4..11]← Key, S[13..15]← Nonce
/*Encrypting loop*/
for i = 0 upto d L

512e − 1 do
S[12]← i
Ki ← ChaChaBlock(S)
Ci ← Ki ⊕ Pi

end
return C

end
Algorithm 1: ChaCha Stream Cipher Process.

Data: input state matrix S of 16 32-bit state elements
Result: output state matrix K

function ChaChaBlock(S) begin
X ← S
for i = 1 upto 10 do

/*Odd Round*/
QuarterRound(X[0], X[4], X[8], X[12])
QuarterRound(X[1], X[5], X[9], X[13])
QuarterRound(X[2], X[6], X[10], X[14])
QuarterRound(X[3], X[7], X[11], X[15])
/*Even round*/
QuarterRound(X[0], X[5], X[10], X[15])
QuarterRound(X[1], X[6], X[11], X[12])
QuarterRound(X[2], X[7], X[8] , X[13])
QuarterRound(X[3], X[4], X[9] , X[14])

end
K ← X + S
return K

end
Algorithm 2: ChaCha Block function.

Data: A, B, C, D (32-bit state emelents).
Result: A, B, C, D (Updated 32-bit state emelents).
function QuarterRound(A, B, C, D) begin

/*Top half*/
A← A + B, D ← D ⊕A, D ← D ≪ 16
C ← C + D, B ← B ⊕ C, B ← B ≪ 12
/*Bottom half*/
A← A + B, D ← D ⊕A, D ← D ≪ 8
C ← C + D, B ← B ⊕ C, B ← B ≪ 7
return(A, B, C, D)

end
Algorithm 3: ChaCha Quarter Round.
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Our ISE designs obey the wider RISC-V design principles. The ISE designs support
simple building-block operations, and their instruction encodings must be at most 2
source and 1 destination registers. By following that the proposed ISEs can be integrated
into existing RISC-V implementations with negligible modification. To ensure low area
and latency overheads, the proposed ISEs follow further requirements: a) The ISE must
store operands and results in the RISC-V general-purpose scalar register file. b) The
ISE must not introduce special-purpose architectural states, nor rely on special-purpose
micro-architectural state (e.g., registers, caches, or scratch-pad memory). c) The operation
of ISE should be executed in one clock cycle in its hardware module and must guaranteeing
constant-time execution that can inherently prevent certain attack vectors based on
execution latency (see [GYCH18, Section 4]). Overall, the proposed ISEs intentionally
target performing ChaCha cipher on low(er)-end, resource-constrained devices such as
embedded IoT edge computing that don’t support a vector engine nor a dedicated hardware
IP module. The focus can be viewed as reasonable because existing work on adding
cryptographic support to the standard vector extension [risb] already caters for high(er)-
end alternatives.

3.1 ISE for 32-bit architecture

The challenge to accelerate the ChaCha block function using 32-bit ISEs is to fetch sufficient
state elements, i.e., operands for the ISE operations. We consider potential options for
32 bit-architectures, namely, accessing register pairs and having additional registers in
the ISE. Both options can help to fetch additional state elements for the ChaCha round
accelerator. However, the former, apart from violating the design constraints of RISC-V,
increases decoder and register files complexity, and induces an increased size of pipeline
stage registers to accommodate the additional operands. The latter introduces additional
states in the ISE that may cause the dirty state issues in context switching scenarios (e.g.,
interrupt handling, multitasking) that require additional flushing and/or synchronisation
mechanisms leading to significant performance reduction. Because of the aforementioned
reasons, these two options are not well suitable for a lightweight solution to accelerate the
ChaCha round function.

Another possible alternative is straightforwardly combining rotation and arithmetic/-
logical operations. This alternative can obviously reduce the number of instruction count,
hence improve the performance, for the ChaCha round function. However, the gains are
fairly limited. For example, a ISE combining 32-bit Xor and 32-bit Rotation can reduce
the instruction count of the ChaCha quarter round function from 12 to 8. That results in
the maximum instruction count reduction achieved by using the ISE to about 66.67% of
the instruction count of the implementation without ISEs support.

3.2 ISE Design for 64-bit architecture

The 64-bit architecture allows each instruction to pack more state elements compared to
32-bit architectures. This enables the possibility of efficient accelerations. We arrive at
three ISE variants described in the following subsections.

3.2.1 Variant 1 (V1)

V1 is based on a performance-oriented approach which aims at executing the ChaCha
quarter round with a minimal number of instructions. Due to the 1-destination-register
constraint, the ChaCha quarter round can be executed at least two ISEs to compute 4
state elements of the quarter round. Therefore, we propose two ISEs as follows:
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• chacha.v1.ad rd, rs1, rs2

begin
a← GPR[rs1]{63 .. 32}; d← GPR[rs1]{31 .. 0};
b← GPR[rs2]{63 .. 32}; c← GPR[rs2]{31 .. 0};
a← a + b; d← (a⊕ d) ≪ 16;
c← c + d; b← (c⊕ b) ≪ 12;
na← a + b;
nd← (d⊕ na) ≪ 8;
GPR[rd]← (na� 32) ∨ nd;

end

• chacha.v1.bc rd, rs1, rs2

begin
a← GPR[rs1]{63 .. 32}; d← GPR[rs1]{31 .. 0};
b← GPR[rs2]{63 .. 32}; c← GPR[rs2]{31 .. 0};
c← c + (a⊕ d ≪ 24); b← (b⊕ c) ≪ 12;
nc← c + d;
nb← (b⊕ nc) ≪ 7;
GPR[rd]← (nb� 32) ∨ nc;

end

Each instruction takes two 64-bit-register operands rs1 and rs2, each of which packs
two 32-bit input elements of the quarter-round function. rs1 (resp. rs2) contains two
inputs iA and iD (resp. iB and iC). chacha.v1.ad (resp. chacha.v1.bc) computes the
outputs oA and oD (resp. oB and oC) packed in its destination register rd. This ISE
variant can be used to implement the quarter-round function as in Algorithm 4.

Data: 64-bit values X = {iA ‖ iD} and Y = {iB ‖ iC}.
Result: 64-bit values R0, R1 such that R0 = {oA ‖ oD} and R1 = {oB ‖ oC}.
function QuarterRound(X, Y ) begin

chacha.v1.ad R0, X, Y
chacha.v1.bc R1, R0, Y
return(R0, R1)

end
Algorithm 4: ChaCha Quarter Round in V1.

3.2.2 Variant 2 (V2)

V2 introduces an area-efficiency-oriented approach which aims at favouring hardware
re-usage between ISEs to reduce overall area overhead. We investigate four instructions to
compute an entire quarter round as follows:

• chacha.v2.ad0 rd, rs1, rs2

begin
a← GPR[rs1]{63 .. 32}; d← GPR[rs1]{31 .. 0};
b← GPR[rs2]{63 .. 32}; c← GPR[rs2]{31 .. 0};
na← a + b;
nd← (na⊕ d) ≪ 16;
GPR[rd]← (na� 32) ∨ nd;

end
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• chacha.v2.bc0 rd, rs1, rs2

begin
a← GPR[rs1]{63 .. 32}; d← GPR[rs1]{31 .. 0};
b← GPR[rs2]{63 .. 32}; c← GPR[rs2]{31 .. 0};
nc← c + d;
nb← (nc⊕ b) ≪ 12;
GPR[rd]← (nb� 32) ∨ nc;

end

• chacha.v2.ad1 rd, rs1, rs2

begin
a← GPR[rs1]{63 .. 32}; d← GPR[rs1]{31 .. 0};
b← GPR[rs2]{63 .. 32}; c← GPR[rs2]{31 .. 0};
na← a + b;
nd← (na⊕ d) ≪ 8;
GPR[rd]← (na� 32) ∨ nd;

end

• chacha.v2.bc1 rd, rs1, rs2

begin
a← GPR[rs1]{63 .. 32}; d← GPR[rs1]{31 .. 0};
b← GPR[rs2]{63 .. 32}; c← GPR[rs2]{31 .. 0};
nc← c + d;
nb← (nc⊕ b) ≪ 7;
GPR[rd]← (nb� 32) ∨ nc;

end

The approach is based on observing that the quarter round function can be split into
two almost identical “top”and “bottom” halves. Moreover, each half consists of almost
identical operation sequence including Addition, Xor, and Rotation. The only difference
between these operation sequences is the left rotation amounts. A similar computational
structure of the sequences allows to obtain an effective resource sharing for a low area
cost implementation. The first two ISEs (i.e., chacha.v2.ad0 and chacha.v2.bc0) are
used to compute the top half of the quarter round while the other two ISEs computer the
bottom halve. Again we use the similar packing scheme as in V1. So, the quarter-round
function can be implemented with 4 instructions as in Algorithm 5.

Data: 64-bit values X = {iA ‖ iD} and Y = {iB ‖ iC}.
Result: 64-bit values R0, R1 such that R0 = {oA ‖ oD} and R1 = {oB ‖ oC}.
function QuarterRound(X, Y ) begin

chacha.v2.ad0 X’, X, Y
chacha.v2.bc0 Y’, X, Y
chacha.v2.ad1 R0, X’, Y’
chacha.v2.bc1 R1, X’, Y’
return(R0, R1)

end
Algorithm 5: ChaCha Quarter Round in V2.
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3.2.3 Variant 3 (V3)

V3 follows a parallel oriented approach which is different from the above ISEs approaches.
By observing two consecutive ChaCha quarter rounds have a similar computational
structure, we investigate a calculation scheme so that two quarter-rounds, called a half-
round, can be performed simultaneously. So, a ChaCha round can be performed with two
half-rounds instead of four quarter rounds. To perform the half-round effectively, ISEs
including one Addition and one Xor-then-Rotation instructions are proposed as below:

• chacha.v3.add rd, rs1, rs2

begin
a1 ← GPR[rs1]{63 .. 32}; a0 ← GPR[rs1]{31 .. 0};
b1 ← GPR[rs2]{63 .. 32}; b0 ← GPR[rs2]{31 .. 0};
r1 ← a1 + b1; r0 ← a0 + b0;
GPR[rd]← (r1 � 32) ∨ r0;

end

• chacha.v3.xorrol rd, rs1, rs2, imm

begin
Dec = {16, 12, 8, 7}
a1 ← GPR[rs1]{63 .. 32}; a0 ← GPR[rs1]{31 .. 0};
b1 ← GPR[rs2]{63 .. 32}; b0 ← GPR[rs2]{31 .. 0};
r1 ← (a1 ⊕ b1) ≪ Dec[imm];
r0 ← (a0 ⊕ b0) ≪ Dec[imm];
GPR[rd]← (r1 � 32) ∨ r0;

end

In this ISE variant, each 64 bit source register packs 2 state elements which are at the
same row and at two consecutive columns in a ChaCha state matrix and the corresponding
two returned elements are packed in a destination register rd. It can be viewed that the
ISEs are vector-like instructions with the length of two 32-bit elements. So, the half-round
can be implemented (similarly to a quarter-round) with 8 instructions as in Algorithm 6.
Here, A, B, C, and D represent 4 rows of the ChaCha state matrix while c and c + 1
subscript (where c ∈ {0, 2}) denote two consecutive columns. Furthermore, in Xor-then-
Rotation instruction, the rotate amount imm is encoded using only 2 instruction bits. Even
though the encoding and decoding the rotating amount are dedicated to ChaCha for
instruction encoding efficiency, they can easily be extended with negligible area overhead
for other ARX ciphers if required.

3.2.4 Packing assisted ISEs

As the above ISE variants work in packed mode, we present packing instructions to support
packing manipulations. The packing instructions can be used at the beginning of ChaCha
rounds to pack 16 state elements which represent the state matrix into 8 working registers.
Moreover, a ChaCha block function performs 20 rounds alternate between odd and even
rounds. Between rounds, we must re-pack the registers so that the odd and even rounds
can be executed with the same round operations. These instructions are very similar to
the pack instructions in the Bitmanip extension [risa]. The packing assisted ISEs are
described as follows:
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Data: 64-bit values X = {iAc ‖ iAc+1}, Y = {iBc ‖ iBc+1}, Z = {iCc ‖ iCc+1}
and W = {iDc ‖ iDc+1}.

Result: 64-bit values R0 = {oAc ‖ oAc+1}, R1 = {oBc ‖ oBc+1},
R2 = {oCc ‖ oCc+1} and R3 = {oDc ‖ oDc+1}.

function HalfRound(X, Y, Z, W ) begin
chacha.v3.add X’, X, Y
chacha.v3.xorrol W’, W, X’, 0
chacha.v3.add Z’, Z, W’
chacha.v3.xorrol Y’, Y, Z’, 1
chacha.v3.add R0, X’, Y’
chacha.v3.xorrol R3, W’, R0, 2
chacha.v3.add R2, Z’, R3
chacha.v3.xorrol R1, Y’, R2, 3
return(R0, R1, R2, R3)

end
Algorithm 6: ChaCha Half Round in V3.

• pack rd, rs1, rs2

begin
h← GPR[rs2]{31 .. 0}; l← GPR[rs1]{31 .. 0};
GPR[rd]← (h� 32) ∨ l;

end

• packh rd, rs1, rs2

begin
h← GPR[rs2]{63 .. 32}; l← GPR[rs1]{63 .. 32};
GPR[rd]← (h� 32) ∨ l;

end

• packhl rd, rs1, rs2

begin
h← GPR[rs2]{63 .. 32}; l← GPR[rs1]{31 .. 0};
GPR[rd]← (h� 32) ∨ l;

end

• packlh rd, rs1, rs2

begin
h← GPR[rs2]{31 .. 0}; l← GPR[rs1]{63 .. 32};
GPR[rd]← (h� 32) ∨ l;

end

The ChaCha round function using each ISE variant is implemented with different types
of packing instructions. Table 1 reports the packing operation overhead of ChaCha round
variants in term of the number of instructions executed in functions. It can be seen that
the packing scheme of the implementation using V3 is more efficient compared to the other
variants.
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Table 1: The numbers of packing instructions are executed in three ISEs assisted ChaCha
round functions.

Instructions V1 V2 V3

pack 4 4 0
packh 4 4 0
packhl 160 160 0
packlh 0 0 80

Table 2: Comparison of area overheads between ISE variants when synthesised for a generic
CMOS cell library.

Implementations Size (NAND2 gates) Depth
V1 2353 56
V2 1362 25
V3 1617 19

3.3 Hardware Implementation
3.3.1 Implementation of ISE variants’ submodule

We implement three ChaCha ISE variants in their self-contained module. These modules
are implemented purely using combinational logics. It means that all operations of the
modules are executed in a clock cycle. Moreover, the modules have a similar simple
interface which has two input, one output operands, and input decoded signals. The
open-source Yosys [Wol] synthesis tool is used with default settings to obtain post-synthesis
circuit area overhead of the implemented modules in terms of NAND2 gate equivalents
and circuit depths (in the form of gate delays).

Table 2 reports the comparison of area overheads between ISE variants. It can be seen
that the V2 and V3 consume lower numbers of NAND2 gates and shorter circuit depths
compared to V1. V2 uses the smallest number of NAND2 gates which is slightly better
than that of V3 while V3 results in the shortest circuit depths. Moreover, the comparison
of the ISE variants’ performance on the ChaCha round function in software is considered
and given in Section 4.1.

3.3.2 Integration of ChaCha ISE into a 64-bit RISC-V processor

To evaluate the proposed ISE variants, each of the ISE variants is integrated into a 64-bit
RISC-V host core. We opt for a well-known Rocket Chip [AAB+16] as the host core
for ChaCha ISEs. The Rocket core is a highly configurable RISC-V core that executes

Figure 1: Integrating the ChaCha ISE into the Rocket Chip.
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Table 3: Area overheads of ChaCha ISE integration compared to Rocket core and its
sub-modules.

LUTs FFs Slices
RV64 Rocket core 9867 3749 2951 (1.00×)

|– ALU 603 0 169 (0.06×)
|– Muldiv 613 214 173 (0.06×)
|– Others 8649 3535 2672 (0.88×)

RV64 Rocket + ISE 10169 3749 3041 (1.03×)

instructions using a 5-stage, in-order pipeline. We take advantage of this to configure for a
core supporting RV64IMC instruction set, i.e., the 64-bit base integer ISA [RV:19, Chapter
5] plus standard Multiplication [RV:19, Chapter 7] and Compressed [RV:19, Chapter 16]
extensions. It is also configured to support an instruction cache, a data cache, and a
branch prediction mechanism. To support ChaCha ISE, the Rocket Chip core has an
additional configuration to enable custom instructions, for which we choose the Custom 0
opcode [RV:19, Chapter 25], to decode the ChaCha ISE. The core accesses the ChaCha
ISE submodule via a Rocket Custom Coprocessor (RoCC) interface [AAB+16, Section 4],
shown in Figure 1. Since the ISE variants’ implementations comply with at most 2 sources
and 1 destination operands requirement, no further structural modification is required in
micro-architecture.

We implement the evaluated systems on Kintex-7 XC7K160T FPGA device employing
Xilinx Vivado 2019.1 version. The default synthesis settings are used, with no effort invested
in synthesis or post-implementation optimisation. Table 3 reports the area overheads
of the Chacha ISE submodule in the system in comparison to the Rocket core and its
submodules, e.g., Multiplier/divisor (Muldiv), ALU. The implementation of V3 is chosen
for the ChaCha ISE submodule to report in the table because it gains the best trade-off
between area overhead (see Table 2) and software performance (see Table 4). As can
be seen, the ChaCha ISE causes a small increase of 3% in the number of logic Slices of
the Rocket core, and consumes no Flip-Flops (FFs). In fact, its overhead is considerably
smaller compared to other functional submodules such as ALU, Muldiv. Moreover, the
timing report of the implementation shows that the ChaCha ISE does not affect the longest
delay paths which reduce the maximum operating frequency of the system.

4 Evaluation
4.1 Single block function performance
We evaluate the accelerated implementations of the ChaCha block function in software
compared with a vanilla implementation used in OpenSSL [Ope] as a Baseline. The
three accelerated functions denoted as V1, V2, and V3 use the corresponding ChaCha ISE
variant sets to accelerate their round operations. Because ChaCha ISEs are encoded as
R-type instructions, the accelerated functions easily use assembly RISC-V directives .insn
to invoke ChaCha ISEs without the requirement of building modified toolchains. For
comparison’s sake, all accelerated and baseline functions have the same function prototype
and looping scheme (i.e., 10 double rounds each of which includes an odd and an even
rounds). They are complied using the RISC-V gcc version 9.2.0 with a performance
optimisation flag (‘-02’) and targeting for the rv64imac architecture (‘-march=rv64imac
-mabi=lp64’).

The compiled software runs on the Rocket Chip system supporting the relevant set
of ISEs via the RoCC interface. The system is implemented on the Kintex-7 XC7K160T
FPGA of a SASEBO-GIII platform. The Rocket Chip is configured to run with the clock
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of 50 MHz.
The evaluation is shown in Table 4 in terms of instruction count, cycle count, and

instruction footprint (in bytes) of the ChaCha block function. As can be seen, the
accelerated functions have significantly reduced instruction counts to about 20% of the
baseline instruction count. Even though the cycle counts are also reduced in the case of
the accelerated functions, but the reduction in cycle count metrics is not as good as in
instruction count metrics. This could be due to inefficient data forwarding operations
supporting ChaCha ISEs via the RoCC interface in the Rocket core micro-architecture. It
should be noted that the operation of every ChaCha ISEs is computed in one clock cycle.
One can view that as a trade-off between ineffective performance and invasiveness avoiding
micro-architectural modifications.

Comparing the ISE variants, V3 obtains a good trade-off solution which provides
the lowest instruction footprint and the second-lowest instruction count (32% and 21%,
respectively, compared to the baseline) and consumes a small area overhead.

4.2 Comparison to optimised software implementations
We implement a completed ChaCha encryption/decryption function in which the acceler-
ated block functions implemented in the above subsection is used to generate keystream
blocks. The keystream blocks xors with input data-stream blocks to encrypt/decrypt the
data streams. We investigate the V3 set of the proposed ISE to accelerate the encryption
function.

The performance of the proposed ISE-assisted implementation is evaluated in compari-
son to the existing implementations including scalar and vectorisation implementations.
For scalar (no vectorisation) implementations, only the standard 64-bit ISA (scalar) in-
structions of RISC-V are used. We choose the ChaCha implementation of OpenSSL
as the Baseline. In addition, we implement an optimised variant denoted V4 which is
written in assembly language to optimise the performance with our best effort. Moreover,
we investigate an optimised implementation denoted V5 to use the Bitmanip extension
supporting rotation instructions.

For the vectorisation implementations, we make use of vectorised instructions to
accelerate ChaCha encryption/decryption operations. We adopt two approaches, one,
denoted Vector1, implements a cell-oriented approach used in OpenSSL which processes
multiple blocks in parallel. The other, denoted Vector2, follows a row-oriented approach
presented in [GG14]. This approach packs state elements in ChaCha blocks’ rows into the
same vectorised registers. Different from the original implementations, the vectorisation
implementations are realised using the vector instruction extension set [risb] for RISC-V
processors instead of using AVX/AVX2 architecture on x86_64 processors. In addition, we
investigate two versions of vector lengths, namely 128 bits and 256 bits, for the vectorisation
implementations.

The implementations are compiled as the same set up in Section 4.1 but targeting to
the rv64imacb and the rv64gcv architectures for the Bitmanip extension and the vector
instruction extension, respectively. Currently, the Bitmanip and the vector extensions
have not been frozen. We adopt the latest published versions v0.92 and v0.9 for the

Table 4: Comparison of chacha block function performance.
Implementations Inst. count Cycle count Inst. footprint

Baseline 2214 (1.00×) 2991 (1.00×) 852 (1.00×)
V1 434 (0.20×) 1414 (0.47×) 382 (0.45×)
V2 594 (0.27×) 2350 (0.79×) 454 (0.53×)
V3 464 (0.21×) 1420 (0.47×) 274 (0.32×)
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Table 5: Comparison of encryption/decryption performance in instruction count for different
message sizes between the Baseline, ISA-based optimised implementation, ISE-assisted
implementation and different vectorization implementations.
Message size Baseline RV64I RV64IB ISE 128 bit Vector 256 bit Vector

OpenSSL V4 V5 V3 Vector1 Vector2 Vector1 Vector2

64 bytes 2825 1768 1129 523 2001 607 2001 615
128 bytes 5555 3486 2207 989 2001 1182 2001 615
256 bytes 11015 6922 4363 1921 2001 2332 2001 1191
512 bytes 21935 13794 8675 3785 3748 4632 2001 2343
1024 bytes 43775 27538 17299 7716 7242 9232 3748 4647

Bitmanip and the vector extensions, respectively. Since there is not yet an open-source
implementation supporting the RISC-V vector instruction extension is available, we use
Spike [otUoC], an instruction set simulator, to evaluate the implementations.

Table 5 reports the instruction count executing encryption/decryption operations for
different message sizes. As expected, all accelerated implementations including the cases
of scalar ISE, vectorised ISE gain significant reductions in instruction count compared to
the baseline. We observe that the lack of supporting rotation in the current version of the
vector instruction extension introduces the disadvantages of the implementations based on
this extension. However, for the large messages, the vector-based implementations show
their advantage over the scalar ISE based implementation. The Vector1 implementations
provide the lowest instruction count executions when the message size is greater than 512
bytes. The Vector2 implementations outperform the Vector1 implementations for shorter
messages. Interestingly, the proposed scalar ISE-assisted implementation, V3, gain the
best performance in the case of single block messages. For the message size smaller than
512 bytes, the V3 implementation have a better performance compared to the Vector1
implementation. And V3 outperforms the 128-bit Vector implementation of Vector2 for
all message sizes. But when the vector length increases to 256-bit, Vector2 shows its
advantage over V3. It is worth noting that the vector instruction extension which is only
presented in high(er)-end computational platforms cause a very large overhead in hardware
while the proposed ISE approach requires negligible increased hardware cost to gain a
good performance for short messages compared to the vectorisation implementations. That
makes our ChaCha ISE be suitable for low(er)-end resource-constrained processors.

In comparing the scalar implementation, the V4 implementation gains a reduced
instruction count to 63% of the OpenSSL baseline instruction count. It obtains an
encrypting performance of 26.9 instructions/byte (with 1024 byte message) that is almost
similar to the result reported in [Sto19] (i.e., 27.9 cycles/byte with most instructions
executed in a single cycle). Moreover, the V5 implementation has further improvement
that reduces its instruction count to 40% of the baseline instruction count. Notably, the
instruction count of the V3 implementation is reduced to at least 19% (resp. 29%) of the
baseline (resp. V4) instruction count. In other words, the V3 implementation achieves a
5.4× (resp. 3.4×) speed-up compared to the baseline (resp. V4) implementation.

4.3 Comparison to dedicated hardware alternatives
It is possible to implement dedicated hardware as an independent co-processor for ChaCha.
Existing works presented in the literature [KLA+19, PRH+19]. The dedicated hardware
is obviously much faster compared to the software-only as well as ISE-assisted software
alternatives. However, the dedicated hardware IP core consumes a large amount of area
overhead that makes it may not suitable for lightweight, resource-constrained systems.
For example, the smallest dedicated hardware using logic slices presented in [PRH+19]
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consumes 852 FPGA logic slides that are about a magnitude larger than the number of
slides used by the proposed ISE (i.e., 90 slides). Moreover, the dedicated hardware IP has
its fixed functionality dedicating to the ChaCha function, while the proposed ISE could
potentially be reused to improve the performance of other cryptographic primitives in the
ARX family. For example, the V3 ISE variant offers effective packing operations of 32-bit
Addition and Xor that are intensively used in Speck [BSS+13] and Alzette [BBdS+20].

5 Conclusion
In this paper, we presented the design, implementation, and evaluation of three ISE
variants to support ChaCha stream cipher on 64-bit RISC-V architecture. We show that
our proposed ISE variants help improve significantly the efficiency of ChaCha block function
wrt. both execution latency and memory footprint. Our ISE-assisted implementation of
ChaCha encryption speeds up at least 5.4× and 3.4× compared to the OpenSSL baseline
and ISA-base optimised implementation, respectively. For encrypting short messages, the
ISE-assisted implementation gains a comparative performance compared to the vectorised
implementations which demand a large hardware overhead to support vector instruction
extension. Moreover, the ISE hardware implementation only causes a negligible increased
area overhead, about 3%, on the Rocket Chip system that makes our ChaCha ISE
be suitable for resource-constrained processors. While showing potential, the proposed
ChaCha ISE needs further investigations in future works to be more generic and efficient
for other ARX ciphers.
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A The ISE-assisted Implementation of the block function

1 # define chacha_add (rd , rs1 , rs2) asm volatile ( \
2 ".insn r CUSTOM_0 , 7, 0b11000 , %0 ,%1 ,%2\n\t" :"=r"(rd):"r"(rs1),"r"(rs2));
3

4 # define chacha_xorrol16 (rd , rs1 , rs2) asm volatile ( \
5 ".insn r CUSTOM_0 , 7, 0b11001 , %0 ,%1 ,%2\n\t" :"=r"(rd):"r"(rs1),"r"(rs2));
6

7 # define chacha_xorrol12 (rd , rs1 , rs2) asm volatile ( \
8 ".insn r CUSTOM_0 , 7, 0b11010 , %0 ,%1 ,%2\n\t" :"=r"(rd):"r"(rs1),"r"(rs2));
9

10 # define chacha_xorrol08 (rd , rs1 , rs2) asm volatile ( \
11 ".insn r CUSTOM_0 , 7, 0b11011 , %0 ,%1 ,%2\n\t" :"=r"(rd):"r"(rs1),"r"(rs2));
12

13 # define chacha_xorrol07 (rd , rs1 , rs2) asm volatile ( \
14 ".insn r CUSTOM_0 , 7, 0b11100 , %0 ,%1 ,%2\n\t" :"=r"(rd):"r"(rs1),"r"(rs2));
15

16 # define HALF_ROUND (A, B, C, D) { \
17 chacha_add (A,A,B); chacha_xorrol16 (D,D,A); \
18 chacha_add (C,C,D); chacha_xorrol12 (B,B,C); \
19 chacha_add (A,A,B); chacha_xorrol08 (D,D,A); \
20 chacha_add (C,C,D); chacha_xorrol07 (B,B,C); \
21 }
22 # define REPACK_ROW (r0 ,r1 ,s0 ,s1) { \
23 rv64_packlh (r0 ,s0 ,s1); \
24 rv64_packlh (r1 ,s1 ,s0); \
25 }
26 void chacha20_block ( uint32_t out [16] , uint32_t in [16])
27 {
28 uint64_t * pin = ( uint64_t *) in;
29 uint64_t * pout = ( uint64_t *) out;
30 uint64_t t2 ,t3 ,t6 ,t7;
31

32 uint64_t a0 = pin [0]; // x[ 1], x[ 0]
33 uint64_t a1 = pin [1]; // x[ 3], x[ 2]
34 uint64_t a2 = pin [2]; // x[ 5], x[ 4]
35 uint64_t a3 = pin [3]; // x[ 7], x[ 6]
36 uint64_t a4 = pin [4]; // x[ 9], x[ 8]
37 uint64_t a5 = pin [5]; // x[11] , x[10]
38 uint64_t a6 = pin [6]; // x[13] , x[12]
39 uint64_t a7 = pin [7]; // x[15] , x[14]
40

41 for(int i = 0; i < CHACHA20_ROUNDS ; i += 2) {
42 HALF_ROUND (a0 ,a2 ,a4 ,a6); // column 1 & 0
43 HALF_ROUND (a1 ,a3 ,a5 ,a7); // column 3 & 2
44 REPACK_ROW (t2 ,t3 ,a2 ,a3); // 5, 4, 7, 6-> 6, 5, 4, 7
45 REPACK_ROW (t6 ,t7 ,a7 ,a6); // 13 ,12 ,15 ,14 - >12 ,15 ,14 ,13
46

47 HALF_ROUND (a0 ,t2 ,a5 ,t6); // column 1 & 0
48 HALF_ROUND (a1 ,t3 ,a4 ,t7); // column 3 & 2
49 REPACK_ROW (a2 ,a3 ,t3 ,t2); // 6, 5, 4, 7-> 5, 4, 7, 6
50 REPACK_ROW (a6 ,a7 ,t6 ,t7); // 12 ,15 ,14 ,13 - >13 ,12 ,15 ,14
51 }
52 chacha_add (pout [0] , a0 , pin [0]);
53 chacha_add (pout [1] , a1 , pin [1]);
54 chacha_add (pout [2] , a2 , pin [2]);
55 chacha_add (pout [3] , a3 , pin [3]);
56 chacha_add (pout [4] , a4 , pin [4]);
57 chacha_add (pout [5] , a5 , pin [5]);
58 chacha_add (pout [6] , a6 , pin [6]);
59 chacha_add (pout [7] , a7 , pin [7]);
60 }
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