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ABSTRACT
This paper presents AdVeil, a privacy-preserving advertising ecosys-
tem with formal guarantees for end users.
AdVeil is built around an untrusted advertising network which

is responsible for brokering the display of advertisement to users.
This ad network targets relevant ads to users without learning any of
the users’ personal information in the process. Our targeting proto-
col combines private information retrieval with standard, locality-
sensitive hashing based techniques for nearest neighbor search. By
running ad targeting in this way, users of AdVeil have full control
over and transparency into the contents of their targeting profile.
AdVeil additionally supports private metrics for ad interactions,

allowing the ad network to correctly charge advertisers and pay
websites for publishing ads. This is done without the ad network
learning which user interacted with an ad, only that some honest user
did. AdVeil achieves this using an anonymizing proxy (e.g., Tor) to
transit batched user reports along with unlinkable anonymous tokens
with metadata to certify the authenticity of each report.
We build a prototype implementation of AdVeil which we

evaluate on a range of parameters to demonstrate the applicability
of AdVeil to a real-world deployment. Our evaluation shows that
AdVeil scales to ad networks with millions of ads, using state-of-
the-art single-server private information retrieval. A selection of
ads from a database of 1 million ads can be targeted to a user in
approximately 10 seconds with a single 32-core server, and can
be parallelized further with more servers. Targeting is performed
out-of-band (e.g., on a weekly basis) while ad delivery happens in
real time as users browse the web. Verifying report validity (for
fraud prevention) requires less than 300 microseconds of server
computation per report.

1 INTRODUCTION
Internet advertising is a $124 billion industry that relies on pervasive
tracking of internet users for the purpose of serving them relevant
advertisements. This process is known as targeted advertising and
has been the focus of recent controversy due to the often highly
personal nature of the data being used and the invasiveness of the
collection practices [41, 72, 80]. Proposals for moving away from
targeted advertising often tout contextual advertising as a privacy
focused alternative [51, 61, 78]. In contextual advertising, ads are
chosen based only on the website they will be displayed on, and not
on personal data, eliminating the need for web tracking.
However, relevancy of advertisements for end users is believed to

increase user engagement which, consequently, increases profit [55,
67]. Google and Facebook, the most prominent ad-tech companies
today, respectively earned 83% and 99% of their 2019 revenue from
advertising alone [37, 48, 88]. Because of this, ad networks have
proven unwilling to move away from targeted advertising and the
associated web tracking. Recent proposals from Google for a privacy
preserving alternative [96, 97] fall short, with privacy advocates

such as the Electronic Frontier Foundation (EFF) referring to them
as being “the opposite of privacy-preserving technology” [29].
Other solutions for privacy-preserving targeted advertising have

practical performance limitations or fail to achieve targeting accuracy
comparable to non-private advertising [9, 14, 43, 45–47, 52, 73, 90,
91, 96, 97]. AdVeil addresses these problems.

AdVeil is a low-latency, scalable solution for targeted advertising
with clear-cut privacy guarantees. The main goal of AdVeil is to
provide unlinkability between users and their personal data. We
define personal data to mean any information about the user, includ-
ing which ads they interact with. The interests and demographics
contained in users’ targeting profiles are not sent in the clear – even
anonymized – to the ad network as part of the targeting process.
However, due to the nature of targeting, knowledge of the ads a user
sees can be used to infer the, clearly personal, data that makes up the
user’s profile. As such, AdVeil ensures that the ad network learns
only which ads are displayed to (and clicked by) users, but not which
user saw any given ad.
AdVeil is fully compliant with data privacy legislation such

as General Data Protection Regulation (GDPR) [2] and California
Consumer Privacy Act (CCPA) [3]. Users’ profiles are held locally,
with the users themselves having full control over and transparency
into which of their features are used for targeting. They may even
opt out of targeted advertising entirely, in which case websites can
display contextual ads that are related only to the page itself, not to
the users viewing them.
Giving users control over their own data is important for reasons

that stembeyond privacy. Companies have been found to use protected
demographics like gender, race, or religion to target advertisements
in a discriminatory manner [5, 22, 49, 98]. This practice can limit
the visibility of needed services, such as home loans or continuing
education, to people who might have benefited from them [33, 74].
Finally, addressing ad fraud is a crucial requirement for online

advertising [83, 105]. Malicious parties may attempt to generate
false ad interactions for the purposes of artificially running down an
advertiser’s budget or increasing revenue for a website for displaying
ads. AdVeil provides an integrated fraud-prevention mechanism for
detecting bots and ensuring accuracy of reports.
AdVeil is realized using well established building blocks which

we combine to provide a scalable, accurate, and privacy-preserving
advertising ecosystem. We use private information retrieval in con-
junction with standard nearest neighbor search data structures to
achieve private ad targeting. Our fraud-prevention mechanism is built
using unlinkable tokens with metadata [56, 79]. Finally, we use any
common anonymizing proxy (e.g., Tor [35]) to hide the identities of
users from the ad network during ad delivery and reporting.
To the best of our knowledge, we are the first to apply private-

information-retrieval to privately target ads to users. We believe that
this technique may be of independent interest for related problems
such as privacy-preserving recommendation systems.
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Contributions. AdVeil makes the following contributions:
(1) A novel and efficient protocol for ad targeting that reveals
no information about the user profile. Our protocol may have
applications to other recommendation systems that require user
privacy.

(2) An integrated fraud prevention mechanism based on anonymous
tokens. Our solution remains fully compatible with private
browsing and existing ad-fraud counter-measures.

(3) Out-of-the-box compliance with recent privacy regulations such
as GDPR and CCPA, in addition to full compatibility with
existing anti-tracking and privacy-enhancing technologies.

(4) A prototype implementation which we empirically evaluate to
demonstrate applicability to a real-world deployment. Our code
is open-source and available at http://adveil.com/code.

Limitations.We highlight several drawbacks of AdVeil compared
to the status-quo in (non-private) targeted online advertising.
(1) AdVeil imposes a computational overhead on the ad network,
which translates to higher operational costs. However, in our
evaluation (see Section 7) we provide concrete cost estimates
and show that AdVeil remains profitable, even if deployed on
off-the-shelf cloud infrastructure.

(2) AdVeil is intended to disincentivizeweb tracking by ad networks
and is fully compatible with the use of any existing web tracking
defenses. However, it is not itself a defense against browser
fingerprinting or other tracking mechanisms.

(3) AdVeil requires cooperation of browsers. We note, however,
that major browser vendors are already providing local support
for several aspects of privacy-preserving advertising [73, 96, 99].

2 BACKGROUND
In this section we start by introducing the existing, non-private
advertising ecosystem. This ecosystem consists of a set of parties
who engage in different stages of an advertising pipeline.
This pipeline supports many different styles of targeted advertising,

each with tradeoffs between their data requirements and the relevancy
of ads delivered to users.We provide details on a selection of prevalent
advertising styles in Section 2.3.

2.1 Participants
We use standard terminology for parties that comprise the advertising
pipeline [9, 43, 45, 52, 90]:
• Users: people browsing the web and viewing ads;
• Clients: web browsers controlled by users (e.g., Firefox);
• Advertisers: companies with products and services to advertise
to a targeted demographic (e.g., Squarespace);
• Publishers: websites that display ads to users viewing the
webpage (e.g., wired.com or mobile applications);
• Broker: an ad-tech company (e.g., Google AdSense) responsible
for matching users to ads, billing advertisers, and compensating
publishers for user interactions.

The Broker, or ad network, can be thought of as the governing body
of the advertising ecosystem. The Broker’s primary goal is matching
ads from an Advertiser to the users most likely to engage with them.

Publisher
Ad

Ad $$
Advertiser

$AdCampaign

Targeting

Ad Click (Reditect)

User Cookie

User Profiles
Broker

= Privacy Violation User

Figure 1: (non-private) targeted advertising pipeline

This is done via Publishers, companies that generate revenue by
displaying ads to users visiting their webpage or app.

2.2 Advertising Pipeline
The advertising pipeline, shown in Figure 1, begins when an Adver-
tiser creates a new ad campaign with the Broker, specifying a target
audience and allocating a campaign budget. The target audience is
specified using a feature vector which contains information about
the contents of the ad, e.g., tags such as mechanical keyboards

or outdoor gear. In addition to the feature vectors provided by
Advertisers, the Broker possesses user profiles containing demo-
graphics and interests, e.g., [woman, computers, high-income],
about users. These profiles are constructed by tracking users on the
web [98]. The Broker is responsible for targeting ads to users based
on this profile through a similarity search algorithm [76].
When users are shown an ad on a publisher’s webpage, a browser

script generates an impression report for the Broker. This is by
far the most common type of user engagement, followed by clicks,
which are redirected through the Broker to measure engagement.
With impression reports and click redirects, the Broker obtains
necessary metrics for billing Advertisers, compensating Publishers,
and updating targeting algorithms. Crucially, the Broker eliminates
all fraudulent views and clicks that it deems to be generated by bots
or malicious Publishers and clients to artificially skew perceived user
interactions with ads [83].

2.3 Styles of Online Advertising
Online advertising consists of two main targeting strategies for
matching ads to users: contextual and behavioral targeting.

Contextual advertising is done independently of the user’s profile.
Publishers display ads that are relevant to their own content, which
is assumed to be relevant to visiting users based on their choice to
access the Publisher’s site or app.

Behavioral ad targeting matches a user to a set of ads based on the
user’s profile. Each profile consists of the user’s browsing behavior
or collection of apps installed on the user’s device, obtained by
the Broker through user tracking. Retargeting is a common type of
behavioral advertising in which the Broker may preferentially display
an Advertiser’s ads to users who have previously interacted with that
Advertiser, e.g., by visiting their website.

Remark 1. Real-Time Bidding is a mechanism associated with both
behavioral and contextual advertising. It occurs on-demand, at the
time a user requests an ad, and auctions the available ad slot to
the highest bidding Advertiser. Advertisers can take into account

http://adveil.com/code
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fine-grain information about the user, the webpage on which the ad
will be shown, and even the time of day when making their bids.

Each style of online advertising has tradeoffs between the relevance
of ads and the invasiveness of the data required. Serving increasingly
relevant ads, as in behavioral or retaregted ads, currently requires
corresponding increases in user tracking granularity.

In the next section we describe how AdVeil supports the targeting
of relevant ads without sacrificing user privacy.

3 THE ADVEIL SYSTEM
AdVeil is a privacy-preserving instantiation of the advertising
pipeline. AdVeil is designed to be modular and extensible with each
stage of the advertising pipeline implemented independently.
This allows AdVeil to provide a general-purpose solution for

private advertising that maintains unlinkability guarantees for users.
The Broker retains comparable targeting accuracy, performance,
metrics, and fraud prevention to existing advertising pipelineswithout
the ability to learn which ads a user sees. That is, the user’s Personally
Identifiable Information (PII) is kept locally on the user’s client (i.e.,
the browser or device) and is never revealed in the clear.

3.1 Overview
AdVeil is designed around targeting, delivery, and reporting. These
are the three stages of the advertising pipeline where personal user
information is involved (see Figure 1). Our overview of AdVeil fol-
lows the steps described in Figure 2, which transforms the advertising
pipeline of Figure 1 into a privacy-preserving system.

Targeting (steps 1a to 1c in Figure 2) assigns relevant ads to a user.
The client holds a user profile (step 1a ) described as a feature vector.
Ads are likewise associated with a feature vector describing their
targeting attributes. The targeting protocol reveals nothing to the
Broker and outputs a selection of ad IDs to the user’s client. In
addition, for each targeted ID, the Broker provides a blind signature
on a special anonymous token with an embedded private metadata
bit [56] indicating whether the client is identified as a “human” or
a “bot”. The client later returns the unblinded token (step 1c ) to the
Broker in reporting, which the Broker uses to discard “bot” reports.

Delivery (steps 2a to 2c in Figure 2) retrieves a targeted ad to display
to the user corresponding to an ad ID (step 2a ). The choice of which
targeted ID to request (from the set of IDs received in targeting) is
performed by the client with the help of a local selection function (see
Sections 5.2 and 9). The client then sends the ID to the Broker via the
anonymizing proxy to hide its IP address. The output of the delivery
protocol is a targeted ad selected by the Broker in real-time (step 2b)
for the targeted ID. This mechanism provides support for real-time
bidding and other on-demand delivery logic (see Section 5.3). As in
Targeting, the Broker provides a blind signature on a fresh anonymous
token with embedded public metadata bits [79], binding the token
signature to the returned ad. Later, in reporting, the unblinded token
(step 2c ) ensures that the report is uniquely associated to a delivered
ad by examining the metadata.

Reporting (steps 3a to 3c in Figure 2) provides interaction reports
(e.g., impressions and clicks; step 3a ) to the Broker. To do so privately,
the client batches and sends all reports to the Broker at fixed time

intervals through the anonymizing proxy. The client also attaches the
signed tokens obtained in the targeting and delivery protocols. All
reports that the Broker deems fraudulent based on these tokens are
rejected. All remaining (i.e., valid) reports are used by the Broker
for metrics and billing (step 3c ).

3.2 Threat Model and Requirements
AdVeil has two independent security concerns: user privacy, which
we define as unlinkability between users and their personal data, and
fraud prevention, which we define as billing and reporting statistics
that are resilient to botnets and false claims.

3.2.1 Personal Data. Concretely, we define personal data to be
any information that is related, either directly or indirectly, to a user’s
targeting profile. This includes elements of the user’s feature vector
used for targeting, which may contain demographics and interests,
and are thus directly related to the user’s profile. It also includes
any ads the user sees or interacts with. This is because, given the
nature of ad targeting, ad features are indirectly related to the user’s
profile through the targeting algorithm. AdVeil never reveals any
personal data directly, even anonymized or unlinked from the client’s
identity. The Broker may indirectly infer profile features from the
billing statistics on ads, however, these remain unlinked from the
identity of the corresponding user; see Section 6.

3.2.2 Adversarial Model. AdVeil assumes a rational [39, 44, 101]
Broker that may try to link the identity of users to any of their
personal data. A rational Broker is incentivized to provide correct
functionality for its advertising ecosystem. The two assumptions
we make about the Broker’s behavior in order to provide user
unlinkability in AdVeil are:
(1) the Broker does not deny service to honest users during ad
targeting or delivery,

(2) the Broker includes all valid user reports when computing
metrics on ad interactions.
The Broker has a direct financial incentive not to violate these two

assumptions. If the Broker refuses to serve ads, then it cannot collect
revenue from advertisers. Similarly, if some ad interactions from
honest users are excluded from metrics, then the Broker violates the
billing contract it has with Publishers and Advertisers.

3.2.3 User Unlinkability. User privacy in AdVeil is defined in
the context of unlinkability between users and their personal data.
AdVeil guarantees that any data, e.g., ad interactions, that users
report on cannot be tied back to their identity. Users in AdVeil are
only required to report ad interactions and, as such, their reports do
not need to contain any information about their profile.
Unlinkability for users in AdVeil is defined on a per-epoch

basis where each epoch is the time period from the start of the
targeting protocol through the end of reporting. Epochs hide timing
correlations between AdVeil’s protocols and ensure that all users
participating in a given epoch are part of an anonymity set. The
Broker cannot determine which user within an anonymity set was
responsible for generating a set of reports.1

1We discuss potential cross-epoch leakage resulting from intersection attacks [30, 31,
63, 65, 100] between the anonymity sets of different epochs in Section 6.1.3.
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Figure 2: Overview of AdVeil. Description of the components is provided in Section 5.

We require that users make delivery and reporting requests via an
anonymizing proxy such as Tor2 [35]; see Section 4. This ensures
that, while the Broker learns which ads are delivered and reported
on, it does not learn the identity of the user who saw the ad.

3.2.4 Fraud Prevention. AdVeil expects users of the system to
arbitrarily misbehave or to be impersonated by large scale bot
networks. Users may try to avoid being shown ads at all or incur
billing for ads that were never targeted or delivered.
AdVeil integrates a fraud-prevention mechanism using a com-

bination of anonymous tokens [56, 79] that cleanly compose with
existing bot detection mechanisms for fraud-prevention. Importantly,
this is a silent method of fraud prevention. That is, while the Broker
can recognize reports with invalid tokens, no other user can. This
prevents bots from using AdVeil’s tokens to learn which of their
evasion strategies were successful.3 In addition, AdVeil ensures
that users only obtain tokens for the exact ads they were delivered
and, as such, cannot generate valid reports on arbitrary ads.
In AdVeil, fraud-prevention guarantees that:

(1) the Broker can distinguish reports generated by a fraudulent
request from those generated by an honest request,

(2) each valid report is included at most once in billing metrics,
(3) users can only generate valid reports for delivered ads.
We note that AdVeil does not make it easier for users to block

ads. If users opt out of targeted advertising by not participating in
AdVeil, then Publishers can fall back to contextual ads which do
not require any user data or participation.

3.2.5 Non-goals. While AdVeil supports the return of arbitrary
data during the reporting phase, it only requires reporting on the
ads themselves for correct functionality. Determining what, if any,
user data can be reported on privately is an orthogonal problem.
AdVeil is compatible with any choice of data privacy mechanism
such as differential privacy [36] or k-anonymity [87]. Similarly, while
AdVeil guarantees that the ad identified in reports matches the ad

2Any anonymizing proxy hiding the sender identity is sufficient; see Section 4.
3See https://github.com/WICG/trust-token-api#extension-metadata.

delivered, we consider handling the integrity of any optional data
submitted in reports to be out of scope.
Additionally, AdVeil is fully compatible with existing anti-

tracking measures, however, it is not itself a method for thwarting
web tracking. Instead, AdVeil serves primarily to disincentivize
such tracking.
Finally, we cannot prevent users from intentionally disclosing PII

to Advertisers and Publishers e.g., inputting their address to order
an advertised product or logging into an account on a Publisher’s
website. AdVeil is neither intended to, nor capable of, preventing
such behavior. As such, we see solutions for addressing this threat
(e.g., through UI warnings and anonymous authentication) to be
orthogonal research problems.

4 BUILDING BLOCKS
We design AdVeil around several standard cryptographic and data
structure building blocks. Table 3 summarizes the building blocks and
their use in AdVeil. Overall, we aim to make AdVeil general and
modular, so as to fit a wide array of potential deployment scenarios.
For targeting, we use single-server PIR [7, 58] in conjunction with

a standard similarity search data structure based on locality-sensitive
hashing (LSH) [6, 40]. We emphasize that using a LSH-based data
structure ensures that AdVeil is compatible with targeting techniques
used in practice [76, 96].
We use an anonymizing proxy (such as Tor [35] or I2P [103]) for

the purpose of fetching targeted ads from the Broker, which reveals
which ad was retrieved but not which client retrieved it.
To guarantee integrity in both targeting and delivery, the Broker

commits to all data structures using an authenticated dictionary (e.g.,
Merkle tree) which can be efficiently verified by the client.
For fraud prevention, we use anonymous tokens with a private

metadata bit (PMBTokens) of Kreuter et al. [56] and subsequently
extended by Silde and Strand [79] to support both public and private
metadata. We use PMBTokens to enforce a “one-delivery; one report”
policy for all reports and ensure that each report is uniquely associated
with a prior delivery request.

https://github.com/WICG/trust-token-api#extension-metadata
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4.1 Private Information Retrieval
Private information retrieval (PIR) is a standard cryptographic tech-
nique for retrieving items from a remote database or data structure
without revealing which item was retrieved [15, 25, 26]. PIR in the
single-server setting [58] with a database of 𝑁 items requires 𝑂 (𝑁 )
work on the server and sublinear communication (in practice𝑂 (

√
𝑁 )

communication [7]). In AdVeil, PIR is used by the client to privately
query the targeting data structure.

Definition 1 (PIR [58] (informal)). Let 𝑀 be a set of instantiation-
specific public parameters. For a fixed database 𝒟 (or dictio-
nary [25]), PIR consists of the following functionality:

PIR.Query(𝑀, idx) → (𝑠,𝑄). Query takes as input public parame-
ters 𝑀 and index idx. Outputs secret state 𝑠 and query 𝑄 .

PIR.Answer(𝒟, 𝑄) → 𝐴. Answer takes as input a database 𝒟 and
query 𝑄 . Outputs answer 𝐴.

PIR.Recover(𝑠, 𝐴) → 𝑎. Recover takes as input secret state 𝑠 and
query answer 𝐴. Outputs recovered database item 𝑎.

where the functionality satisfies correctness and privacy.

Informally, correctness holds if the computed answer produces
the item at index idx in the database 𝒟 when fed through Recover.
Privacy for the client holds if the (potentially malicious) server
learns no information on the query. We refer to Kushilevitz and
Ostrovsky [58] for formal functionality requirements.

4.2 Anonymous Tokens with Embedded Metadata
We make use of anonymous tokens with metadata bits (PMBTo-
kens) [56, 79] for fraud-prevention in AdVeil. With PMBTokens,
a verifier (e.g., the Broker) signs a blinded token generated by the
prover (e.g., the client). During signing, the verifier can embed public
and/or private metadata. Later, the unblinded token and the signature
is redeemed by the verifierwithout any linkability between signed and
redeemed token. Such tokens are a special form of blind signature,
with the added property that the verifier can embed a metadata bit
into the signature. We use both public and verifier-private metadata
to achieve fraud prevention and rate-limiting in AdVeil.

Definition 2 (PMBToken [56, 79] (informal)). A PMBToken scheme
consists of efficient algorithms KeyGen, TokenGen, Sign, Unblind
and Redeem with the following functionality:

PMBT.KeyGen(1𝜆) → (pk, sk). KeyGen outputs a new PMBToken
public key pk and secret token signing key sk.

PMBT.TokenGen(pk) → (𝜏, 𝜏, 𝑟 ). TokenGen outputs a new token 𝜏 ,
blinded token 𝜏 , and blinding factor 𝑟 using the public key pk.

PMBT.Sign(sk, 𝜏,md𝑝𝑟𝑖𝑣,md𝑝𝑢𝑏 ) → 𝜎 . Sign takes as input the
secret signing key, blinded token 𝜏 , private metadata md𝑝𝑟𝑖𝑣 , and
public metadata md𝑝𝑢𝑏 . Outputs signature 𝜎 on the blinded token 𝜏

with embedded metadata md𝑝𝑟𝑖𝑣 and md𝑝𝑢𝑏 .

PMBT.Unblind(pk, 𝜏, 𝜎, 𝑟 ) → (𝜏, 𝜎). Unblind takes as input the
public key, blinded token 𝜏 , blind signature 𝜎 , and blinding factor 𝑟 .
Outputs unblinded token 𝜏 and signature 𝜎 .

PMBT.Redeem(sk, 𝜏, 𝜎) → (md𝑝𝑟𝑖𝑣,md𝑝𝑢𝑏 ). Redeem takes as in-
put a secret key sk, token 𝜏 , and signature 𝜎 . Outputs private and

Building Block Purpose in AdVeil
LSH [6, 40] Ad targeting based on user interests.
PIR [26, 58] Private ad targeting with low bandwidth.
PMBToken [56, 79] Fraud prevention in interaction reporting.
Authenticated Dictionary [70] Integrity of targeting and delivery.
Anonymizing Proxy [35, 94, 103] Ad delivery and private user interactions.

Table 3: Summary of building blocks and their use in AdVeil.

public metadata (md𝑝𝑟𝑖𝑣,md𝑝𝑢𝑏 ). For notational convenience, we
let (md𝑝𝑟𝑖𝑣,md𝑝𝑢𝑏 ) take on default values (0, 0) if 𝜎 is invalid.

The functionality must satisfy completeness, unlinkability, unforge-
ability, and metadata privacy (only for private metadata). A token
may have no embedded metadata (public or private), in which case
the metadata is denoted by the special symbol ⊥.

Loosely speaking, completeness and unlinkability state that a
verifier always accepts valid tokens using Redeem but learns nothing
beyond the metadata from the signed token redemption. Unforge-
ability states that a prover (i.e., the client) cannot forge a valid
token without the secret key. Finally, metadata privacy (for private
metadata only) requires the signed token reveal no information on
the verifier-embedded metadata md𝑝𝑟𝑖𝑣 to the prover. For public
metadata md𝑝𝑢𝑏 , the embedded metadata is readable by both the
prover and the verifier.

Remark 2. There is subtlety with respect to the private metadata,
which in our case is a single bit, i.e., md𝑝𝑟𝑖𝑣 ∈ {0, 1}. Specifically,
md𝑝𝑟𝑖𝑣 defines two sets: tokens that are valid and tokens that are
invalid. Anyone can generate an invalid token (with md𝑝𝑟𝑖𝑣 =

0). However, only the verifier can distinguish between these sets
and generate tokens with md𝑝𝑟𝑖𝑣 = 1. This ensures privacy of the
embedded bit and, moreover, guarantees that the tokens define at
most two groups. This observation becomes important when arguing
unlinkability in Section 6, where md𝑝𝑟𝑖𝑣 partitions anonymity sets.

4.3 Other tools

Authenticated Dictionaries [4, 13, 23, 70, 89] are a common tech-
nique for proving validity of a key lookup in a hash table relative to
a short commitment. In AdVeil, we use authenticated dictionaries
(e.g., a Merkle tree) to ensure lookup consistency across client re-
quests. The two properties that are important for this work are that
each proof (1) is of logarithmic (or constant [4, 13, 23, 89]) size
relative to the size of the dictionary and commitment and (2) can
be efficiently verified given only the commitment, lookup key, and
proof string.

Anonymizing Proxies [35, 94, 103] serve as an intermediary, or
proxy, for communications between a client and server to hide the
relationship between sender and recipient of messages. AdVeil
only requires client anonymity [10] from the proxy. That is, the
identity (IP address) of the client should be hidden by the proxy. The
Onion Router (Tor) [35], Invisible Internet Project (I2P) [103], and
VPN0 [94] all provide this property. Of these, Tor is the most widely
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deployed and is bundled by default in the Brave browser [17] and
made available through extensions for Firefox4 and Chrome5.

5 ADVEIL ARCHITECTURE
This section introduces our construction of AdVeil. We compose
AdVeil from protocols that instantiate the stages of the advertising
pipeline, using the tools of Section 4.
First, in Section 5.1, we detail non-private nearest neighbor search

which forms the foundation of our private ad targeting protocol
between the client and the Broker through PIR.
In Section 5.2, we describe the protocol constructions used for

targeting, delivery, and reporting. In Section 5.3, we explain how the
protocols combine to form a complete ecosystem for private targeted
advertising.

5.1 Targeting and Nearest Neighbor Search
At the core of any targeting system is a nearest neighbor search data
structure for matching ads to users [76, 104]. In practice, approximate
hashing-based solutions are used to solve the neighbor search problem.
Hashing-based data structures solve approximate nearest neighbor
search (ANNS). Approximate solutions are necessary for efficiency
given that exact solutions to the problem are believed to require
brute-force search [50]. We note that ANNS is a general problem and
can be applied to many definitions of similarity. Formally, ANNS is
defined over a set of high-dimensional feature vectors and a query
vector 𝒒. For a fixed distance metric (e.g., Euclidean distance) ANNS
returns the approximate nearest neighbor(s) to 𝒒 (with respect to
distance metric) from the set.
To see how ANNS defines a targeting system, consider a database

𝒟 of 𝑁 tuples of the form (id𝑖 , 𝒗𝒊). Each tuple consists of an ad
identifier id𝑖 and a corresponding feature vector 𝒗𝒊 describing the
targeting attributes for the ad. To find the most relevant ad to a query
𝒒 (where 𝒒 is the user’s profile vector), it suffices to find the nearest
neighbor of 𝒒, which we denote by 𝒗𝒋 , and output the corresponding
ad ID id𝑗 . This problem forms the basis for recommendation systems,
including ad targeting [76, 96].
The data structure used for solving ANNS efficiently is based
on locality-sensitive hashing (LSH) [6]. Common instantiations
of LSH are MinHash [19] and SimHash [24]. An ANNS data
structure is defined by two algorithms: Build and Query. Build
takes as input the database 𝒟, an LSH family ℋ, and a tunable
parameter 𝐿. Build outputs ANNS data structure 𝒮.Query takes as
input the data structure 𝒮 and a query vector 𝒒.Query outputs the
approximate nearest neighbors to 𝒒 in𝒟 under the specified distance
metric. Because our targeting protocol requires privately querying
the ANNS data structure, we present a concrete instantiation of Build
andQuery as described in the seminal work of Gionis, Indyk, and
Motwani [40]. In Section 5.2, we transform theQuery function into a
privacy-preserving protocol between the client and the Broker using
PIR. We point to the survey of Andoni, Indyk, and Razenshteyn [6]
for further details and discussion on parameter selection.

4https://addons.mozilla.org/en-US/firefox/addon/tortm-browser-button/
5https://chrome.google.com/webstore/detail/onion-browser-button/
fockhhgebmfjljjmjhbdgibcmofjbpca

ANNS.Build(𝒟,ℋ, 𝐿) → 𝒮.
1: Define 𝐿 hash tables 𝑇1, . . . ,𝑇𝐿 using LSH functions h1, . . . , h𝐿
sampled i.i.d. fromLSH familyℋ; // e.g., ℋ = MinHash or SimHash

2: For each 𝒗𝒊 ∈ 𝒟, compute 𝑘 𝑗 ← h𝑗 (𝒗𝒊), and append (id𝑖 , 𝒗𝒊) to
the bucket in hash table 𝑇𝑗 with key 𝑘 𝑗 ;

3: Output 𝒮 = {𝑇1, . . . ,𝑇𝐿, h1, . . . , h𝐿}.

ANNS.Query
(
𝒮, 𝒒

)
→ id.

1: Compute 𝑘 𝑗 ← ℎ 𝑗 (𝒒) for 𝑗 ∈ [𝐿];
2: Set 𝒞 := 𝐵1 ∪ · · · ∪ 𝐵𝐿 where each 𝐵 𝑗 is the bucket in hash table

𝑇𝑗 with key 𝑘 𝑗 ;
3: Output the id of the nearest neighbor to 𝒒 in 𝒞.

The key observation that we exploit for efficient (privacy preserv-
ing) targeting is that the ANNS data structure can be queried by the
client using PIR (see Section 4.1), without revealing the sensitive
query to the Broker. That is, the client can individually query each
hash table using PIR and locally recover the nearest neighbor(s).

5.2 Protocols
AdVeil realizes each stage of the advertising pipeline via separate
and modular protocols. We first describe the context in which the
protocols are instantiated.

5.2.1 Setting. With the exception of Protocol 1, the protocols
describe the steady state of AdVeil.6 In this section, we begin by
describing the background setting and starting assumptions.

One-time Trusted Setup. AdVeil (optionally) requires a trusted
setup to instantiate authenticated dictionaries efficiently using a
vector commitment [23]. While AdVeil is agnostic to the underlying
authenticated dictionary instantiation, the most efficient (in terms of
proof size) constructions require a trusted setup [42, 60].

Epochs. AdVeil divides time into discretized epochs. Aside from
Protocol 1 which runs only once, all protocols run within the context
of these epochs. The division of epochs is a deployment-specific
parameter and only impacts the volume of users participating in
each epoch. That is, epochs affect the frequency of ad targeting and
reporting, but not ad delivery which remains on-demand.

Ad feature vectors. As a starting point, we assume that the Broker
has a database of ads with associated feature vectors that describe the
targeting attributes of each ad. How the feature vectors are obtained
by the Broker is orthogonal to AdVeil. In practice, the feature
vectors are provided by Advertisers or derived by the Broker through
machine learning models. AdVeil is designed to be agnostic to the
specifics of the targeting features in order to be compatible with a
wide array of Broker strategies.

User profile. The user’s profile feature vector is constructed locally
by the client using a “profile building” function ℱprofile, provided
as part of the public parameters generated in setup (Protocol 1).
ℱprofile maps user browsing history to a profile feature vector and can
include information about websites they visit, searches performed,
etc. [53, 57, 77, 96]. Ultimately, AdVeil leaves the final output
of ℱprofile up to the users themselves as we require they retain

6Protocol 1 can be re-run periodically to update targeting and ad database if needed.

https://addons.mozilla.org/en-US/firefox/addon/tortm-browser-button/
https://chrome.google.com/webstore/detail/onion-browser-button/fockhhgebmfjljjmjhbdgibcmofjbpca
https://chrome.google.com/webstore/detail/onion-browser-button/fockhhgebmfjljjmjhbdgibcmofjbpca
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Protocol 1: AdVeil Setup

Step 1 (Broker)
// ℒ: feature vectors describing each ad

1: 𝒮 ← ANNS.Build(ℒ, params)
2: 𝐻𝒮 ← AuthDict.Commit(𝒮) // Commit to ANNS data structure

3: (pk, sk) ← PMBT.KeyGen(1𝜆) // PMBToken keys

4: Publish: public key pk, params, commitment 𝐻𝒮 , ad selection function
ℱad, profile building function ℱprofile, and LSH functions h1, . . . , h𝐿 on
a public bulletin board.

full control over the use of their data. Unlike in existing targeted
advertising, this profile is not sent to or collected by the Broker.7

5.2.2 Setup (Protocol 1). The setup for the Broker involves publicly
committing (e.g., through a public bulletin board [11, 27] or gossip
network [59, 69, 71]) to all the parameters required for targeting,
delivery, and reporting such that it cannot equivocate.
It begins with the Broker constructing the ANNS data structure for

targeting. The Broker commits to the ANNS data structure hash tables
and ad database (e.g., using a Merkle tree [70]), publicly releasing
commitments to the authenticated dictionaries. The Broker then
generates a PMBToken keypair and makes the public key available.
For simplicity, we assume that all public parameters are consistent
and accessible to all clients via a public bulletin board.

5.2.3 Targeting (Protocol 2). Targeting occurs at the beginning of
each epoch (e.g., once a day) and runs between the client and the
Broker. The client obtains the ID(s) of relevant ads while the Broker
does not receive any output. We present retrieval of a single targeted
ad. We note that Protocol 2 can be trivially extended to output the
top-𝑘 ad IDswithout significant overhead (see Section 5.1). The client
uses the ID(s) of the targeted ads to fetch ad content in Protocol 3.
In addition to the ad ID(s), the client also receives the Broker’s

signature on a PMBToken (or 𝑘 PMBTokens simultaneously). Each
token contains an embedded bit, not observable to the client, that
indicates whether the Broker believes the client to be a “bot” or
“human”. This bit is later used in Protocol 4 to reject bot reports.
To ensure integrity of targeting (i.e., that the Broker returns the

correct set of targeted ads), the client checks the ID(s) it receives from
a bucket in the ANNS hash table against the hash table commitment
𝐻𝒮 . To facilitate this, we assume the Broker concatenates the proof
string for each bucket to the bucket contents. In this way, the client
can retrieve the proof simultaneously with the bucket contents when
privately querying the hash table through PIR.

5.2.4 Delivery (Protocol 3). Clients use Protocol 3 on-demand
within epochs to retrieve ads corresponding to the ID(s) obtained
from Protocol 2. The client fetches the corresponding ad from the
Broker, via the anonymizing proxy. Importantly, the Broker has the
ability to decide which ad to deliver based on the provided ID. We
intentionally ensure that multiple ads can be associated with an ID so
as to provide support for Broker-side selection logic (e.g., real-time
bidding). We discuss PIR as an alternate delivery mechanism in
Section 7, but note that it does not provide the required performance
for on-demand delivery and ad selection logic.

7This mirrors other privacy-preserving targeting approaches [45, 73, 90, 96].

Protocol 2: Targeting

Step 1 (Client)
// 𝒑: user profile feature vector held by the client.

// h𝑖: LSH functions in the public parameters.

1: 𝑘𝑖 ← h𝑖 (𝒑) for 𝑖 ∈ [𝐿] // Compute profile hash keys

2: 𝑄𝑖 ← PIR.Query(𝑀,𝑘𝑖 ) for 𝑖 ∈ [𝐿] // Query for bucket

3: (𝜏𝑡 , 𝜏𝑡 , 𝑟 ) ← PMBT.GenToken(pk) // New reporting token

4: Send queries 𝑄1 . . .𝑄𝐿 and 𝜏𝑡 to the Broker.

Step 2 (Broker)
// 𝒮: ANNS with (authenticated) hash tables {𝑇1, . . . ,𝑇𝐿 }
1: 𝐴𝑖 ← PIR.Answer(𝑇𝑖 ,𝑄𝑖 ) for 𝑖 ∈ [𝐿] // Compute query answer

2: md𝑝𝑟𝑖𝑣 ←
{

0 if client identified as bot // Invalid token

1 if client identified as human // Valid token

3: 𝜎𝑡 ← PMBT.Sign(sk, 𝜏𝑡 ,md𝑝𝑟𝑖𝑣,⊥)
4: Send 𝐴1, . . . , 𝐴𝐿 and 𝜎𝑡 to the client.

Step 3 (Client)
1: (𝐵1 ∥𝜋1, . . . , 𝐵𝐿 ∥𝜋𝐿) ← PIR.Recover(𝐴1, . . . , 𝐴𝐿)
2: If there exists 𝑖 such that AuthDict.Verify(𝐻𝒮 , 𝐵𝑖 , 𝜋𝑖 ) = no, abort.
3: id← nearest neighbor to 𝒑 in 𝒞 where 𝒞 := 𝐵1 ∪ · · · ∪ 𝐵𝐿 .
4: (𝜏𝑡 , 𝜎𝑡 ) ← PMBT.Unblind(pk, 𝜏𝑡 , 𝜎𝑡 , 𝑟 ) // Unblind signature

5: Output (id, 𝜏𝑡 , 𝜎𝑡 )

Protocol 3: Delivery

Step 1 (Client)
// id : targeted ID obtained from Protocol 2.

1: (𝜏𝑑 , 𝜏𝑑 , 𝑟 ) ← PMBT.GenToken(pk) // New delivery token

2: Send (id, 𝜏𝑑 ) to the Broker, via the proxy.

Step 2 (Broker)
// 𝒟: database of ads

1: ad← SelectAd(𝒟, id) . // Broker’s ad selection logic

2: 𝜎𝑑 ← PMBT.Sign(sk, 𝜏𝑑 ,⊥, id) // Sign with public metadata id

3: Send (ad, 𝜎𝑑 ) to the client, via the proxy.

Step 3 (Client)
1: (𝜏𝑑 , 𝜎𝑑 ) ← PMBT.Unblind(pk, 𝜏𝑑 , 𝜎𝑑 , 𝑟 ) // Unblind signature

2: If PMBT.Verify(pk, 𝜎𝑑 , id) = no, abort. // Invalid public metadata

3: Output (ad, 𝜏𝑑 , 𝜎𝑑 ) .

5.2.5 Reporting (Protocol 4). Reporting occurs at the end of an
epoch. When the user interacts with a retrieved ad through a Pub-
lisher’s webpage (e.g., by viewing the ad or clicking on it), an
impression report is generated and stored by the client. At the end
of the epoch, the client sends each report to the Broker, via the
anonymizing proxy, as specified in Protocol 4. The client includes
the signed tokens obtained in Protocols 2 & 3. Upon receiving a
report, the Broker verifies the tokens, rejecting all reports flagged as
“bot” in targeting. All valid, non-duplicate reports are accepted.
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Protocol 4: Reporting

Step 1 (Client)
// report: report payload.

// (𝜏𝑡 , 𝜎𝑡 ): PMBToken signature obtained from Protocol 2.

// (𝜏𝑑 , 𝜎𝑑 ): PMBToken signature obtained from Protocol 3.

1: Send (report, 𝜏𝑡 , 𝜎𝑡 , 𝜏𝑑 , 𝜎𝑑 ) to the Broker, via the proxy.

Step 2 (Broker)
// sk: secret key of the PMBToken scheme.

// 𝒲: list of all redeemed tokens.

1: (md𝑝𝑟𝑖𝑣,⊥) ← PMBT.Redeem(sk, 𝜏𝑡 , 𝜎𝑡 ) // Private bit

(⊥, id′) ← PMBT.Redeem(sk, 𝜏𝑑 , 𝜎𝑑 ) // Public metadata

2: If md𝑝𝑟𝑖𝑣 = 0: reject. // Bot token

3: If id′ = ⊥: reject. // Invalid delivery token

4: If 𝜏𝑑 ∈𝒲 : reject. // Duplicate delivery token

5: Else, add 𝜏𝑑 to 𝒲 and accept.

5.3 The AdVeil Ecosystem
AdVeil focuses on general targeted advertising, with support for
multiple targeting and metrics strategies.

Targeting Strategies. By giving the Broker control over the choice
of ANNS data structure and real-time ad selection logic, AdVeil
does not restrict the Broker to a specific targeting algorithmwhile still
ensuring privacy for users. Types of targeting that can be supported
in AdVeil include:
• Contextual targeting in AdVeil can bypass users entirely by
having the Publisher fill their role in the protocols. Users will still
see and be able to interact with ads, but will have no involvement
in any other aspect of the pipeline.
• Behavioral targeting in AdVeil is achieved through the profile
building function ℱprofile which is able to locally observe and
record information about users’ browsing habits forming a profile
feature vector for the user. Protocol 2 is then run periodically
to retrieve a new set of targeted ads based on the user’s profile.
Retargeting, or preferentially displaying ads to users who have
had prior interactions with the Advertiser, is one example of
behavioral targeting that AdVeil can support in this manner.

As mentioned in Section 5.2, the only requirement for targeting
strategies is that they must be fully local. Users must not make any
requests other than those specified in Protocol 2, Protocol 3, and
Protocol 4 as a consequence of any targeting strategy.

Real-Time Bidding in AdVeil is supported automatically by giving
the Broker full control over which ad to deliver to the client based
on the ad ID requested. The Broker can, in real time, select from a
set of ads to respond with in Protocol 3 for a given ad ID. That is,
while the targeted ID is fixed, the associated ad content need not be.
Because the delivery and reporting requests are unlinkable from the
targeting request, delivering different ads for the same ad ID does
not compromise unlinkability, see Section 6.

Measurement Strategies.Reports in AdVeil are individualwithout
being linkable. The Broker learns precisely which ads were seen
and how often, without ever learning who saw them. This allows the
Broker to support a variety of measurement strategies including:

• Impression reports generated when users see a displayed ad.
• Click reports generated when users click on a displayed ad.
• Conversion reports generated when a user engages with the
Advertiser after clicking on an ad. The user’s local client is
capable of observing when an ad click generates a conversion
event and creates the resulting report.8

All reports in AdVeil are assumed to contain, at minimum, the ad
delivered and interaction type (e.g., Impression or Click). There is a
large body of other information the Broker maywish to receive as part
of reporting. AdVeil supports reporting on arbitrary information
but, as discussed in Section 3.2, is not intended to provide data
privacy guarantees. While it is always possible to report on user
data privately using differential privacy [36] or k-anonymity [87],
such techniques are deployment specific and orthogonal to AdVeil’s
primary goal of providing unlinkability between users and reports.

6 SECURITY ARGUMENTS
In this section we analyze the security of AdVeil when instantiated
using the protocols of Section 5.2. We frame our analysis in terms
of user unlinkability and fraud prevention, the two requirements
outlined in the threat model of Section 3.2.

6.1 User Unlinkability
We recall that the security guarantee of AdVeil, as established in
Section 3.2, is unlinkability between users and their personal data,
including which ads they see and interact with.
We show in Claims 1 and 2 that, individually, none of the protocols

are linkable to personal user information. Therefore, the crux of the
unlinkability argument lies in analyzing the combination of targeting
(where the Broker learns the client’s identity; required for effective
fraud-prevention) and delivery/reporting (where the client’s identity
is hidden by the anonymizing proxy). Concretely, we must ensure that
the Broker cannot deviate in targeting to link the client in delivery or
reporting, without also compromising its own goals (violating the
rationality assumption; see Section 3.2).

Theorem 1 (Unlinkability). Fix a reporting epoch. The set of
recovered reports through Protocol 4 in the epoch is unlinkable from
the set of clients that submitted them as well as prior executions of
Protocol 2 and Protocol 3, conditioned on:
(1) the user and client do not explicitly or implicitly leak personally

identifying information to any party,
(2) the Broker is rational in the sense that it does not deny service to

honest users or self-sabotage the fraud-prevention mechanism,
(3) the privacy of PIR [58], soundness of the authenticated dic-

tionary [70], unlinkability of PMBTokens [56, 79], and client
anonymity property of the anonymizing proxy [10], all hold
under their respective assumptions.

6.1.1 Privacy of individual protocols. Wefirst show that the targeting,
delivery, and reporting protocols, individually provide unlinkability
from user data.

Claim 1. Protocol 2 (targeting) reveals the identity of the client
but no other information to the Broker, conditioned on the privacy
requirement of the PIR scheme.
8This is similar to how conversions are tracked in the Safari browser today [99].
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Proof. The claim follows almost immediately from protocol
inspection. Specifically, in Protocol 2 (targeting), the client only
interacts with the Broker through a series of PIR queries which,
by definition, hide the user’s query (i.e., profile) from the Broker.
The PMBToken issued in Protocol 2 is generated by the client
independently of all user data and hence reveals no information on
its own. ■

Claim 2. Protocol 3 (delivery) and Protocol 4 (reporting) reveal the
ad delivered and report contents to the Broker, but not the identity
of the client, conditioned on the client anonymity property of the
anonymizing proxy [10].

Proof. In Protocols 3 & 4, the client interacts with the Broker
through anonymizing proxy, which reveals the targeted ad ID and
which ad was served (resp. the contents of the report) but not which
client it was served to (resp. which client submitted the report).
This follows directly from the client anonymity property of the
anonymizing proxy [10]. The PMBTokens generated and sent by the
client in both the delivery and the reporting protocols contain no
identifiable information as they are computed independently of the
user data.

■

6.1.2 Proof of Theorem 1. The unlinkability argument hinges on
showing that a malicious (but rational) Broker cannot deviate in the
targeting (Protocol 2) to link the client in delivery (Protocol 3), or
reporting (Protocol 4). This is shown in Lemma 1.

Lemma 1. Fix a reporting epoch. The Broker cannot rationally
deviate from Protocol 2 to link the client to a delivery request
(Protocol 3) or report submitted through Protocol 4, assuming the
soundness of the authenticated dictionary [70] and the unlinkability
property of PMBTokens [56, 79].

Proof. At a high level, Lemma 1 follows from the Broker com-
mitting to the ANNS dictionaries in Protocol 1 (setup) and the total
number of ads, coupled with the unlinkability property of PMBTo-
kens. More formally, we must individually examine interactions
taken by the client and the Broker in an epoch.
First, because the ANNS dictionaries are committed to in Proto-

col 1, a malicious Broker cannot change the ANNS data structure
between client requests. As such, the contents of the targeting data
structures must be consistent across all clients and, consequently, the
contents of all clients’ reports must also be consistent with the fixed
targeting data structures. This is guaranteed by the authenticated
dictionary proof returned to the clients with their PIR queries. If the
Broker is capable of answering the PIR query with a valid proof (w.r.t.
the commitment 𝐻𝒮 ) for a bucket value that is not in the dictionary,
with better than negligible probability in a security parameter, then
the Broker is also capable of breaking the soundness property of the
authenticated dictionary with non-negligible probability [70].
Second, we examine the PMBToken (and the embedded private

metadata) as a vector for linking a client to a report. We show that
exploiting PMBTokens for linking clients to reports, while possible, is
monetarily disincentivized and hence falls under irrational behavior.
Specifically, because each token issued in Protocol 2 is set up to reveal
one bit of metadata to the Broker for fraud-prevention purposes, the
Broker can only partition the anonymity set into two groups: clients

with valid tokens and clients with invalid tokens (recall Remark 2).
This division is necessary for any scheme that allows the Broker
to silently tag fraudulent requests for later identification. However,
all tokens within these two sets are unlinkable from other tokens in
their respective set by the properties of PMBTokens [56]; hence the
Broker cannot link a valid (resp. invalid) token to a prior targeting
request.
A malicious Broker can still split a single client into their own

group (by issuing only one valid token), allowing it to directly link
their identity to the contents of their report. However, this sabotages
fraud-prevention, as the Broker must group all other users and all
bots into the other set (invalid tokens), losing its ability to distinguish
fraudulent reports and causing it to violate its billing arrangementwith
Advertisers and Publishers. This strategy would result in significant
monetary losses for the Broker, as it sabotages correctness for its
advertising ecosystem. As such, a rational Broker will use the
metadata bit in the tokens only to tag fraudulent requests.9 ■

As a consequence of Lemma 1, the Broker cannot deviate from target-
ing without either compromising fraud-prevention or denying service
to a client (i.e., causing the client to abort). Such behavior, however,
is inherently irrational as it either 1) prevents users from being
shown ads or 2) sabotages fraud-prevention resulting in potentially
inaccurate billing metrics. As a result, a rational (monetarily-driven)
Broker is incentivized to follow protocol ensuring the unlinkability
property is satisfied between clients and generated reports.

6.1.3 Cross-Epoch Unlinkability. If only a subset of all users partic-
ipate in each epoch, then AdVeil cannot provide full unlinkability
across epochs due to intersection attacks [30, 31, 63, 65, 100]. In
this case, intersection attacks become possible because users are
correlated with the ads they see. Thus, over time, the Broker can
infer the relationship between a user and the ads they are shown by
observing the intersection of epochs in which the user participated,
even though the unlinkability property is satisfied within each epoch.
That is, ads that appear most frequently alongside a certain user
are likely to be the ads that user reported on. This leakage is small,
but not resolvable without holding the set of either users or ads
constant across all epochs – neither of which is reasonable for an
internet-scale system.

6.1.4 Unlinkability of Features. AdVeil guarantees that the Broker
cannot link any user to any of their personal data, but does not make
guarantees about any associations between the data elements them-
selves. That is, the Broker may learn relationships between different
features, e.g. that “mechanical keyboards” and “programming” are
two distinct features that commonly occur together in user profiles.
More generally, the Broker can determine whether there exists

some user who has a specific set of𝑛 features by generating a “tagged”
ad ID that is targeted to exactly that set of features and no others.
The Broker can then observe whether a report corresponding to the
tagged ad ID appears during the reporting phase. If so, there exists at
least one user that has the tagged set of 𝑛 features in their profile. This
does not reveal information about which user or users are involved,

9We note that the private metadata bit is only necessary to support covert bot detection.
In situations where covert detection is not required, it is possible to dispense of the
private metadata by e.g., using vanilla anonymous tokens such as Privacy Pass [34].
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but allows the Broker to learn feature clusters, or sets of features that
commonly appear together in user profiles.

6.2 Fraud Prevention
Recall that the requirements for fraud prevention (detailed in Sec-
tion 3.2), are that 1) the Broker is capable of flagging all targeting
requests detected as coming from bot clients and 2) no duplicate or
bot reports are recovered through Protocol 4.

Theorem 2 (Fraud Prevention). Assuming the unforgeability
property of PMBtokens [56, 79], each report recovered by the Broker
through Protocol 4 is:
(1) submitted by a client given a valid token signature in Protocol 2,
(2) unique in the set of all reports submitted across all epochs,
(3) associated with an ad that was delivered in Protocol 3,

Proof. The association of each report to a unique prior execution
of Protocol 3 is guaranteed by the unforgeability property of the
PMBTokens; no client can forge a valid token signature without
knowledge of the secret signing key held by the Broker [56]. Report
uniqueness is likewise guaranteed by the PMBToken unforgeability
property and the dictionary𝒲 of all redeemed tokens maintained in
Protocol 4 (see Privacy Pass [34] for more details and optimizations).
Finally, the PMBToken unforgeability property guarantees that no
client can forge a valid signature on a token. To expand on this
final point, only clients marked as “human” in Protocol 2 are given
valid signatures on the token. All other clients are given “invalid”
signatures (which are indistinguishable from valid signatures to the
client); in essence, valid/invalid signatures encode a private metadata
bit [56] (see Remark 2). In Protocol 3, the Broker issues a signature
with public metadata containing the delivered ad ID. Due to the
unforgeability property [79], this fixes the ad ID, which in turn means
that the client cannot report on a different ad from the one requested
through Protocol 3. ■

6.3 Correctness and Efficiency
In this section, we briefly argue correctness and asymptotic efficiency
of the protocols composing AdVeil.

6.3.1 Correctness. Correctness of AdVeil follows immediately
from the correctness of the underlying building blocks. Accuracy of
targeting is inherited from the correctness of the similarity-search data
structure of Section 5.1 and PIR [26]. Correctness of delivery follows
from correctness of the anonymizing proxy routing traffic between the
client and the Broker. For reporting, we note that the client submits
the report which, at minimum contains the ad ID embedded in the
token signed in Protocol 3 (delivery). By the correctness property of
PMBTokens (signed in targeting and delivery), only valid reports are
accepted by the Broker. The correctness of the recovered metrics thus
follows from the correctness of the targeting and delivery protocols.

6.3.2 Asymptotic Efficiency. We provide a brief analysis of asymp-
totic efficiency of AdVeil, in terms of the efficiency of the:
(1) ANNS data structure used in targeting,
(2) PIR scheme used to query the data structure,
(3) anonymizing proxy used in delivery and reporting,
(4) reporting token redemption and storage overheads.

Only the first three factors impact the efficiency for the end user.
Asymptotically, the guarantees of the similarity search data struc-
ture [40], and the underlying PIR scheme [7, 58], result in com-
munication of 𝑂 (𝑁 𝜖 ) for 𝜖 > 0. In practice, 𝜖 ≈ 1

2 [6, 7]. If the
anonymizing proxy is instantiated using Tor [35], then the overhead
on the client is 𝑂 (1) in delivery and reporting. The Broker’s work
for targeting ads is 𝑂 (𝑁 ) due to lower-bounds in PIR [26] and 𝑂 (1)
for delivery and reporting (dictionary lookup). The work and space
imposed on the Broker in reporting is𝑂 (𝑅) for an epoch containing 𝑅
submitted reports in total (note: in practice PMBToken key rotation10
can be used to prevent storing reporting tokens across different
epochs for de-duplication purposes [79]).

7 EVALUATION
We implement a prototype of AdVeil and measure its end-to-end
performance in a networked deployment. We evaluate the compu-
tational overhead of the Broker when serving client requests and
the end-to-end latency of targeting and delivery on the client. We
note that we do not compare AdVeil quantitatively with existing
work in privacy-preserving advertising. Prior proposals are either of
a theoretical/qualitative nature [52, 97], only solve one aspect of the
pipeline under different assumptions [43, 47, 91], or have incompa-
rable approaches [45, 47, 90]. We instead qualitatively compare all
these systems with AdVeil in Section 8.

7.1 Setup

Implementation.We implement AdVeil in Go (v1.13) and C++17.
Our implementation is open source and available at http://adveil.
com/code. We use the open-source Microsoft SealPIR library [7] to
instantiate single-server PIR. Our implementation of PMBTokens is
partially based on Cloudflare’s Privacy Pass code [34]. We instantiate
authenticated dictionaries using a vector commitment [60], which
require a one-time trusted setup [23] but have very succinct opening
proof sizes of 48 B [23, 42, 60]. Concretely, short proofs improve
the performance of targeting where the user retrieves the proof in
conjunction with the value from the dictionary via PIR.

Environment.We deploy AdVeil on Amazon Elastic Cloud Com-
pute (EC2) server instance for the Broker and a MacBook Pro for
the client. The Broker’s server runs on c5a.8xlarge VM (32 vCPUs
@ 3.6GHz; 64GB RAM) with an hourly cost of $0.525 as of June
2021.11We run the client on a MacBook Pro (8 CPUs; 32GB RAM).
We measure a throughput of 200Mbit/s download and 5Mbit/s
upload using the speedtest-cli tool.12

Parameters. The tunable parameters in AdVeil include the number
of ads, the size (in KiloBytes) of each ad, and the number of hash
tables used in the ANNS data structure (see Section 5.1). The total
number of ads and ad size has a direct impact on network bandwidth
usage and server processing time due to PIR (see Section 4.1).
Likewise, for the ANNS data structure, more hash tables improve
accuracy, but also increase the total number of parallel PIR queries
required (see Protocol 2). In our runtime experiments, we vary the
number of hash tables from 𝐿 = 5 to 𝐿 = 30. We report the accuracy

10See https://engineering.fb.com/2021/04/16/security/dit/
11https://aws.amazon.com/ec2/spot/pricing/
12https://www.speedtest.net/apps/cli

http://adveil.com/code
http://adveil.com/code
https://engineering.fb.com/2021/04/16/security/dit/
https://aws.amazon.com/ec2/spot/pricing/
https://www.speedtest.net/apps/cli


AdVeil: A Private Targeted-Advertising Ecosystem

218 219 220 221

Number of ads (in the database)

0

5

10

15

20

25

30

La
te

nc
y 

(s
ec

)

Targeting Latency (End-to-End)
5 Tables
10 Tables
20 Tables
30 Tables

(a) Client end-to-end latency (sec-
onds) for a targeting query. Latency
is primarily impacted by Broker com-
putation time (computing query an-
swers), but also affected by ping time
and client network bandwidth.

214 217 220

Number of ads (in the database)

0

50

100

150

200

250

300

Th
ro

ug
ho

ut
 (C

lie
nt

s/
M

in
ut

e)

Targeting Throughput
5 Tables
10 Tables
20 Tables
30 Tables

(b) Broker targeting throughput
(clients per minute) with 32 cores.
Throughput is only impacted by PIR
query answer computation which is
linear in the number of ads in the
database.

218 219 220 221

Number of ads (in the database)

0

2

4

6

8

10

12

Co
m

m
un

ica
tio

n 
(M

B)

Targeting Communication

(c) Client-Broker communication for
targeting (PIR query and response
size). Bottom solid areas of each bar
indicate fraction of upload commu-
nication.

218219 220 221

Number of ads (in the database)

0

100

200

300

Ba
nd

wi
dt

h 
(M

B)

Bandwidth Savings
scp
Protocol 2

(d) Communication comparison be-
tween “naive” PIR (retrieving entire
ANNS data structure (scp)) and Pro-
tocol 2, which uses SealPIR queries.
We fix 𝐿 = 30.

Figure 4: Evaluation of ad targeting in AdVeil. We report end-to-end latency as measured on the client machine. Communication is measured as
the network overhead between the client and Broker. Throughput measures the raw computational processing throughput of the Broker’s server
(parallelized across 32 cores) to answer client targeting requests. Shaded regions and error bars represent a 95% confidence (occasionally invisible).

of the ANNS protocol while varying the parameter 𝐿 in Figure 6.
We make each hash table in the ANNS data structure have 𝑁 keys
(i.e., total number of ad IDs) and cap the size of each bucket in the
ANNS to one ID.

Datasets.We evaluate AdVeil using synthetic data. Real-world ad
features are proprietary [96] and we were not able to find suitable
data for our evaluation. We stress, however, that PIR (which is used
to query the ANNS hash tables) is not impacted by the underlying
data distribution. Moreover, AdVeil does not impact accuracy of
targeting and hence is also agnostic to the underlying features.
In contrast, the number of hash tables in the ANNS does impact

accuracy (which directly impacts AdVeil’s performance by requiring
more PIR queries). To gain a sense of how many hash tables are
required in a deployed setting, we follow the synthetic data generation
and evaluation methodology performed by Datar et al. [32] for
evaluating ANNS queries over Euclidean distance in a worst-case
manner. Each ad feature vector is randomly generated by sampling
a 100-dimensional vector with random coordinates in the range
[−255, 255] (each coordinate is one byte). A client profile feature
vector is then randomly “planted” within a fixed distance radius
from a randomly chosen ad feature vector. Because LSH performs
best on clustered data (as is often the case with non-synthetic
data), generating the dataset in this way results in worst-case recall
performance for ANNS [6]. This setup is used to evaluate accuracy
of approximate nearest neighbor search on specific LSH parameters13
as a function of the number of hash tables to gain a crude estimate
for the number of tables required in practice.

Ad Sizes. Common online banner ad sizes14 (which account for 89%
of ads on some platforms [64, 68]) are typically under 150 kB in size.
Video ads are typically under 4MB in size [68]. Ad size only impacts
delivery as all other protocols operate on fixed-size ad IDs.

13Many factors are at play when determining optimal LSH parameters; see [81] for
details on parameter optimization for ANNS in practice.

14https://support.google.com/adsense/answer/6002621

Methodology. Unless otherwise stated, we run each experiment 10
times and report mean and 95% confidence interval over the trials.
We parallelize all computation on the servers when possible.

7.2 Results
In this section we describe our evaluation results for targeting,
delivery, and metric recovery in terms of processing time, latency,
and communication. We also report the impact of changing the
number of LSH hash tables has on targeting accuracy.

7.2.1 Client latency. We first evaluate client end-to-end latency in
wall-clock time for ad targeting and delivery.

Targeting (Protocol 2) Latency. Figure 4a shows the impact that the
number of ads in the dataset and number of ANNS hash tables has on
client latency. Latency ranges from several seconds on smaller sets
of ads (≈ 130, 000 ads) to 20 seconds on larger sets (≈ 2, 000, 000
ads). Network throughput accounted for 1 to 7 seconds of end-to-end
latency on the client (which has throughput comparable to a home
WiFi network).

Delivery (Protocol 3) Latency. Figure 5 shows the relative perfor-
mance of Tor vs. single and two server PIR for delivering ads. We
take the mean latency for downloading a 50 kB and 1MB file over the
Tor network from Tor metrics [62] data between February and May
2021. Delivery latency for a 50 kB ad (e.g., a small image) through
Tor is approximately one second while latency for a 1MB ad (e.g., 5
second 480p video15) is approximately three seconds.
To illustrate the impracticality of using PIR for delivering ads,

we evaluate SealPIR over 500 B to 1 kB ads while varying the total
number of ads in the database. Additionally, we consider two-server
PIR, which is more concretely efficient in practice [15, 95]. Our
results show that both single-server and two-server16 PIR impose a
high overhead for delivery, even when only considering small (up to

15See https://www.animotica.com/blog/full-guide-what-is-video-bitrate-and-why-does-
it-matter/ for video bitrates.

16The two servers are required to be non-colluding in this setting.

https://support.google.com/adsense/answer/6002621
https://www.animotica.com/blog/full-guide-what-is-video-bitrate-and-why-does-it-matter/
https://www.animotica.com/blog/full-guide-what-is-video-bitrate-and-why-does-it-matter/
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1 kB) ads. As such, we choose to use Tor for ad delivery in AdVeil.
We stress that targeting requires use of PIR as replacing it with Tor
(or any other anonymizing proxy) would require user data to be sent
to the Broker during targeting, which would directly reveal PII.
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Figure 5: Client end-to-end ad delivery latency (seconds) using PIR, two-
server PIR, and Tor. Latency for PIR queries is proportional to the size
of the ad database (number of total ads and their size). Latency for Tor
is only dependent on ad size (independent of the total number of ads).
Shaded region represents a 95% confidence interval (note that Tor has
high variance in latency).

7.2.2 Communication overhead. We report the total communication
(in MB) exchanged between the Broker and the client when targeting
ads in Figure 4c. Communication depends on database size and
number of tables. The total communication remained under 12MB.
We find that the majority of communication is from the PIR query
response since the PIR queries themselves are of constant size with
respect to the database size in our evaluation (due to SealPIR query
compression [7]).We believe this communication to be reasonable for
the average internet client, especially considering targeting happens
once per epoch (e.g., once a day) and is “download-heavy”, which
aligns well with real-world networks [82]. In Figure 4d we contrast
the bandwidth usage of SealPIR with “naive PIR” where the entire
ANNS data structure is sent to the client.

7.2.3 Targeting throughput. We report the targeting throughput (in
terms of clients per minute) of the Broker in Figure 4b. Throughput
is limited by the computational overhead of processing the PIR
queries over the ANNS hash tables. With 30 hash tables and 220

ads, targeting throughput was approximately six clients per minute.
We note that the throughput is massively parallelizable; increasing
linearly with the Broker’s computational capacity. If we assume that
targeting is required once per week and 100 million active users
in the ecosystem (with anonymity sets of 220 unique ad IDs), the
Broker would need ≈ 1,600 servers to target ads on a weekly basis.

7.2.4 Targeting Accuracy. We compare targeting accuracy in Ad-
Veil to that of contextual advertising as users’ features become
increasingly distant from those of the website. ANNS accuracy is
typically measured through recall: the fraction of neighbors found
over the total number of queries performed. While AdVeil is ag-
nostic to the ANNS parameters (such as the LSH family used) we
nonetheless measure the accuracy of nearest neighbor queries as
a function of the number of hash tables used in the ANNS data

structure. We first fine-tune the ANNS parameters to achieve recall
accuracy of over 90% with 𝐿 = 30 hash tables and report the drop
in recall as we decrease the number of hash tables. We report recall
accuracy across different values of 𝐿 in Figure 6, evaluated over
10,000 independent queries while varying the number of hash tables
in the ANNS data structure. We find diminishing returns in recall
improvement when the number of hash tables increases over 20;
suggesting that on real-world data (not worst-case as evaluated here),
20 hash tables in the ANNS may be sufficient for accurate targeting.

Less SimilarMore Similar

Figure 6: Recall accuracy comparison between targeted and contextual
ads as a function of the user’s profile distance from the website’s profile.
Increasing the number of hash tables has diminishing returns on recall
accuracy for targeted ads. As user profiles grows less similar (i.e., more
distant) from the website profile, contextual advertisement become less
relevant. Targeted advertisement relevancy is independent of the user’s
similarity to the website context.

7.2.5 Reporting. The computation on the Broker per submitted
reports is light and consists of redeeming the two tokens attached to
each report. In total, redeeming the tokens for a single report requires
under 300 𝜇s of processing time on one core (see Table 7). Thus,
a single 32 core server can process upwards of 90,000 reports per
second when parallelized.

7.2.6 Microbenchmarks. We execute a series of microbenchmarks
to analyze the impact of the building-blocks used in AdVeil. Specif-
ically, we measure the client processing time for PIR queries and
PMBTokens. Generating the PIR queries requires under one millisec-
ond. Decryption of the PIR query response takes approximately two
milliseconds. All client-side PMBToken processing (generating and
unblinding) is under 300 𝜇s.
Server-side processing of PMBTokens requires under 300 𝜇s for all

operations. PMBTokens with 1-bit of private metadata (compared to
public metadata) are more efficient as they do require hashing of the
metadata and zero-knowledge proofs during the signing phase [56].

7.2.7 Storage Overhead. We report the storage overhead in Table 8.
The client stores the user’s profile feature vector locally which
requires 𝑑 bytes (assuming one byte per profile vector coordinate).
Additionally, the client stores the PIR key pair and public parameters
published by the Broker in Protocol 1. The Broker stores all redeemed
tokens to prevent duplicate reports. Additionally, we assume the
Broker stores the PIR public keys of each client to avoid having the
client to repeatedly send them with each PIR query.
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Microbenchmarks
Client

879 𝜇s
PIR.Query

2007 𝜇s
PIR.Recover

219 𝜇s
PMBT.GenToken

272 𝜇s
PMBT.Unblind

Broker
51 𝜇s

PMBT.Sign
(private metadata)

94 𝜇s
PMBT.Redeem
(private metadata)

172 𝜇s
PMBT.Sign

(public metadata)

105 𝜇s
PMBT.Redeem
(public metadata)

Table 7: Microbenchmarks (in microseconds) for SealPIR (query and
answer recovery) and PMBTokens (with private and public metadata).
PMBTokens with public metadata require additional processing due to
hashing and non-interactive zero-knowledge proofs.

Storage Overhead
Client Broker

𝑑 (B)
Profile vector

4 (MB)
SealPIR key

200 (KB)
Public params

32𝑅 (B)
Report dict.

4𝐶 (MB)
Client keys

Table 8: Storage overhead.𝐶 is the total number of clients in the system.
𝑅 is the total number of reports submitted in an epoch. 𝑑 = 100 in our
evaluation.

7.2.8 Operational Costs. We estimate the operational costs of run-
ning AdVeil. Our estimate focuses on an ad database and reports-
per-epoch size of 1M ads. We assume users recovers 10 ads simulta-
neously in Protocol 2 using 30 LSH tables (see Section 5.1 for how
ANNS trivially extends to k-nearest neighbor search). Additionally,
we use the AWS costs from our own evaluation – $0.525/hr for the
Broker’s machine on AWS. Given this setup, the processing time
of the Broker is approximately 10s per execution of the targeting
protocol (Protocol 2) 17. The total costs to target, and recover reports
for, 𝑘 = 1 ads is computed as in Equation (1) and equals 0.15¢.

($0.525/hour) · 10 s
cost of targeting 𝑘 ads

+ 𝑘 · ($0.525/hour · 0.5 ms)
PMBTokens cost for 𝑘 ads

(1)

Compared to average revenue generated by an ad impression
of approximately 0.20¢ [84], we get that the expected revenue is
roughly 33% the cost of serving the ads (on non-enterprise machines).
Amortized over 𝑘 = 10 ads targeted simultaneously, the expected
revenue is over 10× the cost of targeting. Hence, AdVeil can be
deployed (with off-the-shelf cloud infrastructure) and still result in
net profit gains for the Broker.

8 RELATED WORK
There exists a large body of works on privacy-preserving advertis-
ing [9, 14, 43, 45–47, 52, 73, 90, 91, 96, 97]. In this section we focus
on providing a detailed comparison to other systems that cover the
complete advertising pipeline and leave discussion of the less similar
works to Appendix A.

Jules [52] is an early, theoretical proposal for supporting privacy-
preserving targeted advertising on the internet. It is primarily of
historical interest, but shares some similarities to AdVeil. Specifi-
cally with respect to the use of PIR (which is applied to delivery of
ads). We show in Section 7, that PIR is not practical for ad delivery.

17Note that Figure 4a includes network latency in addition to processing time.

Privad [45] provides a targeting model based on broad interest
categories that are narrowed locally by the client. Privad relies on a
centralized anonymizing proxy, referred to as the Dealer, to provide
user privacy and enforce fraud prevention. The Dealer is assumed not
to collude with the Broker and provides user privacy by mediating
all user communication. Thus, the Broker learns the contents, but
not the origin, of each request. To do this, the Dealer must sustain
the load of the entire ad network as a non-colluding third party.
Privad cannot trivally solve this issue by replacing the Dealer with
an existing, distributed anonymizing proxy as this would leave their
system without fraud prevention.

OblivAd [9] relies heavily on a Trusted Execution Environment
(TEE) to provide user privacy. The TEE is single-handedly respon-
sible for all stages of the advertising pipeline, from ad targeting to
unlinkability of reports and fraud prevention. To prevent the Broker
from learning which ads are delivered to which clients, the TEE
uses ORAM [85] to retrieve ads from the ad database. For reporting,
users again encrypt their responses to the TEE which batches and
shuffles them to hide timing information.
ObliviAd provides strong privacy guarantees only because of its

reliance on the TEE and ORAM, both of which have major practical
drawbacks. ORAM can only serve a single client request at a time;
parallel requests require an equivalent number of separate instances
of the ORAM scheme causing linear storage blowup in the number
of concurrent client requests [8, 85]. TEEs have seen a series of
powerful attacks since ObliviAd was published [16, 21, 28, 93]. As
a result, we do not believe that either issue is surmountable with
today’s instantiations of TEEs or ORAM [8, 28, 85].

Adnostic [90] primarily focuses on the targeting and reporting stages.
Similarly to Privad, Adnostic performs targeting locally on the client.
However, Agnostic only uses contextual features during targeting
and does not make an effort to hide which ads are delivered to a user.
Adnostic attempts to prevent the Broker from linking the delivery
and reporting phases by aggregating reports using homomorphic
encryption and zero-knowledge proofs rather than revealing them
individually. Decryption of aggregate reports is handled by a TTP
that checks the size of reports prior to decryption to ensure that only
large groups of users are reported on. However, Adnostic makes no
effort to hide users’ browsing or click behavior from the Broker,
leading us to agree with Privad’s description of their Broker model
as “honest-and-not-curious” [45].

themis [73] is the Brave browser’s contribution to private targeted
advertising. It attempts to replace the role of the Broker with a
permissioned blockchain, run by Publishers or foundations such as
the EFF. themis additionally supports payment to users for their
interaction with ads. Privacy for payments, metrics, and auditing of
the blockchain is based on a Proof of Authority protocol [1].
The attempted removal of the Broker, auditability, and user com-

pensation are all interesting directions for the future of private
advertising. Unfortunately, themis achieves them by entirely offload-
ing both targeting and delivery to clients. Users must download both
the targeting model and the entire database of ads and ad features to
their local device. Fetching fewer ads is not trivial for themis due to
the timing information revealed on its blockchain. We do not believe
this to be insurmountable, but it would require careful analysis of
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Table 9: Comparison of AdVeil to related work on targeted advertising.

Privacy Correctness Scalability
Trusted Third
Party (TTP)

Targeting Data
Sent to Broker

Targeting
Accuracy

Fraud
Prevention

Report
Granularity

TTP
Workload

TTP
Availability

Simultaneous
Requests

Adnostic [90] Decryption Oracle Contextual Contextual+ Limited i Aggregate ≪ Broker ≪ Broker ✓

ObliviAd [9] TEE Noneii Full Targeted Full Individual N/A iii N/A ✗

Privad [45] Dealer Broad Categories Limited Targeted Full Individual ≈ Broker = Broker iv ✓

themis [73] PoA Blockchain None Full Targeted Full Individual ≈ Broker v ≈ Broker v ✓

turtledove [97] Traditional TTP None vi Limited Targeted+ N/A Individual+ < Broker ≈ Broker iv ✓

AdVeil None None Full Targeted Full Individual N/A N/A ✓

iAdnostic does not perform fraud detection beyond guaranteeing that an individual report is for a single ad.
iiComplete targeting data is sent to the TEE held by the Broker.

iiiOblivad’s TTP is a TEE held by the Broker. It does not correspond to a physically or administratively separate entity.
ivThe TTP participates in processing every targeting request, on demand. In Privad it also participates in reporting.

vThe blockchain authorities are required to validate every report on demand and selected users are required to participate in MPC to compute metrics.
viUser data is sent to the TTP.

its security implications which we have not yet seen addressed in
Brave’s continued development efforts [18].

turtledove [97] takes a similar approach to Privad where users
subscribe to interest groups and can participate in local auctions to
receive an ad based on these interest groups. However, unlike Privad,
turtledove does not make any assumptions about the specificity
of these groups or what metadata may be included in the auction.
It only requires that group size meets an unspecified k-anonymity
threshold. Additionally, turtledove requires a trusted server to
support the inclusion of real time external data into the local auction.
User requests to this server are not required to conform to any k-
anonymity bound. Between the specificity of interest groups, the
blind trust in this server, and the lax restrictions on reporting, it is
not clear that turtledove provides its users with any more privacy
than traditional advertising.

9 DISCUSSION & CONCLUSIONS
On today’s internet, there is a fundamental conflict between privacy
and advertising. What we show with AdVeil is that, while the
pervasive user tracking performed by ad networks is incompatible
with privacy, targeted advertisements are not. AdVeil provides full
compliance with technological and legislative best practices for user
privacy without limiting the relevance of advertisements shown on
the internet. Ultimately, we believe that AdVeil is a viable alternative
to existing, non-private targeted advertising schemes that meets the
needs of both users and ad network brokers.

Targeted Advertising can have serious negative side effects, from
web tracking to discriminatory or manipulative practices [37]. In light
of this, it seems challenging to advocate for even privacy-preserving
targeted advertising. However, current legislative and technological
efforts to prevent targeted ads or their ill effects have been markedly
unsuccessful. Ad tech companies are more willing to fight lawsuits
than they are to stop collecting user data [12, 54, 54, 86] and, despite
anti-tracking measures, most peoples’ browsers remain uniquely
identifiable [20, 38, 66, 75, 102].
In AdVeil users have transparency into the ad targeting process

and can avoid targeting on any features they deem sensitive. It

does not require ad-tech companies to track users for targeting data,
instead giving control over the collection and use of this data back to
the users themselves. While AdVeil is not a complete solution to
discriminatory or manipulative advertising, we believe it provides a
platform for future work in this direction.

Usabilitymotivated our decision to separate AdVeil’s targeting and
delivery stages. While AdVeil can deliver ads at approximately the
same speed as the rest of a page’s content, it cannot target them at
the same rate. If targeting was performed on-demand, as delivery is,
it could result in users navigating away from pages before ads finish
loading. Instead, AdVeil targets ads in batches at fixed intervals
such that they can be rapidly delivered on demand.
Similarly, the ad network requires that any computational overhead

imposed by AdVeil be sustainable. While targeting and metrics are
more computationally expensive than their non-private alternatives,
we showed in Section 7.2.8 that AdVeil remains profitable. Addi-
tionally, as was discussed in Section 5.3, both protocols are versatile
and allow the ad network its choice of targeting and measurement
strategies to align with those used in practice.

Conclusions. WepresentedAdVeil, a system for privacy-preserving
targeted advertising that addresses usability and privacy concerns
of existing work. In doing so, we introduce a novel method of
targeting ads that provides strong privacy guarantees for users, while
ensuring targeting accuracy that is on-par with existing systems. We
provide an open-source prototype implementation with an end-to-end
evaluation. Our results show the practical and economic feasibility of
deploying AdVeil for meeting user privacy demands and regulatory
compliance, without compromising on the needs of the ad network.
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A EXTENDED RELATED WORK

FLoC [96] focuses specifically on the targeting phase of the adver-
tising pipeline. It assigns users to groups based on their browsing
behavior – users with similar browsing habits and, presumably, inter-
ests are assigned to the same group. FLoC users receive ads based on
a group identifier rather than a personal feature vector. The proposal
believes this to be secure because the number of users per-group
is large and the total number of groups is small, indicating that no
one group can be too specific to an individual user. Unfortunately,
FLoC considers “thousands” of users to be a sufficiently large group
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size and the group name “43A7” to be a short group identifier. Of
course, “thousands” is a very small group size compared to the 4.66
billion active internet users and 1,679,616 different groups can be
supported, assuming 4 digit alphanumeric representation for group
identifiers. Thus, it is unclear what, if anything, sending this group
name instead of a feature vector hides about users of FLoC as groups
could be highly specific to users’ private features.
PPAD [14] is a group-based ad targeting system where the privacy
for users is guaranteed relative to the group that a user belongs
to. Each user is assigned to a group based on their attributes and
hence reveals coarse grained interests of users. The Broker and a
semi-trusted third party run a variant of a private-set intersection
protocol (using shares of user-provided feature vectors) to determine
which ads should be displayed to a group. The advantage of PPAD
is that the Broker can target and deliver ads at a group level and
can evaluate set intersection while the user is “offline” in order to
serve ads when the user goes back online. However, the model of
PPAD provides a tradeoff between targeting accuracy and privacy.
Specifically, the more fine-grained the group selection, the more
privacy leakage it incurs; PPAD does not provide an analysis of this
leakage.
BAdASS [47] (and its precursor AHEAd [46]) are designed for
online targeting and do not delve into other aspects of the advertising
ecosystem such as reporting and fraud prevention. BAdASS uses
a multi-party computation protocol executed between a group of
honest-but-curious parties. Moreover, BAdASS requires splitting
trust among a set of Demand-Side Platforms (DSPs) which manage
content targeting in an ad network. Even a single malicious DSP can
disrupt the correctness of the protocol (or worse yet de-anonymize the
user) unless expensive zero-knowledge proofs are added to prevent
deviations from protocol.
Tran et al. [91] is designed to address the retargeting aspect of
online advertising. Their primary assumption is that the Broker

(or ad exchange) will not collude with retargeting services. Clients
engage in a protocol between the Broker and retargeter to fetch ads
for products they have previously shown interest in (e.g., by adding
a product to a shopping cart). The retargeter learns which ad was
displayed but not which user requested it, while the Broker learns
which user requested the ad but not which ad was retrieved via the
retargeter. User privacy is ensured if the Broker and retargeter do not
collude.
Tulabandhula et al. [92] propose a collection of functions for
privacy-preserving association rule mining and recommendations.
Their protocols work between a client and server, where the client
stores the feature vector locally. Their results can be applied to
AdVeil in the targeting process and may be useful for certain
deployments.
AdScale [43] improves the reporting scheme proposed in Adnostic,
but does not address other aspects of the pipeline. Users in Adscale
respond with homomorphically encrypted reports that are aggregated
by the Broker, but can only be decrypted by a designated trusted third
party (TTP). This is intended to ensure that neither the Broker nor
the TTP are individually capable of learning the plaintext responses
of a single user. As a consequence, only aggregate information can
be used for billing and targeting purposes.

B PRIVATE KEYWORD ADVERTISING
While we present a protocol for privacy-preserving ad selection
using nearest neighbor search (e.g., for selecting ads based on user
interests), a different category of advertising involves displaying ads
to users based on keywords. For example, searching for “hotels in
madagascar” in DuckDuckGo displays an ad by booking.com for
hotel deals in Madagascar as well as an ad for cheap plane tickets.
These ads are served by matching keywords in the search query
(“hotel” and “madagascar”) to a “bag of words” associated with each
ad. Our protocol for privacy preserving nearest neighbor search can
easily be adapted to match a set of keywords.
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