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Abstract. This article provides new constant-time encodings F∗q → E(Fq) to ordinary
elliptic Fq-curves E of j-invariants 0, 1728 having a small prime divisor of the Frobenius
trace. Therefore all curves of j = 1728 are covered. This is also true for the Barreto–Naehrig
curves BN512, BN638 from the international cryptographic standards ISO/IEC 15946-5,
TCG Algorithm Registry, and FIDO ECDAA Algorithm. Many j = 1728 curves as well as
BN512, BN638 do not have Fq-isogenies of small degree from other elliptic curves. So, in
fact, only universal SW (Shallue–van de Woestijne) encoding was previously applicable to
them. However this encoding (in contrast to ours) can not be computed at the cost of one
exponentiation in the field Fq.
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Introduction

Let Fq be a finite field of characteristic p > 5 and E = Ea,b : y2 = x3 − ax+ b be an elliptic
Fq-curve. Many protocols of elliptic cryptography use a hash function [1, §3] of the form H :
{0, 1}∗ → E(Fq). It is often constructed with the help of an auxiliary map h : P1(Fq)→ E(Fq),
called encoding, such that #Im(h) > (q + 1)/n for some n ∈ N. Clearly, the smaller the value
n, the better, because h covers more Fq-points. By the way, Hasse’s bound says that |t| 6 2

√
q

for N := #E(Fq) and the Frobenius trace t = q + 1−N . Good surveys on how to hash into
elliptic curves are represented in [2, §8], [3].

In practice, h needs to be computed in constant time, otherwise it is vulnerable to timing
attacks [2, §8.2.2, §12.1.1]. Besides, it is more convenient to restrict h to the multiplicative
group F∗q , because, as a rule, h(0), h(∞) are points of small orders. There are (e.g., in [3, §5])
standard hash functions η : {0, 1}∗ → F∗q , hence the composition H = h ◦ η gives the desired
hash function. If we additionally require H to be a random oracle [1, §3.7], then according
to [4] it is enough to apply h twice, varying η, and to sum the resulting points. In this case,
h must be well-distributed, but we do not know of a single natural example that would not
be like this.

There is the SW encoding [2, §8.3.4], [3, §6.6.1], which is applicable to any elliptic curve.
However at least several exponentiations in Fq are required to evaluate it. In turn, all other
known encodings, including those constructed in this article, make do with only one if imple-
mented correctly. This is what we mean whenever we talk about the encoding efficiency in
this article. At first glance, such speedup seems insignificant, but some modern cryptographic
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protocols (like the aggregated BLS signature [5]) call the hash function H many times. So
the cumulative gain is large.

If j-invariant of E is different from 0, 1728, i.e., ab 6= 0, then one can apply the simplified
SWU encoding h (see, e.g., [6, §2.4, §4.1]), which seems significantly unimprovable. Also,
consider the curves Eb : y2 = x3 + b and Ea : y2 = x3 − ax of j-invariants 0, 1728 respectively.
Having an Fq-isogeny of small degree ϕ : E → Eb (resp. ϕ : E → Ea) that is vertical (i.e.,
j(E) 6= 0, 1728), we obviously obtain the fast encoding ϕ ◦ h to Eb (resp. Ea). This was first
seen in [6, §4]. In particular, it is a simple exercise that such an isogeny of degree 2 exists if
and only if 3

√
b ∈ Fq (resp.

√
a ∈ Fq). Therefore, without loss of generality, we can focus only

on curves Eb, Ea not satisfying the last conditions. We have to process such curves as well,
because among them exist many pairing-friendly ones [2, §4], [7].

For q ≡ 2 (mod 3) (resp. q ≡ 3 (mod 4)) there is in [2, §8.3.2] (resp. [8]) a bijective
encoding to Eb (resp. Ea). The former is said to be the Boneh–Franklin encoding. The given
curves are so-called median value curves [9, §3.4], that is for them N = q + 1 or, equivalently,
t = 0. As a consequence of [1, Theorem 9.11.2], they are supersingular. Although there are
supersingular curves Eb, Ea with other orders N , to be definite in this article we will deal
only with ordinary curves. The fact is that in pre-quantum cryptography supersingular ones
are considered to be weak [2, §4.3, §9.1.3]. However, many of our results for Eb (resp. Ea)
seem to hold true if q ≡ 1 (mod 3) (resp. q ≡ 1 (mod 4)).

Let again E be any elliptic Fq-curve. It is natural to wonder about non-constant Fq-covers
ϕ : C → E of small degree by (smooth projective absolutely irreducible) curves C of greater
genus g for which there is an efficient encoding P1(Fq)→ C(Fq). To our knowledge, there are
two types of such curves, namely cyclic trigonal curves T , also known as trielliptic, (see, e.g.,
[10, §2]) for q ≡ 2 (mod 3) and so-called odd hyperelliptic curves H [8, §2] for q ≡ 3 (mod 4).
One of covers of the first type is implicitly proposed by Icart in [11, §2] (see also [12]).
In turn, covers of the second type (with g = deg(ϕ) = 2) are constructed by Fouque–Joux–
Tibouchi in [13, §3] under the additional condition 4 | N . The encodings to T , H are trivial
generalizations of the encodings to the median value curves Eb, Ea respectively.

More precisely, the curves are given by equations H : y2 = f(x) and T : x3 = f1(y)f2(y)2,
where f , f1, f2 are Fq-polynomials without multiple roots (f is in addition odd). Whenever
q ≡ 2 (mod 3) the projection pry : T → P1

y is exceptional, i.e., pry : Y (Fq) ∼−→ P1(Fq). And its
inverse map pr−1y is nothing but an encoding to T . In turn, the projection prx : H → P1

x is
evidently not exceptional. There is [9, Question 3.10] (still unsolved, as far as we know)
under what conditions (besides #H(Fq) = q + 1) the curve H has an exceptional cover to P1.
Nevertheless, a response to this question is neither sufficient nor necessary (as shown in the
case q ≡ 3 (mod 4)) for existence of a fast bijective encoding to H. By the way, the curves
T , H are not necessarily supersingular, because in contrast to the genus 1 case this property
equally depends on their orders over extensions of Fq (cf. [9, Example 3.15]).

Recall a series of notions and results, which can be found in [14, §1], [15, §1-2]. Elliptic
Fq-curves E, E ′ are called n-congruent (where p - n ∈ N) if there is an isomorphism τ : E[n] ∼−→
E ′[n] of the Frobenius modules. Then τ is said to be an anti-isometry (and E, E ′ are reversely
n-congruent) with respect to the Weil pairing en whenever en

(
τ(P0), τ(P1)

)
= e−1n (P0, P1)

for all points P0, P1 ∈ E[n]. The last identity exactly means that the graph Γτ of τ is a
maximal isotropic subgroup with respect to the Weil pairing on A := E×E ′. Therefore the
quotient map Φ̂ : A→ A/Γτ is an Fq-isogeny to a principally polarized abelian surface A/Γτ .
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The mentioned construction is also referred to as gluing (or tying) E, E ′ along their n-torsion
subgroups via τ .

If A/Γτ is isomorphic as PPAS to the Jacobian J of some curve H, then τ is called
irreducible. There is in [14, §2] the powerful Kani criterion of irreducibility. In this case, the
dual isogeny Φ : J → A is the natural extension of some Fq-covers ϕ : H → E, ϕ′ : H → E ′

of degree n. Moreover, they are optimal, i.e., there is no decomposition into non-trivial Fq-
covers H → F , F → E (resp. F → E ′) for some elliptic curve F . In the literature one may
also encounter the terms maximal, or vice versa, minimal. In addition to the optimality, ϕ, ϕ′

are complementary covers to each other in the sense of [15, §2]. Conversely, any pair of such

covers induces an Fq-isogeny Φ : J → A and hence its dual Φ̂ : A→ J . Besides, the kernel of

Φ̂ is the graph Γτ of some (irreducible) Fq-anti-isometry τ : E[n] ∼−→ E ′[n].
From now on let E ′ : cy2 = x3 − ax+ b 'Fq Eac2,bc3 denote the quadratic twist of E (unique

up to an Fq-isomorphism), where c ∈ F∗q \ (F∗q )2. Surprisingly, for E = Ea and q ≡ 3 (mod 4)
this twist is trivial, i.e., E 'Fq E

′, because, without loss of generality, take c = −1. If we are
not mistaken, this is the only possible counterexample, that is why authors often forget to say
about it. A correct equation of the non-trivial quadratic twist of Ea and other useful informa-
tion about twists (not necessarily quadratic) of elliptic curves are provided in [16, §X.5-X.6].
As is known (e.g., from [1, Exercise 9.5.4]), −t is the Frobenius trace of E ′. Consequently,
the curves E, E ′ are not Fq-isogenous whenever t 6= 0 as assumed above. Therefore this pair
of curves is never trivial, that is a congruence E[n] ∼−→ E ′[n] (if any) is not the restriction of
an Fq-isogeny E → E ′.

In the new terms, the Fouque–Joux–Tibouchi approach consists of tying E, E ′ (with the
restrictions on q, N) along the subgroup E[2] = E ′[2] via an irreducible Fq-(anti)-isometry

τ . Curiously, for the curves Eb, Ea such τ exists if and only if, as before, 3
√
b ∈ Fq,

√
a ∈ Fq

respectively (see §3.1, §2.1). In fact, by virtue of [17, Proposition 3] the required τ is easily
constructed depending on #E(Fq)[2] for all elliptic Fq-curves E of j 6= 0, 1728. The fact is
that they do not have non-trivial automorphisms, hence any non-identical τ is automatically
irreducible. By the way, the resulting genus 2 curve H is a median value one according to
[18, Equality 3.5].

The given article tries to extend the considered approach to greater degrees n in order
to cover remaining curves Eb, Ea. First of all, we analyse in what situation this is possible.
Fortunately, for any curve Ea it is sufficient to take n 6 4 due to §2 (the general case n = 4
is treated in §2.3). At the same time, for curves Eb the situation is more complicated. Among
other things, we generalize in §4 the class of odd hyperelliptic curves to a much wider one
of median value curves. Moreover, for every representative H of this class we still have an
efficient encoding h : P1(Fq) ∼−→ H(Fq). We are interested in the smallest possible n, because
obviously #Im(ϕ ◦ h) > (q + 1)/n, not to mention that for smaller n formulas of the cover ϕ
are more compact and faster to compute.

Although we do not use the second cover ϕ′ for encoding, it plays an important role.
Indeed, if E is tied with an elliptic curve F not Fq-isomorphic to E ′ (even if F is Fq-isogenous
to E ′), then the covering H of E, F is not quite “symmetric” (cf. Remark 2). We do not
know how to encode into such H in constant time of one exponentiation in the field Fq.

We explain in §3.3 that, dealing with curves Eb, it is enough to restrict ourselves to prime
degrees ` = n > 5. In accordance with our Theorem 1 degree ` (optimal) covers ϕ : H → Eb,
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ϕ′ : H → E ′b exist if and only if ` | t. Unfortunately, there are curves Eb (even pairing-friendly)
without small divisors of t. Nevertheless, in §3.2 we study in detail the case ` = 5, which is
valid for some standardized Barreto–Naehrig Fp-curves [2, Example 4.2]. It is about BN512
(b = 3) and BN638 (b = 257) from the standards [19], [20, §5.2.8], [21, §4.1]. By means of [1,
Theorem 25.4.6] we determine that the smallest (prime) degree of a vertical Fp-isogeny for
BN512 (resp. BN638) equals 1291 (resp. 1523). Thus our new encodings are the best known
ones, as far as we know.

We essentially improve results from our article [22] (resp. [23]), where we implicitly provide
non-optimal Fq-covers of degree 8 (resp. 20) to the curves Ea, E

′
a (resp. Eb, E

′
b for the case

5 | t). We did not notice this circumstance earlier. So in the light of the current article our
previous ones lose relevance. By the way, there we use the language of rational Fq-curves (and
their parametrizations) on the Kummer surface A/[−1]. However, as is known (e.g., from
[24]), it is equivalent to the language of Fq-covers by hyperelliptic curves (not necessarily of
genus 2).

1 Preliminaries

We continue to work with an ordinary elliptic curve E : y2 = x3 − ax+ b over a finite
field Fq of characteristic p > 5. As is customary, let us use the same symbol for E ⊂ A2

(x,y)

and E ∪ O ⊂ P2, where O := (0 : 1 : 0). As said before, E ′ : cy2 = x3 − ax+ b, where c ∈
F∗q \ (F∗q )2, stands for the (non-trivial) quadratic twist of E. In formulas instead of E ′ we
will use the fairly standard notation Ec in order to stress the choice c. The corresponding
Fq2-isomorphism has the form

σ : E ∼−→ Ec (x, y) 7→ (x, y/
√
c).

Let t (resp. −t) be the Frobenius trace of E (resp. E ′). Recall that p - t for ordinary curves
according to one of their equivalent definitions. Since the traces of n-congruent elliptic curves
coincide modulo n, we obtain the elementary

Lemma 1. If the curves E, E ′ are n-congruent for n ∈ N such that p - n, then n | 2t.

Also, we have

Theorem 1. For every prime ` 6= 2, p the following statements are equivalent:

1. ` | t;

2. the curves E, E ′ are reversely `-congruent;

3. there is an irreducible Fq-anti-isometry E[`] ' E ′[`];

4. E has a vertical (in the sense of [1, Definition 25.4.2]) degree ` isogeny defined over Fq2,
but not over Fq.

Proof. Denote by Fr, Fr′ the Frobenius endomorphisms on E, E ′ respectively. By definition,
the curves are `-congruent if and only if there is a group isomorphism τ : E[`] ∼−→ E ′[`] such
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that Fr′ ◦ τ = τ ◦ Fr. Since E[`] ' E ′[`] ' (Z/`)2 as abstract groups, we can represent the
maps Fr, Fr′, τ by means of matrices MFr,MFr′ ,Mτ ∈ GL2(Z/`). Given a basis {P0, P1} of
E[`] it is natural to take {σ(P0), σ(P1)} as a basis of E ′[`]. Without loss of generality, assume
that MFr is the rational canonical form (also known as the Frobenius normal form). Since the
characteristic polynomial of Fr equals χFr(x) = x2 − tx+ q and Fr′ ◦ σ = −σ ◦ Fr, we obtain

MFr = λI2 or MFr =

0 −q

1 t

, MFr′ = −MFr, Mτ =

m0 m1

m2 m3


for the unit matrix I2 and some λ,mk ∈ Z/`, λ 6= 0. As is known, MFr depends on whether
χFr coincides with the minimal polynomial of Fr.

By abuse of notation, all the next equations are modulo `. The condition Fr′ ◦ τ = τ ◦ Fr
means that −MFr ·Mτ = Mτ ·MFr, i.e., MFr 6= λI2 and
−qm2 = −m1,

−qm3 = qm0 − tm1,

m0 + tm2 = −m3,

m1 + tm3 = qm2 − tm3.

⇔


m1 = qm2,

−qm3 = qm0 − tqm2,

m0 + tm2 = −m3,

2tm3 = 0.

⇔


m1 = qm2,

−m3 = m0 − tm2,

−m3 = m0 + tm2,

tm3 = 0.

⇔


m1 = qm2,

m0 = −m3,

t = 0.

The fact tr(λI2) = 2λ 6= 0 implies that 1⇔ 2 whenever MFr = λI2. In opposite case, it remains
to prove the implication 1 ⇒ 2. Notice that the congruence τ is an anti-isometry if and only
if det(Mτ ) = −1. For m0, m1 from the last linear system we get det(Mτ ) = −(m2

3 + qm2
2),

hence it is sufficient to assign m2 = 0, m3 = 1.
Putting F := E ′ in [25, Lemma 4.5], we conclude that τ is never reducible, because the

isomorphism σ : E[`] ∼−→ E ′[`] is Frobenius equivariant only for ` = 2. Therefore we established
the criterion 2 ⇔ 3.

Further, we show the equivalence 1⇔ 4. Let us freely use results from [1, §25.4.1]. Denote
by f0 the conductor of the endomorphism ring End(E) and by D < 0 the discriminant of the
imaginary quadratic field End(E)⊗Q. The discriminant of χFr equals D1 = t2 − 4q = Df 2

1 ,
where f1 ∈ N (s.t. f0 | f1) is the conductor of the order Z[Fr]. Since over Fq2 the Frobenius
endomorphism Fr2 has the trace t2 = t2 − 2q [1, Exercise 9.10.9], the discriminant of its
characteristic polynomial equals t22 − 4q2 = D1t

2 = Df 2
2 , where f2 = f1t is the conductor of

Z[Fr2]. In other words, t =
[
Z[Fr] : Z[Fr2]

]
.

Our next reasoning is based on [1, Theorem 25.4.6]. Assume that E has a degree ` vertical
Fq2-isogeny not defined over Fq. It is descending, because the (unique) ascending isogeny of E
(if it exists) is always defined over Fq. As a result, ` | f2

f0
and ` - f1

f0
, hence ` | t. Conversely, from

` | t it follows that ` | f2
f0

. By our assumption, ` 6= 2, p, hence ` does not divide simultaneously

f1 and t (look at the formula for D1). Thus we have the desired isogeny.

2 Covers ϕ : H → Ea, ϕ
′ : H → E ′a

Throughout all this section we deal with curves Ea : y2 = x3 − ax over a finite field Fq
such that q ≡ 1 (mod 4) or, equivalently, i :=

√
−1 ∈ Fq. The formulas of covers represented

below are immediately verified in Magma [26].
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2.1 Degree n = 2

This case is well studied in the literature, but we shortly discuss it for the sake of com-
pleteness. There is on Ea the order 4 automorphism [i] : (x, y) 7→ (−x, iy), which is known to
generate Aut(Ea). Regardless of a quadratic non-residue c, obviously,

Ea[2] = Ec
a[2] = {P0, P±,O}, where P0 := (0, 0), P± := (±

√
a, 0).

Also, note that [i](P0) = P0 and [i](P±) = P∓.
If
√
a ∈ Fq, that is Ea[2] ⊂ Ea(Fq), then we have the Fq-(anti)-isometry

τ : Ea[2] ∼−→ Ec
a[2] P0 7→ P+, P+ 7→ P0, P− 7→ P−.

This isometry is irreducible according to [17, Proposition 3], because it is not the restriction
of an element from Aut(Ea). Using the given proposition also in the opposite case, we obtain

Lemma 2. There is an irreducible Fq-(anti)-isometry Ea[2] ' E ′a[2] if and only if
√
a ∈ Fq.

Moreover, after simplifying the formulas of [17, Proposition 4] applied to τ , we get the
quadratic Fq-covers

ϕ : H → Ea (x, y) 7→
(√

a(cx2 − 2)

−3cx2
,

2
√
a

32c2x3
·y
)
,

ϕ′ : H → Ec
a (x, y) 7→

(√
a(2cx2 − 1)

3
,

2
√
a

32c
·y
)

by the genus 2 curve
H : y2 = 3c

√
a(2c3x6 − 3c2x4 − 3cx2 + 2).

2.2 Degree n = 3

Due to §2.1 hereafter we suppose that c = a 6∈ (F∗q )2. In addition to the Legendre symbol(
x
q

)
= x(q−1)/2 for x ∈ F∗q , we will need the 4-th power residue one

(
x
q

)
4

:= x(q−1)/4.

Lemma 3. Under the condition
√
a 6∈ Fq there is an irreducible Fq-anti-isometry Ea[3] '

E ′a[3] if and only if
√

3,
√

2
√

3 ∈ Fq.

Proof. As is known (e.g., from [16, Proposition X.5.4]), among all curves of j = 1728 the

quadratic twist Ea′ of Ea (for a′ ∈ F∗q ) is uniquely characterized by the equality
(a′/a

q

)
4

= −1.

Consequently, by virtue of [27, Theorem 1.1] the curves Ea, E
′
a are reversely 3-congruent

if and only if exists a point (λ : µ) ∈ P1(Fq) such that B+(λ, µ) = 0 and
(A−(λ,µ)/c4

q

)
4

= −1,

where c4 := a/27.
It is readily checked that for c6 = 0 we have

A−(x, y) = − 4

c34
(x4 − 6c4x

2y2 − 3c24y
4), B+(x, y) = 6c24xy(x4 + 3c24y

4).
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First, A−(0, 1) = 12/c4 and A−(1, 0) = −4/c34. Therefore(A−(0, 1)/c4
q

)
4

=
(12c24

q

)
4

=
(4a2/3

q

)
4
,

(A−(1, 0)/c4
q

)
4

=
(−4

q

)
4

=
(2i

q

)
.

Since (i+ 1)2 = 2i, the last symbol equals 1. In turn,
(4a2/3

q

)
4

= −1 if and only if
√

3 ∈ Fq
and

(2a/√3
q

)
=
(
2
√
3a
q

)
= −1, that is

√
2
√

3 ∈ Fq.
Second, let λ4 = −3c24, that is λ2 = ±i

√
3c4. Then

A−(λ, 1) = −243ωk/c4,
(A−(λ, 1)/c4

q

)
4

=
(−3c24

q

)
4
,

where 1 6 k 6 2. The symbol
(−3c24

q

)
4

= −1 if and only if
√

3 ∈ Fq and
(
i
√
3c4
q

)
= −1. However

in this case λ 6∈ Fq. Finally, the lemma is proved according to the equivalence 2 ⇔ 3 of
Theorem 1.

Based on this lemma we find the cubic Fq-covers (where s :=
√

2
√

3)

ϕ : H → Ea (x, y) 7→

(
3(2x3 −

√
3ax)

sa
,
s(2
√

3x2 − a)

22a2
·y

)
,

ϕ′ : H → Ea
a (x, y) 7→

(
sx3

3(
√

3x2 − 2a)
,

x3 − 2
√

3ax

3sa(
√

3x2 − 2a)2
·y

)

by the genus 2 curve
H : y2 = 2sa(2

√
3x5 − 7ax3 + 2

√
3a2x).

Similar formulas are contained in [18, Algorithm 5.4, Appendix A] (even for any pair of
elliptic curves glued along their 3-torsion subgroups via an irreducible anti-isometry).

The implication 3 ⇒ 4 of Theorem 1 allowed us to derive our formulas in the same way
as in §2.3. In order to save space let us not repeat the intermediate computations. The only
difference is that, in contrast to §2.3, the endomorphism e = [2] (up to Aut(Ea)), because
deg(ϕ̃) = deg(ϕ̃′) = 12 and curves Ea do not possess cyclic endomoprhisms of degree 4.

2.3 Degree n = 4

Theorem 2. Under the condition
√
a 6∈ Fq there is always an irreducible Fq-anti-isometry

Ea[4] ' E ′a[4]. Moreover, we have the optimal Fq-covers

ϕ : H → Ea (x, y) 7→
(

24ia2x

3(3x2 − a)2
,

2(i− 1)a(32x2 + a)

32(3x2 − a)3
·y
)
,

ϕ′ : H → Ea
a (x, y) 7→

(
24iax3

3(x2 − 3a)2
,

2(i− 1)(x3 + 32ax)

32(x2 − 3a)3
·y
)

by the genus 2 curve
H : y2 = 2·3a(32x5 − 2·7ax3 + 32a2x).
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Proof. The existence of an Fq-anti-isometry τ : Ea[4] ∼−→ E ′a[4] stems from [15, Corollary 7.4].
Indeed, the discriminant D(x3 − ax) = 26a3 6∈ (F∗q )2. Now let’s start to derive (using Magma
[26]) the described formulas, thereby showing the irreducibility of some τ . For this purpose
one can apply the Fisher approach [28, §3], but we propose a more elegant one, in our view.

The beginning is as in [22, §3], but here we prefer to work at the level of abelian surfaces
rather than Kummer ones. First of all, with the help of Vélu’s formulas [1, 25.1.1] we explicitly
write out the Fq-conjugate isogenies ϕ̂± : Ea → E± := Ea/P± to the elliptic curves

E± : y2 = x3 − 11ax∓ 2·7a
√
a

of j-invariant (2·3·11)3. Note that

E+[2] =
{
Q

(0)
0 , Q

(0)
± ,O

}
, E−[2] =

{
Q

(1)
0 , Q

(1)
± ,O

}
,

where
Q

(k)
0 :=

(
(−1)(k+1)2

√
a, 0

)
, Q

(k)
± :=

(
(−1)k(1± 2

√
2)
√
a, 0

)
.

Again applying Vélu’s formulas to Q
(k)
0 , we determine the dual isogenies

ϕ± : E± → Ea (x, y) 7→
(

(x±
√
a)2

22(x± 2
√
a)
,
x2 ± 22

√
ax+ 3a

23(x± 2
√
a)2

·y
)
.

Further, making use of [17, Proposition 4] with respect to the irreducible (anti)-isometry

τ : E+[2] ∼−→ E−[2] Q
(0)
0 7→ Q

(1)
0 , Q

(0)
± 7→ Q

(1)
∓ ,

we obtain quadratic covers χ′± : H ′ → E±. This isometry is π-invariant in the sense of [29, §1]

regardless of whether
√

2 ∈ Fq or not. Consequently, the genus 2 curve H ′ is also π-invariant.
Thus it is isomorphic to some Fq-curve H by means of the isomorphism ψ : H ∼−→ H ′ from [29,
§1] (substitute

√
a instead of i). After simplifying the formulas of χ± := χ′± ◦ ψ, we get the

desired equation of H and the Fq-conjugate covers

χ± : H → E± (x, y) 7→
(
∓2
√
a(3x2 ± 5

√
ax+ 3a)

3(x±
√
a)2

,
∓
√
a

32(x±
√
a)3
·y
)
.

Based on the auxiliary Fq-conjugate covers θ± := ϕ± ◦ χ± of degree 4, we obtain the Fq-
morphisms

ϕ̃ : H → Ea P 7→ θ+(P ) + θ−(P ), ϕ̃′ : H → Ea
a P 7→ σ

(
θ+(P )− θ−(P )

)
.

Using the classical addition-subtraction formulas on elliptic curves (e.g., from [1, §9.1]), we
actually get the Fq-covers

ϕ̃ : H → Ea


X0 :=

(32x2 + a)2(32x4 − 2·7ax2 + 32a2)

253ax(3x2 − a)2
,

Y0 :=
(36x8 − 2235ax6 + 2·35a2x4 − 227·13a3x2 + 32a4)(32x2 + a)

2832a2x2(3x2 − a)3
·y,

ϕ̃′ : H → Ea
a


X1 :=

(x2 + 32a)2(32x4 − 2·7ax2 + 32a2)

25 ·3x3(x2 − 3a)2
,

Y1 :=
(32x8 − 227·13ax6 + 2·35a2x4 − 2235a3x2 + 36a4)(x2 + 32a)

2832ax5(x2 − 3a)3
·y.
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Moreover, deg(ϕ̃) = deg(ϕ̃′) = deg(Xk) = 8. Functions similar to X0, X1 are given in [22,
§3.1]. There we stop at this stage, however it turns out that ϕ̃, ϕ̃′ are not optimal covers. More
precisely, below we prove that over Fq exist elliptic curves E, E ′, isomorphisms η : E ∼−→ Ea,
η′ : E ′ ∼−→ Ea

a , and degree 4 covers ϕ : H → E, ϕ′ : H → E ′ such that

ϕ = η ◦ ϕ, ϕ̃ = [i] ◦ e ◦ ϕ, ϕ′ = η′ ◦ ϕ′, ϕ̃′ = [i] ◦ e ◦ ϕ′.

Here

e : Ea → Ea = Ea/P0 (x, y) 7→
(
i(x2 − a)

2x
,

(1− i)(x2 + a)

(2x)2
·y
)

is the unique (up to Aut(Ea)) endomorphism on Ea of degree 2. In order not to complicate
the notation we equally denote by e the same endomorphism on E ′a.

First of all, there are the decompositions

x0 :=
x

(3x2 − a)2
, X0 =

28a3x20 + 32

253ax0
, x1 :=

x3

(x2 − 3a)2
, X1 =

28ax21 + 32

253x1
.

In order to determine them we make use of the standard Magma function “Decomposition”.
Unfortunately, it does not work over the function field in a, hence before we substitute in a
a large prime and after we check the correctness for general a.

In addition to 0, the remaining 4 roots of the polynomial f (where H : y2 = f(x)) are
equal to

r± :=
(±i+ 2

√
2)
√
a

3
, r′± :=

(±i− 2
√

2)
√
a

3
.

It is readily checked that

x0(0) = x1(0) = 0, x0(r±) = x0(r
′
±) =

∓3i
√
a

24a2
, x1(r±) = x1(r

′
±) =

±3i
√
a

24a
.

Consider the polynomials

gk(x) := x
(
x− xk(r+)

)(
x− xk(r−)

)
= x3 +

32

28a3−2k
x.

It turns out that in the function field Fq(H) there are the square roots of fk(x) := 6gk
(
xk(x)

)
,

namely √
f0(x) =

32x2 + a

24a2(3x2 − a)3
·y,

√
f1(x) =

x3 + 32ax

24a(x2 − 3a)3
·y.

As a consequence, E : y2 = 6g0(x), E ′ : y2 = 6g1(x) and the corresponding covers are nothing
but

ϕ : H → E (x, y) 7→
(
x0(x),

√
f0(x)

)
, ϕ′ : H → E ′ (x, y) 7→

(
x1(x),

√
f1(x)

)
.

Composing these covers with the Fq-isomorphisms

η : E ∼−→ Ea (x, y) 7→
(

24ia2

3
·x, 25(i− 1)a3

32
·y
)
,

η′ : E ′ ∼−→ Ea
a (x, y) 7→

(
24ia

3
·x, 25(i− 1)a

32
·y
)
,
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we obtain the desired Fq-covers ϕ : H → Ea, ϕ
′ : H → Ea

a . This is a computational exercise
to show that ϕ̃ = [i] ◦ e ◦ ϕ and ϕ̃′ = [i] ◦ e ◦ ϕ′ as stated above.

It remains to prove the optimality of ϕ, ϕ′. The only possible non-trivial decomposition of
ϕ (up to an Fq-isomorphism) has the form ϕ = e ◦ ϕ2 for some quadratic Fq-cover ϕ2 : H → Ea.
For ϕ2 there is the quadratic complementary Fq-cover ϕ′2 whose the construction is explained,
e.g., in [15, §2]. It is easy to make sure that ϕ′2 maps to E ′a. Taking into account §2.1, we come
to a contradiction. The same reasoning is equally correct for ϕ′. Another argument consists
of the fact that Magma returned the complete decompositions of X0, X1.

3 Covers ϕ : H → Eb, ϕ
′ : H → E ′b

Throughout all this section we deal with curves Eb : y2 = x3 + b over a finite field Fq such
that q ≡ 1 (mod 3), i.e., ω := 3

√
1 ∈ Fq, ω 6= 1 or, equivalently,

√
−3 ∈ Fq. The formulas of

covers represented below are immediately verified in Magma [26].

3.1 Degree n = 2

This case is well studied in the literature, but we shortly discuss it for the sake of com-
pleteness. There is on Eb the order 6 automorphism [−ω] : (x, y) 7→ (ωx,−y), which is known
to generate Aut(Eb). Regardless of a quadratic non-residue c, obviously,

Eb[2] = Ec
b [2] = {Pk}2k=0 ∪ {O}, where Pk :=

(
−ωk 3
√
b, 0
)
.

Also, note that [−ω](Pk) = Pk+1.
If 3
√
b ∈ Fq, that is Eb[2] ⊂ Eb(Fq), then we have the Fq-(anti)-isometry

τ : Eb[2] ∼−→ Ec
b [2] P0 7→ P1, P1 7→ P0, P2 7→ P2.

This isometry is irreducible according to [17, Proposition 3], because it is not the restriction
of an element from Aut(Eb). Using the given proposition also in the opposite case, we obtain

Lemma 4. There is an irreducible Fq-(anti)-isometry Eb[2] ' E ′b[2] if and only if 3
√
b ∈ Fq.

Moreover, after simplifying the formulas of [17, Proposition 4] applied to τ , we get the
quadratic Fq-covers

ϕ : H → Eb (x, y) 7→

(
3
√
b

cx2
,

y

c2x3

)
,

ϕ′ : H → Ec
b (x, y) 7→

(
c 3
√
bx2,

y

c

)
by the genus 2 curve

H : y2 = bc(c3x6 + 1).
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3.2 Degree n = 5

The degrees 3, 4, and > 5 are discussed in §3.3. Due to §3.1 hereafter one can suppose
that 3

√
b /∈ Fq, although we do not use this. In addition to the Legendre symbol

(
x
q

)
= x(q−1)/2

for x ∈ F∗q , we will need the k-th power residue one
(
x
q

)
k

:= x(q−1)/k, where k ∈ {3, 6}.

Lemma 5. There is an irreducible Fq-anti-isometry Eb[5] ' E ′b[5] if and only if
√

5 6∈ Fq and
3
√
b/10 ∈ Fq.

Proof. As is known (e.g., from [16, Proposition X.5.4]), among all curves of j = 0 the

quadratic twist Eb′ of Eb (for b′ ∈ F∗q ) is uniquely characterized by the equality
( b′/b

q

)
6

= −1.

Consequently, by virtue of [30, §13] the curves Eb, E
′
b are reversely 5-congruent if and

only if exists a point (λ : µ) ∈ P1(Fq) such that c4(λ, µ) = 0 and
(c6(λ,µ)/c6

q

)
6

= −1, where

c6 := −b/54. Here c4, c6 are the dual Hesse polynomials for n = 5 from [30, §9].
It is readily checked that for c4 = 0 we have the decomposition

c4(x, y) = −225c136 xy ·Q0(x
3, y3)Q1(x

3, y3)Q2(x
3, y3),

where

Q0 := x2 − 265c6xy − 265c26y
2, Q1 := x2 − 5c6xy + 235c26y

2, Q2 := x2 + 235c6xy + 295c26y
2.

First, c6(0, 1) = 23055c296 and c6(1, 0) = c196 . Therefore(c6(0, 1)/c6
q

)
6

=
(c46/5

q

)
6
,

(c6(1, 0)/c6
q

)
6

= 1

and hence (c6(0, 1)/c6
q

)
=
(5

q

)
,

(c6(0, 1)/c6
q

)
3

=
(c6/5

q

)
3

=
(b/10

q

)
3
.

Second, the discriminants of the quadratic forms are equal to

D(Q0) = 28345c26, D(Q1) = −335c26, D(Q2) = −26335c26.

As a result, for y = 1 their roots are

x0,± = 23(225± 32
√

5)c6, x1,± =
(5± 3

√
−3
√

5)c6
2

, x2,± = 22(−5± 3
√
−3
√

5)c6.

It is easily shown that

c6
(

3
√
x0,±, 1

)
= −23031555α2

0c
29
6 , c6

(
3
√
x1,±, 1

)
= −31555α2

1c
29
6 , c6

(
3
√
x2,±, 1

)
= −23031555c296

for some α0, α1 ∈ Fq(
√

5). No matter the index k, the element c6
(

3
√
xk,±, 1

)
/c6 is a quadratic

residue in Fq whenever 5 is so. However only in this case xk,± ∈ Fq. Finally, the lemma is
proved according to the equivalence 2 ⇔ 3 of Theorem 1.
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Based on this lemma we find the optimal Fq-covers

ϕ : H → E10 (x, y) 7→
(

52(x3 − 23)

x2(2x3 − 52)
,

22x6 − 5·11x3 + 2452

x3(2x3 − 52)2
·y
)
,

ϕ′ : H → E5
10 (x, y) 7→

(
x2(23x3 − 53)

52(x3 − 2·5)
,

24x6 − 5211x3 + 2254

54(x3 − 2·5)2
·y
)

by the genus 2 curve
H : y2 = 5(2x6 − 325x3 + 2·53).

The implication 3 ⇒ 4 of Theorem 1 allowed us to derive these formulas in the same
way as in §2.3. In order to save space let us not repeat the intermediate computations.
Nevertheless, it is necessary to emphasize that, in contrast to §2.3, in the current situation
j(E±) 6∈ Fq and the definition field Fq(E±[2]) = Fq6 (see details in [23, §1]). So as an irreducible
anti-isometry τ : E+[2] ∼−→ E−[2] we should take χ from [29, §1]. Besides, the endomorphism
e = [2] (up to Aut(E10)), because deg(ϕ̃) = deg(ϕ̃′) = 20 and curves of j = 0 do not possess
cyclic endomoprhisms of degree 4.

For B := b/10 we have the Fq-isomorphisms

E10
∼−→ Eb, E5

10
∼−→ E5

b (x, y) 7→
(

3
√
B ·x,

√
B ·y

)
if
√
B ∈ Fq and

E10
∼−→ E5

b (x, y) 7→
(

3
√
B ·x,

√
B/5·y

)
, E5

10
∼−→ Eb (x, y) 7→

(
3
√
B ·x,

√
5B ·y

)
otherwise. Correctly composing these isomorphisms with ϕ, ϕ′, we obtain Fq-covers H → Eb,
H → E5

b of degree 5 for any b.

3.3 Other degrees n

According to Lemma 1 the condition n | 2t is necessary for the existence of an n-
congruence between the curves Eb, E

′
b. Since q and #Eb(Fq) are odd by our assumptions,

the trace t = q + 1−#Eb(Fq) is so. Conversely, by virtue of Theorem 1 there is an irre-
ducible Fq-anti-isometry Eb[`] ' E ′b[`] for any prime divisor ` | t. Therefore it is enough to
consider primes n = `, because we are interested in n as small as possible. Recall that the dis-
criminant of the Frobenius characteristic polynomial on Eb (and E ′b) equals t2 − 4q = −3f 2

for some f ∈ N (see details in [2, §4.2.1]). Since 3 - q in this article, the case ` = 3 does not
arise.

It remains to treat ` > 7. Unfortunately, for such numbers the modular curves X−Eb
(`) (from

[30, §13], [31, §1.1]) are no longer rational. So we can not provide (similarly to §2.2, §3.2)
necessary and sufficient conditions under which Eb, E

′
b are reversely `-congruent. Instead, the

theory developed in [31, §2.3-2.4] is perhaps useful to extract some information. Besides, we
did not find in today’s real-world cryptography Fq-curves Eb with a greater trace divisor and
without an efficient encoding. Thus we decided to stop at ` = 5.

Formally, all our Magma computations are over fields of characteristic 0 so that the
derived formulas of the covers ϕ, ϕ′ are valid independently of Fq (except for maybe a finite
number of degenerate cases). However the strong Frey–Mazur conjecture [28, §1] predicts that
at least over the field Q there is no `-congruent pair Eb, E

c
b no matter b, c ∈ Q, ` > 13. Hence

one may try to construct ϕ, ϕ′ to some curves Eb, E
c
b only for ` ∈ {7, 11, 13}.
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4 Encodings h : P1(Fq) ∼−→ H(Fq) and ϕ ◦ h : P1(Fq)→ E(Fq)
Note that all genus 2 curves previously encountered in this article are given in the affine

Fq-form
H : y2 = f(x) := f6x

6 + f5x
5 + f4x

4 + f3x
3 + df4x

2 + d2f5x+ d3f6

for some d ∈ F∗q \ (F∗q )2. Its precise values are contained in Table 1. As usual, H has the
smooth completion in the weighted projective plane P(1, 2, 1) with respect to variables X, Y, Z
such that x = X/Z, y = Y/Z3. At infinity H contains the points O± := (1 : ±

√
f6 : 0). In

compliance with [1, Definition 10.1.11] the equation of H is a ramified model if f6 = 0, a split
model if

√
f6 ∈ F∗q , and an inert one otherwise.

§ 2.1 2.2 2.3 3.1 3.2

d 1/c a a 1/c 5

Table 1: The values of d ∈ F∗q \ (F∗q )2

It is readily checked that there are on H the involutions

±α : H ∼−→ H (X : Y : Z) 7→
(
dZ : ±d

√
d·Y : X

)
or in the affine coordinates:

±α : H ∼−→ H (x, y) 7→
(d
x
, ±d

√
d

x3
·y
)
.

In particular, P± :=
(
0,±d

√
df6
) α←→ O±. In the case f6 = 0 the points P+ = P−, O+ = O−

are moreover Weierstrass points on H. Also, it is worth mentioning that the quotients H/(±α)
are Fq-conjugate elliptic curves. By the way, over algebraically closed fields genus 2 curves
with non-hyperelliptic involutions were actively studied, for example, in [32].

Consider any partition F∗q = Y t −Y (e.g., as in [22, §4]) and the modulus analogue

Fq → Y t {0} |y| :=

y if y ∈ Y t {0},

−y otherwise.

The involution α enables to construct the encoding

h : F∗q → H(Fq) h(x) :=


(
x,
∣∣√f(x)

∣∣) if
√
f(x) ∈ Fq,(

d

x
, −

∣∣∣∣∣d
√
df(x)

x3

∣∣∣∣∣
)

otherwise, i.e.,
√
df(x) ∈ Fq

extended to P1(Fq) as follows:

(
h(0), h(∞)

)
:=


(P+,O+) if f6 = 0,

(O+,O−) if
√
f6 ∈ F∗q ,

(P+, P−) otherwise, i.e.,
√
df6 ∈ F∗q .
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Lemma 6. The encoding h : P1(Fq)→ H(Fq) is bijective and hence #H(Fq) = q + 1.

Proof. Obviously, h(0) 6= h(∞) and h({0,∞}) coincides with the set of all Fq-points among
P±,O± regardless of the model of H. Since h(F∗q ) ∩ {P±,O±} = ∅, it remains to prove the
lemma for h restricted to F∗q . Further, the first condition in the definition of h also processes
non-zero Fq-roots of the polynomial f (if any). Consequently, h gives the bijection between
them and Weierstrass Fq-points on H different from P+, O+.

Assume that h(x0) = h(x1) for some x0, x1 ∈ F∗q outside the set of roots of f . If in addition
f(x0)f(x1) ∈ (F∗q )2, then clearly x0 = x1. In the opposite case x1 = d/x0, from the modulus
definition it follows the contradiction f(x0) = f(x1) = 0. Thus the injectivity is proved. To
show the surjectivity we need the property f(d/x)f(x) 6∈ (F∗q )2, which stems from the equality
f(d/x) = d3f(x)/x6 for x ∈ F∗q . Then given a point P = (x, y) from H(Fq) \ {P±,O±} it is
easily checked that h−1(P ) = x if |y| = y and h−1(P ) = d/x otherwise.

As before, denote by ϕ : H → E any Fq-cover of small degree to an elliptic curve E. By
analogy with the Kummer surfaces approach [23, §2] and with the case d = −1 [29, §2], [8,
Algorithm 1] we have the following remark. We decided to omit its detailed consideration,
because it would not contain the scientific novelty.

Remark 1. Whenever q 6≡ 1 (mod 8) a slight modification of the encoding h (and hence of
ϕ ◦ h) is implemented in constant time of one exponentiation in Fq.

Remark 2. It seems to us that not every median value curve (not to mention a general genus
2 curve) possesses an efficient encoding.

To argue the last words, consider, for example, the curve E ′a (such that
√
a,
√

2 ∈ F∗q ) whose
the quadratic twist Ea is Fq-isogenous to the curve E+ (see details in §2.3). As we know, the
irreducible Fq-(anti)-isometry

E ′a[2] ∼−→ E+[2] P0 7→ Q
(0)
0 , P± 7→ Q

(0)
±

gives rise to a covering H of E ′a, E+. We checked that (at least for some q) all automorphisms
of H are defined over Fq. Since this fact is negative, we leave the reader with his or her
computer algebra system to see for themselves.

Finally, by virtue of Lemma 6 and [4, Theorem 7] we obtain

Corollary 1. The encoding h is 2-well-distributed (the same is true for ϕ ◦ h if the cover ϕ
is optimal). More formally, let ψ1 := ϕ, ψ2 := id, and J be the Jacobian of H. Then∣∣∣∣∣∣

∑
x∈P1(Fq)

χk
(
(ψk ◦ h)(x)

)∣∣∣∣∣∣ 6 2
√
q

for any non-trivial characters χ1 : E(Fq)→ C∗ and χ2 : J(Fq)→ C∗.

Acknowledgements. The author is grateful to Tom Fisher and Yuri Zarhin for answering
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[25] Howe E., Nart E., Ritzenthaler C., “Jacobians in isogeny classes of abelian surfaces over finite
fields”, Annales de l’Institut Fourier, 59:1 (2009), 239–289.

[26] Koshelev D., Magma code, https://github.com/dishport/Optimal-encodings-to-elliptic-curves-
of-j-invariants-0-1728, 2021.

[27] Fisher T., “On families of 9-congruent elliptic curves”, Acta Arithmetica, 171:4 (2015), 371–
387.

[28] Fisher T., On pairs of 17-congruent elliptic curves, https://arxiv.org/abs/2106.02033, 2021.

[29] Koshelev D., Faster indifferentiable hashing to elliptic Fq2-curves, https://eprint.iacr.org/
2021/678, 2021.

[30] Fisher T., “The Hessian of a genus one curve”, Proceedings of the London Mathematical Soci-
ety, 104:3 (2012), 613–648.

[31] Cremona J., Freitas N., “Global methods for the symplectic type of congruences between
elliptic curves”, Revista Matemática Iberoamericana, 2021.
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